
Towards Fault Tolerant Pervasive Computing

Shiva Chetan, Anand Ranganathan and Roy Campbell
Department of Computer Science

University of Illinois at Urbana-Champaign
{chetan, ranganat, rhc}@uiuc.edu.

Abstract

Pervasive computing envisions an environment that
seamlessly integrates digital and physical devices.
Users can access digital data and applications from
the environment as easily as accessing them through
their computers. Since pervasive computing exists in
the user's environment, the technology is sustainable if
it is invisible to the user and does not intrude the user's
consciousness [3]. This requires that functioning of the
multitude of devices in the environment be oblivious to
the user. Therefore, the system has to be resilient to
various kinds of faults and should be able to function
despite faults. In this paper, we discuss various classes
of failures, their implications to pervasive computing
and the challenges to be addressed in designing a fault
tolerant pervasive computing system. We also describe
our prototype fault tolerant pervasive system and
propose future directions.

1. Introduction

Pervasive computing ushers in a new era of
computing that integrates digital and physical devices.
It envisions a world of computers, handheld devices,
sensors and actuators integrated seamlessly with
everyday physical devices such as electrical appliances
and automobiles. In addition, pervasive computing
provides a platform for context-aware computing [1,2]
that enables automatic configuration of a pervasive
system based on the environment context.

Mark Weiser in his paper “The Computer for the
Twenty-First Century” defines pervasive computing as
a technology that “weaves itself into the fabric of
everyday life until it is indistinguishable from it” [3].
He mentions that for pervasive computing to be
successful, it's functioning should be transparent to the
user. Such transparency is achievable if faults in the

system are masked and user intervention is sought only
when absolutely required.

Pervasive computing technology exists in the user’s
environment and aids the user in performing various
tasks. The sustainability of this technology depends on
it being non-intrusive. In order to achieve this goal,
faults in a pervasive system should be automatically
masked and user notified only when absolutely
required.

Fault Tolerance issues have not been well explored
so far in pervasive computing research. Since pervasive
computing environments operate in the same physical
(as well as virtual) space as humans, they can be
exasperating (and sometimes hazardous) if they are not
resilient to faults. Several researchers have expressed
the need for reliable pervasive systems and mention
that reliability issues must be readdressed in the realm
of pervasive computing. [4] mentions that one of the
paramount concerns of smart home occupants is
reliability. In [5], the authors mention that traditional
fault detection and recovery techniques would need to
be modified to fit the needs of pervasive computing. [6]
discusses dependability requirements of pervasive
computing in a healthcare environment.

Pervasive computing is finding immediate
applications in healthcare facilities [7], aware-homes
[8] and assisted-living for the elderly [9]. Sensors are
used to monitor conditions of patients in hospitals,
onset of age-related disorders in the elderly and status
of various electrical appliances in aware-homes.
Failures in such scenarios can lead to disasters and so
fault tolerance is vital.

The ramifications of faults in a pervasive system can
stretch beyond immediate consequences. Faults can
lead to incorrect context sensing, security and privacy
breaches and misuse of resources. Therefore, fault
containment is a very important aspect of deploying a
pervasive system into the physical world.

We have incorporated some fault-tolerance
mechanisms in our prototype Pervasive Computing

Environment [10]. While our current system handles
some kinds of failures, much research still remains to
be done to make it a comprehensive system that is
completely fault-tolerant (if it is ever possible to build
such a system). The aim of this paper is to highlight the
various challenges and issues that confront fault
tolerant pervasive computing, present some solutions to
these problems and describe how some of these
solutions are implemented in our system.

In this paper, we discuss various issues involved in
designing a fault tolerant pervasive system. In section 2
we classify various failures in a pervasive system. We
discuss the implications of those failures in section 3
and present various challenges and suggest solutions in
sections 4 and 5. In section 6, we present our fault
tolerant pervasive system that tolerates some
application and device faults and discuss its fault
handling techniques. In Section 7, we discuss future
fault tolerance enhancements planned for our pervasive
system. We cite a few pervasive system projects that
address fault tolerance issues in section 8 and discuss
their techniques. We finally conclude the paper in
section 9.

