
A General Approach to Random Coding
for Multi-Terminal Networks

Stefano Rini, Andrea Goldsmith
Department of Electrical Engineering

Stanford University
Stanford, CA, USA

Email: {stefano,andrea}@wsl.stanford.edu

Abstract—We introduce a general framework to derive achiev-
able rate regions based on random coding for any memoryless,
single-hop, multi-terminal network. We show that this general
inner bound may be obtained from a graph representation that
captures the statistical relationship among codewords and allows
one to readily obtain the rate bounds under which the error
probability vanishes as the block-length goes to infinity. The
proposed graph representation naturally leads to an “automatic
rate region derivator” which produces achievable rate regions
combining classic random coding techniques such as coded time-
sharing, rate-splitting, superposition coding and binning for the
general memoryless network under consideration.

Index Terms—achievable region, chain graph, multi-terminal
network, coded time-sharing, rate-splitting, superposition, bin-
ning.

I. INTRODUCTION

In random coding, codewords are generated by drawing
symbols in an independent, identically distributed (iid) fashion
from a prescribed distribution; the performance of the ensem-
ble of codes is then analyzed as a function of the block-
length, which is eventually taken to infinity. Thanks to the
iid symbols and the block-length which tends to infinity, it is
possible to derive the asymptotic performance of the ensemble
of codes using the properties of jointly typical sets [5], [12],
[7]. This proof technique was originally developed for the
point-to-point channel [19] and has since been extended to
multi-user channels by introducing different codebook con-
structions for different network structures. Coding techniques
such as coded time-sharing, rate-spitting, superposition coding,
binning, interference decoding, bin-superpose-match coding
are some of the strategies developed to obtain achievable
rate regions in various multi-terminal, single-hop channels.
All these achievable schemes tend to use a combination of
“standard” proof techniques which that utilize a few statistical
properties of the typical sets of iid random codewords such
as size and probability. Given the similarity in the derivation
of achievable rate regions based on these various coding
strategies, one might expect to be able to obtain a general
expression of the achievable rate region for a large class
of networks. This is the aim of this work. In particular,
we introduce an achievable scheme involving rate-splitting,
coded time-sharing, superposition coding and binning valid
for a general one-hop channel without feedback or transmit-
ter/receiver cooperation. This achievable scheme is defined

by the random variables representing different codewords and
by the factorization of the joint distribution among these
random variables in the codebook. This joint distribution is
easily represented using a graphical Markov model [17]: more
specifically we define a Markov chain graph in which vertexes
represents codewords, a set of edges represents superposition
coding and another set binning. When an edge connects two
vertices, this indicates an encoding operation among the two
codewords that is either superposition coding or binning,
depending on the type of edge. By building upon the fun-
damental results in random coding theory and graph theory,
we define a formal representation and a standard notation for
a general achievable scheme as well as the derivation of the
corresponding achievable rate region. With this approach, we
are able to define an “automatic rate region generator” which
outputs the best known random coding achievable rate region
for any single-hop multi-terminal channel of choice.

Related Work

The key bounding techniques to analyze the error proba-
bility of transmission schemes based on random coding using
the properties of typical sequences are presented in an unified
fashion by Csiszár and Körner [5, Ch. 1.2] and, more recently,
by Kramer [12, Ch. 1] and El Gamal and Kim [7, Ch. 2].

Graphs representing codes are employed by Kramer in [11]
in the form of “code trees”. In [11] a general discrete mem-
oryless network with feedback is considered: in this context
a transmission strategy can be efficiently represented using a
tree in which each node represents the channel input at a given
time and a path to such node a sequence of feedback values
which determine, together with the transmitted message, the
channel input. The author [11] also introduces the “functional
dependence graph”, a directed acyclic graph which describes
the Markov relationship between the transmitted messages and
the channel inputs and outputs at any time instant. Both code
trees and functional dependence graphs are used to investigate
the role of the directed information in multi-terminal systems
with feedback. Despite of the different context, the analysis in
[11] has some similarities with our approach in the attempt of
compactly represent coding strategies and Markov dependen-
cies.

An systematic approach to the analysis of achievable
schemes employing superposition coding is hinted in [7],



where tables are utilized to derive the error events for such
transmission schemes. Even if a general procedure is not
explicitly detailed, [7] suggests an algorithmic derivation of
the achievable rate region.

An attempt to generalize the derivation of achievable regions
is provided in [10], but no closed-form characterization of the
achievable rate is provided.

Our general approach to the derivation of achievable re-
gions based on random coding employs four fundamental
techniques: coded time-sharing, rate-splitting, superposition
coding and binning1.

