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Abstract
The tensor product (TP) based models have been applied
widely in approximation theory, and approximation tech-
niques. Recently, a controller design framework working on
dynamic systems has also been established based on TP
model transformation combined with Linear Matrix Inequal-
ities (LMI) within Parallel Distributed Compensation (PDC)
framework. The effectiveness of the control design frame-
work strongly depends on the approximation property of the
TP model used. Therefore, the primary aim of this paper is
to investigate the approximation capabilities of dynamic TP
model. It is shown that the set of functions that can be approx-
imated arbitrarily well by TP forms with bounded number
of components lies no-where dense, i.e. “almost discretely”
in the set of continuous functions. Consequently, this paper
points out that in a class of control problems this drawback
necessitates the application of trade-off techniques between
accuracy and complexity of TP form. Such requirements are
very difficult to consider in the analytical framework, but TP
model transformation offers an easy way to deal with them.

1 Introduction
The demand for the decomposition of multivariate functions
to univariate ones goes back to the very end of the 19th cen-
tury. In 1900, in his memorable lecture at the Second In-
ternational Congress of Mathematicians in Paris, D. Hilbert,
the famous German mathematician, listed 23 conjectures, hy-
potheses concerning unsolved problems which he considered
would be the most important ones to solve by the mathemati-
cians of the 20th century [12, 9, 13]. In the 13th, he addressed
the problem of multivariate continuous function decomposi-
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tion to finite superposition of continuous functions of fewer
variables. The motivation is straightforward: one dimensional
functions are much easier to calculate with, handle and visu-
alize.

Hilbert presumed that this problem cannot be solved in
general, i.e. there exist multivariate continuous function that
cannot be decomposed to univariate continuous functions.
This was disproved by Kolmogorov in 1957 [15] in his gen-
eral representation theorem, when he provided a constructive
proof. Unfortunately, univariate function components were
often highly non-smooth, so this construction could not be
directly applied in practice.

Another family of univariate function based methods use
tensor products of continuous univariate basis functions.
This technique has been applied widely and are used in,
e.g. the following fields. Non-Uniform Rational B-Spline
(NURBS) technique has become industry standard through-
out CAD/CAM/CAE systems for the representation, design,
and data exchange of geometric information processing by
computers. These systems use data-base assigned, with in a
tensor product, to piecewise polynomial or rational curves
and surfaces to represent complex geometry. Decomposition
to primitive functions and data-base also has important role
in signal processing when wavelet functions are concerned.
Many of recent signal processing approaches are based on
the evaluation of parameter array assigned by tensor product
to wavelet or other basis.

TP based approximation has reached modelling ap-
proaches of non-linear dynamic systems, and furthermore,
there are now controller design frameworks based on TP
model [1, 5]. Generally,TP model, in broad sense, is an
approximation technique where the approximating functions
are in tensor product form, whereas aTP model formis a par-
ticular approximating function in a TP model. In this paper
we consider TP model in a narrower sense, when a TP model
is applied to dynamic system control (see details in Section
2.1); as a consequence we prefer the TP model denomination



rather than TP approximation since the former reflects better
our modelling point of view.

A large variety of LMI based control design techniques
have been developed in the last decade [6, 7, 17]. Powerful
commercialized softwares have also been developed [8] for
solving LMIs and related control problems. Recently, a num-
ber of LMI based controller designs have been carried out
for TP models (also termed as polytop or TS models in fuzzy
theory) under PDC [20]. Further, aTP model transformation
has been developed to transfer non-linear dynamic models to
TP model whereupon PDC design frameworks can readily
be executed [1, 5, 10, 11]. One can find a case study of TP
model transformation in the control design of a prototypical
aeroelastic wing section [2] that exhibits various controlphe-
nomena such as limit cycle oscillation and chaotic vibration
[14].

A crucial point of these control design frameworks is the
modelling accuracy. If TP model does not appropriately de-
scribe the real system the resulting control may not ensure the
required control performance. This paper is devoted to ana-
lyze the approximation capabilities of TP model forms when
applied to dynamic system control.

The paper is organized as follows: Section 2 introduces
the fundamentals of TP modelling. Section 3 proves the main
result of the paper. Section 4 introduces an example of state-
space model that can be exactly described in TP form, and
such a one that only can be approximated. Section 5 derives
some conclusions.

