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Computerized Detection of Pulmonary Embolism
In Spiral CT Angiography Based on
Volumetric Image Analysis

Yoshitaka Masutani*, Heber MacMahon, and Kunio Doi

Abstract—A fully automated method for computerized de- tures, and the imaging modality in use is, therefore, indispens-
tection of pulmonary embolism in spiral computed tomography able for accurate diagnosis.
angiography was developed based on volumetric image analysis. We have previously reported several techniques that con-

The detection method is based on segmentation of pulmonaryt ibute t terized detecti f oul boli .
vessels to limit the search space, and analysis of several three-di- ribute to computerized detection of puimonary eémbolism In

mensional features inside segmented vessel volume. The featureSpiral C_TA1 based on segmentation of pulmonary vessels and
utilized are vascular size, local contrast based on mathematical three-dimensional (3-D) image features [4], [5]. The present

morphology, degree of curvilinearity based on second derivatives, paper, we describe a computerized method detecting pulmonary

and geometric features such as volume and length. Detection o pgjism in spiral CTA based on volumetric image analysis,
results were obtained for 19 clinical data sets and the performance . . . .
with reference to detection results in 19 clinical cases.

of the method was evaluated. Using the number and locations of
thrombi diagnosed by radiologists as the gold standard, 100%
sensitivity was achieved with 7.7 false positives per case, and 85% II. MATERIALS AND METHODS

sensitivity was obtained with 2.6 false positives. For identification

of all the positive cases as positive, i.e., detection of at least oneA. Volume Data Acquisition in Spiral CT Angiography

thrombus per positive case, 1.9 false positives per case were . . o
obtained. These preliminary results suggest that the method has | h€ acquisition parameters for spiral CTA examinations at

potential for fully automated detection of pulmonary embolism.  our institution include 3.0-mm collimation, 1.7 pitch, a 1.5-mm
Index Terms—Computer-aided diagnosis, pulmonary embolism, reconstruction interval, and a 3 cc/s injection rate for contrast
segmentation, volumetric image analysis. agent. Imaging range extends from the top of the aortic arch
to the diaphragm. Volume data sets in matrices of 51212
x 60-70 were interpolated using a linear method in ratios of
. INTRODUCTION 2.0-3.0 to yield isotropic volume data, which are relevant to
IAGNOSIS of pulmonary embolism is often described agolumetric image analysis. Finally, the data sets are reformatted
being difficult for radiologists. In spiral computed tomoginto matrices of 512x 512 x 150-250 with a 0.6- to 0.7-mm
raphy (CT) angiography (CTA), more than 100 images, soméoXel size.
times including images obtained using multiplanar reconstruc-
tion, are viewed in each case for detection of thrombi in puB. Segmentation of Pulmonary Vessels
monary arterie_s: Thrombi are frequeptly diﬁicult to distinguish \yse segmented the pulmonary vessels to reduce the search
from false positives when only sectional images are used. dg5ce and eliminate false positives outside the vascular struc-
CTA images, thrombi are generally recognized as dark regiofi§es. we have reported on a segmentation technique for pul-
within enhanced pulmonary arteries in CTA images, as showhynary vessels based on anatomical knowledge [6]. The seg-
in Fig. 1. False positives with CT values resembling those gfgntation result obtained with this method was used as an initial
thrombi are mainly lymphoid tissue adjacent to pulmonary aag it in this study. In addition to the initial segmentation, fur-
teries, streak artifacts radiating from the superior vena cava, apd, segmentation was performed for extraction of pulmonary
partial volume artifacts at vascular bifurcations [1]-[3]. Knowly,essels from main level to segmental and subsegmental levels

edge of the thoracic vascular system, adjacent anatomical stigiCpranches by removing contiguous cardiovascular structures
such as cardiac ventricles and aorta.
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R2 Technology, Inc., Los Altos, CA. The Associate Editor responsible fg§f yascular structure.
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Fig. 1. Pulmonary embolism in spiral CT angiography. The CT values of
thrombi (large arrows) are lower than those of the surrounding opacified
regions of vessels (small arrows).

