Approximation capability of TP model forms  *

Domonkos Tikk
Department of Telecommunications and Media Informatics,
Budapest University of Technology and Economics,
1117 Budapest, Magyar Tuabkok KorGtja 2., Hungary,

Péter Baranyi
Computer and Automation Research Institute of the Hungarian &ademy of Sciences
1111 Budapest, Kende u. 13-17, Hungary,

Ron J. Patton
Department of Engineering, University of Hull
Cottingham Rd, Hull, HU6 7RX, UK

Jozsef K. Tar
Centre of Robotics and Automation, Budapest Polytechnic
1081 Budapest, Bpsinhaz u. 8., Hungary

Abstract tion to finite superposition of continuous functions of fewe

variables. The motivation is straightforward: one dimensai

The tensor product (TP) based models have been appfigtttions are much easier to calculate with, handle and visu
widely in approximation theory, and approximation techyjize.

niques._ Recently, a controller design framework working onyiipert presumed that this problem cannot be solved in
dynamic systems has also been established based onydfura) j.e. there exist multivariate continuous functioat
model transformation combined with Linear Matrix Inequak,nnot be decomposed to univariate continuous functions.
ities (LMI) within Parall_el Distributed Compensatiqn (PPChis was disproved by Kolmogorov in 1957 [15] in his gen-
framework. The effectiveness of the control design framgey| representation theorem, when he provided a consteucti
work strongly depends on the approximation property of the, ot Unfortunately, univariate function components ever

TP model used. Therefore, the primary aim of this paperdgen highly non-smooth, so this construction could not be
to investigate the approximation capabilities of dynamit Tdirectly applied in practice.

model. Itis shown that the set of functions that can be apProX another family of univariate function based methods use

points Qut thatin a clz_iss _of control problems t_his draWba@ﬁURBS) technique has become industry standard through-
necessitates the application of trade-off techniques &&w ,  cAp/CAM/CAE systems for the representation, design,
accuracy and complexity of TP form. Such requirements af€y jata exchange of geometric information processing by
very difficult to con.S|der in the analytical framework, bu:?Tcomputers. These systems use data-base assigned, with in a
model transformation offers an easy way to deal with themg g hroduct, to piecewise polynomial or rational curves

and surfaces to represent complex geometry. Decomposition
1 Introduction to primitive functions and data-base also has importarm rol

in signal processing when wavelet functions are concerned.
The demand for the decomposition of multivariate functiofgany of recent signal processing approaches are based on

to univariate ones goes back to the very end of the 19th cgfk evaluation of parameter array assigned by tensor produc
tury. In 1900, in his memorable lecture at the Second lgyywavelet or other basis.

ternational Congress of Mathematicians in Paris, D. Hilber Tp pased approximation has reached modelling ap-

the famous German mathematician, listed 23 conjectures, Baches of non-linear dynamic systems, and furthermore,
potheses concerning unsolved problems which he considefgde are now controller design frameworks based on TP
would be the most important ones to solve by the mathemafipgel [1, 5]. GenerallyTP model in broad sense, is an
cians of the 20th century [12, 9, 13]. In the 13th, he adde@ssggyproximation technique where the approximating funetion
the problem of multivariate continuous function decomposire in tensor product form, wherea$R model fornis a par-

“This research was partly done while D. Tikk and P. Baranfffular approximating function in a TP model. In this paper
were visiting at the University of Hull. Research funded by th&€e consider TP model in a narrower sense, when a TP model

DAMADICS project and by the Hungarian Scientific Researds applied to dynamic system control (see details in Section
Fund (OTKA) Grants No. T34212 and T34233. 2.1); as a consequence we prefer the TP model denomination




rather than TP approximation since the former reflects betteWe can rewrite (3) in the concise tensor product form as:
our modelling point of view.

