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Abstract 
 

Pervasive computing envisions an environment that 
seamlessly integrates digital and physical devices. 
Users can access digital data and applications from 
the environment as easily as accessing them through 
their computers. Since pervasive computing exists in 
the user's environment, the technology is sustainable if 
it is invisible to the user and does not intrude the user's 
consciousness [3]. This requires that functioning of the 
multitude of devices in the environment be oblivious to 
the user. Therefore, the system has to be resilient to 
various kinds of faults and should be able to function 
despite faults. In this paper, we discuss various classes 
of failures, their implications to pervasive computing 
and the challenges to be addressed in designing a fault 
tolerant pervasive computing system. We also describe 
our prototype fault tolerant pervasive system and 
propose future directions. 

  
 
1. Introduction 
 

Pervasive computing ushers in a new era of 
computing that integrates digital and physical devices. 
It envisions a world of computers, handheld devices, 
sensors and actuators integrated seamlessly with 
everyday physical devices such as electrical appliances 
and automobiles. In addition, pervasive computing 
provides a platform for context-aware computing [1,2] 
that enables automatic configuration of a pervasive 
system based on the environment context. 

Mark Weiser in his paper “The Computer for the 
Twenty-First Century” defines pervasive computing as 
a technology that “weaves itself into the fabric of 
everyday life until it is indistinguishable from it” [3]. 
He mentions that for pervasive computing to be 
successful, it's functioning should be transparent to the 
user. Such transparency is achievable if faults in the 

system are masked and user intervention is sought only 
when absolutely required. 

Pervasive computing technology exists in the user’s 
environment and aids the user in performing various 
tasks. The sustainability of this technology depends on 
it being non-intrusive. In order to achieve this goal, 
faults in a pervasive system should be automatically 
masked and user notified only when absolutely 
required. 

Fault Tolerance issues have not been well explored 
so far in pervasive computing research. Since pervasive 
computing environments operate in the same physical 
(as well as virtual) space as humans, they can be 
exasperating (and sometimes hazardous) if they are not 
resilient to faults. Several researchers have expressed 
the need for reliable pervasive systems and mention 
that reliability issues must be readdressed in the realm 
of pervasive computing. [4] mentions that one of the 
paramount concerns of smart home occupants is 
reliability. In [5], the authors mention that traditional 
fault detection and recovery techniques would need to 
be modified to fit the needs of pervasive computing. [6] 
discusses dependability requirements of pervasive 
computing in a healthcare environment. 

Pervasive computing is finding immediate 
applications in healthcare facilities [7], aware-homes 
[8] and assisted-living for the elderly [9]. Sensors are 
used to monitor conditions of patients in hospitals, 
onset of age-related disorders in the elderly and status 
of various electrical appliances in aware-homes. 
Failures in such scenarios can lead to disasters and so 
fault tolerance is vital. 

The ramifications of faults in a pervasive system can 
stretch beyond immediate consequences. Faults can 
lead to incorrect context sensing, security and privacy 
breaches and misuse of resources. Therefore, fault 
containment is a very important aspect of deploying a 
pervasive system into the physical world.  

We have incorporated some fault-tolerance 
mechanisms in our prototype Pervasive Computing 



Environment [10]. While our current system handles 
some kinds of failures, much research still remains to 
be done to make it a comprehensive system that is 
completely fault-tolerant (if it is ever possible to build 
such a system). The aim of this paper is to highlight the 
various challenges and issues that confront fault 
tolerant pervasive computing, present some solutions to 
these problems and describe how some of these 
solutions are implemented in our system.  

In this paper, we discuss various issues involved in 
designing a fault tolerant pervasive system. In section 2 
we classify various failures in a pervasive system. We 
discuss the implications of those failures in section 3 
and present various challenges and suggest solutions in 
sections 4 and 5. In section 6, we present our fault 
tolerant pervasive system that tolerates some 
application and device faults and discuss its fault 
handling techniques. In Section 7, we discuss future 
fault tolerance enhancements planned for our pervasive 
system. We cite a few pervasive system projects that 
address fault tolerance issues in section 8 and discuss 
their techniques. We finally conclude the paper in 
section 9. 
 