Pulmonary Arteries.
it

hysteresis thresholding [Fig. 2(a)] and connected-component [
analysis [Fig. 2(b)]. Hysteresis thresholding is a form of region

(or volume)-growing techniques, in which seed regions are
determined using another thresholding range narrower than
the range for final region-growing. With the obtained major

vascular structures utilized for a seed volume, peripheral
vessels are segmented using region-growing [Fig. 2(c)]. The (e)
region-growing is limited to the inside of the lungs which haveig. 2. Segmentation procedures. (a) Hysteresis thresholding result. (b) After
been segmented in the previous step. The result obtained u{goqmected-component analysis. (c) Region-growing in lungs. (d) Masking by

- : - o - Jungs. (e) Back-growing to main branches. (f) Final segmentation result in
this step is defined as an initial segmented volume. In the fi Isterior view. To limit the search for thrombi, pulmonary vessels from the

step, back-growing is performed inside the initial segmentagin to the segmental and subsegmental levels of branches are segmented in
volume to fill the volume from the peripheral branches to theeveral steps.

main branches. Peripheral vessels in the lungs [Fig. 2(d)] are de-
fined as the seed volume for this back-growing. Back-growi
is terminated at a pre-determined distance before the gro
fronts reach the heart [Fig. 2(e)].

Fig. 2 shows an example of segmentation. Several segme fermination of properties.
tion parameters, such as thresholds, are determined adaptive Analysis of Voxel PropertiesCT values of thrombi are

and automatically, based on local histogram analyses insidge; than those of the surrounding opacified regions of ves-
th? body [6]. In the volume of the final §egmeqtat|0n r_esuge|s_ Conversely, CT values for opacified vessels are not uni-
[Fig. 2(f)], small defects and holes are filled using a binang 1, inside the segmented vascular volume. As we reported pre-
closing operatlon.of mathematical morphology with aSphe”C@fously [5], voxels close to the vessel wall display lower CT
kernel (4-mm radius). values than distant voxels. This is largely attributable to the par-
) ) tial volume effect around the vessel wall. In addition, CT values
C. Analysis of 3-D Image Features Inside Segmented Vessel \oxels depend on the vascular size. For such local variation
for Detection of Thrombi of CT values inside segmented vessels, we defined the local
After segmentation of pulmonary vessels, feature analysis fayntrast as an attribute of each voxel, based on grayscale mor-
detection of thrombi is performed inside the segmented vespbblogy [7]. Local contrast is determined in two processes. One
volume. Thrombi are detected in two steps: 1) determinationioiolves filtering of the original volume by grayscale closing
initial candidates based only on the properties of voxels, andly inside the segmented vascular shape. The other involves
2) determination of final candidates based on properties of thebtraction of the original volume from the filtered volume.
voxel group (connected component), such as volume and lendgthe grayscale closing operation removes dark structures smaller

Pulmonary Veins

Vr]gftsically, the former process involves the selection of voxels
isfying several conditions, and the latter involves the extrac-
tion of voxel groups after connected component analysis and
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Fig. 3. Local contrast. (a) Original data. (b) Local contrast in segmented
vascular shape. A feature value, local contrast, is defined as an attribute of each 0 B
voxel based on grayscale morphology. 700 800 900 1000 1100 1200 1300 1400 1500

original CT value

thanthe k_emel employed, and subtraction of the original VOIUI‘EI%_ 4. Relationship between original CT values and local contrast values.
from the filtered volume extracts only the small, dark structuresscal contrast of thrombi exceeds that of opacified vessels, and that of the
The voxel value in the subtraction volume was defined as theginal CT values of thrombi is lower than that of opacified vessels. The vessel
local contrast at the location of the voxel, that is, the local COH@II should be removed in distinguishing thrombi and opacified vessels to avoid

. ) a partial volume effect.
trastC, of a voxelv is defined as

Cr(v) = V(v) — Vo(v) Q © the axis of the curvilinear structure. Our multiscale defini-
tion of the degree of curvilinearity of thromti (v, o) is as

whereV (v) denotes the original CT value of voxelandV,(v) follows:

is the CT value of a voxel after filtering of the grayscale Tmax
opening inside the segmented vascular shape. A spherical kernel D, (v) = Z $De(v, o) x do (2)
(10-mm radius) was used for the opening operation in this study. O=Omin

An exarnplg of the volume data for local contrast obtained Sheresh
shown in Fig. 3.

