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ABSTRACT 

 

 The uncertainty of future oil supply and growing concerns of the energy security 

of the United States have boosted the investment in alternative energy carriers, including 

biofuels. Bioethanol, made from bio-renewable resources, has gained the mainstream 

usage in the USA. Ethanol is almost exclusively made from corn in the USA. The 

objectives of the study were: 1) To compare the differences of ethanol production 

between the normal and waxy corn using a cold-fermentation process; 2) To understand 

the effects of starch structure and properties on the ethanol production. Ethanol yields of 

the waxy corn ranged 33.1% (33.1g/ 100g dry grain) - 37.6% for 2009 grown corn, and 

ranged 34.8-37.9% for 2010 grown corn. Ethanol yields of the normal corn ranged 34.2-

37.2% (2009) and 34.3-37.5% (2010). Ethanol yields positively correlated with the kernel 

starch contents of both normal and waxy corn. Average starch-ethanol conversion 

efficiency of the waxy corn (93.2%, 2009; 93.0%, 2010) was substantially greater than 

that of the normal corn (88.0%, 2009; 88.4%, 2010). This could be attributed to the 

greater starch hydrolysis rate of the waxy corn than that of the normal corn. Starch 

hydrolysis of uncooked dry-grind corn showed that > 90% of starch in the waxy corn was 

hydrolyzed, whereas < 80% of starch in the normal corn was hydrolyzed to glucose. It 

indicated that normal corn contained a significant portion of starch that was less readily 

hydrolyzed by the enzymes, which reduced the conversion efficiency. There were 

differences in starch physicochemical properties between the corn grown in 2009 and 

2010 crop years. This was likely caused by the changes in the growing conditions (e.g. 

growing temperatures) between the two crop seasons.
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GENERAL INTRODUCTION 

 

 Starch is naturally the second most abundant carbohydrate next to cellulose. 

Starch is the main source of carbohydrate in both food and feed, making up the most of 

our daily energy intake. Starch is bio-renewable, bio-degradable, environmentally 

friendly, and easy to process.  Therefore, starch is an important material for a wide 

variety of food and non-food applications, including thickeners, stabilizers, binding 

agents, fat substitutes, texturizers, fillers, and feedstock for biofuels. 

 Starch consists of two types of polysaccharides, amylose and amylopectin. 

Amylose is primarily a linear molecule of D-glucopyranose units linked by α-1,4 

glycosidic bonds with few branches. Amylopectin is highly-branched molecule that 

contains short chains of α-1,4 linked D-glucopyranose units. The short chains are linked 

by α-1,6 glycosidic bonds, which account for ~5% of the total glycosidic linkages. 

Amylose molecules are interdispersed among amylopectin molecules in the starch 

granule, and intertwine with the long branch-chains of amylopectin. Different types of 

starch, however, have different proportions of amylose and amylopectin. Waxy starch 

contains almost exclusively amylopectin and little amylose. Normal starch contains 15-

30% amylose, depending on the botanical source of the starch. High-amylose starch 

usually has >50% amylose content, and also contains another molecule known as 

intermediate component (IC). 

 Chemical composition and structures of starch affect its physicochemical 

properties. For example, waxy corn starch shows higher digestibility than the normal 

corn starch. High-amylose corn starch, such as the starch of amylose-extender (ae) 

mutant corn, contains a significant amount of resistant starch (RS) that cannot be either 

digested or absorbed in the small intestine. It is known than amylose is more 

concentrated at the periphery of starch granule and intertwines with amylopectin, 

maintaining the integrity of starch granule and contributing to the resistance of starch 
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granule to enzyme hydrolysis. The digestibility of the ae wx double mutant corn starch, 

however, was reported to fall between the starch of the ae corn and wild type corn, 

displaying characteristics of slowly-digestible starch (SDS). Both RS and SDS have 

attracted interests for the exerted health benefits, such as lowering glycemic index and 

blood cholesterol level and reducing risks of colon cancer. On the other hand, starch that 

is more easily hydrolyzed to glucose is desirable in the bioethanol production. 

   With the depletion of fossil fuels and increased environmental concerns by 

burning gasoline, bioethanol has been used as one of the major gasoline substitutes in 

the United States. Bioethanol industry rapidly grew with recognition of the benefits of 

ethanol as a renewable fuel, such as increasing energy security by reducing dependence 

on foreign oil, producing less emissions for cleaner air, and boosting rural and farm 

economies. Corn is the most important starch crop in the United States, and is almost 

the exclusive feedstock for bioethanol production. Ethanol production in the United 

States underwent a rapid increase from 175 million gallons in 1980 to 13.9 billion gallons 

in 2011. Nevertheless, the expansion of production capacity of the corn-based ethanol 

industry is limited by availability of more farmland for growing corn. Therefore, it is 

important to maximize the ethanol yield by understanding how processing conditions and 

starch hydrolysis affect ethanol production. 

 In the United States, ethanol is mainly produced using a dry-grinding process. In 

a conventional fermentation process, starch in the dry-grind grain is liquefied by α-

amylases at ~90°C and then saccharified by amyloglucosidase s at ~60°C to produce 

glucose that is fermented by yeast into ethanol. An industrial process of raw-starch 

fermentation was developed recently, in which starch saccharification and fermentation 

occur simultaneously. Raw-starch fermentation has been reported to reduce production 

costs compared with the conventional method. The process decreased the energy input 

and increased the ethanol yield by preventing the formation of amylose-lipid complex, 

starch retrogradation, and osmotic stresses to the yeast. Great efforts have been 
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devoted to investigate the effects of kernel composition, nitrogen sources, fermentation 

temperatures, and starch hydrolysis on the ethanol yield. The effects of starch structures 

on the starch conversion and ethanol yield in a raw-starch fermentation process, 

however, have not been fully understood. 

 

The objectives of this study were: 

• 1) To compare the ethanol yield between the waxy and normal corn lines using a 

cold-fermentation process;  

• 2) To understand the impacts of starch structures and properties on the ethanol 

yield. 
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DISSERTATION ORGANIZATION 

 The dissertation consists of a general introduction, two chapters, one appendix, 

and acknowledgements. First chapter of the dissertation is a review of literature on the 

background knowledge and information relating to the research topics. Second chapter, 

“Characterization of normal and waxy starch for bioethanol production”, is organized with 

the format of a research paper for submission to Journal of Agricultural and Food 

Chemistry. A preliminary study, “Characterization of ae wx double mutant maize starch”, 

is included in the appendix. The literature cited in the Literature Review is listed in the 

alphabetical order of the first author’s last name. 
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CHAPTER 1. LITERATURE REVIEW 

 

Bioethanol Overview 

 The United States is the largest petroleum consuming country in the world (18.8 

million barrels per day of petroleum products during 2011), and about 45% of the 

petroleum is imported from foreign countries in 2011 (EIA 2012). In addition to the 

nation’s great dependence on foreign oil supply, concerns have been raised for the 

depletion of fossil oil sources and rising demands for liquid fuels. Global reserve of liquid 

fuels today is estimated to meet just over half of the global demand by 2023, which 

indicates that the remaining 50% of the demand will have to be met with other sources 

(Owen et al. 2010). Environmental concerns have grown over the harmful tailpipe 

emissions of carbon monoxide, oxides of nitrogen, and other ozone-forming pollutants, 

by burning large volume of petroleum-based fuels (Sperling and Gordon 2007). To 

prepare for the uncertainty of future oil supply and reduce the air pollution, it is necessary 

to invest in alternative energy carriers that improve energy security (utilizing local 

resources) and decrease emissions (USGAO 2007, Owen et al. 2010). 

 Ethyl alcohol, also known as ethanol, is a colorless, flammable, volatile liquid that 

is widely used to produce beverages, solvents, and fuels. Ethanol is produced either 

synthetically through the hydration of ethylene (petrochemical) or biologically through 

yeast fermentation of simple carbohydrates (Mills and Ecklund  1987). Production of 

ethanol from fermentation, however, had been encouraged by the federal tax credit 

(which was discontinued in 2011) and low prices of corn in the United States (Keim 

1983, Mills and Ecklund 1987). Therefore, ethanol is considered as bio-renewable 

source of energy because it can be produced from starchy crops or sugar-containing 

plants. Currently the feedstocks used for fuel ethanol production include corn, sugar 

cane, sugar beets and sorghum, but almost exclusively from corn in the United States 

(Gnansounou 2009, Sanchez and Cardona 2008). 
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 Attempts to produce ethanol for transportation fuel started in early 1900s in the 

United States. At the beginning of 20th century, Henry Ford built a vehicle that could run 

either on gasoline or alcohol (Freudenberger 2009a, Kovarik et al. 1998). Nevertheless, 

ethanol failed to be used as a common fuel at that time because of the abundant and 

cheap supply of petroleum and natural gas. The disruption of oil supply from the Middle 

East in 1970s, however, re-boosted the production of ethanol (Bothast and Schlicher 

2005). The subsequent policy support, including federal and state tax incentives, 

together with the legal restrictions of using oxygenated fuels further boosted the growth 

of ethanol industry (Bothast and Schlicher 2005). Ethanol production has undergone a 

sustained boom from 175 million gallons (662 million liters) in 1980 to 13.9 billion gallons 

(52.6 billion liters) in 2011 (Figure 1, RFA 2012). Energy Policy Act of 2005 and Energy 

Independence and Security Act of 2007 mandated the renewable fuels to increase to 36 

billion gallons by 2022 (Urbanchuk 2010). From the industry perspective, ethanol 

production is expected to be at least 15 billion gallons by 2015 (Korves et al. 2008). 