Coded time-sharing was originally introduced by Han and
Kobayashi [9] in their derivation of an achievable region for
the interference channel. It consists of choosing a specific
transmission codebook according to a random but known
sequence.

Rate-Splitting was also introduced by Han and Kobayashi
in [9] and it consists of splitting a message of one user into
multiple sub-messages, each decoded by a different set of
receivers. This techniques is useful in the interference channel
as it allows the receivers to decode a portion of the interference
created by the transmission of the other user.

Superposition coding is a method of stacking a codeword
for one user on top of another user’s codeword and it was first
introduced by Cover [3] for deriving an achievable region for
the broadcast channel. In superposition coding a first message
is conveyed using a “base” codebook as in the point-to-
point channel while a second message is transmitted using an
“overlay” codebook that is generated conditionally dependent
each codeword in the base codebook.

Binning is applied when an encoder has knowledge of the
interference experienced at its intended decoder to pre-code
the transmission against such interference. It was originally
devised by Sleepian and Wolf [20] for distributed lossless
compression and it was later used by Marton [16] to derive
an achievable region for the general broadcast channel .

As we shall see, these relatively simple coding strategies can
be combined to generate a complex codebook construction to
fit a number of communication scenarios.

Contributions:

In the following we:
• propose a novel chain graph representation for en-

coding schemes based on coded time-sharing, rate-
splitting, superposition coding and binning. This new
formalism provides a clear and unified framework to
represent achievable schemes based on random coding
arguments as it provides a compact description of the
codebook generation as well as encoding and decoding
procedures.

• generalize the encoding and decoding error analysis
for random coding based achievable schemes. The

1sometimes referred to as Cover random binning [7] or Gel’fand-Pinsker
coding [8]

proposed graph representation also describes the distri-
bution of the codewords and is used to bound the error
probabilities. This allows the achievable rate region to be
determined for any scheme that can be represented with
the proposed formalism.

• compactly represent the achievable rate region. We
consider three class of schemes with increasing complex-
ity and, in each scenario, present a compact representation
of the achievable rate region which relies only on only
graph theoretic properties of the chain graph representa-
tion.

Paper Organization:

The paper is organized as follows: Section II presents a
general class of memoryless, one-hop networks. Section III
provides a few basic graph theoretic notions that will be used
in the reminder of the paper. Section IV introduces the novel
chain graph representation of the encoding and decoding op-
erations in a general random-coding-based achievable scheme.
Section V derives the rate bounds that define the achievable
rate region based on the proposed chain graph representation
for three different classes of graph, listed in increasing order
of complexity. Section VI concludes the paper.

II. NETWORK MODEL

We consider a general one-hop multi-terminal network in
which NTX transmitting nodes want to communicate with
NRX receiving nodes. The network is assumed to be single-
hop and without feedback or cooperation among transmitters
or receivers. The transmitting node k ∈ [1 . . . NTX] has input
Xk to the channel while the receiving node z ∈ [1 . . . NRX]
accesses the channel output Yz . The channel is assumed to be
memoryless with transition probability

PY|X = PY1...YNRX
|X1...XNTX

. (1)

The subset of transmitting nodes i, is interested in reliably
communicating the message Wi�j to the subset of receiving
nodes j over N channel uses. The message Wi�j, is uniformly
distributed in the interval [1 . . . 2NRi�j ], where N is the block-
length and Ri�j the transmission rate.

The allocation of multiple the messages at transmitters and
receivers is described by the set V, which defines the set of
messages WV = {Wi�j, (i, j) ∈ V}. A rate vector RV =
{Ri�j, (i, j) ∈ V} is said to be achievable if, for all (i, j) ∈
V, there exists a sequence of encoding functions

XN
k = XN

k ({Wi�j, k ∈ i}) , ∀ (i, ·) ∈ V, (2)

and a sequence of decoding functions

Ŵ z
i�j = Ŵ z

i�j

(
Y N
z

)
, ∀ z ∈ j, (·, j) ∈ V, (3)

such that

lim
N→∞

max
z,i,j

P
[
Ŵ z

i�j ̸= Wi�j

]
= 0. (4)

The capacity region C(RV) is the convex closure of the region
of all achievable rates in the vector RV.



Fig. 1. The general memoryless, one-hop multi-terminal network in Sec. II.

The channel model under consideration is depicted in Fig.
1: on the left side are the NTX transmitting nodes while on the
right are the NRX receiving nodes. A message Wi�j is encoded
by to the set i of the transmitting nodes and decoded at the set j
of receiving nodes. The channel input Xk at each decoder k is
a function of the messages available at this decoder according
to (2). Receiver z decodes all the messages Wi�j such that
z ∈ j from the channel output Yz using the decoding function
in (3).