2 Preliminaries

2.1 TP model

Consider parametrically varying state-space dynamic model:

sx(t) = A(p(t))x(t) + B(p(t))u(t)

y(t) = C(p(t))x(t) + D(p(t))u(t),
(1)

The system matrix

S(p(t)) =

(
A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
∈ R

O×I (2)

is a parametrically varying object, wherep(t) ∈ Ω is time
varyingN -dimensional parameter vector, whereΩ ⊂ R

N is
a closed hypercube.p(t) can also include some elements of
x(t). Further, for a continuous-time systemsx(t) = ẋ(t); or
for a discrete-time systemsx(t) = x(t+ 1) holds.

TheTP model, to be studied in this paper, applies univari-
ate basis functions, which is described as:

(
sx(t)
y(t)

)
=

(
I1∑

i1=1

· · ·

IN∑

iN=1

N∏

n=1

wn,in
(pn(t))Si1,...,iN

)(
x(t)
u(t)

)
.

(3)
Functionwn,j(pn(t)) is thej-th univariate basis function de-
fined on then-th dimension ofΩ, andpn(t) is then-th el-
ement of vectorp(t). In (n = 1, . . . , N) is the number of
univariate basis functions used in then-th dimension of the
parameter vector. The multi-index(i1, i2, . . . , iN ) refers to
the coefficient vertex system corresponding to thein-th basis
function in then-th dimension(n = 1, . . . , N). Hence, the
number of vertex systemsSi1,i2,...,iN

is obviously
∏N

n=1 In.

We can rewrite (3) in the concise tensor product form as:
(
sx(t)
y(t)

)
= S

N
⊗

n=1
wn(pn(t))

(
x(t)
u(t)

)
. (4)

Here, row vectorwn(pn) ∈ R
In contains the basis func-

tions wn,in
(pn), theN + 2-dimensional coefficient tensor

S ∈ R
I1×I2×···×IN×O×I is constructed from the linear con-

stant system matricesSi1,i2,...,iN
∈ R

O×I . (Calligraphic
typesetting is used for tensors.) The firstN dimensions of
S are assigned to the dimensions ofΩ. The convexity of the
basis functions is ensured by conditions:

∀n, i, pn(t) : wn,i(pn(t)) ∈ [0, 1];

∀n, pn(t) :

In∑

i=1

wn,i(pn(t)) = 1.
(5)

The TP model transformation, described in details in [1, 5,
4], that transforms a state-space model into TP forms has the
following syntax

(wn=1,...,N (pn(t));S) = TP-transf(S(p(t)); Ω; options);
(6)

whereS(p(t)) ∈ R
O×I from (2), andΩ is the bounded

parameters space the transformation is performed over, and
“option” is to define some characteristics of the resulting ba-
sis function systemwn=1,...,N (pn(t): the transformation can
generate “minimal”, “convex” and “close-to-localized” basis.
For further details see the referred papers [1, 5, 4].

Our goal in this paper is to characterize the approxima-
tion behavior of the transformation of the dynamic state-
space model form to TP form with respect to accuracy and
feasibility. More precisely, we intend to show that there ex-
ists functions that cannot be approximated arbitrarily well
by a bounded number of basis functions. As a consequence,
it will be shown that the set of functions that TP forms of
bounded order can approximate arbitrarily well is no-where
dense in the set of continuous functions. More precisely, there
are two possible cases: 1. there exists anexactTP model of
the dynamic system, thus this model is ready to use in prac-
tice, and the stability of the controller can be easily obtained
through LMI techniques. 2. When exact model does not exist,
we need to approximate the systems behavior by TP forms
with acceptable accuracy for the given problem. The price of
the accuracy is paid by the complexity of the TP forms, i.e.
the increasing number of basis functions in each dimension.
This necessitates the use of trade-off techniques, which isan
amenable way of solving practical problems when TP model
transformation is applied.

2.2 Approximation theory framework

For the sake of simplicity, we restrict to bivariate controlsur-
faces and models with only two input variables(N = 2). All
definitions and statements can be carried over trivially to the
multivariate case. Therefore, all results presented in thesec-
tion are equally valid for any finiteN ∈ N value. Further,
without the loss of generality, we restrict the range of input
to the unit interval, because any finite ranged interval can be
mapped into another.