 

Figure 1. Historic U.S. ethanol production (RFA 2012) 
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Facts of ethanol fuel 

 Ethanol is widely used as a transportation fuel in the United States, which was 

responsible for 62.2% of the global ethanol fuel production in 2011 (RFA 2012). Ethanol 

represented 10% of the U.S. gasoline fuel supply in 2011, and the most commonly used 

form is E10 gasoline blend (ethanol blended with gasoline in a ratio of 1:9). There is 

another commonly used blend, E85, which consists of 85% ethanol and 15% gasoline. 

Engines of most cars need no modification when using E10, whereas E85 can only work 

in specially-designed flex-fuel vehicles to withstand high ethanol concentrations 

(Gnansounou 2009).  

 

Ethanol as a fuel: 

 Octane rating is an important measure of the performance of a fuel. High octane 

rating is desired, because it means that more compression the fuel can withstand before 

self-ignition, which allows an increase in the engine’s compression ratio for improved 

thermal efficiency (Freudenberger 2009b). Ethanol fuel has higher octane rating (106) 

than conventional gasoline fuel (usually 87-93). The heating value of ethanol, however, 

is only about 63% of the gasoline, which results from the presence of oxygen in the 

molecular structure of ethanol (Freudenberger 2009a). 

 Ethanol blend fuels have been blamed for several issues about the engine 

performance. Because ethanol has higher flash point and latent heat of vaporization, it is 

less volatile than gasoline, which raises concerns for starting difficulties of engine using 

blend gasoline in the cold weather. In effect, this is not a major issue as engine can be 

started on gasoline in the blends and generates enough heat to vaporize ethanol 

sufficiently (Freudenberger 2009b). Another issue challenging the use of ethanol blend is 

that ethanol could cause corrosion and degradation to metal parts, fuel lines, seal, and 

diaphragms in the engine. But the damage is related to the water content in the ethanol. 
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In the U.S., the ethanol blended into gasoline is anhydrous, and when the water content 

is below 5%, the corrosive effects are not significant (Freudenberger 2009b). 

 

Economic impacts: 

 The ethanol industry is an important contributor to the employment, incomes of 

rural families, and development of rural economics. At the end of 2011, the ethanol 

industry comprised about 209 plants in 29 states with a gross nameplate production 

capacity of 14.7 billion gallons. The ethanol industry supported 90,200 direct jobs and 

311,400 indirect jobs across the country in 2011, and contributed $42.4 billion to the 

national Gross Domestic Product (GDP) (Urbanchuk 2012). The ethanol industry 

increased $29.9 billion income to American families in 2011, mostly to corn growers who 

benefited from the demand of feedstocks. Increased use of biofuels contributes to the 

decline in foreign oil dependence, and the expansion of the ethanol industry will enable 

the country to break its dependence on fossil fuels. The production of 13.9 billion gallons 

of ethanol compensated for 485 million barrels of oil for refinery gasoline, which is 

equivalent of 13% total U.S. crude oil imports in 2011 (Urbanchuk 2012). 

Total ethanol production cost of the whole industry was close to $40 billion during 

2011, of which the expenditures on feedstocks (mostly corn) accounted for 83.3% ($33.3 

billion) of the total costs. The cost of energy input including natural gas and electricity 

contributed to 6.5% of the total costs (Hostrand 2012). The most prominent studies 

showed that net energy balance of ethanol production ranged from 20,436 Btu/ga (British 

thermal unit per gallon) to 30,589 Btu/ga, which gives an energy return ranging from 1.29 

to 1.65 (Shapouri et al. 2002, Shapouri et al. 2010). 

 Expansion of the corn-based ethanol industry, however, has been blamed to be 

the driving force behind higher agriculture commodity prices in recent years. Those 

concerns, however, were usually based on anecdotal evidences. Two independent 

studies by World Bank and OCED (Organization for Economic Co-operation and 
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Development) claimed that influences of biofuels on food/feed are much smaller than 

originally reported (Baffes and Haniotis 2010, OECD 2008). Actually, no single factor is 

the driver of food prices, but rather, food prices are influenced by a set of interrelated 

factors, such as increases in petroleum price, inflation pressures, and supply-demand 

balances. Ethanol demand is not the only factor that influences corn prices. And also, 

based on the analyses of historical price data (RFA 2011), corn prices did not show 

strong effects on the prices of livestock, poultry, egg and milk. Briefly, there is little 

statistic evidence supporting a conclusion that growth of the ethanol industry is the main 

driving force of steep rise of food prices. 

 

Dry-grind ethanol production 

 There are two major traditional industrial processes for producing fuel ethanol in 

the United States: wet milling and dry-grinding. Wet milling formerly dominated as the 

method of ethanol production in the United States, but the dry-grind process is now the 

most widely used industrial method and represents >70% of the ethanol processing 

(Moseir and Ilelej 2006, Tiffany and Eidman 2005). In the wet milling process, corn 

kernels are soaked and softened before fractionation into germ, endosperm, fiber and 

gluten to produce a variety of products separately. In the dry-grind process, the whole 

grain is processed to produce ethanol and co-products (e.g. DDGS) (Bothast and 

Schlicher 2005). Dry-grind process produces ~2.8 gallons of ethanol and 7.7kg (17lbs) 

distiller’s dry grains per bushel of corn (Mosier and Ileley 2006). Compared with the dry-

grind process, the wet milling process is more versatile, which allows for a wet mill plant 

to better react with market conditions. 

The large-scale and capital-intensive wet milling process, however, results in 

higher costs of constructions and operation. Therefore, with targeting at ethanol as the 

main product, a dry-grind process is preferred by producing ethanol more efficiently at a 

lower cost (Tiffany and Eidman 2005, Dale and Tyner 2006).  
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Conventional dry-grind process: 

 Production of ethanol from grains using the conventional dry-grind process 

includes several major steps: grinding, liquefaction, saccharification, fermentation, and 

recovery of ethanol and co-products (e.g. DDGS) (Figure 2). 

 

Figure 2. Overview of the conventional dry-grind ethanol fermentation process. Adapted 

from McAloon et al. (2000).  

 

Grinding: Corn kernels are ground in hammer mills equipped with screens of pore size 

ranging between 3.2 and 4.8mm in diameter. After milling, more than 90% (w/w) of the 

ground corn has particle sizes between 0.5 and 2mm (Rausch et al. 2005).  

 

Liquefaction: The dry-grind corn is mixed with process water (fresh or recycled water) to 

form slurry with ~30% solid content by weight (Kwiatkowski et al. 2006). The pH of the 

slurry is adjusted to 6.5, and thermostable α-amylase that hydrolyzes α-1,4 glycosidic 
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bonds at random points in the starch is added to the slurry to break down starch 

granules and produces dextrins with various sizes. The slurry is usually heated to above 

90˚C through steam injection by a jet cooker to completely gelatinize the starch and 

make the starch more susceptible to enzyme hydrolysis. The liquefaction is continued for 

60-90 minutes, and the slurry is then cooled down to around 60˚C, and mixed with the 

recycled water from the end of the ethanol distillation process that carries the critical 

nutrients for the yeast (McAloon et al. 2000). 

 

Saccharification: Sulfuric acid is added to adjust the pH of the slurry to 4.5. 

Amyloglucosidase, an exo-enzyme, is then added to the slurry to hydrolyze α-1,4 and α-

1,6 glycosidic bonds of the dextrins and releases glucose from the non-reducing ends. 

Saccharification usually continues for 6 hours at 60˚C to produce high concentrations of 

glucose as the substrate for fermentation. To save the processing time and reduce the 

energy requirement, saccharfication can take place in a fermentation tank where 

saccharification and fermentation occur simultaneously (SSF) (Lynd et al. 1999). SSF 

lowers the chance of microbial contamination and provides the yeast with a just-in-time 

supply of glucose, which reduces osmotic stress on the yeast (Bothast and Schlicher 

2005).  

 

Fermentation: The mash is cooled down to 30-32˚C and ammonium sulfate is added as 

the nitrogen source for the growth of yeast. Yeast is added to the slurry to ferment the 

glucose to produce ethanol and carbon dioxide: 

 C6H12O6   2 C2H5OH + 2 CO2 

Saccharomyces cerevisiae yeast species are usually used for the ethanol fermentation 

because of its high production efficiency and stability to high glucose and alcohol 

concentrations (Butzen et al. 2003). Fermentation often continues for 48-72 hours to 

ensure the complete conversion of glucose to ethanol. 
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Distillation and dehydration: After fermentation, ethanol in the mash is separated from 

the water and fermentation residuals through several steps of distillation. The distilled 

and concentrated ethanol vapor is filtered through a molecular sieve system and reaches 

a purity higher than 99.6%. The remaining whole stillage is centrifuged, and the solid 

fraction (distiller’s wet grains) is separated from the liquid (thin stillage). The thin stillage 

is condensed by evaporation to produce syrup containing more than 55% (w/w) solids 

(McAloon et al. 2000). The syrup is combined with the distiller’s wet grains, and the 

mixture is dried to a moisture content of 9-10% in a rotary drum dryer. The resulted 

product is the distiller’s dry grains with solubles (DDGS) that contains proteins, fibers and 

corn oils and is used as a feed ingredient for livestocks. 