2. Classification of Failures

A typical pervasive system consists of commercial
off-the-shelf (COTS) software and devices whose
reliability is not guaranteed. COTS software are sold as
“black boxes” and may not be subject to rigid
development, verification or testing processes [11].
Interoperability issues further reduce the reliability of a
pervasive system. Mobile devices such as handhelds
and laptops, with limited battery power, cannot be
regarded as totally reliable. Connectivity failures due to
devices going out of range or other errors in networks
add to faults in a pervasive system. Besides, a
pervasive system has a core set of services (like
naming, trading, file system, event delivery, discovery
and context services) that provide necessary
functionality. These services can also fail. Broadly,
faults in a pervasive system can be classified into
device, application, network and service failures. We
discuss these individually in the following sections.

2.1. Device Failures

A pervasive system consists of different kinds of
devices such as desktops, laptops, handhelds, sensors,
actuators, displays, speakers, scanners, cameras and
projectors. Each device has its own set of faults that
can potentially contribute to the failure of the pervasive
system. Mobile devices, such as laptops and handhelds,

have physical constraints such as finite battery power
and limited signal strength. So if the battery goes down
or if the signal strength is too low they get
disconnected from the pervasive system and are
regarded as having failed. A more acute problem with
devices is when they are alive but operate incorrectly.
This is common in faulty sensors and is called a
Byzantine failure [12].

2.2. Application Failures

Designing reliable software is an expensive process
and the cost of debugging, testing and verifying can
easily range from 50 to 75 percent of the total
development cost [13]. Even in well-tested software
systems, bugs of varying severity are found [14].
Pervasive computing includes commercial off-the-shelf
applications that may not be well tested. In some
situations, applications may work well as stand-alone
software but may not inter-operate correctly or reliably
with other software. Therefore, pervasive systems
should make few reliability assumptions about
applications.

Application failures include application crashes due
to bugs, operating system errors, unhandled exceptions
and faulty usage. Pervasive applications are also likely
targets for malicious software such as viruses and
worms. Viruses and worms cause fail-stop [15] or
Byzantine failures.

2.3. Network Failures

Pervasive systems consist of wired and wireless
devices. Therefore, a reliable pervasive system should
account for network failures caused by low signal
strength, devices going out of range and unavailability
of communication channels due to heavy traffic.
Network failures lead to unreachable devices that may
be wrongly perceived as device failures. Automatic
detection of the failure type is an important issue in
pervasive computing.

2.4. Service Failures

As mentioned above, a pervasive system is
supported by various services that enable different
functionalities. Some of these services are essential
while others add features to a pervasive system.
Essential services include naming, event and discovery
services. Some pervasive systems support other
services such as a trading service that enables device
discovery, context services that enable context-aware
computing and file system services for ubiquitous data

access. Examples of service failures include service
crashes due to bugs and operating system errors, faulty
operation of services like sensing incorrect context,
wrong inferring and lossy delivery of events. Service
failures can potentially lead to failure of the pervasive
system.

3. Implications of Failures

Pervasive computing integrates digital devices
seamlessly in our physical environment. Digital devices
co-exist with physical devices to aid in accomplishing
everyday tasks. Therefore, faults in pervasive systems
can be bothersome and result in user annoyance.
Consider, for instance, an aware-house [8] that uses
radio-frequency badges to identify users. When a user
enters the house, the pervasive system identifies him
and configures the house to meet his requirements. It
adjusts the temperature, turns on his favorite television
channel and preferred lights in the house. Failure to
correctly identify the person can result in a different
configuration and can be a source of annoyance to the
user.

3.1. Hazard to Life

Pervasive systems are being deployed in healthcare
[7] and assisted-living facilities [9] for the elderly.
These systems monitor conditions of patients and
automatically request assistance. In assisted-living
facilities, pervasive systems are used to identify age-
related disorders in elderly by observing their everyday
activities. Therefore, users of such pervasive systems
rely heavily on them. Failures in such systems can be
hazardous and can result in loss of life.