A large variety of LMI based control design techniques sx(1)) _ o N x(t)

. =S ® Wn(pn(t)) . (4)

have been developed in the last decade [6, 7, 17]. Powerful y(t) n=1
commercialized softwares have also been developed [8] for
solving LMIs and related control problems. Recently, a nurhl€re, row vectorw,(p,) € R™ contains the basis func-
ber of LMI based controller designs have been carried $&"S wn i, (Pn), the N + 2-dimensional coefficient tensor
for TP models (also termed as polytop or TS models in fuzgy€ R /2> Ivx@x 1 is constructed from the linear con-
theory) under PDC [20]. Further, B> model transformation Stant system matriceS,, ;, ;. € R?*!. (Calligraphic
has been developed to transfer non-linear dynamic model§/Resetting is used for tensors.) The firgtdimensions of
TP model whereupon PDC design frameworks can readilyare assigned to the dimensionstaf The convexity of the
be executed [1, 5, 10, 11]. One can find a case study of B@sis functions is ensured by conditions:
model transformation in the control design of a prototypica

aeroelastic wing section [2] that exhibits various conpia- V. &, pa(t) : wni(Pa(?)) € [0, 1];
nomena such as limit cycle oscillation and chaotic vibratio In (5)
[14] Vn7pn(t) : an,i(pn(t>) =1

i=1

A crucial point of these control design frameworks is the
modelling accuracy. If TP model does not appropriately dé-rpq Tp model transformation, described in details in [1, 5,

scribe the real system the resulting control may not endere iy ¢ transforms a state-space model into TP forms has the
required control performance. This paper is devoted to a'ﬂ?ﬂowing syntax

lyze the approximation capabilities of TP model forms when
applied to dynamic system control. (Wne1....n(pn(t)); S) = TP-trans{S(p(t)); 2; options;

The paper is organized as follows: Section 2 introduces (6)
the fundamentals of TP modelling. Section 3 proves the mMgiRere S(p(t)) € RO*! from (2), and} is the bounded
result of the paper. Section 4 introduces an example of-st@grameters space the transformation is performed over, and
space model that can be exactly described in TP form, ag@tion" is to define some characteristics of the resultiag b
such a one that only can be approximated. Section 5 deri¥@Sfunction systenv,—; __n(pa(t): the transformation can

some conclusions. generate “minimal”, “convex” and “close-to-localized"$is.
For further details see the referred papers [1, 5, 4].
2 Preliminaries Our goal in this paper is to characterize the approxima-
tion behavior of the transformation of the dynamic state-
2.1 TP model space model form to TP form with respect to accuracy and
Consider parametrically varying state-space dynamic ino Jgasibility. More precisely, we intend to show that there ex
ISts functions that cannot be approximated arbitrarilylwel
sx(t) = A(p(t))x(t) + B(p(t))u(?t) ) by a bounded number of basis functions. As a consequence,
it will be shown that the set of functions that TP forms of
y(t) = Clp(®)x(t) + D(p(t))u(t), bounded order can approximate arbitrarily well is no-where
The system matrix dense in the set of continuous functions. More precisedygth

are two possible cases: 1. there existeaactTP model of
S(p(t)) = (A(p(t)) B(p(t))> € RO*I (2) the dynamic system, thus this model is ready to use in prac-
C(p(t)) D(p(t)) tice, and the stability of the controller can be easily aidi

is a parametrically varying object, whepdt) € Q is time through LMI techniques. 2. When exact model does not exist,
varying N-dimensional parameter vector, whétec RV is W€ need to approximate the systems behavior by TP .forms
a closed hypercub(t) can also include some elements Jyith acceptable accuracy for the given problem. The price of

x(t). Further, for a continuous-time system(t) = %(t); or the accuracy is paid by the complexity of the TP forms, i.e.
for a discrete-time systemx(t) = x(t + 1) holds. the increasing number of basis functions in each dimension.