 

Cold-fermentation process: 

 Cold fermentation, also described as raw-starch, non-cooking, and non-

conventional fermentation, is a simplified process compared with the conventional 

method. Production of ethanol using the cold-fermentation process consists of several 

major steps: grinding, simultaneous saccharification and fermentation (SSF), recovery of 

ethanol and co-products. The liquefaction step is eliminated in a cold-fermentation 

process, which means the starch in the dry-grind grain is not gelatinized or liquefied. 

Instead, a slurry containing the dry-grind grain and process water is directly mixed with 

hydrolyzing enzymes and yeasts, and the SSF occurs at 27-29˚C to produce ethanol. 

Therefore, a cold-fermentation technique requires an enzyme that is able to hydrolyze 

raw starch. 

 Compared with the conventional dry-grind process, cold-fermentation technique 

offers several benefits: decreasing the energy input and capital costs, minimizing the 

occurrence of Maillard reaction, amylose-lipid complex and retrograded-starch formation, 

reducing osmotic stresses of yeast, and producing more nutritious DDGS (Galvez 2005, 

Lewis et al. 2004, Robertson et al. 2006, Srichuwong and Jane et al. 2011). 
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Nevertheless, adoption of the cold-fermentation technique is impeded by the relatively 

low starch-ethanol conversion efficiency and increased chance of microbial 

contamination (Robertson et al. 2006). 

 

Starch structures and properties 

 Starch, as the energy-reserving compound, is produced by green plants and can 

be found in different parts of the plant, including seeds, stems, leaves, fruits, tubers and 

roots. Starch granules for temporary storage are synthesized in chloroplasts, while 

starch granules for long-time storage are produced and store in amyloplasts (Robyt 

1998). Starch granules vary in shapes (spherical, oval, polygonal, disk, elongated, etc.) 

and sizes (ranging between <1µm and >100µm), which depend on the botanical sources 

of the starch (Hoover 2001, Jane et al. 1994, Srichuwong et al. 2005, Tester et al. 2004). 

Native starch granules have semi-crystalline structures and are not soluble in water, 

which facilitates the isolation of starch granules by sedimentation, centrifugation and 

filtration. Molecular composition, organization and structures of the starch granule 

directly affect its physicochemical properties (Jane 2004). 

 

Molecular composition and structure of starch granule: 

 Starch consists of two polysaccharides: amylose and amylopectin. Amylose is 

primarily a linear molecule composed of D-glucopyranose residues linked by α-1,4 

glycosidic bonds. Amylopectin has a highly branched structure containing relatively short 

linear chains of D-glucopyranose units linked by α-1,4 glycosidic bonds. The short chains 

are linked by α-1,6 glycosidic bonds, which account for ~5% of the total glycosidic 

linkages (Banks and Greenwood 1975, Robyt 1998). Usually, normal starch contains 15-

30% amylose, depending on the botanical origin, degree of maturity, and growing 

conditions of the plant. The amylose content in waxy starch is small (0-8% amylose), 

while high-amylose starch contains 50% or more amylose (Li et al. 2008, Perez and 
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Bertoft 2010). High-amylose starch also consists of another polysaccharide known as the 

intermediate component (IC), which has a similar molecular weight to that of amylose but 

contains relatively more branched structure (Baba and Arai 1984). 

 Amylose, amylopectin, and IC molecules have different characteristics of 

molecular weight, molecular structure, physical and chemical properties (e.g. crystallinity, 

complex formation). The composition, molecular structures and organization of these 

molecules in starch granules have significant effects on structures and properties of the 

starch. 

 Amylose in the starch of various botanical sources shows a broad range of 

molecular-weight distribution. The number average DP of amylose in maize and barley 

starch were found to be 960 and 1570 (Takeda et al. 1987, 1988, 1999), respectively, 

whereas that of potato and tapioca were found to be as large as 6360 and 6680 

(Hizukuri and Takagi 1984), respectively. In general, amylose in cereal starch has 

smaller molecular sizes than that of tuber and root starch (Jane 2006, Takeda et al. 

1987). 

 Percentage hydrolysis of purified amylose obtained from various sources was up 

to 70-90% by β-amylase (an exo-enzyme that hydrolyzes α-1,4 glycosidic linkage from 

the non-reducing end of polysaccharide chains) (Banks and Greenwood 1967, Hizukuri 

et al. 1981). The amylose, however, can be completely hydrolyzed by concurrent action 

of β-amylase and pullulanase, which suggested the presence of α-1,6 linked branches in 

amylose molecule (Hizukuri et al. 1981, Takeda et al. 1987). Amylose molecules of 

various origins have different characteristics of branched structures, including the 

number of branch-chains (5-21 per molecule) and average inner-chain-length (number 

average DP 50-160) (Shibanuma et al. 1994, Takeda et al. 1987, 1989). 

 Amylose has a strong tendency to complex with either a suitable complexing 

agent to form a single-helical inclusion complex (Katz and van Itallie 1930) or with 

another amylose to form a double helix (Miles et al. 1984). Amylose single-helical 
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inclusion complex is usually left-handed, and displays a V-type X-ray diffraction pattern 

(Takeo et al. 1973, Zobel 1988). The amylose single-helices usually have helical 

structures with 6-8 glucoses per turn, which depend on the size of the complexing agent, 

and the lamellar thickness of a single amylose V complex crystal is about 10nm 

(Yamashita 1965, Yamashita and Hirai 1966, Yamashita and Monobe 1971). 

 Amylopectin is generally a much larger molecule than amylose. Number average 

DP of amylopectin of various origins was reported to range from 9,600-15,900 (Takeda 

et al. 2003). Amylopectin is highly-branched molecule, and the branch-chains are 

designated into several categories, i.e. “A”, “B”, and “C” chains (Peat et al. 1952). A 

single amylopectin molecule contains only one C chain that carries the sole reducing end 

and other chains. The A chains are those connected to B or C chain through α-1,6 

linkages and carry no other chains. The B chains carry one or several other A or B 

chains. The B chains are further grouped into B1, B2, B3, and even B4 chains. 

Classification of amylopectin branch-chains is shown in Figure 3.  

A widely accepted model of amylopectin structure, the cluster model, was first 

proposed by French (1972) and Nikuni (1978), independently. As shown in Figure 3, 

adjacent amylopectin branch-chains (usually 4.22 chains to 34 chains) are closely 

packed (clustered) to form starch crystallites (Gallant et al. 1997).  Clusters are linked to 

each other by long branch-chains. The average chain-lengths of the A and B1 chains are 

usually <24 (DP) and, thus, both the A and B1 chains can only extend within a single 

cluster. The B2 and B3 chains have average chain-lengths in the ranges of 42-48 and 

69-75, extending through two and more clusters, respectively (Hizukuri 1986). 

The intermediate component (IC) molecules possess molecular structures 

resembling that of both amylopectin and amylose. The IC molecules usually have larger 

ratios of long/ short branch-chains, and the proportion of long branch-chains has been 

reported to increase as decrease in molecular weight of the IC molecules (Takeda et al. 

1993, Wang et al. 1993). 
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Figure 3. Cluster model and classification of amylopectin. (Adapted from Hizukuri 1986).  

 

Organization of starch granule: 

 In a starch granule, amylopectin and amylose molecules are radially oriented side 

by side from the hilum to the periphery, which is reflected by Maltese cross of starch 

granules as viewed under a polarized-light microscope (Jane 2007). Amylopectin 

branch-chains form double helices and are clustered to form a crystalline lamella with a 

thickness of 9-10nm (Jenkins et al. 1993). It is proposed that branch-chains of 

amylopectin are organized in parallel to form clusters and crystalline regions (Gallant et 

al. 1997). The cluster structure is stabilized by hydrophobic interaction, hydrogen bonds 

and van de Waals forces between double helices of branch-chains (Imberty et al. 1988). 

Branch points of the branch-chains consist of the amorphous regions. The alternating 

crystalline and amorphous regions contribute to the semi-crystallinity of the starch 

granule. Amylose is in amorphous form and interdispersed among amylopectin 

molecules. Amylose molecules are more concentrated at the periphery of starch granule, 

and contribute to the integrity of the granular structure by intertwining with amylopectin 

(Jane et al. 1986). 
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 There are three different crystalline polymorphs of starch semi-crystalline 

structure, A-, B-, and C-type. The unit cell of A-type polymorph is monoclinic (a=2.1224 

nm, b=1.172nm, c=1.069 nm), whereas that of B-type is hexagonal (a=b=1.85 nm, 

c=1.04 nm) (Buleon et al. 1998, Wu and Sarko, 1978) (Figure 4). C-type polymorph is a 

mixture of the A- and B-type unit cells. Most cereal starch, like maize, barley, and wheat, 

has A-type polymorph, whereas the starch of potato and high-amylose corn displays the 

B-type polymorph. The differences are attributed to the amylopectin branch-chain-

lengths of the starch from different origins (Jane 2004). 