3.2. Inappropriate Resource Control and
Usage

A pervasive system controls several digital and
physical resources. Faults can lead to inappropriate
control and usage of these resources. For instance,
faults in a temperature sensing system could lead to
over-heating or over-cooling of the physical space.
Similarly, faults in an intrusion detection system can
cause false alarms. In wireless devices, retransmissions
due to failed network channel leads to excessive
consumption of battery power.

3.3. Security Vulnerabilities

The ubiquity of deployment of pervasive systems
necessitates robust security mechanisms for access

control and authentication. Faults can lead to security
breaches and consequent compromise of trust. A failed
intrusion detection system may not detect an intruder
while failure in an authentication system may let users
misuse resources and data.

3.4. Inferring Incorrect Context

One of the key elements of a pervasive system is
context. Context information is used to proactively
configure and adapt the environment to meet a user's or
group's needs [1,2].

Various sensors are used to sense context. These
include cameras, voice recognition systems,
temperature sensors and RF identifiers. Inputs from
faulty sensors lead to inaccurate detection of context. A
faulty light sensor may erroneously sense the level of
natural light in a room to be too low and unnecessarily
cause artificial lights in the room to be turned on. In
systems that use RF badges for sensing location of
people, a faulty RF badge may result in inaccurately
determining the location of a person. This could have
security implications if location is used to give people
certain access control rights.

A bigger challenge in context usage is in inferring
context accurately. Various methods are used to fuse
data from one or more sensors and infer higher-level
contexts. For example, rules could be used to infer the
activity in a room. However, these rules could
sometimes result in the wrong context being inferred.
For instance, a rule such as “If the number of people in
a room is more than two and a PowerPoint application
is running, then there is a presentation going on in the
room” [2] may be correct most of the times. However,
there could be situations when it does not hold - for
example, if there are two people in the room and one of
them is editing a PPT file. Incorrect context can
potentially lead to inappropriate resource usage, user
annoyance or failure of the pervasive system. In the
previous example, incorrectly sensing the editing
activity as a presentation, the pervasive system might
start a presentation recording application, dim the
lights in the room and turn on a microphone to be used
by the presenter, which are all inappropriate for the
editing activity.

4. Challenges Facing Fault Tolerance

The area of fault tolerance in computing systems has
been enriched through decades of research. Fault
tolerance issues have been addressed in various areas
of computing systems such as computer architecture,
operating systems, distributed systems, mobile

computing and computer networks. Despite these
advances in tolerating faults, each new area poses its
own set of challenges for which the past techniques
have limited applicability. In this section, we discuss
fault tolerance issues in the realm of pervasive
computing.

4.1. Fault Detection

Efficient fault detection is a tough challenge in a
pervasive system. An application or device that stops
on failure can be detected through timeout techniques
such as heartbeat messages. An entity sends “I’m
alive” messages periodically to the fault detector. If the
heartbeat message is not received for a certain interval
of time the fault detector senses an error in the entity.
In a pervasive system, with a plethora of devices and
applications, heartbeat messages significantly add to
the network traffic and the number of messages can
overwhelm fault detectors. Further, network failures
can lead to unreachable nodes making it complex to
distinguish between entity failure and network failure.

Byzantine fault detection is a tougher problem. The
Byzantine fault model includes failures in which
entities do not stop but operate incorrectly. Byzantine
faults result in inferring incorrect context and
inappropriate resource usage. Heartbeat messages
cannot be used to detect all Byzantine faults, as entities
do not stop sending heartbeats.

4.2. Fault Containment

Once a fault is identified, it should be isolated to
prevent its propagation to other parts of the system. A
pervasive system contains inter-dependent applications
and services that communicate frequently. This
communication fosters fault propagation and makes
fault containment a tough challenge. For instance,
consider a “smart” room that infers an activity based on
the people in the room and applications being used. A
faulty RF id sensor can result in wrongly sensing the
number of people in the room. This can, in turn, result
in inferring the wrong activity currently taking place in
the room and configuring the room inappropriately.