The TP mode] to be studied in this paper, applies univaril Nis necessitates the use of trade-off techniques, whiah is
ate basis functions. which is described as:' amenable way of solving practical problems when TP model
' transformation is applied.

sx(1) I In N (1)
<y(t)>: Do T w0 ()80 i (u(t)> 2.2 Approximation theory framework

i1=1 iy=1n=1
(3) For the sake of simplicity, we restrict to bivariate consot-

Functionw,, ; (p,(t)) is thej-th univariate basis function de-faces and models with only two input variablgs = 2). All
fined on then-th dimension of, andp,,(t) is then-th el- definitions and statements can be carried over trivialljheo t
ement of vectop(t). I, (n = 1,...,N) is the number of multivariate case. Therefore, all results presented irséte
univariate basis functions used in theth dimension of the tion are equally valid for any finit¢V € N value. Further,
parameter vector. The multi-indeX, , io, ... ,ix) refers to without the loss of generality, we restrict the range of inpu
the coefficient vertex system corresponding toih¢h basis to the unit interval, because any finite ranged interval @n b
function in then-th dimension(n = 1,..., N). Hence, the mapped into another.
number of vertex systenss;, ;, i, iS obviously]_[g:1 I,.



Definition 1 We refer to the matrix function of the followingvell by the corresponding elements of bounded TP model

form as TP form of ordefIy, I) forms, then this property can be carried over for the whole
matrix function. Therefore in the next lemma, we investi-
TP(z1,2) =S8 <Z1> — (7) gate only one element of matrix functiGhp, ¢(z1, z2) =
2 TP(z1,22),5. That element is a linear function 6f,, z2)

L Ip 2 according to (1), where the coefficients depend on[thg
= (Z Z w1 i, (21)wa 4y (22)81'1,1'2) <z2> elements 08,, ;,, matrices. For brevity, we refer toas TP
t1=114z=1 model form in the next, keeping in mind that it is an arbitrary
where the number of the component is bounded, tip the €lement of the matrix functiof’ .
first and byl, in the second variable. Matrice®;, ;, contain
the coefficients as defined(R). wy ;, (z1) andws ;, (z2) are
the normalized basis functions that satisfy condi(is)

Lemmal Letw : [0,1] — R be a function of the form

w(z1,22) = aif 29 > 21, w(z1, 22) # « else, wherex € R.

Then for eaclp € [1,00] and Iy, I> € N there holds

As we noted above, all definitions and proofs can be gen-

eralized to multivariate case. Let us investigate now thre co inf {||w —tllp |t =TP; TP € TPEII’) I )} > 0. (10)

respondence between the inputsand the vectorp and

x in the general, multivariate case. The dimension of vefor arbitrary (4, j) pair.

tor z can be considered as the union the dimensions of

and p. Sincep can contain some elements ®f z is an Proof. The proof proceeds indirectly. First, we suppose

extension ofx with the elements op that are not inx. thatopposing the assumption (10) there exist a sequignce

Formally, if x = (z1,...,2p)" andp = (p1,...,pn)T n € N of TP model formst € (TPE‘I’E 12)) , which en-

such thatp; = w; fori = 1,....K, K < M, then g a5 norm-convergence to the functian sl

z=(21,...,T0,PK11,---,0Nn)] € RMEN=K "assuming

that the firstK” elements ok andp are ordered correspond- lim ||£,, — wllp, =0 (11)

ingly. If K < M, then forz;, K +1 < i < M there is a sole "

basis functiornw; that is identicallyl on the whole range of wheref, being TP model forms of ordefl;, I,) have the

z;, i.e. these elements has no effect on the output of the (5,

model. If N = K then the size of is M.

Let us denote the set of TP forms (7) defined in Definition L Iz

o ) faziz) = S0 5 0l (z)wl) (22) (s5712)[ ]

TP(II,IZ) ([0 1]2) (8) i1=11i3=1 b5

where the pai(1y, I) is an upper bound for the number ofyhere " Z) (21), wl 1) (zs) are basis functions and
components in the input spaé@ 1]%. Forp € [1,00] we (S(")

are real numbers. If we modify properly
introduce the set )[i,j

01,12
Tp® ([O 1]2) ©) TP model formsé, then we obtain TP model forms,,
(n1,nz) AL according to the assumption (11) that approximate ariitrar
which is the subset of (8) ani ([0, 1]2), as well. Therefore well functions having valué for y > = and that differs from

the set (9) is equipped with the’-norm | - [|,.. An elements 0fory < z w.rt. | - ||,. Therefore we introduce a sequence
of sets (9) and (8) is P model forms of ordefI;, I,). In ©Of TP model forms,,) (n € N) as

general, TP model forms with finite bounds in each dimen- Lo
sion are called’P model forms of bounded order tn(21, 22) Z Z wgnl)1 (21) w;nl)z( 2) (Sl(ln)w) (12)
Zl 1 22 1