 

Properties of starch: 

 The semi-crystalline structure of starch is stabilized by the hydrophobic 

interaction, hydrogen bonds and van de Waals forces, as stated above. Application of 

heating to the starch granules with the presence of sufficient amount of plasticizer (i.e. 

water or glycerol) overcomes the molecular forces and results in melting of the crystalline 

structures. This process is called starch gelatinization, which is accompanied with the 

loss of crystallinity and briefringence, and even disruption of starch structures (Jane 

2004). Structures and minor components of starch have significant effects on starch 

gelatinization properties. It was reported that starch onset gelatinization temperature 

negatively correlated with the proportion of short branch-chains (DP <12) of amylopectin 

(Jane et al. 1997, Jane et al. 1999, Srichuwong et al. 2005). The presence of negatively 

charged phosphate-monoester derivatives (i.e. potato starch), however, decreases 

starch gelatinization temperature by the charge-repulsion (Jane et al. 1999). 

When the gelatinized starch is continuously heated in excess water, starch 

pasting occurs, which is accompanied with granular swelling, leaching of molecular 

components, development of viscosity, and complete disruption of the starch granule 

(Atwell et al. 1988). Starch containing larger amounts of amylose and phospholipids 

usually displays higher pasting temperature and lower peak viscosity (Jane et al. 1999, 
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Yoo and Jane 2002). Amylose and phospholipids restrict swelling of amylopectin and, 

therefore, reduce the pasting viscosity of starch (Craig et al. 1989). 

 

Figure 4. Crystalline packing of double helices in A-type and B-type polymorphs 

(Adapted from Buleon et al. 1998).  

 

 Gelatinized starches in the solution, paste, or gel tend to recrystallize upon 

cooling and during storage, with loss of water-binding capacity. The process is known as 

starch retrogradation. Starch retrogradation is significantly affected by the structures and 

minor components of starch. Amylopectin branch-chain-length positively correlated with 

its retrogradation rate (Jane et al. 1999, Perera et al. 2001). Amylose molecule with a 

chain-length of DP 80-100 displays maximal rate of retrogradation (Pfannermuller et al. 

1971, Gidley and Bulpin 1987). The presence of lipids or phospholipids facilitates starch 

retrogrdation, which might be attributed to the restricting effects of the swelling of starch 

granule during cooking (Jane 2004).  

 

Starch hydrolysis 
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Hydrolysis of starch to glucose is important for the maximal utilization of starch to 

provide energy for animals and plants, as well as to provide the substrate for ethanol 

fermentation by yeast. Digestibility of starch is impacted by a lot of factors, including the 

processing method, hydrolyzing enzymes, amylose/ amylopectin ratio, protein and lipid 

content, granular size and surface area, and starch granular structures (Rooney and 

Pflugfelder 1986, Svihus et al. 2005, Tester et al. 2004).  

 

Effects of starch chemical composition and associated components: 

 Amylose/ amylopectin ratio of starch significantly affects the starch digestibility. 

Normal starch is usually less digestible than its waxy counterpart, and high-amylose 

starch has even poorer digestibility in both uncooked and cooked forms (Gallant et al. 

1972, Perera et al. 2001, Rooney and Pflugfelder 1986). Amylose is known to be 

concentrated at the periphery of starch granule and intertwines with amylopectin, making 

the starch granule more resistant to enzyme hydrolysis (Jane 2007). Studies on high-

amylose corn starch showed that the starch granules retained partially crystalline 

structures after cooking, and the resistant starch content positively correlated with the 

amylose content (Knutson et al. 1982, Li et al. 2008). 

 Several non-starch components (i.e. lipids and proteins) are associated with the 

starch granule, which may inhibit starch digestion (Svihus et al. 2005). Starch granules 

can be embedded in the protein matrix and cell-wall structures (i.e. corn and sorghum), 

which reduce the swelling of starch granule and the accessibility to enzymes and, thus, 

slow down starch hydrolysis (Rooney and Pflugfelder 1986). It has been reported that 

fatty acids, including palmitic and linoleic acid, form complex with amylose on the surface 

of starch granule (Baldwin et al. 1997, Crowe et al. 2000, Cui and Oates 1999, 

Tufvesson et al. 2001), which is associated with inhibited swelling of starch granule 

during cooking and reduced interaction between hydrolyzing enzymes and the starch 

(Svihus et al. 2005). 
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Effects of starch granular structures and surface area: 

 Studies showed that the B-type starch is less susceptible to enzyme hydrolysis 

than the A-type starch (Srichuwong et al. 2005), which is attributed to the differences in 

amylopectin branch-chain-length distribution. The B-type starch, like potato and high-

amylose corn starch, has larger proportions of long branch-chains and longer average 

branch-chain-length, whereas the A-type starch (i.e. cereal starches) has less long 

branch-chains and shorter average branch-chain-length (Jane et al. 1999, Hizukuri 

1986). The crystalline structure of the A-type starch is composed of mainly short A and 

B1 chains, which is susceptible to rearrangement and, thus, generates voids and 

channels inside of the granule, resulting in a loosely packed structure (Gray and BeMiller 

2004, Huber and BeMiller 2000).  On the other hand, the B-type starch contains larger 

amounts of long B-chains (B2 and B3) that extend through two or more clusters, 

stabilizing the crystalline structure, resulting in a solid granular structure (Jane 2006). In 

the contrary, the loosely packed structure of the A-type starch facilitates enzyme 

hydrolysis and, therefore, has greater starch digestibility. 

 Enzyme adsorption to starch granule and subsequent formation of enzyme-

substrate complex is the prerequisite step for starch hydrolysis (Leloup et al. 1991). The 

amount of enzymes adsorbed to the granule surface is proportional to the surface area 

of the starch granule; as a result, the hydrolysis rate of starch is impacted by the granular 

surface area (Kong et al. 2003). Starch with small granules (i.e. cereal starch) usually 

has greater hydrolysis rate compared with that of large granules (i.e. potato starch), 

which is attributed to the relatively larger surface area of the small granules (Manelius 

and Bertoft 1996). In addition, it has been reported that small starch granules show less 

crystallinity and greater water affinity than that of large granules, which further enhance 

enzyme accessibility to the small granules (Svihus et al. 2005). 
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ABSTRACT 

Objectives of this study were to: 1) Compare the differences of ethanol 

production between normal and waxy corn using a cold-fermentation process; 2) 

Understand the effects of starch structure/ properties on the ethanol production. Ethanol 

yields positively correlated with kernel starch contents of the normal and waxy corn. 

Average starch-ethanol conversion efficiency of the waxy corn (93.2%, 2009; 93.0%, 

2010) was substantially greater than that of the normal corn (88.0%, 2009; 88.4%, 2010). 

Starches of the selected lines were isolated for characterization, including amylose 

content, amylopectin branch-chain-length distributions, thermal properties, and 

enzymatic hydrolysis of raw starch. Starch hydrolysis of uncooked dry-grind corn showed 

that > 90% of starch in the waxy corn was hydrolyzed, whereas < 80% of starch in the 

normal corn was hydrolyzed. It indicated that normal corn contained a significant portion 

of starch that was less readily hydrolyzed by the enzymes, which reduced the conversion 

efficiency. 

Keywords: Bioethanol; cold fermentation; starch; enzymatic hydrolysis. 
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INTRODUCTION 

To improve energy security by reducing the nation’s dependence on foreign oil 

supply, substantial effort and research have been invested on biofuel production from 

renewable resources. Bioethanol is widely used as a transportation fuel in the United 

States, which was responsible for 62.2% of the global ethanol fuel production in 2011 

(1). Ethanol is produced mainly from corn in the United States (2,3). 

Production of ethanol from corn requires hydrolysis of starch to glucose, and 

glucose is then fermented by yeast to produce ethanol because yeast cannot utilize 

starch directly (4,5). A conventional process for ethanol production is to gelatinize the 

starch in dry-grind grain, and the gelatinized starch was hydrolyzed to dextrin using 

thermal-stable α-amylases (liquefaction). The resulting dextrin is then cooled to 60°C and 

saccharified with amyloglucosidases to produce glucose that is the substrate for ethanol 

fermentation. Nevertheless, energy used to cook starch increases the production cost 

and decreases the energy return of bioethanol. In addition, formation of amylose-lipid 

complex and retrograded starch after starch gelatinization reduces the amount of 

fermentable starch and, thus, decreases the ethanol yield (5,6). 

An industrial process of cold fermentation for ethanol production was developed 

by Lewis, et al. (7). The starch is hydrolyzed by raw starch hydrolyzing enzymes into 

fermentable sugars during simultaneous saccharification and fermentation (SSF) without 

cooking and liquefaction of the starch. Compared with conventional methods, this 

innovative technique for ethanol fermentation effectively reduces production costs by 

decreasing the energy input, simplifying the process, and minimizing the occurrence of 

the Maillard reaction, amylose-lipid complex and retrograded-starch formation during and 

after heating (8). Furthermore, raw starch fermentation does not require large capital 

investment and is more feasible for small-scale ethanol production (4). 
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Great efforts have been invested to improve the ethanol yield and starch-ethanol 

conversion efficiency of feedstocks. Many factors and processing conditions, which 

affect the ethanol production performance, have been investigated, including nitrogen 

sources, fermentation temperatures, starch hydrolysis, saccharification efficiencies, and 

chemical compositions of a wide variety of crops (9). The impacts of the starch structures 

and properties on the raw-starch ethanol fermentation, however, are not fully 

understood. Many studies have reported negative effects of the starch amylose content 

on the conversion efficiency in the conventional ethanol fermentation process (9,10,11). 

There are few studies, however, comparing the ethanol fermentation between waxy and 

normal corn in the raw-starch fermentation process (12). 