4.3. Transparent Fault Tolerance

Mark Weiser envisioned pervasive computing as a
system that blends in with the physical environment
and whose functioning is transparent to the user. In
order to realize this vision, faults should be tolerated
with minimal user awareness.

4.4. Good Fault Reporting Mechanisms

When a fault cannot be tolerated, it should be
reported to the user in a non-intrusive manner so as to
cause minimal disruption to user's activity. Faults can
be reported through visual representation on display
devices, audio representation on speakers or any other
means that can be perceived by the human senses.
Determining appropriate means of reporting faults is an
interesting problem for research and involves various
parameters such as user preferences, resource
availability and user location.

5. Fault Tolerance Approaches

The goal of a fault-tolerant system is to mask faults
and continue to provide service despite faults. All fault
tolerance techniques use some form of redundancy to
tolerate faults. Depending on the class of faults
redundant devices, networks, data or applications are
used.

In this section, we discuss several approaches that
can be employed in pervasive computing for tolerating
faults. Each approach tackles one or more classes of
failures.

5.1. Surrogate Application/Device Usage

A common fault tolerance technique is to detect
failure of a process and restart it. In order to minimize
the loss of computation, the state of the process is
periodically stored on a stable storage device. Upon
failure, the process is restarted using the stored state.
This technique can be used in a pervasive system to
tolerate some application and device faults. We have
implemented this scheme in our pervasive system and
we will discuss it in section 6.

If devices fail due to hardware problems,
applications on the device cannot be restarted on the
same device. So the solution is to find a surrogate
device that can provide the same functionality as the
failed device and restart the application on it. If the
surrogate device cannot support the execution of the
same application, an equivalent application that
provides similar functionality can be used. For
instance, if a PDA running a WinAmp music player
fails, a laptop running Windows Media Player can be
used since it provides functionality similar to the
WinAmp player. There are other issues such as
availability, user preferences and security that need to
be considered while making this choice.

5.2. Alternate Notification Mechanisms

Pervasive computing can offer multiple ways of
reaching users. For example, in an assisted living
facility, pervasive systems are used to monitor the
status of facility users. In an emergency, the system
notifies healthcare personnel for assistance. The system
can notify the personnel through their cell phones,
pagers, calling help lines (911 in the US) or as a text
message on display devices or speakers in an
emergency monitoring station. So these “channels” of
communication provide inherent redundancy in the
pervasive system that the system can leverage to
tolerate faults. If the system discovers that a
notification device has failed it should reroute the
message through a different channel of communication.

5.3. Handling errors in sensing and inferring
context

Detecting errors that may occur while sensing and
inferring contexts is not easy. The primary way of
detecting and handling such errors is by employing
redundancy. Multiple sensors that sense the same (or
similar) pieces of information can be used to overcome
errors by one or more sensors. For example, in our
prototype pervasive environment [16], we deploy many
badge detectors in the same room so that even if some
of them do not detect the presence of a badge (due to
interference, physical occlusion or other reasons), there
are others that do.

Similarly, using multiple algorithms to infer the
same higher-level context from sensed contexts can
help overcome wrong inferences made by one or more
such algorithms. Such meta-level learning and inferring
approaches are widely used in approaches like boosting
[17]. They help in increasing the level of accuracy of
the inferences made.

Finally, however, until other techniques become
more effective, the most reliable way of detecting an
error in sensed or inferred context would be to allow
users to indicate any errors that they may observe. For
example, [18] allows users to mediate context sensing.
More generally, this would require intuitive user
interfaces that show users what contexts were sensed or
inferred and allow them to correct anything that was
sensed or inferred wrongly.

5.4. N-version approach

In an N-version software system [19], each software
module is made of N different implementations. Each
module performs the same task and submits the result

to an arbitrator. The arbitrator determines the correct
answer and returns that as the result of the task. In
effect, the N-version technique provides functional
redundancy.