2. Classification of Failures 
 

A typical pervasive system consists of commercial 
off-the-shelf (COTS) software and devices whose 
reliability is not guaranteed. COTS software are sold as 
“black boxes” and may not be subject to rigid 
development, verification or testing processes [11]. 
Interoperability issues further reduce the reliability of a 
pervasive system. Mobile devices such as handhelds 
and laptops, with limited battery power, cannot be 
regarded as totally reliable. Connectivity failures due to 
devices going out of range or other errors in networks 
add to faults in a pervasive system. Besides, a 
pervasive system has a core set of services (like 
naming, trading, file system, event delivery, discovery 
and context services) that provide necessary 
functionality. These services can also fail. Broadly, 
faults in a pervasive system can be classified into 
device, application, network and service failures. We 
discuss these individually in the following sections. 
 
2.1. Device Failures 
 

A pervasive system consists of different kinds of 
devices such as desktops, laptops, handhelds, sensors, 
actuators, displays, speakers, scanners, cameras and 
projectors. Each device has its own set of faults that 
can potentially contribute to the failure of the pervasive 
system. Mobile devices, such as laptops and handhelds, 

have physical constraints such as finite battery power 
and limited signal strength. So if the battery goes down 
or if the signal strength is too low they get 
disconnected from the pervasive system and are 
regarded as having failed. A more acute problem with 
devices is when they are alive but operate incorrectly. 
This is common in faulty sensors and is called a 
Byzantine failure [12]. 
 
2.2. Application Failures 
 

Designing reliable software is an expensive process 
and the cost of debugging, testing and verifying can 
easily range from 50 to 75 percent of the total 
development cost [13]. Even in well-tested software 
systems, bugs of varying severity are found [14]. 
Pervasive computing includes commercial off-the-shelf 
applications that may not be well tested. In some 
situations, applications may work well as stand-alone 
software but may not inter-operate correctly or reliably 
with other software. Therefore, pervasive systems 
should make few reliability assumptions about 
applications.  

Application failures include application crashes due 
to bugs, operating system errors, unhandled exceptions 
and faulty usage. Pervasive applications are also likely 
targets for malicious software such as viruses and 
worms. Viruses and worms cause fail-stop [15] or 
Byzantine failures. 
 
2.3. Network Failures 
 

Pervasive systems consist of wired and wireless 
devices. Therefore, a reliable pervasive system should 
account for network failures caused by low signal 
strength, devices going out of range and unavailability 
of communication channels due to heavy traffic. 
Network failures lead to unreachable devices that may 
be wrongly perceived as device failures. Automatic 
detection of the failure type is an important issue in 
pervasive computing. 
 
2.4. Service Failures 
 

As mentioned above, a pervasive system is 
supported by various services that enable different 
functionalities. Some of these services are essential 
while others add features to a pervasive system. 
Essential services include naming, event and discovery 
services. Some pervasive systems support other 
services such as a trading service that enables device 
discovery, context services that enable context-aware 
computing and file system services for ubiquitous data 



access. Examples of service failures include service 
crashes due to bugs and operating system errors, faulty 
operation of services like sensing incorrect context, 
wrong inferring and lossy delivery of events. Service 
failures can potentially lead to failure of the pervasive 
system. 
 
3. Implications of Failures 
 

Pervasive computing integrates digital devices 
seamlessly in our physical environment. Digital devices 
co-exist with physical devices to aid in accomplishing 
everyday tasks. Therefore, faults in pervasive systems 
can be bothersome and result in user annoyance. 
Consider, for instance, an aware-house [8] that uses 
radio-frequency badges to identify users. When a user 
enters the house, the pervasive system identifies him 
and configures the house to meet his requirements. It 
adjusts the temperature, turns on his favorite television 
channel and preferred lights in the house. Failure to 
correctly identify the person can result in a different 
configuration and can be a source of annoyance to the 
user. 
 