Definition 1 We refer to the matrix function of the following
form as TP form of order(I1, I2)

TP (z1, z2) = S

(
z1
z2

)
= (7)

=

(
I1∑

i1=1

I2∑

i2=1

w1,i1(z1)w2,i2(z2)Si1,i2

)(
z1
z2

)

where the number of the component is bounded byI1 in the
first and byI2 in the second variable. MatricesSi1,i2 contain
the coefficients as defined in(2). w1,i1(z1) andw2,i2(z2) are
the normalized basis functions that satisfy condition(5).

As we noted above, all definitions and proofs can be gen-
eralized to multivariate case. Let us investigate now the cor-
respondence between the inputszi and the vectorsp and
x in the general, multivariate case. The dimension of vec-
tor z can be considered as the union the dimensions ofx

and p. Sincep can contain some elements ofx, z is an
extension ofx with the elements ofp that are not inx.
Formally, if x = (x1, . . . , xM )T andp = (p1, . . . , pN )T

such thatpi = xi for i = 1, . . . ,K, K ≤ M , then
z = (x1, . . . , xM , pK+1, . . . , pN )T ∈ R

M+N−K , assuming
that the firstK elements ofx andp are ordered correspond-
ingly. If K < M , then forzi,K + 1 ≤ i ≤M there is a sole
basis functionwi that is identically1 on the whole range of
zi, i.e. these elements has no effect on the output of the TP
model. IfN = K then the size ofz isM .

Let us denote the set of TP forms (7) defined in Definition
1 by

TP(I1,I2)

(
[0, 1]2

)
(8)

where the pair(I1, I2) is an upper bound for the number of
components in the input space[0, 1]2. For p ∈ [1,∞] we
introduce the set

TP
(p)
(n1,n2)

(
[0, 1]2

)
(9)

which is the subset of (8) andLp
(
[0, 1]2

)
, as well. Therefore,

the set (9) is equipped with theLp-norm‖ · ‖p. An elements
of sets (9) and (8) is aTP model forms of order(I1, I2). In
general, TP model forms with finite bounds in each dimen-
sion are calledTP model forms of bounded order.

3 Main results
Moser has proven the no-where denseness of Sugeno con-
trollers [18] in two steps [16]. Our proof to be presented here
is an extension of Moser’s result and its deduction technique
is analogous of Moser’s one. First, we prove that a special
function cannot be approximated arbitrary well by TP model
forms of bounded order regardless of whatLp-norm is cho-
sen (cf. Lemma 1). Then it is presented (see Theorem 1) that
for every TP model form,t, and for arbitraryε > 0 there
exists a functionω in theε-environment ofs, which cannot
be approximated with arbitrary accuracy by TP model forms
of bounded order. This immediately implies that TP model
forms of bounded order are no-where dense in the space of
continuous functions. The construction ofω in Theorem 1 is
based on the special function of the lemma.

Now, we point out that if there is one element of a ma-
trix function TP that cannot be approximated arbitrarily

well by the corresponding elements of bounded TP model
forms, then this property can be carried over for the whole
matrix function. Therefore in the next lemma, we investi-
gate only one element of matrix functionTP , t(z1, z2) =
TP (z1, z2)[i,j]. That element is a linear function of(z1, z2)
according to (1), where the coefficients depend on the[i, j]
elements ofSi1,i2 matrices. For brevity, we refer tot as TP
model form in the next, keeping in mind that it is an arbitrary
element of the matrix functionTP .

Lemma 1 Let ω : [0, 1] → R be a function of the form
ω(z1, z2) = α if z2 ≥ z1, ω(z1, z2) 6= α else, whereα ∈ R.
Then for eachp ∈ [1,∞] andI1, I2 ∈ N there holds

inf
{
‖ω − t‖p

∣∣ t = TP[i,j]TP ∈ TP
(p)
(I1,I2)

}
> 0. (10)

for arbitrary (i, j) pair.