In the realm of pervasive computing, an N-version
system should be more generalized to support different
kinds of implementations. For example, in an assisted-
living facility, user status can be monitored by different
means such as vision inputs, audio inputs and inputs
from wearable sensors. An arbitrator should decide on
the state of the person through these inputs. This
complicates the arbitrator and necessitates usage of
inferring techniques.

5.5. Fault Notification Mechanisms

If an unrecoverable fault occurs in a pervasive
system, the system should provide good fault
notification mechanisms to notify the user. A few
research challenges should be addressed in designing a
good fault notification system.

If a user uses only a small set of devices, the user
would only be concerned about the status of those
devices. In such situations, the user should be notified
of faults in devices used by the user. Though the user
may only be using a small set of devices, the devices
may be dependent on various services of the pervasive
system. This creates a dependency graph that could
span a large number of applications, services and
devices. Faults in each of these entities may be reported
to the user or to an administrator who is in charge of
any failed services. Determining the dependency graph
is an important research challenge. Since the user is not
responsible for some entities such as system services
and file systems, the dependency graph should be
appropriately pruned to notify the user of faults that
can be addressed by the user. This is a tougher problem
to address and could employ context information to
prune the dependency graph.

6. Prototype Fault-Tolerant Pervasive
Computing System

We envision a pervasive computing system as a
device-rich environment that integrates properties of
digital and physical devices seamlessly and refer to it
as an Active Space. Our active space is comprised of
digital devices such as laptops, plasma displays,
handheld devices, finger print scanners, desktop
computers, RFID badges and infrared beacons
integrated in a physical space. The Gaia meta-operating
system [10] provides a set of services to manage the

active space. The active space supports context-aware
computing through the Gaia Context Infrastructure [2].

We have developed a fault tolerance technique that
makes use of context information to tolerate
application and device faults. We consider a fail-stop
fault model [15] consisting of device and application
faults. Further, we consider only devices that can host
applications such as laptops and handheld devices.
Therefore, a device failure is treated as failure of
applications running on that device. This technique
tolerates application faults that can be masked by
restarting applications. Therefore, the fault model only
considers application failures caused by transient errors
such as device failures, network faults and failures due
to faulty usage.

Figure 1 presents the architecture of the fault
management system. Applications periodically save
their states onto a checkpoint storage. The reliability of
the storage can be improved by traditional techniques
such as RAID [20] and so we do not address its
failures. The checkpoint interval is determined by the
application. In our implementation, we store the high-
level state of the application as the checkpoint. For
instance, the high-level state of a music player is the
music clip being played and the elapsed time, while the
high-level state for a presentation application is the
presentation file name and the slide being displayed.
This is done only for convenience and can be easily
modified to store the entire memory image of the
application.

Each application sends a periodic heartbeat message
to the Gaia OS informing that it is alive. Since we
consider a fail-stop fault model, when an application
fails, it terminates and no longer sends heartbeat
messages.

Fig. 1 Architecture of Fault Manager

When the Gaia OS detects the absence of heartbeat
messages from a certain application, it notifies the fault
manager. The fault manager obtains information about
the current context from the context infrastructure and
it gets device and application properties from the Space
Repository. It uses this information to infer a
contextually appropriate surrogate device on which the
application can be restarted. The failed application is
then restarted on the surrogate device using the saved
state from the checkpoint storage. This is called
rollback recovery and reduces loss of state on failure
[21]. The fault management system uses a Prolog-
based reasoning mechanism to determine the most
appropriate surrogate device. It considers parameters
such as availability of the device, user preferences and
application capability while reasoning. These
parameters can be set by the user.

We employ rule-based techniques for inferring the
surrogate device. For example, the rule,

surrogate(D1, D2) :- compat(D1, D2), avail (D2)

specifies that device D2 is a surrogate for device D1
if it is compatible with D1 and is available for usage.
The predicates, compat(D1, D2) and avail(D2) can be
inferred from other rules or facts.

Faults are addressed as soon as they are detected by
the fault detector. Therefore, fault containment depends
on the interval required to detect the fault.