3.1. Hazard to Life 
 

Pervasive systems are being deployed in healthcare 
[7] and assisted-living facilities [9] for the elderly. 
These systems monitor conditions of patients and 
automatically request assistance. In assisted-living 
facilities, pervasive systems are used to identify age-
related disorders in elderly by observing their everyday 
activities. Therefore, users of such pervasive systems 
rely heavily on them. Failures in such systems can be 
hazardous and can result in loss of life. 
 
3.2. Inappropriate Resource Control and 
Usage 
 

A pervasive system controls several digital and 
physical resources. Faults can lead to inappropriate 
control and usage of these resources. For instance, 
faults in a temperature sensing system could lead to 
over-heating or over-cooling of the physical space. 
Similarly, faults in an intrusion detection system can 
cause false alarms. In wireless devices, retransmissions 
due to failed network channel leads to excessive 
consumption of battery power.  
 
3.3. Security Vulnerabilities 
 

The ubiquity of deployment of pervasive systems 
necessitates robust security mechanisms for access 

control and authentication. Faults can lead to security 
breaches and consequent compromise of trust. A failed 
intrusion detection system may not detect an intruder 
while failure in an authentication system may let users 
misuse resources and data.  
 
3.4. Inferring Incorrect Context 
 

One of the key elements of a pervasive system is 
context. Context information is used to proactively 
configure and adapt the environment to meet a user's or 
group's needs [1,2]. 

Various sensors are used to sense context. These 
include cameras, voice recognition systems, 
temperature sensors and RF identifiers. Inputs from 
faulty sensors lead to inaccurate detection of context. A 
faulty light sensor may erroneously sense the level of 
natural light in a room to be too low and unnecessarily 
cause artificial lights in the room to be turned on. In 
systems that use RF badges for sensing location of 
people, a faulty RF badge may result in inaccurately 
determining the location of a person. This could have 
security implications if location is used to give people 
certain access control rights. 

A bigger challenge in context usage is in inferring 
context accurately. Various methods are used to fuse 
data from one or more sensors and infer higher-level 
contexts. For example, rules could be used to infer the 
activity in a room. However, these rules could 
sometimes result in the wrong context being inferred. 
For instance, a rule such as  “If the number of people in 
a room is more than two and a PowerPoint application 
is running, then there is a presentation going on in the 
room” [2] may be correct most of the times. However, 
there could be situations when it does not hold - for 
example, if there are two people in the room and one of 
them is editing a PPT file. Incorrect context can 
potentially lead to inappropriate resource usage, user 
annoyance or failure of the pervasive system. In the 
previous example, incorrectly sensing the editing 
activity as a presentation, the pervasive system might 
start a presentation recording application, dim the 
lights in the room and turn on a microphone to be used 
by the presenter, which are all inappropriate for the 
editing activity. 
 
4. Challenges Facing Fault Tolerance 
 

The area of fault tolerance in computing systems has 
been enriched through decades of research. Fault 
tolerance issues have been addressed in various areas 
of computing systems such as computer architecture, 
operating systems, distributed systems, mobile 



computing and computer networks. Despite these 
advances in tolerating faults, each new area poses its 
own set of challenges for which the past techniques 
have limited applicability. In this section, we discuss 
fault tolerance issues in the realm of pervasive 
computing. 
 
4.1. Fault Detection 
 

Efficient fault detection is a tough challenge in a 
pervasive system. An application or device that stops 
on failure can be detected through timeout techniques 
such as heartbeat messages. An entity sends “I’m 
alive” messages periodically to the fault detector. If the 
heartbeat message is not received for a certain interval 
of time the fault detector senses an error in the entity. 
In a pervasive system, with a plethora of devices and 
applications, heartbeat messages significantly add to 
the network traffic and the number of messages can 
overwhelm fault detectors.  Further, network failures 
can lead to unreachable nodes making it complex to 
distinguish between entity failure and network failure. 