The channel under consideration is a variation to the net-
work model in [4, Ch. 15.10], but allows for messages to be
allocated to multiple users while not considering feedback and
cooperation.

III. GRAPHICAL MARKOV MODELS

This following section presents a few basic graph theoretic
notions and describes Graphical Markov Models (GMMs).
GMMs were introduced by Perl in 1988 [17] and are used
to represent the factorization of a multivariate distribution in
a graphical manner. A GMM is constructed using the graph
G(V,E) and associating the set nodes in the graph, V, to a set
of Random Variables (RVs) and the set edges E to the condi-
tional dependencies among these RVs. Although conceptually
simple, GMMs can be used to represent a highly varied and
complex system of multivariate dependencies by means of the
global structure of the graph, thereby obtaining efficiency in
modeling, inference, and probabilistic calculations [14], [21],
[6].

A. Some Graph Theoretic Notions

A graph G(V,E) is defined by a finite set of vertices V and
a set of edges E ⊆ V×V i.e. a set of ordered pairs of distinct
vertices. An edge (α, β) ∈ E whose opposite (β, α) ∈ E is
called an undirected edge, whereas an edge (α, β) ∈ E whose
opposite (β, α) ̸∈ E is a directed edge. Two vertices α and β
are adjacent in G if (α, β) ∈ E or (β, α) ∈ E. If A ⊆ V is a
subset of the vertex set, it induces a subgraph GA = (A,EA),
where EA = E ∩ (A×A). The parents of a node α ∈ V in

A are those vertices linked to α by a directed edge in EA,
i.e.

paEA
(β) = {α ∈ A| (α, β) ∈ EA, (β, α) ̸∈ EA} .

This definition readily extends to subsets of nodes B ⊆ A:

paEA
(B) = {α ∈ A|∃ β ∈ B, (α, β) ∈ EA, (β, α) ̸∈ EA} .

A path π of length n from α0 to αn is a sequence
π = {α0, α1, ..., αn} ⊆ V of distinct vertices such that
(αn−1, αn) ∈ E for all i = 1...n. If (αn−1, αn) is directed
for at least one of the nodes i, we call the path directed. If
none of the edges are directed, the path is called undirected.
A cycle is a path in which α0 = αn. We define the future of
a node α in G, denoted by ϕ(α), as the set of nodes that can
be reached by α through a directed path.

Graph are generally classified in three categories:
• If all the edges are undirected, the graph is said to be an
UnDirected Graph (UDG).
• If all the edges are directed and the graph contains no cycles,
the graph is said to be an Directed Acyclic Graph (DAG).
• If edges are both directed and undirected and the graph does
not contain directed cycles, the graph is called a Chain Graph
(CG)

B. Graphical Markov Models

The idea of GMMs is to define dependencies between RVs
through a graph: each node in the graph represents a RV,
an edge between two RVs indicates that the two RVs are
conditionally dependent. For simple scenarios, this implies that
the distribution of a node depends only on its neighboring
nodes while it is conditionally independent from the rest of
the graph.

A rigorous formulation of this concept has to take into
account global features of the graph, such as paths and cycles,
in order to define a joint distribution associated with any graph.

Definition 1. Global G-Markov Property:
Consider a graph G(V,E), a probability measure P on

U =×
α∈V

Uα, (5)

is said to be global G-Markovian if

α ⊥ β |[V\ϕ(α)]\{α, β} [P ], (6)

for α and β are not adjacent and β ̸∈ ϕ(α) and if, given four
disjoint subsets A,B,C and D, the following holds:

A ⊥ B |C ∪D [P ] and A ⊥ C |B ∪D [P ]

=⇒ A ⊥ B ∪ C |D [P ], (7)

where the notation A ⊥ B |C [P ] indicates that A is
conditionally independent of B given C under P .

The above formulation of the global Markov property is not
the most general, but we refer to this definition for simplicity.
Definition 1 can be interpreted as follows: two nodes α and β
that are not adjacent and such that β is not in the future of α



are conditionally independent given all the nodes in V minus
the future of α and α and β themselves.

The global Markov properties assures that a the distribution
P over the graph G(V,E) is well defined, regardless of
the connectivity properties of the graph. This definition is
particularly important as it makes it possible to establish a
notion of equivalence among graphs. Graphs with different
sets of edges can result in the same joint distribution among
the RVs and in general it is not trivial to determine which
graphs describe the same dependency structure.

Definition 2. Markov Equivalence, [1, Th. 3.1]:
Two chain graphs G1 = (V,E1) and G2 = (V,E2) are called
Markov equivalent if, for every product space X indexed by
V , the classes of probability measures that are global G-
Markovian on G1 and G2 are equivalent.