In this study, ethanol production was conducted using a raw-starch fermentation 

process. The ethanol yields and starch-ethanol conversion efficiencies of waxy and 

normal corn lines were compared. Starch structures, thermal and pasting properties, and 

raw-starch digestibility of the corn starch were analyzed. 

 

MATERIALS AND METHODS 

Materials. Four normal corn lines (08GEM04701-4704) and nine waxy corn lines 

(08GEM05036-5044) were developed by the USDA-ARS Germplasm Enhancement of 

Maize (GEM) Project. Four of the nine waxy lines were released and assigned GEM 

codes, and all of the four normal lines were released. Additional information on the 

released lines can be found on the GEM website at www.public.iastate.edu/~usda-gem. 

For convenience the inventory numbers are used throughout the manuscript which 

indicates the seed source used. The corn lines were selected to represent a diverse 

group of racial diversity comprising germplasm from seven races, and three tropical 

hybrids which originated from eight countries. All the corn lines were grown at the North 

Central Regional Plant Introduction Station farm (Ames, IA), in both 2009 and 2010 crop 

seasons. Pedigree, racial background, and geographic origin of each line are shown in 
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Table 1. Ethanol Red™ dry yeast (>20×109 living cells/g) was obtained from Lesaffre 

yeast corporation (Milwaukee, WI). Lactrol (virginiamycin) was from Phibro Animal 

Health Co. (Ridgefield, NJ). Isotab (hop acid) was from Beta Tec Hop Products 

(Washington, DC). Raw-starch hydrolyzing enzymes containing a mixture of fungal α-

amylase and amyloglucosidase were from Novozyme (Novozyme 5009, Novozyme, 

Franklinton, NC). Pseudomonas isoamylase (EC 3.2.1.68, 1000U/ml) and total starch kit 

were from Megazyme International Ireland Ltd. (Co. Wicklow, Ireland). All other 

chemicals were reagent grade and were purchased from either Sigma–Aldrich Co. (St. 

Louis, MO) or Fisher Scientific (Pittsburgh, PA) and used without further purification. 

Dry grinding of corn kernels. Maize kernels of GEM lines were dried to 

approximately 12% moisture and were dry-ground using a Cyclone Mill (UDY Corp., 

CO), screening with a steel sieve of 0.5mm pore size. 

Raw-starch ethanol fermentation. Dry-grind corn (35g, db) was placed in a 

polypropylene bottle (125ml, prior autoclave-sterilized). A mash of 100g total weight was 

made containing liquid urea (0.03%, w/w), lactrol (2ppm), isotab (40ppm) and acetate 

buffer (10mM, pH4.2). The mash was then mixed with 0.5g dry yeast and raw-starch 

hydrolyzing enzymes (0.46%, v/w of dry-grind corn, Novozyme 5009, Novozyme, 

Franklinton, NC). The fermentation samples were incubated in a shaker incubator (Lab-

line Instruments Inc., Melrose Park, IL) at 29°C, 160r pm. Aliquots (8.0ml) were taken 

from the fermentation broth after 96h and centrifuged at 7,010g for 10min. The 

supernatant was filtered through a nylon membrane filter with 0.2µm pore size. The 

ethanol concentration was analyzed using a HPLC system consisting of a pump (Prostar 

210, Varian, Walnut Creek, CA), an injection valve (model 7725i, Rheodyne), and a 

refractive index detector (Prostar 355, Varian, Walnut Creek, CA), following the 

procedures reported by Ai, et al. (13). 

Ethanol conversion efficiency was calculated using the equation: conversion 

efficiency (%) = 100 × ethanol yield (w/w)/theoretical yield of ethanol. The theoretical 
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yield of ethanol is 56.73 g ethanol/100 g starch, which is calculated on the basis of 1 g of 

starch being hydrolyzed into 1.11 g of glucose, and 1 mol of glucose fermented to 

produce 2 mol of ethanol (2). 

Starch content assay. The starch content of the corn grain was analyzed using 

a total starch kit (Megazyme International, Wicklow, Ireland; catalog no. K-TSTA), 

following the AACC 76.13 method (14). 

Starch isolation by wet-milling. Starch was isolated from corn kernels using a 

wet-milling method reported by Li, et al. (15). 

Amylose content of starch. Amylose contents of waxy and normal corn starch 

were analyzed using gel-permeation chromatography (GPC) followed by total 

carbohydrate analysis (15). Amylose contents of waxy and normal corn starch were also 

determined using iodine potentiometric titration following the method reported by Song 

and Jane (16). 

Branch-chain-length distribution of amylopectin. Amylopection of normal corn 

starch was separated from amylose and collected using a GPC column packed with 

Sepharose CL-2B gel (Pharmacia Inc., Piscataway, NJ) (5). The amylopectin of normal 

corn starch and the waxy corn starch was debranched with isoamylase (Megazyme 

International Irelands. Ltd. Co., Wicklow, Ireland) following the method reported by Jane 

and Chen (17). The debranched sample was labeled with 8-amino-1,3,6-

pyrenetrisulfonic acid (APTS), and analyzed using a fluorophore-assisted capillary 

electrophoresis (P/ACEDQ, Beckman Courter, Fullerton, CA) following the method 

reported by Jiang, et.al (18). 

Thermal properties of starch. Thermal properties of the isolated starch were 

analyzed using a differential scanning calorimeter (Diamond DSC, Perkin-Elmer, 

Norwalk, CT) following the procedures of Song and Jane (16). Starch gelatinization 

onset (To), peak (Tp), and conclusion temperature (Tc), and enthalpy change (∆H) were 

obtained using Pyris software (Perkin-Elmer). After seven-day storage at 4°C, the 



36 

 

 

samples were analyzed using the same parameters, and the percentage retrogradation 

was calculated using the equation: retrogradation (%) = 100 × ∆H of dissociation of 

retrograded starch/∆H of starch gelatinization. 

Starch hydrolysis of uncooked starch and dry-grind grain. Dry-grind corn 

containing 200mg starch (dsb) or isolated starch (200mg, dsb) suspended in a sodium 

acetate buffer (20ml, 10mM, pH4.2) was pre-incubated at 29°C for 30min. Raw-starch 

hydrolyzing enzymes (0.67%, v/w of starch, Novozyme 5009, Novozyme, Franklinton, 

NC) was then added, and the incubation continued at 29°C with constant stirring at 

160rpm for 96h. Aliquots (0.1ml) of the hydrolysate were withdrawn at different time 

intervals and were mixed with 1ml 66% (v/v) ethanol. The mixture was centrifuged at 

6,600g for 5min, and the supernatant was collected. The glucose content in the 

supernatant was determined using a glucose oxidase/peroxidase assay (Megazyme 

International Irelands. Ltd. Co., Wicklow, Ireland; catalog no. K-GLUC). 

Pasting properties of starch. The pasting properties of isolated starch were 

analyzed using a Rapid Visco-Analyzer (RVA, Newport Scientific, Sydney, Australia). 

Starch aqueous suspension (28.0g, 8% w/w, dsb) was equilibrated at 50 °C for 1 min, 

heated up to 95 °C at a rate of 6 °C/min, held at 9 5 °C for 5 min, and then cooled down 

to 50 °C at a rate of 6 °C/min. The parameters, inclu ding the pasting temperature, and 

the peak, breakdown, and final viscosities were obtained from data analysis using 

Thermocline (Newport Scientific) software. 

Statistical analysis. SAS (version 9.2, SAS Institute, Inc., Cary, NC) was used 

for statistical analysis. Correlations between the ethanol yield, total starch content, and 

physicochemical properties of the starch were analyzed using the Pearson correlation 

test. Statistical significance was evaluated using one-way ANOVA and multiple 

comparison using Tukey’s adjustment with a 5% significance level. 
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RESULTS AND DISCUSSION 

Ethanol yields of the dry-grind normal and waxy corn using a cold-fermentation 

process are shown in Table 2. The ethanol yields of the four normal lines grown in 2009 

ranged from 34.2% (34.2 g / 100g dry grain, Line 4703) to 37.2% (Line 4701 and 4704), 

and those grown in 2010 ranged from 34.3% (Line 4703) to 37.5% (Line 4701). Ethanol 

yields of the nine waxy lines grown in 2009 ranged from 33.1% (Line 5041) to 37.6% 

(Line 5036), and those grown in 2010 ranged from 34.8% (Line 5042) to 37.9% (Line 

5036). Data of Line 5041 (2010) was not available because of insufficient quantity of 

corn kernels for ethanol fermentation. Line 5036 gave the highest ethanol yield among 

the GEM waxy lines for both 2009 (37.5%) and 2010 (37.9%) crop seasons. 

The average ethanol yields of the waxy and normal corn lines were 35.7% and 

36.0%, respectively, for the 2009 samples, and were both 36.0% for the 2010 samples. 

To understand the mechanism of different ethanol yields between the normal and waxy 

corn, we analyzed the kernel starch contents of the corn lines (Table 2). The average 

starch contents of the waxy corn were 67.5% and 68.4% for 2009 and 2010 samples, 

respectively, which were lower than that of the normal lines (72.0% and 71.7% for 2009 

and 2010 samples, respectively). Among the waxy corn lines, Line 5036 (2009) that 

produced the greatest ethanol yield, had the largest starch content (71.1%), whereas 

Line 5041 (2010) that gave the smallest ethanol yield, had the least starch content 

(62.3%). Starch contents of the waxy corn positively correlated with the ethanol yield of 

the 2009 (R2=0.87, p<0.001) and 2010 samples (R2=0.88, p<0.001). The starch content 

of normal corn also positively correlated with the ethanol yield of the 2009 (R2=0.95, 

p<0.05) and 2010 samples (R2=0.97, p<0.05). 