Byzantine fault detection is a tougher problem. The 
Byzantine fault model includes failures in which 
entities do not stop but operate incorrectly. Byzantine 
faults result in inferring incorrect context and 
inappropriate resource usage. Heartbeat messages 
cannot be used to detect all Byzantine faults, as entities 
do not stop sending heartbeats. 
 
4.2. Fault Containment 
 

Once a fault is identified, it should be isolated to 
prevent its propagation to other parts of the system. A 
pervasive system contains inter-dependent applications 
and services that communicate frequently. This 
communication fosters fault propagation and makes 
fault containment a tough challenge. For instance, 
consider a “smart” room that infers an activity based on 
the people in the room and applications being used. A 
faulty RF id sensor can result in wrongly sensing the 
number of people in the room. This can, in turn, result 
in inferring the wrong activity currently taking place in 
the room and configuring the room inappropriately.  
 
4.3. Transparent Fault Tolerance 
 

Mark Weiser envisioned pervasive computing as a 
system that blends in with the physical environment 
and whose functioning is transparent to the user. In 
order to realize this vision, faults should be tolerated 
with minimal user awareness. 

 

4.4. Good Fault Reporting Mechanisms 
 

When a fault cannot be tolerated, it should be 
reported to the user in a non-intrusive manner so as to 
cause minimal disruption to user's activity. Faults can 
be reported through visual representation on display 
devices, audio representation on speakers or any other 
means that can be perceived by the human senses. 
Determining appropriate means of reporting faults is an 
interesting problem for research and involves various 
parameters such as user preferences, resource 
availability and user location.  
 
5. Fault Tolerance Approaches 
 

The goal of a fault-tolerant system is to mask faults 
and continue to provide service despite faults. All fault 
tolerance techniques use some form of redundancy to 
tolerate faults. Depending on the class of faults 
redundant devices, networks, data or applications are 
used. 

In this section, we discuss several approaches that 
can be employed in pervasive computing for tolerating 
faults. Each approach tackles one or more classes of 
failures. 
 
5.1. Surrogate Application/Device Usage 
 

A common fault tolerance technique is to detect 
failure of a process and restart it. In order to minimize 
the loss of computation, the state of the process is 
periodically stored on a stable storage device. Upon 
failure, the process is restarted using the stored state. 
This technique can be used in a pervasive system to 
tolerate some application and device faults. We have 
implemented this scheme in our pervasive system and 
we will discuss it in section 6. 

If devices fail due to hardware problems, 
applications on the device cannot be restarted on the 
same device. So the solution is to find a surrogate 
device that can provide the same functionality as the 
failed device and restart the application on it. If the 
surrogate device cannot support the execution of the 
same application, an equivalent application that 
provides similar functionality can be used. For 
instance, if a PDA running a WinAmp music player 
fails, a laptop running Windows Media Player can be 
used since it provides functionality similar to the 
WinAmp player. There are other issues such as 
availability, user preferences and security that need to 
be considered while making this choice.  
 



5.2. Alternate Notification Mechanisms 
 

Pervasive computing can offer multiple ways of 
reaching users. For example, in an assisted living 
facility, pervasive systems are used to monitor the 
status of facility users. In an emergency, the system 
notifies healthcare personnel for assistance. The system 
can notify the personnel through their cell phones, 
pagers, calling help lines (911 in the US) or as a text 
message on display devices or speakers in an 
emergency monitoring station. So these “channels” of 
communication provide inherent redundancy in the 
pervasive system that the system can leverage to 
tolerate faults.  If the system discovers that a 
notification device has failed it should reroute the 
message through a different channel of communication. 
 