As the Markov properties of an arbitrary probability distri-
bution can be difficult to establish, a commonly used class of
GMMs are those that offer a very convenient factorization of
the joint distribution P in (6). UDGs offer a factorization in
terms of cliques, subset of vertices such that every two vertices
in the subset are connected by an edge. For DAGs we have
that P factorizes in terms of parents nodes of a vector, i.e.

P =
∏
α∈V

Pα|pa(α). (8)

In general, a convenient and recursive factorization of P for
CGs is not available: the only case in which such a factor-
ization exists is when the chain graph is Markov equivalent
to a DAG, in which case the factorization in (8) can be used.
In [1] a rigorous theory to establish the equivalence between
GMMs is developed.

IV. THE CHAIN GRAPH REPRESENTATION OF AN
ACHIEVABLE SCHEME

We now introduce a general achievable scheme employing
rate-splitting, coded time-sharing, superposition coding and
binning for the general channel model in Sec. II. As we
shall see, rate-splitting effectively transforms the problem of
achieving a given rate vector into the problem of achieving
a different rate vector for a channel model in which more
messages are allocated to each user. Each additional message
can be though of as an additional virtual user which is
introduced in the network is such a way as to preserve the rate
of the transmitted messages. By increasing the total number
of messages to be encoded, rate-splitting increases the overall
number of viable transmission strategies and this can only
result in larger achievable rates.

Coded time-sharing is used to convexify the achievable
region and is obtained by choosing the transmission codebook
according to a random sequence made available to all the
terminals in the network. Coded time-sharing also outperforms
both time and frequency division multiplexing (TDM/FDM
respectively).

The core coding techniques of the proposed general achiev-
able scheme are superposition coding and binning. These two

coding steps are represented using two GMMs over the same
set of nodes. A first GMM, the superposition coding graph,
describes how superposition coding is applied when creating
the transmission codebook. A second GMM, the binning
graph, describes how binning is used to select codewords
from the transmission codebook so as to appear as if gen-
erated according to a different distribution than the codebook
distribution.

A. Rate-Splitting

In rate-splitting the message of a user is split into multiple
sub-messages which are each then encoded/decoded at differ-
ent sets of transmitters/receivers. Since encoding capabilities
and decoding requirements cannot be altered, a message Wi�j

can be split into the messages Wl�m only when i ⊇ l and
j ⊆ m, that is, the new set of messages can only be encoded
by a smaller set of transmitters or decoded by a larger set of
receivers.

More generally, rate-splitting can be expressed by the matrix
by Γ such that

RV′ = ΓRV, (9)

for V′ ⊆ V, i.e. V′ is the original message allocation and V
the one after rate-splitting, and where

Γ(i,j)×(l,m), (10)

indicates the portion of the message Wi�j, (i, j) ∈ V′

in the original allocation that is embedded in the message
Wl�m, (l,m) ∈ V after rate-splitting has been applied.

For rate-splitting to be feasible, the following must hold:

Γ(i,j)×(l,m) ̸= 0 =⇒ i ⊇ l, j ⊆ m, (11)

also, since the rate of each message must be preserved:∑
(i,j)

Γ(i,j)×(l,m) = 1. (12)

Note that (12) implies that multiple messages in
Wi�j, (i, j) ∈ V′ are compounded to form a single message
Wl�m, (l,m) ∈ V after rate-splitting. This is sometimes
referred to as rate-sharing and is useful in a number of
scenarios [15].

Given an achievable rate vector RV′ , there are multiples
rate-splitting matrices Γ in (10) that can be considered and
thus the largest achievable region is obtained by considering
the union over all possible rate-splitting matrices, that is

RV′ = Conv

{∪
Γ

ΓRV

}
, (13)

where Conv indicates the convex hull operation. Since the
achievable rate region is expressed in terms of linear inequal-
ities, it is sometimes possible to utilize the Fourier-Motzkin
Elimination (FME) [13] to obtain a closed form expression for
(13).



B. Coded Time-Sharing

Coded time-sharing is attained by generating the multiple
transmission codebooks conditionally dependent on the time-
sharing RV Q. The codebook used for transmission is then
selected according to the time-sharing random sequence qn

obtained with iid draws from Q and available at all trans-
mitters and receivers. Coded time-sharing outperforms time-
division and frequency-division multiplexing (TDM/FDM) and
is thought to achieve larger rates than the convex closure of
the achievable rates [2].

C. Chain Graph Representation of Superposition Coding and
Binning

For a given rate-splitting matrix Γ and a time-sharing
sequence qN , we define two chain graph GMMs to describe
how superposition coding and binning are performed. The
conditions on the message allocations under which a codeword
can be superposed over or binned against another are specified
by the next two lemmas.