The average conversion efficiencies of the waxy corn were 93.2% and 93.0% for 

2009 and 2010 samples, respectively, whereas that of the normal lines were 88.0% 

(2009) and 88.4% (2010). The waxy corn lines showed significantly greater conversion 

efficiencies than that of the normal lines. The results were consistent with those reported 
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previously (9-11). The conversion efficiency from starch to ethanol cannot reach 100% 

because of consumption of sugars for yeast growth and proliferation, and losses in by-

products formation, such as glycerol and succinate (19, 20). The lower conversion 

efficiency of normal corn, however, indicated a portion of the starch that was not utilized. 

To reveal what structural features were responsible for the differences in the 

conversion efficiency from starch to ethanol, we isolated and characterized starches of 

selected lines. Starches of the four normal lines and six waxy lines (Line 5036, 5037, 

5039, 5040, 5041, and5042) of both 2009 and 2010 crop seasons were isolated and 

characterized for their structures and properties, including amylose content, amylopectin 

branch chain length distribution, starch thermal properties, and starch digestibility. 

Normal corn starch contained 28-30% amylose determined using iodine 

potentiometric titration and 31-35% amylose using GPC followed by total carbohydrate 

analysis (Table 3, Figure 1). The differences were attributed to the presence of low 

molecular-weight amylopectin (21). Amylose contents of waxy corn starch determined 

using iodine potentiometric titration ranged 0.9-2.2% (2009) and 1.6-4.6% (2010), and 

was not detectable using GPC analysis (Table 3, Figure 2). It was reported that long 

branch-chains of amylopectin can form single helical complex with iodine and develop 

blue color during potentiometric titration, which causes over-estimation of the amylose 

content of starch (22). In this study, the starch of two waxy corn lines (Line 5041 and 

5042) grown in 2010 showed relatively greater amylose contents (4.5 and 4.6%, 

respectively) determined using iodine potentiometric tritration (Table 3). This could be 

attributed to the relatively larger portions of long branch-chains (21.5 and 20.2%, Table 

4) of amylopectin of the two waxy lines. 

Amylopectin branch-chain-length distributions of the selected waxy lines and the 

normal lines are shown in Table 4. Amylopectin of the waxy corn starch displayed 

shorter average branch-chain-length (DP 21.1-22.7, 2009; DP 21.4-23.5, 2010) than that 

of the normal lines (DP 22.4-24.4, 2009; DP 22.7-23.9, 2010). Specifically, the waxy corn 
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starch amylopectin consisted of smaller proportions of the long branch-chains of DP>37 

(15.5-19.2%, 2009; 15.6-21.5%, 2010) than that of the normal corn starch (19.6-24.0%, 

2009; 19.9-23.4%, 2010). These results agreed with that reported previously (22), and 

could be attributed to the lack of extra-long branch-chains of amylopectin in the waxy 

corn starch, which were synthesized by granule-bound starch synthase I (GBSS I). The 

enzyme is not produced in the waxy corn (23). 

Starch thermal properties of the selected waxy lines and the normal lines are 

shown in Table 5. For the 2009 samples, the average gelatinization onset (64.2°C), peak 

(70.7°C), and conclusion (76.6°C) temperature of the w axy corn starch were significantly 

higher (p<0.05) than that of the normal corn starch (average To=60.7°C, T p=67.8°C, and 

Tc=73.5°C, respectively). For the 2010 samples, average T c (78.7 °C) of the waxy corn 

starch was significantly higher (p<0.01) than that of the normal corn starch, whereas To 

and Tp of the waxy corn starch were not significantly different from that of the normal 

corn starch. Starch gelatinization enthalpy-changes for the waxy corn ranged from 14.8 

to 16.4 J/g for the 2009 samples, and from 15.1 to 16.2 J/g for the 2010 samples, which 

were substantially greater than that of the normal corn (10.8-12.3 J/g, 2009; 11.4-12.3 

J/g, 2010). These results were in agreement with the study of Sasaki et al. (24) who 

reported higher conclusion gelatinization temperature and larger enthalpy-change of 

waxy wheat starch than that of non-waxy wheat starch. These differences resulted from 

different crystalline structures of the starch. Waxy corn starch had close to 100% 

amylopectin and, thus, displayed larger gelatinization enthalpy-change (22). Percentages 

of retrogradation of the waxy corn starch (32.0-51.6%, 2009; 41.3-45.8%, 2010) were 

smaller than that of the normal corn starch (53.0-59.3%, 2009; 52.0-56.4%, 2010). The 

difference may be attributed to that amylose in normal corn starch intertwines with 

amylopectin molecule and restricts granule swelling and dispersion. Consequently, the 

gelatinized normal corn starch displayed expedite retrogradation (25). In addition, normal 
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corn starch had a larger proportion of long branch-chains (DP>37), which favored starch 

retrogradation. 

Among the waxy lines, the percentages retrogradation positively correlated with 

the average branch-chain-length for 2009 (R2=0.94, p<0.01) and 2010 samples 

(R2=0.80, p<0.05). The results were in agreement with previous report that amylopectin 

with long branch-chains retrograded more easily (22, 26, 27). 

 Enzymatic hydrolysis of the starch in dry-grind corn using the raw-starch 

hydrolyzing enzymes (Novozyme 5009) is shown in Figure 3 and summarized in Table 

6. The dry-grind waxy corn samples displayed substantially greater hydrolysis rates than 

the normal counterparts. After 96h hydrolysis, more than 90% of starch in the dry-grind 

waxy corn was hydrolyzed; on the contrary, less than 80% of starch in the dry-grind 

normal corn was hydrolyzed to glucose (Table 6). The results suggested that the normal 

corn contained a portion of starch that was not readily hydrolyzed by the raw-starch 

hydrolyzing enzymes and, therefore, reduced the conversion efficiency (Table 2). These 

results agreed with previous report that waxy starches have greater digestibility than 

their normal counterparts, and the enzyme hydrolysis rate decreases as the amylose 

content of the starch increases (11, 28-30). The lower digestibility of normal corn starch 

may be attributed to the intertwining between amylose and amylopectin, which restricted 

swelling of starch granules and reduced the enzyme hydrolysis rate. Studies (3, 25) have 

shown that amylose is more concentrated at the periphery of starch granule, which 

further contributes to the resistance of starch granules to enzyme hydrolysis. On the 

other hand, the waxy corn starch granules had significantly less amylose than the normal 

corn starch (Table 3, Figure 2), and was reported to possess a relatively loosely packed 

peripheral structure, rendering the starch granule more susceptible to enzymatic 

hydrolysis (25). 

Enzymatic hydrolysis of isolated starches using the raw-starch hydrolyzing 

enzymes is shown in Figure 4, and summarized in Table 7. As expected, normal corn 
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starch showed lower hydrolysis rate than waxy corn starch. Compared with that of the 

dry-grind grain, interestingly, the isolated starch displayed lower digestive rate during the 

first 3-6h hydrolysis. After 10h hydrolysis, however, the digestive rate of the isolated 

starch became greater than that of the dry-grind grain. The larger digestive rate of the 

starch in dry-grind corn at the initial hydrolyzing stage could be attributed to the presence 

of damaged starch granules that resulted from mechanical shearing during the dry-

grinding process and the presence of endogenous amylases. Some starch granules in 

the dry-grind corn, however, were entrapped in the protein matrix and endosperm cell-

wall structure as reported by Rooney et al. (31). The entrapment reduced the 

accessibility of those starch granules to the amylases and, therefore, decreased 

digestive rate of the starch in the dry-grind corn. 

Pasting properties of the selected waxy and normal corn starch are shown in 

Figure 5, and summarized in Table 8. Starches of the waxy corn lines grown in both 

2009 and 2010 displayed higher peak and break-down viscosities but lower set-back 

viscosities than that of the normal corn starch. The results were consistent with the 

previous reports (17, 25). It is known that amylopectin contributes to starch viscosity, 

whereas amylose restricts starch swelling (32). Therefore, starch pasting properties are 

affected by the amylose content and amylopectin branch-chain-length distribution (22). 

The waxy corn starch contained much less amylose (Table 3). Thus, the swelling of 

starch granules was not restricted and displayed a higher peak viscosity than that of the 

normal corn starch. The amylose of the normal corn starch contributed to the maintaining 

the integrity of swollen starch granule and decreased shear-thinning of starch paste, 

resulting in the lower break-down viscosity and higher set-back viscosity of the normal 

corn starch. 

Physicochemical properties of the starch of 2010 samples showed differences 

from that of the 2009 counterparts. For example, To of Line 5040 starch was 64.3°C for 

the 2009 sample, whereas it was 57.7°C for the 2010 sam ple (Table 5). All the normal 
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corn starch from the 2010 crop season displayed higher To (61.7-67.1°C) than their 2009 

counterparts (56.8-64.2°C). It is known that starch gr anular structures and properties are 

affected by the growing conditions, such as growing temperature and amount of rainfall. 