3 Main results W A
whereS;" 1=5 "j — a. Because norm-convergence implies

Moser has proven the no-where denseness of Sugeno q:mmtmse convergence at almost everywhere from (11) and
trollers [18] in two steps [16]. Our proof to be presentecehef12) we have

is an extension of Moser’s result and its deduction techmiqu limt, =w—a (13)

is analogous of Moser’s one. First, we prove that a special "

function cannot be approximated arbitrary well by TP modegt €2’ be the set where pointwise convergence holds.

forms of bounded order regardless of wh&tnorm is cho- ~ Moser showed that there are points of the open four-
sen (cf. Lemma 1). Then it is presented (see Theorem 1) tdigeensional unit hypercub@, 1)*

for every TP model form¢, and for arbitrarys > 0 there v . . s s

exists a functionw in the e-environment ofs, which cannot (211,251) 5 (2115 25.2) @nd (27 o, 23 ) (14)

be approximated with arbitrary accuracy by TP model forrWh

of bounded order. This immediately implies that TP model ich satisfy the following inequalities (see also figure 1)

forms of bounded order are no-where dense in the space of <2 <2, <z, (15)
continuous functions. The constructionwefn Theorem 1 is ' ' " ’
based on the special function of the lemma. as well as lie in the sef2 and do not fall only in the set

Now, we point out that if there is one element of a mag, 1]2/Q that has Lesbegue measure zero. These points are
trix function TP that cannot be approximated arbitrarilyssential in the last step of the proof.



/ [v,1]%,10,1]?), for some0 < ~ < z3,. Then from the fact
e that the functiort(z,, z2) equals by assumption the function
e w — « on the domai)* and the construction that the points
/ (14) are elements d®* N [y, 1] a contradiction can imme-
2, o S o diately be derived analogously as in [16].
/ Sincet = w — a on ¥, there must be an indek <
/ {1,...,J} forwhich¢;, Z00onQ7, N (0,25 ,/4).
B S o Without loss of generality let, = J. Thus, there is an
/ element

} } 21,0 € Qzl N (0, 25)1/4), (18)

0 1
41 %1 4

suchthaty;(z1,0) # 0. Consequently, fog; € 3, N[z1,0, 1]
Figure 1: The point$z{ 1, 25 1), (21 1, 25 2) and(z7 5,25 ,)  we obtain

)
Now, we apply diagonal construction due to Cantor on the Valz2) = - Z Vilz ¢s(z10)
basis of(2*, which is countable subset 6F lying dense in =t
[0,1]%, as well. Therefore, we can write thitz 4, 224)i € as the functioné vanishes on{(z1,20) € |z > 21},
N} = 0" C Q. Note that2* also contains points in (14).Hence, for all pairgz, z2) € Q* with 2,20 > 25, /4 we

For simplicity, let us denot@? = 27 1,27 ,,...andQ;, = get
2'271, 22’2, e
Now, we require that for the sequence of appropriate ele-_ =1 b (21,
ments ofS t(z1,22) = Z <¢i(zl) —¢g(z1)- ¢J((le(;))> Yi(22)
(sie) (16) = |
A %)

showing that
converge to a real number astends to infinity. By the
upper index(¢,n) we denote the subsequence of the se- #(z1,22) € Ten;_1 (2" N [z5,/4,1]%,[0,1]%).  (19)
guence denoted by upper index), furthermore, we demand
the sequence with upper inddy + 1,n) to be the sub- N order to apply induction we set
sequence of the sequence with upper infex.). Finally, e = (1— (3/4)J_k>25,1

from the above we may suppose that Sequer(@@l%?f)) ,
for1 < k < J. Analogously as we have deduced (19) from