Lemma 1. Conditions for Superposition Coding
The superposition of one Ui�j over another Ul�m can be
performed when the following two conditions hold:

• l ⊆ i: that is the bottom message is encoded by a larger
set of encoders than the top message.

• m ⊆ j: that is the bottom message is decoded by a larger
set of decoders than the top message.

Moreover, if Ui�j is superposed over Ul�m and Uv�t over
Ul�m, then Ui�j is also superposed over Uv�t.

If Ui�j is superposed over Ul�m, then the reverse cannot
hold.

Lemma 2. Conditions for Binning
Binning of the RV Ui�j against the RV Ul�m can be performed
when the following condition holds:

• i ⊆ l: that is, the set of encoders performing binning has
knowledge of the interfering codeword

Note that if Ui�j can be binned against Ui�m, then Ui�j can
also be binned against Ui�m, regardless of the value of j and
m. This is referred to as joint binning.

With Lemma 1 and Lemma 2 we can now formally define
the Chain Graph Representation of an Achievable Scheme
(CGRAS):

Definition 3. CGRAS
The GMMs G(V,S) and G(V,E), together with the rate-

splitting matrix Γ and the time-sharing RV Q, represents an
achievable scheme for the network model in Sec. II where:
• every vertex (i, j) ∈ V is associated with the RV Ui�j

carrying the message Wi�j at rate Ri�j obtained through the
rate-splitting matrix Γ.
• G(V,S) is the superposition coding graph and describes

how superposition coding is performed. The conditions in
Lemma 1 hold for the set of edges S and thus G(V,S) is an
DAG. The superposition of Uv�t over Ui�j is also indicated
as Ui�j 7→ Uv�t.

Fig. 2. A schematic representation of the CGRAS is provided in Def (3).

• G(V,E) for E = S ∪B and S ∩B = ∅, is the binning
coding graph and describes how binning is performed. The
conditions in Lemma 2 hold for the set of edges B. Binning
of Ul�m against Ui�j is also indicated as Ui�j 99K Ul�m.
Similarly. the joint binning of Ul�m and Ui�j is indicated as
Ul�m - - - Ui�j.

A schematic representation of the CGRAS is provided in
Fig 2: each node of the graph is associated with a codeword
encoding a specific message obtained through rate-splitting.
Codewords can be superposed and binned only when the
conditions in Lemma 1 and Lemma 2 are satisfied. When Uv�t

is superposed over Ui�j, this is indicated by a directed, solid
arrow from Ui�j to Uv�t. Similarly, when Ul�m is binned
against Ui�j, this is indicated by a directed, dashed arrow
from Ui�j to Ul�m.

The superposition coding graph is associated with the
codebook distribution defined as

Pcodebook =
∏

(i,j)∈V

PUi�j|paS(Ui�j), (14)

which satisfies the global Markov property in Def. 1 since
G(V,S) is a DAG.

We now impose further assumptions on the binning graph
to obtain a convenient factorization of the joint distribution
associated with this graph.
Assumption 1. No directed cycles in the binning graph: The
binning graph G(V,E) contains no directed cycles. If cycles
exist, they must be undirected.
Assumption 2. Joint binning forms cliques: Nodes in the
binning graph that are connected by an undirected edge form
fully connected sets, that is

Ui�j - - - Ui�m, Ui�j - - - Ui�t ⇒ Ui�m - - - Ui�t. (15)

Moreover, jointly binned codewords have the same parent
nodes, that is, if Ui�j - - - Ui�t then

paE(Ui�j) = paE(Ui�t). (16)



Note that the joint binning can be applied only when two
nodes are known at the same set of nodes, so the expressions
in (15) and (16) are without loss of generality.

Under Assumption 1, the binning graph is a chain graph for
which a global Markov property can be appropriately defined.
Under Assumption 1 and Assumption 2, the binning graph
is a chain graph in which any non-cyclical orientation of the
undirected edges produces a Markov equivalent DAG G(V, Ẽ)
for some Ẽ ⊆ E.

Since undirected binning edges can occur only at nodes
known at the same set of encoders, these two assumptions can
be imposed without loss of generality. To satisfy Assumption
1, one needs to substitute all the binning steps in the cycle
with joint binning, thus obtaining undirected cycles. Similarly,
Assumption 2 can be made to hold by adding either superpo-
sition coding edges or binning edges between jointly binned
RVs and their parents. Since both assumptions can be satisfied
by increasing the number of coding step in the CGRAS, we
require for the binning graph to satisfy both Assumption 1 and
Assumption 2.