Badenhuizen et al. (33) reported that increasing proportions of small and abnormally 

shaped starch granules were present in waxy maize grown at a higher temperature. Lu 

et al. (34) also observed smaller starch granules and greater To in normal dent maize 

developed at 35°C than those developed at 25°C. In t he current study, the accumulated 

growing degree units (GDU) from the day of pollination (week of July 25th) to the end of 

August in 2010 was 504.2°C, which was significantly high er than that of the 2009 season 

(378.8°C). There was also more rainfall in the August of 2010 (39.6cm) than that of the 

2009 crop season (10.1cm). The differences in starch structures and properties shown in 

this study could result from the different growing temperatures and amount of rainfall 

between the two crop seasons. 

Although the growing temperature could affect the starch physicochemical 

properties, the starch-ethanol conversion efficiencies of the GEM corn were similar 

between the two years' samples. This indicated that the weather pattern change did not 

have a significant impact on the efficiency of raw-starch ethanol fermentation. 

 

CONCLUSIONS 

Ethanol yields of GEM corn lines using a cold-fermentation technique positively 

correlated with starch contents in the dry-grind grain. The waxy corn displayed greater 

starch-ethanol conversion efficiencies than the normal corn using the cold-fermentation 

process. This could be attributed to the greater starch hydrolysis rate of the waxy corn 

than that of the normal corn. The results suggested that the waxy corn would give 

greater ethanol yield in a cold fermentation process, if the waxy corn has similar starch 

content to that of the normal corn. Starch in the dry-grind grain showed smaller 

hydrolysis rate than the isolated starch except for the first 3-6h. The difference was 
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attributed to the entrapment of starch granules in protein matrix and cell-wall structures 

in the dry-grind corn, making the starch granules less readily-accessible to amylases. 

Damaged starch present in the dry-grind grain resulted from the dry grinding process, 

and contributed to the faster hydrolysis rate during the first 3-6h hydrolysis. There were 

differences in starch physicochemical properties between the corn planted in 2009 and 

2010 crop years. This was likely caused by the changes in the growing conditions (e.g. 

growing temperatures) between the two crop seasons. The growing conditions, however, 

did not significantly impact the efficiency of raw-starch ethanol fermentation. 
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Table 1. Pedigree background, race, and country of origin of GEM normal and waxy corn lines 
  Inventory # Pedigree Codea Country Race 

Waxy 

08GEM05036 AR16035:S02-615-001-B wx GEMS-0206 Arg Cristalino Colorado 

08GEM05037 CUBA164:S2012-444-001-B wx GEMS-0223 Cuba Mixed Creole 

08GEM05038 CUBA164:S2012-966-001-B wx GEMS-0185 Cuba Mixed Creole 

08GEM05039 DKB844:S1601-003-002-B wx N/Ab Mexico Tropical hybrid 

08GEM05040 FS8A(S):S09-362-001-B wx N/A US Mixed 

08GEM05041 CH05015:N12-183-001-B wx N/A Chile Camelia 

08GEM05042 DKXL370:N11a20-036-002-B wx GEMN-0186 Brazil Tropical hybrid 

08GEM05043 SCRO1:N1310-509-001-B wx N/A St. Croix St. Croix 

08GEM05044 UR13085:N0215-014-001-B wx N/A Uruguay Cateto Sulino 

Normal 

08GEM04701 DKB844:S1601-073-001-B-B-B-B-B-B GEMS-0115 Mexico Tropical hybrid 

08GEM04702 GEMS-0002 GEMS-0002 US Mixed  

08GEM04703 BR52051(SE32):S17-B-023-001-B-B-Sib-B-B-B-B-B GEMS-0003 Brazil Dente Amarelo 

08GEM04704 BR51721:N2012-098-002-B-B-SIB-B GEMN-0156 Brazil Dente Amarelo 
a Codes of released GEM lines 
b Not released or assigned 
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Table 2. Total starch content (%), ethanol yields, and conversion efficiencies of the normal and waxy corn 

  

Line  

Starch content (%) 
Ethanol yield (g/100g 

dry grain)  
Conversion efficiency 

(%) 

 
2009 crop 

year 
2010 crop 

year 
2009 crop  

year 
2010 crop  

year 
2009 crop 

year 
2010 crop 

year 

Waxy 

5036 71.1±b0.3 72.3±0.2 37.6±0.5 37.9±0.2 93.1 92.5 

5037 71.0±0.6 72.8±0.0 36.3±0.1 37.0±0.3 90.1 89.6 

5038 67.5±0.5 67.3±0.7 36.3±0.1 35.9±0.1 94.6 94.0 

5039 68.0±0.6 69.2±0.0 35.7±0.8 36.0±0.4 92.5 91.5 

5040 66.6±0.3 66.4±0.2 35.4±0.2 35.3±0.6 93.7 93.8 

5041 62.3±0.2 N/Aa 33.1±0.8 N/Aa 93.5 N/Aa 

5042 64.1±0.0 65.3±0.1 34.6±0.3 34.8±0.5 95.0 94.0 

5043 68.9±0.7 66.7±0.2 36.2±0.5 35.7±0.4 92.5 94.3 

5044 68.1±1.0 66.8±0.4 35.9±0.1 35.6±0.2 92.8 94.0 

Average 67.5 68.4 35.7 36.0 93.2 93.0 

Normal 

4701 74.3±0.7 74.1±0.5 37.2±0.5 37.5±0.4 88.3 89.2 

4702 71.5±0.8 70.5±0.4 35.2±0.8 35.1±0.4 86.8 87.6 

4703 68.2±0.5 68.1±0.1 34.2±0.4 34.3±1.3 88.5 88.8 

4704 74.1±0.7 74.1±0.6 37.2±0.7 37.0±1.1 88.4 87.9 

Average 72.0 71.7 36.0 36.0 88.0 88.4 
 

a Not determined because of limited material. 
b Standard deviation. Samples were analyzed in duplicates. 
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Table 3. Amylose content (%) of the normal and waxy corn starch 
    

 Line 
Amylose% 

  Iodine titrationa GPCb 

2009 crop 
year 

Waxy 

5036 0.9±0.0 NDd 
5037 1.3±0.0 ND 
5039 1.5±0.1 ND 
5040 1.4±0.4 ND 
5041 NAc ND 
5042 2.2±0.0 ND 

Normal 

4701 27.9±0.1 34.9±1.4 
4702 28.3±0.1 34.9±0.1 
4703 28.2±0.2 32.4±1.3 
4704 28.0±0.6 31.0±0.3 

2010 crop 
year 

waxy 

5036 1.6±0.0 ND 
5037 2.1±0.0 ND 
5039 2.5±0.2 ND 
5040 2.1±0.1 ND 
5041 4.5±0.1 ND 
5042 4.6±0.4 ND 

Normal 

4701 28.3±0.2 34.3±0.8 
4702 29.0±0.0 34.6±0.0 
4703 30.4±0.5 31.0±0.4 
4704 28.5±0.1 33.4±1.3 

a Determined using iodine potentiometric titration 
b Determined using gel-permeation chromatography (GPC) followed by total carbohydrate analysis 
c Not determined because of limited material 
d Not detectable 
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Table 4. Amylopectin branch-chain-length distributiona of the normal and waxy corn starch 
     Line DP<12 DP13-24 DP25-36 DP>37 ave. CLb 

2009 
crop 
year 

Waxy 

5036 22.7±0.4 47.7±0.7 14.0±0.7 15.5±0.4 21.1±0.3  
5037 23.4±0.1 45.9±0.4 13.9±0.2 16.9±0.7 21.5±0.4  
5039 22.1±0.2 48.0±0.1 13.9±0.5 16.1±0.4 21.6±0.0  
5040 23.6±0.7 45.7±0.5 13.5±0.2 17.2±1.0 21.7±0.5  
5041 21.0±0.8 46.2±0.6 13.6±0.2 19.2±1.2 22.7±0.5  

5042 22.1±0.0 45.5±0.3 13.5±0.3 18.9±0.0 22.4±0.0  
Average 22.5 46.5 13.7 17.3 21.8 

Normal 

4701 21.8±0.2 38.4±1.3 17.1±1.0 22.6±0.4 23.1±0.0  
4702 14.6±0.3 42.6±0.7 18.9±0.6 24.0±1.0 24.4±0.3  

4703 20.5±0.5 45.0±1.0 14.9±0.6 19.6±0.8 22.4±0.2  
4704 20.2±0.3 42.0±0.0 15.3±0.3 22.4±0.0 23.5±0.0  

Average 19.3 42.0 16.6 22.2 23.4 

2010 
crop 
year 

waxy 

5036 21.4±0.3 47.7±0.6 15.2±0.1 15.6±0.0 21.4±0.2  
5037 22.7±0.2 47.0±0.5 13.9±0.1 16.4±0.6 21.5±0.1  
5039 20.9±0.5 46.8±0.4 14.8±0.8 17.5±0.1 22.2±0.1  

5040 20.2±0.2 45.2±0.6 14.5±0.2 20.1±0.6 23.1±0.2  
5041 20.3±0.5 44.3±1.5 13.8±1.0 21.5±1.1 23.5±0.2  
5042 20.6±3.1 44.4±3.2 14.8±0.6 20.2±0.8 23.1±0.1  