7. Future Work

We plan to extend our work to use the technique of
alternate notification mechanisms discussed in section
5. In the present system, when a surrogate device is
detected upon failure, the fault manager displays the
identity of the surrogate device on a display device. We
plan to investigate usage of alternate notification
mechanisms for notifying the user of the surrogate
device.

The present implementation uses heartbeats for
failure detection. Loss of heartbeats can also be due to
non-reachability of the device. This situation arises due
to network congestion and devices going out of range
of the fault detector. N-version techniques for
pervasive systems can be used to confirm an
application failure. We are also investigating such
techniques.

Fault Manager
Failed component
UCR

Failed component UCR

Fault Notification
Interface

Surrogate Device Detector

Notification of component
failure from Presence

Service

Space Repository

Component Restorer

Surrogate device UCR
 + Failed component UCR

1

2

3

Checkpoint Store

8. Related Work

Many research projects have employed techniques
that provide some form of fault tolerance. For example,
iROS [22] uses an EventHeap for communication
between various entities. The EventHeap is based on
the tuplespaces model originally proposed by Linda
[23]. The EventHeap decouples entities and so avoids
error propagation. But the project does not seem to
consider restarting failed applications as we have
proposed.

The Ninja project aims to develop a software
infrastructure to support Internet-based applications.
The architecture is based on the concept of a service,
which is an Internet-accessible application. The service
state is partitioned into a hard state and a soft state.
The hard state is a persistent state and is maintained in
a carefully controlled environment, which is engineered
for high availability and scalability. Soft state can be
regenerated in case of loss. The project addresses
application failures but does not seem to address device
failures. In our work, we detect an alternate device
automatically when a device fails using context
information.

The one.world project [24] enhances the robustness
of ubiquitous systems by providing transaction-level
persistence and support for disconnected operations.
The project does not address device or application
failures.

Mobile computing addresses various fault tolerance
issues that are relevant to pervasive computing. But
many fault tolerance problems in mobile computing are
complicated by other characteristics of pervasive
computing and therefore need to be readdressed [25].

9. Conclusion

Transparency is an important characteristic of
pervasive computing. If pervasive computing has to be
sustainable, it should be unobtrusive and its faults
transparent to the user. This requires that the system
automatically mask various kinds of faults that are
commonplace in a computing system. In this paper, we
have classified faults in a pervasive system and
discussed various research challenges. We have also
proposed solutions to some of the research challenges.

References

[1] A.K.Dey, D.Salber and G.D.Abowd, “A conceptual
framework and a toolkit for supporting the rapid prototyping
of context-aware applications”, Human-Computer
Interaction, pp. 16(2-4):97-166, 2001.