(wg’g;)) , and similarly((S(" i )[, ,]) are convergent (18),
n ©I1) n

11,12
florga;LI éz};, z2,4) € QF and all indicesl < iy < I, f(21,20) € Teny_1 (Q* A 1, 112, [0, 1]2)
It follows that the input-output functions of TP modetan be deduced from
formst,, , converge to the input-output function of TP model ~
form #(21, 20) € Teny, (Q° N [y, 1]%, [0, 1))

#(21, 22) Zwl o (21) B0, (22) (S“ 12>[ '] (17) for (2 <k <.J). Applying induction we obtain
2,7

t(21,22) € Temy (0 N [y1,1]%,[0,1]%) . (20)
where .
From formula (20) we conclude that there are functigresd
lim w%’ln) = iy, lim wé’;’;’) =ty ¢ : [0,1] — R such that
lim (sl(.:"’iz))[ | = (gim)[ . {(Zh z2) = w(21, 22) — a = ¢(21)P(22) (21)
n ’ i\ ALY

for (z1,22) € Q* N (71, 1]2.
As the matter of fact, (17) is a tensor product of univariate As ~, < 23, forall 1 < k < J, the points (14) are ele-
functions with bounded ordef = I, - I, hence we can ments of the se®* N N (y1,1)2
introduce induction similarly as in [16]. This and equation (21) leads to a contradiction as on the

Let us denote byfen; (D, Z; x Z,) those functionsf : one hand we have(z; 1 )¥(z5,) > 0 and(z] 5)1(25,) >
Z1 x Zy — R can be, whose restriction§, can be repre- o, hence
sented as tensor product of maxinyake N basis functions
for each dimension, i.e. for afi € Ten, (D, Z; x Z) iff P(211) #0 and o(z5,) #0,
f(Zl, 2’2) = Z;»le (bz(Zl)’(/Jz(Zg) holds for all (2,’17 2:2) €D,
wheregy, ..., o5 : Zy — Randyy, ..., ¢y : Zo — R,

In order to deduce a contradiction from the assumptlgrg IRVACEY
that w can be approximated arbitrarily well by TP model Lemma 1 exemplifies a function that cannot be approxi-
forms we proceed to show that in fact the limit input-outpuated arbitrarily well by TP model forms of ordéfy, I)
function of TP model forms (17) is element ®&n, (2* N w.r.t. the L, norm. Thew that is approximated above, thus

while on the other hand, by the definition ©f we obtain
=0. O



not en element of c{Tng L) ([, 1]2)), that is the clo-

sure (w.r.t theL, norm) of the subseTP "’ 0,1]?) of ¢ u
(w.r. P ) (I,I2) ([ ) ] )
L, ([0,1]%)

While Lemma 1 only states the existence of

such a function the next theorem states that X
Ly (0.1°)\el (TP, ((0,1]%)) lies dense in

(I1,12)
Ly, ([0,1]%). Its idea is to show that in each neighbor-
hood of an arbitrary function one can find a function which k d
cannot be approximated arbitrarily well by TP forms of
bounded order. These neighboring functions are consttucte
by means of Lemma 1. The proof basically exploits the

special form ofw, and it can be trivially obtained from the hhh"hhh"hhkk‘h

proof of the no-where denseness of Sugeno controllers [16],

thus here it is omitted. Figure 2: Mass—spring—damper system
Theorem 1 To eachp € [l,00], e > 0 andt = TP j,
TP e TPE | ([0,1%), I, I, € N there is a continuous 4.1 The  original mass-spring—damper

function mechanical system

w e LP([0,1]2)\cl (Tpg’jb

) ([o, 1]2)) The dynamical equation of the mechanical system of Figure 2
is given as:

As Theorem 1 guarantees that to each> 0 and m- &(1) +g(@(t), #(1) + k(z(t)) = 6(E®) - u(t), (22)

t = TP, TP € ng;) . ([0,1]2) there is a func- wherem is the mass and(t) represents the force. The func-
. ’ ) b 2(,,) ) _ tion k(z) is the non-linear or uncertain stiffness coefficient of
tion w € LP([0,1]%)\cl (TP(Il,IQ) (10,1] )) with [[w = the springg(z, #) is the non-linear or uncertain term damp-
t|l, < e, or equivalently, there is no inner point of the seng coefficient of the damper, ang{(t)) is the non-linear

TP?I’E 1) ([0,1]?), because every-environment of an ar- input term. Assume th@gx(t)af(t)) = d(clx(t)+c2jf?§t>)'
bitrary element of the set contains functions not includddz(t)) = csz(t) + caz”(t), andg(i(t)) = 1+ c5a°(1).

in the closure of the set. Thus, we immediately obtain tHagrthermore, assume thate [—a,al, i(¢) € [-b,b] and
TP® isno-where dense in? ([0, 1]2) a,b > 0. The above parameters are set as follows [22]:
) ) )

(112 m=1,d=1,¢ =0.01,¢ = 0.1, c3 = 0.01, ¢y = 0.67,
c¢s =0, a = 1.5, andb = 1.5. Equation (22) then becomes:

i(t) = —0.183(t) — 0.02z(t) — 0.672>(¢) + u(t). (23)
_In this section we present two examples. The exam_ples e hon-linear terms are0.14%(t) and —0.672%(¢). The
introduced by means of a mechanical system depicted on C

. ) - : state-space model is:
Figure 2. First, we show that the original non-linear state-
space model of the system can exactly be represented by a S 1
TP model. This TP model is actually obtained by TP model X(t) = Al (8), 22(8))x(t) + 0 u(t)
tra_nsformation [1, 5, 4], but can also b_e derived in an an@at s in the present case:
Iytic way [19]. Here, the number of basis functions in each ) )
dimension i. Second, we.pointout thatif a nor?—linear.termk £ = <0.1x1 —0.02 — 0.67:v2) x(t) + (1) u(t). (24)
of the mechanical system is changed to a function having the 1 0 0
same properties as in Lemmal then regardless how many when TP model transformation is applied, we obtain the
basis functions are used the exact TP model representafiowing TP model form as detailed in [1, 5, 4]:
can not be achieved. This is obviously a synthetical example )
created in order to show that in such cases TP approxima- x(t)=A ® wy(x,(t))x(t) + Bu(t).
tion based controller design framework has the ability tal de o _ n=1 _ _
with trade-off consideration, that is not feasible by tha-an As itis noted in the referred papers, if the density of sam-
lytic way. We remark that the achievable accuracy of the Ping grid is increased to infinity the limes of the rank of the
model, and further control solutions, depends on the cap&@mpled tensor remains 2 on the first two dimensions. This
ity and speed of the computer used for modelling. It shoug¥perimental observation is actually proved by the analyti
be also noted that the computational complexity of the Terivation presented in [19]. Thus, (24) can exactly beeepr
model transformation is strongly exponential,and furttree sented by a TP model form as:

fulfilling |jw — ||, < e.

4 Examples

number of LMIs created from the TP model, and especially 2 2

the computational requirement of LMI solvers explode withx(t) = >~ " w{(z1 (t))ws ; (z2()) Af x(t) + Bul(t)
the complexity of the TP model, except a few extreme cases. i=1 j=1

These facts significantly affect the maximum number of ba- 2

sis functions, hence, the maximal achievable accuracy both = A" ®@ Wi (2 (t))x(t) + Bu(t).

of modelling and control design. (25)



Basis functions

] Figure 4: The graph of functiotf(x,x2) over the region
1 [-1.5,1.5] x [~1.5,1.5]