Given these two assumptions, the binning graph can be
associated with the encoding distribution defined as

Pencoding =
∏

(i,j)∈V

PUi�j|paẼ(Ui�j), (17)

where G(V, Ẽ) is the DAG obtained by a non-cyclical orienta-
tion of the undirected edges in G(V,E). Since the factorization
in (17) holds, the encoding distribution satisfies the global
Markov property in Def. 1.

Note that the encoding and decoding distribution in (14)
and (17), respectively, have an identical factorization among
the RVs except for the RVs connected by a binning edge.

We now detail the codebook generation, encoding and
decoding operation which are associated with the CGRAS in
Def. 3.

D. Codebook Generation

For a given codebook distribution that factorizes as in (14),
the codebook associated with the CGRAS is obtained by
recursively applying the following procedure:
• Consider the node Ui�j in G(V,S) and assume that the

codebook of the parent nodes has been generated and indexed
by ll�m ∈ [1 . . . 2Ll�m ], i.e.

UN
l�m(ll�m), ∀ Ul�m ∈ paS(Ui�j), (18)

then, for each possible set of base codewords

{UN
l�m(ll�m), Ul�m ∈ paS(Ui�j), ll�m ∈ [1 . . . 2Ll�m ]},

(19)

repeat the following:
1) generate 2NLi�j codewords, for

Li�j = Ri�j +Ri�j (20a)

Ri�j =

{
≥ 0 ∃ Uv�t 99K Ui�j

0 otherwise
, (20b)

with iid symbols drawn from the distribution
PN
Ui�j|paS(Ui�j)

conditioned on the set of base
codewords in (19). In the following we refer to
Ri�j as the message rate while to Ri�j as the binning
rate.

2) If Ri�j ̸= 0, place each codeword UN
i�j in 2NRi�j bins

of size 2NRi�j and indexed by bi�j ∈ [1...2NRi�j ].
If Ri�j = 0 , simply set bi�j = 1.

3) Index each codebook of size 2NLi�j using the set
{ll�m, ∀ (l,m) s.t. Ui�j 7→ Ul�m} so that

UN
i�j(li�j) = (21)

UN
i�j (wi�j, bi�j, {ll�m, Ul�m ∈ paS(Ui�j)}) .

E. Encoding procedure

Consider an encoding distribution that factorizes as in (17)
and differs from the codebook distribution in (14) except
for the joint conditional distributions of the RVs involved in
binning. In the encoding procedure, the each binning index
bi�j in (21) is chosen so that the transmitted codeword appears
to be generated according to the encoding distribution in
(17) despite of being generated according to the codebook
distribution in (14). A set of bin indexes {bi�j, Ui�j ∈ V}
which satisfies this property can be found if the size of each
bin is sufficiently large, that is, if each Ri�j is sufficiently big.

F. Input generation

The kth encoder produces the channel input XN
k as a

deterministic function of its codebook(s), i.e.

XN
k = XN

k

({
UN
i�j, ∀ (i, j) s.t. k ∈ i

})
. (22)

Restricting the class of encoding functions to deterministic
functions instead of random functions can be done without
loss of generality [22].

G. Decoding procedure

Receiver z is required to decode the transmitted messages
Wi�j for

Vz = {(i, j) ∈ V, j ∈ z}, (23)

and it does so by employing a typicality decoder which
determines the set of indexes

{wi�j, bi�j, (i, j) ∈ Vz}, (24)

such that {
Y N
z ,

{
UN
i�j(wi�j, bi�j), (i, j) ∈ Vz

}}
∈ Tn

ϵ (PYz,encoding) , (25)

where

PYz,encoding = PYz|{Ui�j, (i,j)∈Vz}

·
∏

(i,j)∈Vz

PUi�j|paẼz (Ui�j), (26)

for Ẽz = Ẽ ∩ (Vz × Vz). Note that in (26) it is necessary
to restrict the parents Ui�j to those in Vz since there could



exists a parent of Ui�j in the binning graph outside Vz which
is not decoded at receiver z.

A transmission error is committed if any of the receivers
decodes (at least) an index incorrectly. It is possible to find
a codeword with the desired joint typicality condition if the
number of transmitted codewords is sufficiently small, that is
if the transmission rate Li�j is low.

V. THE ACHIEVABLE RATE REGION OF THE CGRAS

In this section we derive the achievable region that can
be attained with a CGRAS as defined in Def. 3. We do
so by considering the following three classes of CGRAS,
each more general than the previous: (i) we first consider
the CGRAS with only superposition coding, then (ii) the case
with superposition coding and binning but no joint binning
and finally (iii) the general case. We use the first case to
illustrate the decoding error analysis, the second to illustrate
the encoding error analysis and the third case to illustrate the
effect of joint binning. The decoding error analysis makes use
of the packing lemma [7, Sec. 3.2] while the covering lemma
[7, Sec. 3.7] is necessary for the encoding error analysis.