Proof. The proof proceeds indirectly. First, we suppose
that opposing the assumption (10) there exist a sequencet̂n,

n ∈ N of TP model forms,t ∈
(
TP

(p)
(I1,I2)

)

[i,j]
, which en-

sures norm-convergence to the functionω:

lim
n

‖t̂n − ω‖p = 0 (11)

where t̂n being TP model forms of order(I1, I2) have the
form

t̂n(z1, z2) =

I1∑

i1=1

I2∑

i2=1

w
(n)
1,i1

(z1)w
(n)
2,i2

(z2)
(
Ŝ

(n)
i1,i2

)

[i,j]

where w
(n)
1,i1

(z1), w
(n)
2,i2

(z2) are basis functions and(
Ŝ

(n)
i1,i2

)

[i,j]
are real numbers. If we modify properly

TP model formst̂n then we obtain TP model formstn,
according to the assumption (11) that approximate arbitrarily
well functions having value0 for y ≥ x and that differs from
0 for y < x w.r.t. ‖ · ‖p. Therefore we introduce a sequence
of TP model forms(tn) (n ∈ N) as

tn(z1, z2) =

I1∑

i1=1

I2∑

i2=1

w
(n)
1,i1

(z1)w
(n)
2,i2

(z2)
(
S

(n)
i1,i2

)

[i,j]
(12)

whereS(n)
[i,j] = Ŝ

(n)
[i,j]−α. Because norm-convergence implies

pointwise convergence at almost everywhere from (11) and
(12) we have

lim
n
t̂n = ω − α (13)

Let Ω′ be the set where pointwise convergence holds.
Moser showed that there are points of the open four-

dimensional unit hypercube(0, 1)4

(
z∗1,1, z

∗

2,1

)
,
(
z∗1,1, z

∗

2,2

)
and

(
z∗1,2, z

∗

2,2

)
(14)

which satisfy the following inequalities (see also figure 1)

z∗2,1 < z∗1,1 ≤ z∗2,2 < z∗1,2 (15)

as well as lie in the setΩ and do not fall only in the set
[0, 1]2/Ω that has Lesbegue measure zero. These points are
essential in the last step of the proof.
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Figure 1: The points(z∗1,1, z
∗

2,1), (z
∗

1,1, z
∗

2,2) and(z∗1,2, z
∗

2,2)

Now, we apply diagonal construction due to Cantor on the
basis ofΩ∗, which is countable subset ofΩ′ lying dense in
[0, 1]2, as well. Therefore, we can write that{(z1,q, z2,q)|i ∈
N} = Ω∗ ⊂ Ω. Note thatΩ∗ also contains points in (14).
For simplicity, let us denoteΩ∗

z1
= z∗1,1, z

∗

1,2, . . . andΩ∗

z2
=

z∗2,1, z
∗

2,2, . . ..
Now, we require that for the sequence of appropriate ele-

ments ofS (
S

(q,n)
i1,i2

)

[i,j]
(16)

converge to a real number asn tends to infinity. By the
upper index(q, n) we denote the subsequence of the se-
quence denoted by upper index(n), furthermore, we demand
the sequence with upper index(q + 1, n) to be the sub-
sequence of the sequence with upper index(q, n). Finally,

from the above we may suppose that sequences
(
w

(n,n)
1,i1

)

n
,

(
w

(n,n)
2,i2

)

n
, and similarly

((
S

(n,n)
i1,i2

)

[i,j]

)

n

are convergent

for all (z1,q, z2,q) ∈ Ω∗ and all indices1 ≤ i1 ≤ I1,
1 ≤ i2 ≤ I2.

It follows that the input-output functions of TP model
formstn,n converge to the input-output function of TP model
form

t̃(z1, z2) =
∑

i,j

w̃1,i1(z1)w̃2,i2(z2)
(
S̃i1,i2

)

[i,j]
(17)

where

lim
n
w

(n,n)
1,i1

= w̃1,i1 , lim
n
w

(n,n)
2,i2

= w̃2,i2 ,

lim
n

(
S

(n,n)
i1,i2

)

[i,j]
=
(
S̃i1,i2

)

[i,j]
.

As the matter of fact, (17) is a tensor product of univariate
functions with bounded orderJ = I1 · I2, hence we can
introduce induction similarly as in [16].

Let us denote byTenJ(D,Z1 × Z2) those functionsf :
Z1 × Z2 7→ R can be, whose restrictionsf |D can be repre-
sented as tensor product of maximalJ ∈ N basis functions
for each dimension, i.e. for anf ∈ Tenn(D,Z1 × Z2) iff
f(z1, z2) =

∑J

i=1 φi(z1)ψi(z2) holds for all(z1, z2) ∈ D,
whereφ1, . . . , φJ : Z1 7→ R andψ1, . . . , ψJ : Z2 7→ R.