Basis functions

1 each setting. This accuracy depends on the number of the
] measurement points the modelled system (or the approxi-
‘ ‘ ‘ mated function) is sampled at. As a consequence of the in-
5 ' "’ ternal operation of the TP model transformation (see dgetalil
in[1, 5, 4, 3, 21]) the number of basis functions is limited by
Figure 3: The basis functions obtained by TP model transfthe number of measurement points in each variable. In such
mation;2 functions in each dimension assure exact approf@vorable cases like the previous example of Section 4.1 the
mation number of required basis functions does not increase wéth th
number of measurement points, or in other words, the “rank”
f the system modelled (function approximated) is finite (in

analytic derivations. For further details see [19]. this case2). However, when TP model transformation is ap-

The basis functions of the model obtained by TP mod@ied to state-space model (26) the necessary number af basi
transformation are depicted on Figure 3. These functiofr"l@Ctions tends tq infinity with the increa}se of the number of
were calculated with the “close-to-localized” options d# tMeasurement points, i.e. there is no limit of the “rank” af th

model transformation (see (6)). Note that the functiong-coPYSteM model (26,)' F|gqre 5 shows witen2 basis funct|on§
cide with the ones obtained analytically [19]. are used on the dimensions of the state vector. The maximum

error of the model is 7.8. In order to improve the approxima-
4.2 The mass—spring—damper system tion accuracy we increase the number of the basis functions,
' . s . see Figure 6. The maximum error is decreased to 4.0425.
with modified non-linear term Along in the same line we can generate basis as depicted on
Let us consider the dynamic system (22) when an extra teffigure 7 that yields error 2.6152. Figure 8 presents the case

Here, superscriptd” denotes that this result was obtained vi

f(z, 2)x is added to the non-linear tergiz, ) as when 50 basis functions are used for the approximating TP
] N 3 model form. These basis functions were obtained without the
g(x, &) = d(crz + f(x, £)& + c237) “close-to-localized” option of the TP model transformatjo
where because this option would explode the computational need of
transformation, since the determination of a tight conuglk h
0.01 if xo > 1 consisting ofV point of an/V dimensional point set is an NP
f(xlv 1’2) = . hard bl
0.01 4 (z1 —x2) ifazy <y ard probiem.

is a continuous function constructed based upondthia
Lemma 1 (see also Figure 4).

The parameters; (i = 0,...,5) are set as followse; =
0.01,¢c0 = 0,c3 = 0.01, ¢4 = 0, ¢c5 = 0. All other parameters
remain unchanged. Then from (22) we obtain

Table 1: Maximum error vs. number of basis functions in
each dimension

number of maximum number of

F = —f(x,3)d — 0.02z +u basis functions error LMIs
2x 2 7.8 11
so the state-space model is 3x2 4.0425 22
3x3 2.6152 46
. — t t)) —0.02 1
() = | /O 0 oy 1 ()t (29) . . _
20 x 20 0.02838 80 201
Let us make now a short detour to recall the modelling 30 % 30 0.01476 405451
characteristics of TP model transformation in terms of accu 40 x 40 0.00895 1280801
racy and complexity. TP model transformation is a numer- 50 x 50 0.00555 3126251

ical method that has a maximum achievable accuracy for



Table 1 shows the maximum error of the approximation
when the function was sampled ornl@) x 100 equidistant
grid on the parameter space. One can observe that the max-
imum error decreases. However, the table shows obviously,
that we can apply trade-off consideration between accuracy
and the number of basis. Such problems raise severe difficul-
ties when to be solved by analytical derivations.

4.3 Control of the modified mass—spring—
damper system e e e e

In this subsection we apply one of the simplest LMI theo-
rem under the PDC framework to the modified mass—spring—
damper system to yield a controller capable of ensuring
global and asymptotic stabilization. Before dealing witfliL
theorems, we introduce a simple indexing technique, inrorde
to have direct link between TP model form and the typical
LMI notations [1, 5, 4]):
(Index transformation) Let

A, B, e
S, = (CT Dr> = Sil-,iz,-~7iN7 X,
wherer = ordering(iy,is,...,ix) (r = 1,...,R = Figure 5:2 basis functions in each dimension when (26) is
[1,, I.). The function “ordering” results in the linear indes@Pproximated by TP model form
equivalent of anV dimensional array’s indek, io, ..., iy,

when the size of the array Is x I x - - - x Iy. Let the basis
functions be defined according to the sequence of

wr(P(t)) = [ [ wn.i, (a (1))

The controller design can be derived from the Lyapunov
stability theorems for global and asymptotic stability as
shown in [17, 20]:

Theorem 2 (Global and asymptotic stabilization of the con- 1
vex TP model (4)Assume a given state-space model in TP :
form (4) with conditions (5).