A. Superposition Coding

We begin by considering the CGRAS involving only su-
perposition coding. In this case the achievable rate region is
expressed as a series of upper bounds on the message rates
under which correct decoding occurs with high probability.
Each bound relates to the probability that a set of codewords
is incorrectly decoded at receiver z and the probability of this
event is bounded using the packing lemma [7, Sec. 3.2].

Theorem V.1. Achievable region with superposition coding
Consider any CGRAS employing only superposition coding
and let the region R be defined as∑

(i,j)∈C
z

Ri�j ≤ (27)

I(Yz; {Ui�j, (i, j) ∈ C
z}|{Ui�j, (i, j) ∈ Cz}, Q),

for every z and every set Cz ⊆ Vz such that

paS(C
z) ⊆ Cz, (28)

then any rate vector RV which lies in R is achievable.

Proof: The complete proof is provided in [18]. Each
bound in (27) relates to the probability that the codewords in
C are correctly decoded while the ones in C are incorrectly
decoded. The channel input is conditionally dependent on the
correctly decoded codewords but conditionally independent on
the incorrectly decoded ones. A decoding error is committed
only if the number of the codewords is high enough for the
typicality decoder to find an incorrect codeword that appears
jointly typical with the channel output. The probability of
this events relates to the mutual information term in the
RHS of (27) through the covering lemma. Since the top
codeword is chosen conditionally dependent on the bottom
codewords, correct decoding is not possible unless all the

Fig. 3. A graphical representation of Th. V.1.

bottom codewords are also correctly decoded. This condition
is expressed by (32).

Note that since all the codewords are chosen from condi-
tionally dependent codebooks, the joint distribution between
codewords is the same whether codewords are correctly or
incorrectly decoded. As we shall see, this is not the case when
the CGRAS also employs binning: in this case incorrect de-
coding results in a different joint distribution between correctly
and incorrectly decoded codewords.

A graphical representation of Th. V.1 is provided in Fig.
3: the channel output Y N

z is used at decoder z to decode the
set of codeword in Vz in (23). Since the top codeword is
generated conditionally dependent on the bottom codeword, a
codeword can be correctly decoded only when all the parents
codewords have also been correctly decoded. A lower bound
on the message rates can be obtained by considering all the
possible error patterns at all the decoders and bounding the
probability of each event using the packing lemma.

B. Superposition Coding and One-Way Binning

We now consider the case of a CGRAS employing both
superposition coding and binning but no joint binning. This
is a more general scenario than the previous section and thus
requires considering the probability of an encoding error which
results in a lower bound on the binning rates.

The binning graph of a CGRAS with no joint binning is a
DAG as no cycle occurs according to Assumption 1. In this
context, it is clear that Assumption 1 not only provides the
condition for the encoding distribution to be well defined but
also for the encoding procedure to be feasible. If Assumption



1 did not hold, than the choice of the bin index for a codeword
in the cycle would depend on the value of the bin index itself,
which is not feasible.

Theorem V.2. Achievable region with superposition coding
and one-way binning
Consider any CGRAS employing only superposition coding,
binning but not joint binning and let the region RR be defined
as∑
(i,j)∈C

Ri�j ≥
∑

(i,j)∈V

I(Ui�j; paB{Ui�j}|paS{Ui�j}|Q)

(29a)

−
∑

(i,j)∈C

I(Ui�j; paB{Ui�j}|paS{Ui�j}|Q),

(29b)

for all the subsets C ⊆ V such that

paS(C) ⊆ C, (30)

and the region RL as∑
(i,j)∈C

z

Li�j ≤

I(Yz; {Ui�j, (i, j) ∈ C
z}|{Ui�j, (i, j) ∈ Cz}, Q)

+
∑

(i,j)∈C
z

I(Ui�j; paB(Ui�j)|paS(Ui�j),Q), (31a)

for every z and every set Cz ⊆ Vz such that

paS(C
z) ⊆ Cz, (32)

then any rate vector RV which lies in RR∩RL is achievable.