5.3. Handling errors in sensing and inferring 
context 
 

Detecting errors that may occur while sensing and 
inferring contexts is not easy. The primary way of 
detecting and handling such errors is by employing 
redundancy. Multiple sensors that sense the same (or 
similar) pieces of information can be used to overcome 
errors by one or more sensors. For example, in our 
prototype pervasive environment [16], we deploy many 
badge detectors in the same room so that even if some 
of them do not detect the presence of a badge (due to 
interference, physical occlusion or other reasons), there 
are others that do. 

Similarly, using multiple algorithms to infer the 
same higher-level context from sensed contexts can 
help overcome wrong inferences made by one or more 
such algorithms. Such meta-level learning and inferring 
approaches are widely used in approaches like boosting 
[17]. They help in increasing the level of accuracy of 
the inferences made.  

Finally, however, until other techniques become 
more effective, the most reliable way of detecting an 
error in sensed or inferred context would be to allow 
users to indicate any errors that they may observe. For 
example, [18] allows users to mediate context sensing. 
More generally, this would require intuitive user 
interfaces that show users what contexts were sensed or 
inferred and allow them to correct anything that was 
sensed or inferred wrongly. 
 
5.4. N-version approach 
 

In an N-version software system [19], each software 
module is made of N different implementations. Each 
module performs the same task and submits the result 

to an arbitrator. The arbitrator determines the correct 
answer and returns that as the result of the task. In 
effect, the N-version technique provides functional 
redundancy.  

In the realm of pervasive computing, an N-version 
system should be more generalized to support different 
kinds of implementations. For example, in an assisted-
living facility, user status can be monitored by different 
means such as vision inputs, audio inputs and inputs 
from wearable sensors. An arbitrator should decide on 
the state of the person through these inputs. This 
complicates the arbitrator and necessitates usage of 
inferring techniques. 
 
5.5. Fault Notification Mechanisms 
 

If an unrecoverable fault occurs in a pervasive 
system, the system should provide good fault 
notification mechanisms to notify the user. A few 
research challenges should be addressed in designing a 
good fault notification system. 

If a user uses only a small set of devices, the user 
would only be concerned about the status of those 
devices. In such situations, the user should be notified 
of faults in devices used by the user. Though the user 
may only be using a small set of devices, the devices 
may be dependent on various services of the pervasive 
system. This creates a dependency graph that could 
span a large number of applications, services and 
devices. Faults in each of these entities may be reported 
to the user or to an administrator who is in charge of 
any failed services. Determining the dependency graph 
is an important research challenge. Since the user is not 
responsible for some entities such as system services 
and file systems, the dependency graph should be 
appropriately pruned to notify the user of faults that 
can be addressed by the user. This is a tougher problem 
to address and could employ context information to 
prune the dependency graph.  
 
6. Prototype Fault-Tolerant Pervasive 
Computing System 
 

We envision a pervasive computing system as a 
device-rich environment that integrates properties of 
digital and physical devices seamlessly and refer to it 
as an Active Space. Our active space is comprised of 
digital devices such as laptops, plasma displays, 
handheld devices, finger print scanners, desktop 
computers, RFID badges and infrared beacons 
integrated in a physical space. The Gaia meta-operating 
system [10] provides a set of services to manage the 



active space. The active space supports context-aware 
computing through the Gaia Context Infrastructure [2].  

We have developed a fault tolerance technique that 
makes use of context information to tolerate 
application and device faults. We consider a fail-stop 
fault model [15] consisting of device and application 
faults. Further, we consider only devices that can host 
applications such as laptops and handheld devices. 
Therefore, a device failure is treated as failure of 
applications running on that device. This technique 
tolerates application faults that can be masked by 
restarting applications. Therefore, the fault model only 
considers application failures caused by transient errors 
such as device failures, network faults and failures due 
to faulty usage. 

Figure 1 presents the architecture of the fault 
management system. Applications periodically save 
their states onto a checkpoint storage. The reliability of 
the storage can be improved by traditional techniques 
such as RAID [20] and so we do not address its 
failures. The checkpoint interval is determined by the 
application. In our implementation, we store the high-
level state of the application as the checkpoint. For 
instance, the high-level state of a music player is the 
music clip being played and the elapsed time, while the 
high-level state for a presentation application is the 
presentation file name and the slide being displayed. 
This is done only for convenience and can be easily 
modified to store the entire memory image of the 
application.  