Find X > 0 andM.,. satisfying equ.

~XAT - AX+MIBY +B,M, >0 (27)
for all » and

~XAT - A, X - XAT - A X+ (28)

+MTB? + B,M, + M'BT + B,M, > 0. S

f < h i h that _ - i i i
u?r( T(t))<w (5 o) —Rd Sx?te)pt the pairs(r, s) such that Figure 6:3 x 2 basis functions when (26) is approximated by
(P s(P(1)) =0, vp(1). TP model form

Since the above conditions (27) and (28) are LMI's with
respect to variableX andM,., we can find a positive def-  Then, with the help of = ordering(iy, is, . ..,iy) One
inite matrix X and a matrixM,. or determine that no suchcan define feedbacKs;, ;, . i, from K, obtained in (29)
matrices exist. This is a convex feasibility problem. Numesnd store into tensde. The control value is computed as:
ically, this problem can be solved very efficiently by means
of the most powerful tools available in the mathematicat pro o N
gramming literature e.g. MATLAB-LMI toolbox [8]. The uft) = - (’C © W”(p"(t))> x(1), (30)

feedback gains can be obtained from the solutirendM.,. _ _ _
as where the basis functiow,,(p,(t)) are from (4). Figure 9

K, = M,X"! (29) shows the control results of three controllers. Contrslier
2 and 3 are respectively determined by the basis functions

n=1
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Figure 9: Control results of Controller 1, 2 and 3.

consisting ob0 x 50 basis functions. Am x m basis system
yields R = nm components in the TP model. LMIs in The-
orem 2 show that employing components in the TP model
results inR + 1 + S5 ' + LMI terms. Thus 50 x 50 basis
functions require the solution of 3 126 251 LMIs. This is al-
most impossible using MATLAB on a regular PC. However,
if we apply3 x 3 basis functions the number of LMIs is only
46 that can be evaluated online even in real-time applicatio

In this case, however we should keep in mind that the con-
trolled real system may exhibit different control performea
Figure 8:50 basis functions in each dimension when (26) f&°m the controlied TP model. Table 1 shows the number of
approximated by TP model form LMI terms to be evaluated in respect of the number of basis
functions. Table 1 also helps in finding the trade-off betwee
the calculation complexity of the control design and the ac-

depicted on Figures 5, 6 and 7. We can observe that the F4F2cY of the controller. Note again _that .the computational
ues of Controller 3 are significantly smaller than that of Cofgduirement of LMI solvers exponentially increases wité th
troller 1. We can also observe that Controller 3 is fasten thiicrease of LMl terms.

Controller 1 and 2. In this regard we can conclude that the

Controller 3 exhibits better performance than Controlters5  Conclusion

and 2. The reason is that Controller 3 is designed by TP

model whose accuracy is significantly better than the acdiiis paper investigated the approximation capability of TP
racy of TP models applied in the cases of Controllers 1 amibdel forms. TP model forms can be obtained by TP model
2. One may apply the above LMI technique to the TP modgbproximation from dynamic system models, and are usually

Basis functions




used in combination with LMI methods within PDC framef10] G. Hancke andA. Szeghegyi. Application study of
work for system control. We showed that the practically im-

portant subset of TP model forms that uses bounded number

of components has limited approximation capability: the se
of such TP model forms lie no-where dense in the space of

continuous functions. As a consequence, there exist sim
functions that cannot be approximated arbitrarily welbel

less how many basis function is applied. Such cases necessi-
tates the use of trade-off techniques between accuracy and

complexity. The great advantage of TP model transformation
over analytic transformation is that the former enablesifee

of trade-off methods, which is hardly possible in the arialytlz]

cal frameworks.
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