Proof: The complete proof is provided in [18]. The
bounds in (30) are obtained by bounding the encoding error
probability: each term corresponds to the event that the bin
indexes in C have been correctly determined while the bin in-
dexes in C are not. As for the decoding error analysis, correct
encoding is possible only when the parent codewords in the
superposition coding graph have also been correctly encoded.
Each bound is obtained applying Tchebychev’s inequality to
error events in the spirit of [12, Sec. 7.10]. The bounds (30) are
obtained by bounding the decoding error probability at each
receiver z. These bounds are obtained in a similar manner than
in Th. V.1 with the difference of the additional term in (31a):
this term corresponds to a “decoding boost” provided by bin-
ning. Incorrectly decoded codewords that are binned against
each other are generated conditionally independently; for the
typicality decoder to commit an error, then, there must exist a
codeword which looks as if generated conditionally dependent
with the correctly decoded codewords. This makes it harder
for the typicality decoder to commit an error. Unfortunately
this boost comes at the cost of having to decode the binning
index as well as the message index.

The novel ingredient in Th. V-B with respect to Th. V.1 is
the encoding error analysis which results in the lower bound on
the binning rates in (29). During encoding, the binning indexes

Fig. 4. A graphical representation of Th. V.2.

are chosen so that the transmitted codewords look as if gener-
ated according to the encoding distribution although actually
distributed according to the codebook distribution. Encoding
can be successful only when the parents codewords in the
superposition coding graph are also correctly encoded. Since
the codebook of the top codeword is chosen conditionally
dependent on the chosen base codeword, the base codeword
must be correctly encoded for the top codeword to have a
desired joint typicality with the rest of the graph.

C. Superposition Coding and Joint Binning

At last we consider the general CGRAS as defined in Def.
3 which includes the case considered in Sec. V-A and in Sec.
V-B. For the general case the binning graph is no longer an
DAG but rather a CG which requires a more careful analysis of
the encoding and decoding error probabilities. This analysis is
simplified under the conditions in Ass. 2 which guarantees
that any non cyclic orientation of the undirected edges in
the binning graph produces a DAG Markov equivalent to the
original CG.

Theorem V.3. Achievable region with superposition coding
and joint binning
Consider any CGRAS and let the region RR be defined as∑

(i,j)∈C

Ri�j ≥
∑

(i,j)∈V

I(Ui�j; paB−{Ui�j}|paS{Ui�j},Q)

−
∑

(i,j)∈C

I(Ui�j;Ai�j|paS(Ui�j),Q), (33)



with

Ai�j = paB−(Ui�j) ∪ paB∩(C×C)(Ui�j) (34)

for any C ⊆ V such that

pa(C) ⊆ C, (35)

and the region RL as∑
(i,j)∈C

z

Li�j ≤

I(Yz; {Ui�j, (i, j) ∈ C
z}|{Ui�j, (i, j) ∈ Cz}, Q)

+
∑

(i,j)∈C
z

I(Ui�j;A
z
i�j|paS(Ui�j),Q), (36)

with

Az
i�j = paB−(Ui�j) ∪ paB∩(C

z×C
z
)(Ui�j) (37)

for all z and all the sets Cz ⊆ Vz such that

pa(Cz) ⊆ Cz, (38)

then any rate vector RV which lies in RR∩RL is achievable.

Proof: The complete proof is provided in [18]. The
decoding and encoding error analysis from Th. V.1 and Th. V.2
must be updated in order to consider the effect of joint binning.
For the encoding error analysis, joint binning of two RVs is
successful only when it is possible to jointly determine the bins
at both codewords. If the encoding of either bin fails, then the
codewords appear as if generated conditionally independent.
This intuitively motivates the last mutual information term of
(33): the elements in paB∩(C×C)(Ui�j) are those elements for
which one RV in the joint binning as been correctly decoded
but the other is not.

Joint binning has a similar effect on the last mutual infor-
mation term in (36). Consider again two RVs which are jointly
binned against each other, then the correct joint typicality be-
tween the two decoded codewords occurs only when both bin
indexes are correctly decoded. The term paB∩(C

z×C
z
)(Ui�j)

corresponds to the jointly binned random variables for which
only one of the two bin indexes have bee correctly decoded.

From the statements of Th. V.2 and Th. V.3 it can be verified
that joint binning strictly improves over binning as it results
in a smaller RHS in (30) and a larger RHS in (36) which
corresponds to smaller binning rates and larger message rates
respectively. Despite this, it is yet not clear whether joint
binning improves on the convex closure of the achievable
regions obtained by the possible orientation of the undirected
edges.

VI. CONCLUSION

This paper presents a general achievable scheme valid for a
wide class of single-hop multi-terminal networks. This achiev-
able scheme employs coded time-sharing, rate-splitting, super-
position coding, and binning and generalizes a number of inner
bounds proposed in the literature. A compact representation

of the transmission strategies is offered by graphical Markov
models which are also useful in deriving the achievable rate
region.

Extensions of this work will consider multi-hop networks
and the generalization of transmission techniques such Markov
encoding, amplify-and-forward and quantize-and-forward to
this general channel model.
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