Each application sends a periodic heartbeat message 
to the Gaia OS informing that it is alive. Since we 
consider a fail-stop fault model, when an application 
fails, it terminates and no longer sends heartbeat 
messages.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Architecture of Fault Manager 
 

When the Gaia OS detects the absence of heartbeat 
messages from a certain application, it notifies the fault 
manager. The fault manager obtains information about 
the current context from the context infrastructure and 
it gets device and application properties from the Space 
Repository. It uses this information to infer a 
contextually appropriate surrogate device on which the 
application can be restarted. The failed application is 
then restarted on the surrogate device using the saved 
state from the checkpoint storage. This is called 
rollback recovery and reduces loss of state on failure 
[21]. The fault management system uses a Prolog-
based reasoning mechanism to determine the most 
appropriate surrogate device. It considers parameters 
such as availability of the device, user preferences and 
application capability while reasoning. These 
parameters can be set by the user.  

We employ rule-based techniques for inferring the 
surrogate device. For example, the rule,  
 
surrogate(D1, D2) :- compat(D1, D2), avail (D2) 
 

specifies that device D2 is a surrogate for device D1 
if it is compatible with D1 and is available for usage. 
The predicates, compat(D1, D2) and avail(D2) can be 
inferred from other rules or facts.  

Faults are addressed as soon as they are detected by 
the fault detector. Therefore, fault containment depends 
on the interval required to detect the fault.  
 
7. Future Work 
 

We plan to extend our work to use the technique of 
alternate notification mechanisms discussed in section 
5. In the present system, when a surrogate device is 
detected upon failure, the fault manager displays the 
identity of the surrogate device on a display device. We 
plan to investigate usage of alternate notification 
mechanisms for notifying the user of the surrogate 
device.  

The present implementation uses heartbeats for 
failure detection. Loss of heartbeats can also be due to 
non-reachability of the device. This situation arises due 
to network congestion and devices going out of range 
of the fault detector. N-version techniques for 
pervasive systems can be used to confirm an 
application failure. We are also investigating such 
techniques. 
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8. Related Work 
 

Many research projects have employed techniques 
that provide some form of fault tolerance. For example, 
iROS [22] uses an EventHeap for communication 
between various entities. The EventHeap is based on 
the tuplespaces model originally proposed by Linda 
[23]. The EventHeap decouples entities and so avoids 
error propagation. But the project does not seem to 
consider restarting failed applications as we have 
proposed.  

The Ninja project aims to develop a software 
infrastructure to support Internet-based applications. 
The architecture is based on the concept of a service, 
which is an Internet-accessible application. The service 
state is partitioned into a hard state and a soft state. 
The hard state is a persistent state and is maintained in 
a carefully controlled environment, which is engineered 
for high availability and scalability. Soft state can be 
regenerated in case of loss. The project addresses 
application failures but does not seem to address device 
failures. In our work, we detect an alternate device 
automatically when a device fails using context 
information. 

The one.world project [24] enhances the robustness 
of ubiquitous systems by providing transaction-level 
persistence and support for disconnected operations. 
The project does not address device or application 
failures.  

Mobile computing addresses various fault tolerance 
issues that are relevant to pervasive computing. But 
many fault tolerance problems in mobile computing are 
complicated by other characteristics of pervasive 
computing and therefore need to be readdressed [25].  
 
9. Conclusion 
 

Transparency is an important characteristic of 
pervasive computing. If pervasive computing has to be 
sustainable, it should be unobtrusive and its faults 
transparent to the user. This requires that the system 
automatically mask various kinds of faults that are 
commonplace in a computing system. In this paper, we 
have classified faults in a pervasive system and 
discussed various research challenges. We have also 
proposed solutions to some of the research challenges.  
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