In order to deduce a contradiction from the assumption
that ω can be approximated arbitrarily well by TP model
forms we proceed to show that in fact the limit input-output
function of TP model forms (17) is element ofTen1(Ω

∗ ∩

[γ, 1]2, [0, 1]2), for some0 < γ < z∗2,1. Then from the fact
that the functioñt(z1, z2) equals by assumption the function
ω − α on the domainΩ∗ and the construction that the points
(14) are elements ofΩ∗ ∩ [γ, 1]2 a contradiction can imme-
diately be derived analogously as in [16].

Since t̃ ≡ ω − α on Ω∗, there must be an indexi0 ∈
{1, . . . , J} for whichφi0 6≡ 0 onΩ∗

z2
∩ (0, z∗2,1/4).

Without loss of generality leti0 = J . Thus, there is an
element

z1,0 ∈ Ω∗

z1
∩ (0, z∗2,1/4), (18)

such thatφJ(z1,0) 6= 0. Consequently, forz2 ∈ Ω∗

z2
∩[z1,0, 1]

we obtain

ψJ(z2) = −

J−1∑

i=1

ψi(z2)
φi(z1,0)

φJ(z1,0)
,

as the functioñt vanishes on{(z1, z2) ∈ Ω∗| z2 ≥ z1}.
Hence, for all pairs(z1, z2) ∈ Ω∗ with z1, z2 ≥ z∗2,1/4 we
get

t̃(z1, z2) =
J−1∑

i=1

(
φi(z1) − φJ(z1) ·

φi(z1,0)

φJ(z1,0)

)
ψi(z2)

showing that

t̃(z1, z2) ∈ TenJ−1

(
Ω∗ ∩ [z∗2,1/4, 1]2, [0, 1]2

)
. (19)

In order to apply induction we set

γk = (1 − (3/4)
J−k

)z∗2,1

for 1 ≤ k ≤ J . Analogously as we have deduced (19) from
(18),

t̃(z1, z2) ∈ Tenk−1

(
Ω∗ ∩ [γk−1, 1]2, [0, 1]2

)

can be deduced from

t̃(z1, z2) ∈ Tenk

(
Ω∗ ∩ [γk, 1]2, [0, 1]2

)

for (2 ≤ k ≤ J). Applying induction we obtain

t̃(z1, z2) ∈ Ten1

(
Ω∗ ∩ [γ1, 1]2, [0, 1]2

)
. (20)

From formula (20) we conclude that there are functionsφ and
ψ : [0, 1] 7→ R such that

t̃(z1, z2) = ω(z1, z2) − α = φ(z1)ψ(z2) (21)

for (z1, z2) ∈ Ω∗ ∩ (γ1, 1]2.
As γk < z∗2,1 for all 1 ≤ k ≤ J , the points (14) are ele-

ments of the setΩ∗ ∩ (γ1, 1]2.
This and equation (21) leads to a contradiction as on the

one hand we haveφ(z∗1,1)ψ(z∗2,1) > 0 andφ(z∗1,2)ψ(z∗2,2) >
0, hence

φ(z∗1,1) 6= 0 and ψ(z∗2,2) 6= 0,

while on the other hand, by the definition ofω, we obtain
φ(z∗1,1)ψ(z∗2,2) = 0. �

Lemma 1 exemplifies a function that cannot be approxi-
mated arbitrarily well by TP model forms of order(I1, I2)
w.r.t. theLp norm. Theω that is approximated above, thus



not en element of cl
(
TP

(p)
(I1,I2)

(
[0, 1]2

))
, that is the clo-

sure (w.r.t theLp norm) of the subsetTP
(p)
(I1,I2)

(
[0, 1]2

)
of

Lp

(
[0, 1]2

)

While Lemma 1 only states the existence of
such a function the next theorem states that
Lp

(
[0, 1]2

)
\cl
(
TP

(p)
(I1,I2)

(
[0, 1]2

))
lies dense in

Lp

(
[0, 1]2

)
. Its idea is to show that in each neighbor-

hood of an arbitrary function one can find a function which
cannot be approximated arbitrarily well by TP forms of
bounded order. These neighboring functions are constructed
by means of Lemma 1. The proof basically exploits the
special form ofω, and it can be trivially obtained from the
proof of the no-where denseness of Sugeno controllers [16],
thus here it is omitted.

Theorem 1 To eachp ∈ [1,∞], ε > 0 and t = TP[i,j],

TP ∈ TP
(p)
(I1,I2)

(
[0, 1]2

)
, I1, I2 ∈ N there is a continuous

function

ω ∈ Lp([0, 1]2)\cl
(
TP

(p)
(I1,I2)

(
[0, 1]2

))

fulfilling ‖ω − t‖p < ε.