Fig. 4 shows the relationships between the original CT valu
and the local contrast values of three types of voxels: 1) voxels
in thrombi defined by a radiologist; 2) in the vessel walgpcl(w o) =
(three voxels in thickness), and; 3) in thg remaining vascular, Ao (v, )= As(v, @), (Ma(v, &) > As(v, o) > 0)
volume. Voxels of the vessel wall are distributed in a broad (v, o), Ma(v, 0) > 0, As(v, o) < 0)  (3)
range that overlaps the distributions of thrombi and opacified| = (Aa(v, o) < 0,
vessels. Therefore, removal of voxels around the vessel wall is
indispensable for detection of thrombi using local contrast. where), and\; are the re-ordered valués; > Ay > A3) of

As an additional feature, we employed the second deriveecond derivatives at voxelin three directions. In this study,
tives of the 3-D function of the volume data. As thrombi arae performed a multiscale analysis using scales 2.0 to 4.0
formed predominantly in deep veins, a curvilinear structure iis voxels and a scale pitahr = 0.2. Basically, the difference
frequently evident. Multiscale analysis of second derivativeslietween, and\3; was defined as the degree of curvilinearity so
widely used for enhancement or detection of curvilinear struttiat the value would be low in cases the structure is sheet-like.
tures in two-dimensional and 3-D medical images [8], [9]. Thrdé&the second derivatives display negative values, the voxel has
eigen values of a Hessian matrix, i.e., second derivatives in theeintensity value higher than that of the background. In such
orthogonal directions at a voxel, classify local patterns to whiatases, the degree of curvilinearity of thrombiis set as zero. Fig. 5
the voxel belongs. Based on the three values, a local pattshows an example of the volume data obtained by calculating
is classified to line-like (curvilinear), structure, plate-like, othe degree of curvilinearity. Voxel values show the degree of
blob-like structure. To quantify the degree of a structure beirgirvilinearity in the lower row. Itis clear that only the voxels that
line-like, we defined the degree of curvilinearity of thrombi fobelong to curvilinear structures, i.e., thrombi, were enhanced
each voxel as a feature value, based on a multiscale analysiwtile the others were suppressed. On the basis of the above two
determine the second derivatives of voxels included in thromiigiatures, the initial candidate for thrombi is determined voxel
of various sizes. by voxel. A voxel is included among the initial candidates if

First, second derivatives are computed in multiscale andtime original CT value of the voxel is within the range between
the three orthogonal directions that include the direction of the50 Hounsfield unit (HU) and 100 HU or the local contrast of
maximum second-derivative value. Multiscale analysis is pehe voxel exceeds 150 HU. Voxels on the vascular surface were
formed in the scales fromi,i, t0 omax With a pitchdo. As the removed to avoid partial volume effects. The thickness of the
structures of thrombi have intensities lower than those of themoved vascular wall was determined adaptively according to
background level of enhanced vessels, the values of the sectirelvascular radius (Table I). Vascular size was determined by
derivatives are basically positive in the direction perpendiculapening operations of mathematical morphology [4]. Finally, in

«1(v, o) denotes the degree of curvilinearity of a voxel
v in a single scaler anddo is a scale pitchs D, (v, o) is de-
ed as
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interpolation segmentation of thorax body |

segmentation of lung

| segmentation of major vessels |

| segmentation of peripheral vessels |

‘ masking of periphleral vessels by lung shape |
| back—growirllg to main branches ‘
segmentation result
| analysis of local contrast ‘

’ analysis of degree -of-curvilinearity ‘
Fig. 5. Degree of curvilinearity. (a)—(c) Original data. (d)—(f) Degree of & i analysis of vascular size |
curvilinearity in segmented vascular shaped. A feature value, degree o | determination of initial candidates|
curvilinearity of thrombi, is defined for each voxel, based on a multiscale }
analysis for determining the second derivatives of voxels. L

connected component analysis and

P i —>| determination of final candidates |
determination of properties

TABLE |
THICKNESS OF REMOVED SURFACE VOXELS ADAPTIVELY
DETERMINED FORVASCULAR SIZE Fig. 6. Flowchart of overall detection scheme. After segmentation of
pulmonary vessels, feature values are determined in the segmented vessels.
Vascular radius Thickness of removed

voxels surface voxels . . . . .

( -3 ) 1 image quality of the data. We did not include data sets with
4-5 ) strong motion artifacts, unsatisfactory vascular opacification or
6-7 3 other diseases that would make the reliable definition of “truth”
>=8 4 (i.e., gold standard of detection) difficult. To provide “truth” in

each case, an experienced radiologist marked all locations of

uspected thrombi, and voxel groups larger than 10.G mm

addition to the candidates, voxels with a degree of curvilinearit
Iume were selected for detection test in this study. Overall,
in the range 40.0-80.0 were also added to the initial candida

Pthrombi in the 11 positive cases were defined.