[2] A.Ranganathan and R.Campbell, “A Middleware for
Context-Aware Agents in Ubiquitous Computing
Environments”, ACM/IFIP,USENIX International
Middleware Conference, June 2003.
[3] M.Weiser, “The Computer for the 21st Century”, in
Scientific American, 1991, pp. 94-104.
[4] W.K.Edwards and R.E.Grinter, “At Home with
Ubiquitous Computing : Seven Challenges”, in Ubicomp
2001, 2001.
[5] Guruduth Banavar, James Beck, Eugene Gluzberg,
Jonathan Munson, Jeremy B.Sussman, Deborra Zukowski,
“Challenges: an application model for pervasive computing”,
in Mobile Computing and Networking, 2000, pp. 266-274.
[6] Jurgen Bohn, Felix Gartner and Harold Vogt,
“Dependability Issues of Pervasive Computing in a
Healthcare Environment”,
http://citeseer.nj.nec.com/562030.html
[7] M.Bang, A.Larsson, and H.Eriksson. NOSTOS: A Paper-
Based Ubiquitous Computing Healthcare Environment to
Support Data Capture and Collaboration. In: Proccedings of
the 2003 AMIA Annual Symposium, Washington DC, Nov 8-
12, 2003. p 46-50.
[8] C.D.Kidd, R.Orr, G.D.Abowd, C.G.Atkeson, I.A.Essa,
B.MacIntyre, E.D.Mynatt, T.Starner and W.Newstetter, “The
Aware Home: A Living Laboratory for Ubiquitouss
Computing Research”, in Cooperative Buildings CoBuild’99,
1999, pp.191-198.
[9] D.J.Patterson, O.Etzioni, D.Fox and H.Kautz, “Intelligent
Ubiquitous Computing to Support Alzheimer’s Patients:
Enabling the Cognitively Disabled”, in First International
Workshop on Ubiquitous Computing for Cognitive Aids
UniCog, 2002.
[10] M.Roman, C.Hess, R.Cerqueira, A.Ranganathan,
R.H.Campbell and K.Nahrstedt, “Gaia: A Middleware
platform for active spaces”, ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 6, no. 4,
pp.65-67, 2002.
[11] L.Sha, J.B.Goodenough and B.Pollak, “Simplex
Architecture: Meeting the Challenges of using COTS in
High-Reliability Systems”, CrossTalk: The J. Defense
Software Eng., vol. 11, pp.710, Apr. 1998.
[12] Lamport, Shostak and Pease, “The Byzantine Generals
Problem”, in Advances in Ultra-Dependable Distributed
Systems, N.Suri, C.J.Walter, and M.M.Huue(Eds.) IEEE
Computer Society Press. 1995.
[13] B.Hailpern and P.Santhanam, “Software debugging,
testing and verification”, IBM Systems Journal, vol. 41, no.
1, 2002.
[14] J.A.Whittaker, “What is Software Testing ? And why is
it so hard ?”, IEEE Software, vol. 17, no. 1, pp. 70-79, Jan
2000.
[15] F.B.Schneider, “Byzantine Generals in Action:
Implementing Fail-Stop Processors”, ACM Transactions on
Computer Systems, pp. 2(2):145-154, May 1984.
[16] M.Roman, C.Hess, R.Cerqueira, A.Ranganathan,
R.H.Campbell, and K.Nahrstedt, “A middleware
infrastructure for active spaces”, in IEEE Pervasive
Computing, 2002, vol. 1, pp. 74-83.

[17] Robert E.Schapire, “A Brief Introduction to Boosting”,
in IJCAI, 1999, pp.1401-1406,
http://citeseer.nj.nec.com/schapire99brief.html
[18] Anind.K.dey, Jennifer Mankoff, Gregory D.Abowd and
Scott Carter, “Distributed Mediation of Ambiguous Context
in Aware Environments”, in Proceedings of the 15th Annual
ACM Symposium on User Interface Software and
Technology (UIST 2002), Oct. 2002.
[19] A.Avizienis, “The N-Version Approach to Fault-
Tolerant Software”, IEEE Transactions on Software
Engineering, vol. SE-11, no. 12 pp.1491-1501, 1985.
[20] D.A.Patterson, G.Gibson and R.H.Katz, “A Case for
Redundant Arrays on Inexpensive Disks (RAID)”, in
Proceedings on the 18th ACM SIGMOD International
Conference on Management of Data. 1988, pp.109-116,
ACM Press.
[21] E.Gelenbe, “A model of roll-back recovery with
multiple checkpoints”, in Proceedings of the 2nd
International Conference on Software Engineering, 1976,
p.251-255.
[22] S.R.Ponnekanti, B.Johanson, E.Kiciman and A.Fox,
“Portabiloity, Extensibility and Robustness in iROS”, in
Proceedings of PerCom, Dallas-Fort Worth, Texas, USA,
2003.
[23] D.Gelernter, “Generative Communication in Linda”,
ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 7, no. 1, pp.80-112, 1985.
[24] L.Arnstein, R.Grimm, C.Hung, J. Kang, A.LaMarca,
S.Sigurdsson, J.Su and G.Borriello, “Systems support for
ubiquitous computing: A case study of two implementations
of Labscape”, in Proceedings of the First International
Conference in Pervasive Computing, 2002, Springer-Verlag,
Germany.
[25] M.Satyanarayanan, “Pervasive Computing: Vision and
Challengges”, IEEE Personal Communications, pp.10-17,
Aug. 2001.