As Theorem 1 guarantees that to eachε > 0 and
t = TP[i,j], TP ∈ T

(p)
(I1,I2)

(
[0, 1]2

)
there is a func-

tion ω ∈ Lp([0, 1]2)\cl
(
TP

(p)
(I1,I2)

(
[0, 1]2

))
with ‖ω −

t‖p < ε, or equivalently, there is no inner point of the set

TP
(p)
(I1,I2)

(
[0, 1]2

)
, because everyε-environment of an ar-

bitrary element of the set contains functions not included
in the closure of the set. Thus, we immediately obtain that
TP

(p)
(I1,I2)

is no-where dense inLp([0, 1]2).

4 Examples
In this section we present two examples. The examples are
introduced by means of a mechanical system depicted on
Figure 2. First, we show that the original non-linear state-
space model of the system can exactly be represented by a
TP model. This TP model is actually obtained by TP model
transformation [1, 5, 4], but can also be derived in an ana-
lytic way [19]. Here, the number of basis functions in each
dimension is2. Second, we point out that if a non-linear term
of the mechanical system is changed to a function having the
same properties asω in Lemma1 then regardless how many
basis functions are used the exact TP model representation
can not be achieved. This is obviously a synthetical example
created in order to show that in such cases TP approxima-
tion based controller design framework has the ability to deal
with trade-off consideration, that is not feasible by the ana-
lytic way. We remark that the achievable accuracy of the TP
model, and further control solutions, depends on the capac-
ity and speed of the computer used for modelling. It should
be also noted that the computational complexity of the TP
model transformation is strongly exponential,and further, the
number of LMIs created from the TP model, and especially
the computational requirement of LMI solvers explode with
the complexity of the TP model, except a few extreme cases.
These facts significantly affect the maximum number of ba-
sis functions, hence, the maximal achievable accuracy both
of modelling and control design.

k d

m

x

u

Figure 2: Mass–spring–damper system

4.1 The original mass–spring–damper
mechanical system

The dynamical equation of the mechanical system of Figure 2
is given as:

m · ẍ(t) + g(x(t), ẋ(t)) + k(x(t)) = φ(ẋ(t)) · u(t), (22)

wherem is the mass andu(t) represents the force. The func-
tionk(x) is the non-linear or uncertain stiffness coefficient of
the spring,g(x, ẋ) is the non-linear or uncertain term damp-
ing coefficient of the damper, andφ(ẋ(t)) is the non-linear
input term. Assume thatg(x(t), ẋ(t)) = d(c1x(t)+c2ẋ

3(t)),
k(x(t)) = c3x(t) + c4x

3(t), andφ(ẋ(t)) = 1 + c5ẋ
3(t).

Furthermore, assume thatx ∈ [−a, a], ẋ(t) ∈ [−b, b] and
a, b > 0. The above parameters are set as follows [22]:
m = 1, d = 1, c1 = 0.01, c2 = 0.1, c3 = 0.01, c4 = 0.67,
c5 = 0, a = 1.5, andb = 1.5. Equation (22) then becomes:

ẍ(t) = −0.1ẋ3(t) − 0.02x(t) − 0.67x3(t) + u(t). (23)

The non-linear terms are−0.1ẋ3(t) and −0.67x3(t). The
state-space model is:

ẋ(t) = A(x1(t), x2(t))x(t) +

(
1
0

)
u(t)

that is in the present case:

ẋ(t) =

(
−0.1x2

1 −0.02 − 0.67x2
2

1 0

)
x(t)+

(
1
0

)
u(t). (24)

When TP model transformation is applied, we obtain the
following TP model form as detailed in [1, 5, 4]:

ẋ(t) = A
2
⊗

n=1
wn(xn(t))x(t) + Bu(t).

As it is noted in the referred papers, if the density of sam-
pling grid is increased to infinity the limes of the rank of the
sampled tensor remains 2 on the first two dimensions. This
experimental observation is actually proved by the analytic
derivation presented in [19]. Thus, (24) can exactly be repre-
sented by a TP model form as:

ẋ(t) =

2∑

i=1

2∑

j=1

wa
1,i(x1(t))w

a
2,j(x2(t))A

a
i,jx(t) + Bu(t)

= Aa
2
⊗

n=1
wa

n(xn(t))x(t) + Bu(t).