for greater sensitivity of detection.
2) Analysis of Voxel Group Properties for Candidate DeteB Detection Results
mination: After selection of the voxels as initial candidates,
these voxels were converted into groups using connected- comThe detection of PE was performed in a fully automated
ponent analysis based on 26-neighbor connectivity. Candidafiegnner from pre-processing of CTA data, through segmenta-
for thrombi were finally determined based on attributes of tH&on of anatomical structures, to the detection of thrombi. The
voxel groups, which were volume-10 mn#), effective length time required for the entire detection from interpolation of data
(>10 mm), and mean local contrast§0 HU, <300 HU) of to determining the locations of candidates was 30-45 min,
the grouped voxels. The volume threshold was used to adjds®Pending on the size of the data, using a PC workstation with
sensitivity in the following test of the detection performance/33-MHz Pentium Ill processor with 1-GB RAM.
To simplify the computation of the length of voxel groups, ef- To evaluate the performance of the method, we adjusted
fective length was defined as the summation of width, heigfifie detection sensitivity by changing the volume threshold of
and depth of the smallest box to cover the voxel group. Anothée final candidates of voxel groups and counted the average
feature related to the location of candidates, lung coverage, vwisnber of false positives per case. Using a 16°nvolume
used to eliminate false positives outside the lungs due to s&geshold, the sensitivity was 100% with 7.7 false positives per
mentation error. Lung coverage is the ratio of the number &fse, and we obtained 85% sensitivity with 2.6 false positives
voxels inside the lung to the number of voxels of the entire voxBer case using a 64 minvolume threshold. Fig. 7 shows the
group. Voxel groups with less than 0.75 of |ung coverage WEF@OC curvéd for this detection test. We counted the number

removed. Fig. 6 shows an overall flowchart of our computerizéd false positives per case when identifying all positive cases
method. as positive by adjusting the sensitivity. That is, at this setting of

the volume threshold, we detected all of the largest thrombus in
. RESULTS each case in this study. The number of false positives was 1.9
per case at a 95 mhvolume threshold.
Fig. 8 shows an example of the detection result for a thrombus
As a database for this study, we selected 19 (11 positive anoh&he left lower lobe. Several types of false positives were found
normal) cases from 30 clinical (20 positive and 10 normal) casieshis study, such as lymphoid tissue, flow voids in both arteries
for validation of our computerized detection method, based and veins, soft tissue at a bifurcation, and averaging effects due

A. Database for Detection Test
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Fig. 9. Example of false positives. (a) False positive due to flow void

104 (arrow). (b) False positive due to soft tissue between adjacent vessels (arrow).
As detection method has high sensitivity for detecting dark regions inside
0 . . . T . . . segmented vessels, false positives due to a flow void were obtained.

false positives per case
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Fig. 7. FROC curve of detection results. Sensitivity of detection was adjusted ) ¥ , b
by a threshold for candidate volume. L | i A 2 location st
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Fig. 10. Display system for detection result. By pointing a candidate on
the right list, three sectional views of axial, coronal, and sagittal planes are
displayed.
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Fig- 8. (leX;tr)npleblof g?teC)tion relsullt- (@) Originaltl déillta- (b) DeteﬁtigndrESLGIT values and shapes similar to thrombi. A total of 143 false

surrounae: Yy ablac ine). Voxels close to vessel wall were not include a e H

on removal of surface voxels on segmented vessel volume. ﬁgsmves \,Nere obtamed fC?I’ the 19 cases (7j5_ .per C,ase’ on
average) in the configuration for 100% sensitivity (Fig. 7).

r%[nong the false positives, 132 were related to soft tissues such

to the partial volume effect. These false positives are very si i . ) .
ilar to those obtained by radiologists [1]. Fig. 9 shows an ods lymphoid tissue, which was included in the segmented vessel

ample of false positive by the computerized method due tovgllume. Another six were based on segmentation errors of the
flow void and soft tissue vessel volume. In such cases, parts of bone structures were

contiguous with the segmented volume. The remaining five
C. Display of Detection Results false positives were due to flow void or noise inside vessels. In

E luati £ thi terized thod in_ clini a?ummary, 92% of the false positives were attributable to soft
or evaluation ot this computerized method n clinic iﬁsues such as lymphoid tissue surrounding vessels. One of

gfiseis, a _solftware slyster(‘jn wait(jlevelgped t? sm?tanegtmg remaining problems in segmenting pulmonary vessels is
'Stp Ia:Y a?g, c_:rohrona }tan S?g'da sedc |ton§ ora voltume ‘”’Iﬁ?e inclusion of such tissues. In a few cases with abnormally

set ( '9. )- € software loads a detection result as a eloped lymphoid tissues due to other diseases, more false
of location coordinates, and shows three sectional V'ewslﬁ%sitives were found than in other cases in our database. Re-
planes tha_t_mclude the Iocat|or_1, by s_electmg an item in t oving all of these regions of soft tissues in the segmentation
list. In addition to the three sectional views, volume renderi age is difficult, because these regions have CT values very
was utilized for visualizing segmented v_essels and .throrln Imilar to those ’of thrombi. A feature value that would allow