(25)
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Figure 3: The basis functions obtained by TP model transfor-
mation;2 functions in each dimension assure exact approxi-
mation

Here, superscript “a” denotes that this result was obtained via
analytic derivations. For further details see [19].

The basis functions of the model obtained by TP model
transformation are depicted on Figure 3. These functions
were calculated with the “close-to-localized” options of TP
model transformation (see (6)). Note that the functions coin-
cide with the ones obtained analytically [19].

4.2 The mass–spring–damper system
with modified non-linear term

Let us consider the dynamic system (22) when an extra term
f(x, ẋ)ẋ is added to the non-linear termg(x, ẋ) as

g(x, ẋ) = d(c1x+ f(x, ẋ)ẋ+ c2ẋ
3)

where

f(x1, x2) =

{
0.01 if x2 ≥ x1

0.01 + (x1 − x2) if x2 < x1

is a continuous function constructed based upon theω in
Lemma 1 (see also Figure 4).

The parametersci (i = 0, . . . , 5) are set as follows:c1 =
0.01, c2 = 0, c3 = 0.01, c4 = 0, c5 = 0. All other parameters
remain unchanged. Then from (22) we obtain

ẍ = −f(x, ẋ)ẋ− 0.02x+ u

so the state-space model is

ẋ(t) =

[
−f(x1(t), x2(t)) −0.02

1 0

]
x(t) +

(
1
0

)
u(t) (26)

Let us make now a short detour to recall the modelling
characteristics of TP model transformation in terms of accu-
racy and complexity. TP model transformation is a numer-
ical method that has a maximum achievable accuracy for
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Figure 4: The graph of functionf(x1, x2) over the region
[−1.5, 1.5] × [−1.5, 1.5]

each setting. This accuracy depends on the number of the
measurement points the modelled system (or the approxi-
mated function) is sampled at. As a consequence of the in-
ternal operation of the TP model transformation (see details
in [1, 5, 4, 3, 21]) the number of basis functions is limited by
the number of measurement points in each variable. In such
favorable cases like the previous example of Section 4.1 the
number of required basis functions does not increase with the
number of measurement points, or in other words, the “rank”
of the system modelled (function approximated) is finite (in
this case2). However, when TP model transformation is ap-
plied to state-space model (26) the necessary number of basis
functions tends to infinity with the increase of the number of
measurement points, i.e. there is no limit of the “rank” of the
system model (26). Figure 5 shows when2×2 basis functions
are used on the dimensions of the state vector. The maximum
error of the model is 7.8. In order to improve the approxima-
tion accuracy we increase the number of the basis functions,
see Figure 6. The maximum error is decreased to 4.0425.
Along in the same line we can generate basis as depicted on
Figure 7 that yields error 2.6152. Figure 8 presents the case
when50 basis functions are used for the approximating TP
model form. These basis functions were obtained without the
“close-to-localized” option of the TP model transformation,
because this option would explode the computational need of
transformation, since the determination of a tight convex hull
consisting ofN point of anN dimensional point set is an NP
hard problem.

Table 1: Maximum error vs. number of basis functions in
each dimension

number of maximum number of
basis functions error LMIs

2 × 2 7.8 11
3 × 2 4.0425 22
3 × 3 2.6152 46

...
...

...
20 × 20 0.02838 80 201
30 × 30 0.01476 405 451
40 × 40 0.00895 1 280 801
50 × 50 0.00555 3 126 251



Table 1 shows the maximum error of the approximation
when the function was sampled on a100 × 100 equidistant
grid on the parameter space. One can observe that the max-
imum error decreases. However, the table shows obviously,
that we can apply trade-off consideration between accuracy
and the number of basis. Such problems raise severe difficul-
ties when to be solved by analytical derivations.

4.3 Control of the modified mass–spring–
damper system

In this subsection we apply one of the simplest LMI theo-
rem under the PDC framework to the modified mass–spring–
damper system to yield a controller capable of ensuring
global and asymptotic stabilization. Before dealing with LMI
theorems, we introduce a simple indexing technique, in order
to have direct link between TP model form and the typical
LMI notations [1, 5, 4]):

(Index transformation) Let

Sr =

(
Ar Br

Cr Dr

)
= Si1,i2,..,iN

,

where r = ordering(i1, i2, . . . , iN ) (r = 1, . . . , R =∏
n In). The function “ordering” results in the linear index

equivalent of anN dimensional array’s indexi1, i2, . . . , iN ,
when the size of the array isI1 × I2 ×· · ·× IN . Let the basis
functions be defined according to the sequence ofr:

wr(p(t)) =
∏

n

wn,in
(pn(t)).