Fig. 11(a)~(d) shows examples of detection results Vlsuallzﬁgcrimination between soft tissues outside vessels and thrombi

using \{olume renderiqg [.11]' Endpscopic views [12] of volum% ide vessels would be valuable for this purpose. However
rendering were effective in showing how a thrombus OCC|Ud?|q5 a practical sense, these false positives due to soft tissue

the vessels, as shown in Fig. 11(c). are not so critical, because they can usually be distinguished.
Another problem is poor quality of original CT data. In this
study, we excluded CT data sets obtained clinically, in which
As shown in Fig. 9, this computerized method displays higiadiologists find difficulties for detecting thrombi and our
sensitivity for detecting low opacity regions inside segmente®mputerized method failed in segmenting vessel structures.
vessels, including flow void. False positives are attributable Hthis is predominantly attributable to motion artifacts caused by
soft tissues and flow voids in opacified vessels, which exhilgiiatients. Sufficient consideration and checks for data quality

IV. DISCUSSION
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a b We have analyzed another feature for detection of thrombi,
based on vascular section properties. This method based on
tree-structured information on vascular sections [13] displayed
a high potential for detecting complete or nearly complete
vascular occlusion by emboli, although high-quality data is
required for analysis of bifurcation structures. Recent develop-
ments in multidetector CT are expected to greatly contribute
to overcoming this obstacle by improving resolution in the
direction, and by reducing data acquisition time.

The purpose of CTA examination is to judge whether an ex-
amined patient has thrombi in the pulmonary arteries, as treat-
ment of pulmonary embolism is based on infusion of drugs into
the entire vascular system. In this sense, detection of all thrombi
in a patient is not strictly necessary. Although determining the
best detection parameters for practical use is a difficult task, rea-
sonable options can be found based on a sensitivity control using
the FROC curve. For example, we obtained approximately six
false positives to keep the detection sensitivity above 90%. Fur-
ther investigation should be performed to determine the optimal
configuration and improve detection performance.

V. CONCLUSION

We developed a new computerized method for detecting pul-
monary embolism in spiral CTA, based on volumetric image
analysis. On the basis of segmentation of pulmonary vessels,
Fig. 11. Visualization of detection results under volume renderingeyeral 3-D features were analyzed for detection of thrombi
(a) Thrombus defined by radiologist in the left lower lobe pointed (arrow). . - . .
(b) Detection result by computerized method pointed by (arrow). (c) ThrombiECIUdmg local ComraSt and degr?e of curvilinearity. Detection
(arrow) visualized in endoscopic view. Volume rendering display of detectidi@sults were obtained for 19 clinical data sets, and the perfor-
results in(_:l_udi_ng endoscopic views is effective f_or understanding the locatiphignce was 7.7 false positives per case at 100% sensitivity, and
of thrombi inside vessels and the state of occlusion. 2.6 at 85%, to detect the all thrombi as defined by a radiologist.

Conversely, 1.9 false positives per case were found by adjusting
are, therefore, requisite before applying our computerizelgtection parameters to correctly identify all positive cases. Our
method. preliminary results show that this method has potential for fully

The percentages of the segmented volumes relative to tc@dtomated detection of pulmonary embolism.
volume were less than 1%. The reduction of search space con-
tributed to both efficiency oft.he detection process, and reduction ACKNOWLEDGMENT
of the number of false positives. However, the method depends _
strongly on the segmentation result for pulmonary vessels. If aThe authors would like to thank all the members of the
blood vesselincluding a thrombus is notincluded in the segmédrRossmann  Laboratories for their valuable discussions and
tation result, the thrombus can never be detected. Although gfecouraging advice. The software used in this study includes
segmentation procedure is a preprocessing step for detectiof®feral software modules that were developed by Y. Masutani,
thrombi, this procedure should have high sensitivity in order #&h.D. at the University of Tokyo, Japan, and at the University
include as many vascular branches as possible. We adjusted@hislamburg, Germany. The authors would also like to thank
sensitivity to segment vessels larger than about 2 mm in diaf¥of. T. Dohi of the University of Tokyo and Prof. K.-H. Hoehne
eter, by changing the lower threshold used in region-growing fef the University of Hamburg for their permission to use these
segmentation of peripheral vessels [6]. software modules.
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