The controller design can be derived from the Lyapunov
stability theorems for global and asymptotic stability as
shown in [17, 20]:

Theorem 2 (Global and asymptotic stabilization of the con-
vex TP model (4))Assume a given state-space model in TP
form (4) with conditions (5).

Find X > 0 andMr satisfying equ.

−XAT
r − ArX + MT

r BT
r + BrMr > 0 (27)

for all r and

−XAT
r − ArX − XAT

s − AsX+ (28)

+MT
s BT

r + BrMs + MT
r BT

s + BsMr ≥ 0.

for r < s ≤ R, except the pairs(r, s) such that
wr(p(t))ws(p(t)) = 0,∀p(t).

Since the above conditions (27) and (28) are LMI’s with
respect to variablesX andMr, we can find a positive def-
inite matrix X and a matrixMr or determine that no such
matrices exist. This is a convex feasibility problem. Numer-
ically, this problem can be solved very efficiently by means
of the most powerful tools available in the mathematical pro-
gramming literature e.g. MATLAB-LMI toolbox [8]. The
feedback gains can be obtained from the solutionsX andMr

as
Kr = MrX

−1 (29)
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Figure 5:2 basis functions in each dimension when (26) is
approximated by TP model form
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Figure 6:3×2 basis functions when (26) is approximated by
TP model form

Then, with the help ofr = ordering(i1, i2, . . . , iN ) one
can define feedbacksKi1,i2,...,iN

from Kr obtained in (29)
and store into tensorK. The control value is computed as:

u(t) = −

(
K

N
⊗

n=1
wn(pn(t))

)
x(t), (30)

where the basis functionwn(pn(t)) are from (4). Figure 9
shows the control results of three controllers. Controllers 1,
2 and 3 are respectively determined by the basis functions
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approximated by TP model form
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Figure 8:50 basis functions in each dimension when (26) is
approximated by TP model form

depicted on Figures 5, 6 and 7. We can observe that the val-
ues of Controller 3 are significantly smaller than that of Con-
troller 1. We can also observe that Controller 3 is faster than
Controller 1 and 2. In this regard we can conclude that the
Controller 3 exhibits better performance than Controllers1
and 2. The reason is that Controller 3 is designed by TP
model whose accuracy is significantly better than the accu-
racy of TP models applied in the cases of Controllers 1 and
2. One may apply the above LMI technique to the TP model
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Figure 9: Control results of Controller 1, 2 and 3.

consisting of50×50 basis functions. Ann×m basis system
yieldsR = nm components in the TP model. LMIs in The-
orem 2 show that employingR components in the TP model
results inR + 1 +

∑R−1
r=1 r LMI terms. Thus,50 × 50 basis

functions require the solution of 3 126 251 LMIs. This is al-
most impossible using MATLAB on a regular PC. However,
if we apply3× 3 basis functions the number of LMIs is only
46 that can be evaluated online even in real-time applications.
In this case, however we should keep in mind that the con-
trolled real system may exhibit different control performance
from the controlled TP model. Table 1 shows the number of
LMI terms to be evaluated in respect of the number of basis
functions. Table 1 also helps in finding the trade-off between
the calculation complexity of the control design and the ac-
curacy of the controller. Note again that the computational
requirement of LMI solvers exponentially increases with the
increase of LMI terms.

5 Conclusion
This paper investigated the approximation capability of TP
model forms. TP model forms can be obtained by TP model
approximation from dynamic system models, and are usually



used in combination with LMI methods within PDC frame-
work for system control. We showed that the practically im-
portant subset of TP model forms that uses bounded number
of components has limited approximation capability: the set
of such TP model forms lie no-where dense in the space of
continuous functions. As a consequence, there exist simple
functions that cannot be approximated arbitrarily well regard-
less how many basis function is applied. Such cases necessi-
tates the use of trade-off techniques between accuracy and
complexity. The great advantage of TP model transformation
over analytic transformation is that the former enables theuse
of trade-off methods, which is hardly possible in the analyti-
cal frameworks.
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