Average 21.0 45.9 14.5 18.6 22.5 

Normal 

4701 18.4±0.5 40.5±0.1 17.7±0.4 23.4±0.1 23.9±0.1  
4702 20.5±0.1 44.8±0.1 14.8±0.2 19.9±0.1 22.7±0.2  
4703 19.3±0.2 43.3±0.1 15.5±0.5 21.8±0.2 23.3±0.0  
4704 21.0±0.4 43.0±0.9 15.4±0.8 20.6±0.5 22.9±0.2  

Average 19.8 42.9 15.9 21.4 23.2 
a Molar basis 
b Average branch-chain-length of amylopectin 
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Table 5. Starch thermal properties of the normal and waxy corn 

     Line Native 
  

Retrogradated 
  

Retro.b 

(%)   To(°C) a Tp(°C) T c(°C) ∆H(J/g)  To(°C) a Tp(°C) T c(°C) ∆H(J/g)  

2009 
crop 
year 

Waxy 

5036 62.3±0.2  69.6±0.1  76.1±0.8  14.8±0.1    43.3±2.1 58.0±0.2  67.5±0.8  4.7±0.1    32.0±0.1 

5037 63.6±0.2  69.8±0.7 75.0±0.7  15.6±0.1   42.2±0.3  56.0±2.6  64.2±2.1  5.2±1.3   33.5±1.3 

5039 64.1±0.7  69.7±0.8  74.9±1.3  15.7±0.1   41.2±0.1  54.5±0.1  62.7±0.0  6.1±1.2   39.0±1.2 

5040 64.3±0.4  70.2±0.1  76.8±0.3  15.5±0.0   40.3±1.7  54.8±0.2  62.9±0.0  6.5±0.1   41.9±0.1 

5041 65.8±0.2  71.9±0.1  77.8±0.9  16.4±0.1   42.2±0.3  55.1±0.1  64.3±0.7  8.5±0.7   51.6±0.7 

5042 65.0±0.5  72.9±0.4  79.1±0.3  15.9±02    43.0±0.8  55.1±0.0  64.3±0.4  7.9±0.4    49.8±0.4 

Normal 

4701 56.8±0.9 66.0±0.3 72.0±0.4 11.2±0.0   35.6±0.9 48.4±0.8 60.9±0.3 6.0±0.0   53.0±0.0 

4702 62.4±0.4 68.6±0.5 73.9±0.4 12.3±0.1  37.7±0.4 50.4±0.7 62.2±0.4 7.3±0.0  59.3±0.6 

4703 64.2±0.1 69.6±0.1 74.5±0.2 11.7±0.0  39.2±0.0 50.6±0.5 61.5±0.3 6.6±0.0  56.4±0.2 

4704 59.2±0.0 67.0±0.0 73.6±0.0 10.8±0.0   39.8±0.2 51.7±0.2 61.6±0.4 5.7±0.0   53.4±0.2 

2010 
crop 
year 

waxy 

5036 65.1±0.2 71.4±0.1 77.3±0.3 15.7±0.3  43.1±0.4 54.0±0.2  61.4±0.1 6.5±0.3  41.3±1.4 

5037 65.4±0.0 71.3±0.0 77.5±0.0 15.4±0.1  42.0±0.2 54.7±0.4 64.6±0.2 6.6±0.1  43.0±0.9 

5039 64.5±0.4 71.4±0.5 77.7±0.5 15.2±0.3  41.7±0.7  54.3±0.0  63.6±0.2  6.6±0.1   43.6±0.1 

5040 57.7±0.3 69.6±0.9 79.9±0.3 15.1±0.0  41.4±0.3  54.6±0.0 63.4±0.3  6.6±0.1  43.8±0.0 

5041 63.3±0.1 72.0±0.0 80.5±0.9 16.2±0.1  42.6±0.4  54.3±0.0  63.0±0.1  7.4±0.2   45.8±1.5 

5042 66.6±0.3 74.1±0.0 79.2±0.1 15.9±0.1  43.0±0.2 54.9±0.0  64.0±0.0 7.2±0.0   45.4±0.0 

Normal 

4701 61.7±0.1 69.0±0.1 75.1±0.1 11.4±0.0   40.6±0.8 52.2±1.2 62.7±0.2 6.3±0.1   55.0±0.4 

4702 65.4±0.2 70.8±0.1 76.1±0.3 12.3±0.2  40.7±0.1 52.3±0.1 63.0±0.0 6.9±0.0  56.4±0.5 

4703 67.1±0.1 72.0±0.1 76.9±0.2 12.1±0.2  41.7±0.8 52.6±0.2 63.1±0.6 6.5±0.1  53.4±0.1 

4704 62.8±0.1 69.6±0.1 75.6±0.1 12.2±0.0   41.5±0.6 52.6±0.0 63.1±0.2 6.4±0.0   52.0±0.2 
a To= onset gelatinization temperature, Tp= peak temperature, Tc= conclusion temperature, ∆H= enthalpy change. 
b Retro. (%)=100 × ∆H of dissociation of retrograded starch/∆H of starch gelatinization 
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Table 6. Percentage starch hydrolysis (%) of the dry-grind corn 
    Line  3h 10h 24h 72h 96h 

2009 crop year 

Waxy 

5036 26.5±0.3 47.2±0.1 75.3±0.4 96.8±0.6 97.3±0.3 
5037 22.4±0.0 37.7±0.3 67.1±0.5 94.1±0.8 94.7±0.0 
5039 23.7±0.3 40.0±0.4 67.2±0.5 91.2±0.3 93.6±0.1 
5040 20.9±0.1 36.0±0.1 64.3±0.4 94.9±0.5 95.2±0.3 
5041 24.4±0.1 39.9±0.1 66.6±0.4 93.5±0.9 93.8±0.5 
5042 23.0±0.1 40.0±0.0 65.4±0.5 93.5±0.3 93.5±0.8 

Average 23.5 40.1 67.7 94.0 94.7 

Normal 

4701 19.2±0.2 29.8±0.2 40.7±0.1 68.8±1.1 79.2±0.4 
4702 17.3±0.1 25.2±0.6 36.0±0.3 64.0±0.4 72.7±0.6 
4703 26.7±0.1 35.5±0.1 48.0±0.4 71.0±0.1 78.8±0.8 
4704 19.9±0.1 28.5±0.2 40.8±0.0 69.0±0.8 78.6±0.2 

Average 20.8 29.8 41.4 68.2 77.3 

2010 crop year 

Waxy 

5036 24.3±0.5 48.7±0.7 76.6±1.7 93.5±1.6 97.3±1.3 
5037 23.6±0.2 44.4±0.1 71.9±0.7 93.3±0.6 96.0±0.1 
5039 26.2±0.1 48.1±0.6 75.2±1.0 94.8±1.0 95.8±1.4 
5040 24.7±0.4 43.6±0.3 71.5±0.4 92.3±0.0 94.5±0.7 
5042 24.8±0.1 47.2±1.0 72.2±0.1 92.0±0.4 94.1±0.7 

Average 24.7 46.4 73.5 93.2 95.5 

Normal 

4701 19.2±0.1 28.9±0.1 40.2±0.1 68.4±0.5 77.7±0.3 
4702 21.4±0.3 29.7±0.5 40.5±0.4 68.6±0.6 75.0±0.4 
4703 27.0±0.1 35.9±0.1 48.7±0.7 71.2±0.5 78.6±0.9 
4704 20.9±0.1 29.3±0.1 40.4±0.6 69.2±0.6 78.4±0.4 

Average 22.1 31.0 42.5 69.4 77.4 
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Table 7. Percentage starch hydrolysis (%) of the isolated starch 
    Line  3h 10h 24h 48h 72h 

2009 crop year 

Waxy 

5036 21.9±0.2 62.5±0.0 89.6±1.9 93.3±0.2 97.4±1.2 

5037 16.2±0.3 50.9±1.4 85.3±2.0 94.2±0.3 95.5±0.4 

5039 15.9±0.3 51.5±0.7 84.7±0.3 91.5±2.1 92.5±0.3 

5040 16.1±0.0 52.8±0.9 88.4±1.7 94.0±1.2 96.9±1.4 

5041 20.2±0.3 60.0±0.1 88.8±0.2 92.8±1.2 95.3±0.6 

5042 19.2±0.4 56.4±0.3 86.2±0.5 91.1±0.9 92.2±0.0 

Average 18.2 55.7 87.2 92.8 95.0 

Normal 

4701 10.5±0.0 24.2±0.1 41.0±0.4 63.6±0.3 74.7±0.8 

4702 11.8±0.0 25.1±0.1 43.0±0.3 66.0±0.5 76.2±0.3 

4703 13.7±0.2 28.7±0.1 46.9±0.6 67.3±0.6 79.1±0.8 

4704 9.8±0.0 23.8±0.1 43.7±0.2 67.0±0.8 78.7±0.5 

Average 11.5 25.5 43.6 66.0 77.2 

2010 crop year 

Waxy 

5036 19.1±0.3 59.3±0.7 90.7±0.2 96.5±0.2 96.2±0.2 

5037 17.6±0.2 49.9±1.2 86.1±1.6 94.8±0.8 97.2±0.1 

5039 19.6±0.7 54.9±0.2 89.0±0.4 96.9±0.8 97.7±2.2 

5040 30.9±0.1 64.1±1.1 91.0±0.9 95.7±0.1 95.9±1.3 

5041 24.3±0.4 61.9±1.1 91.5±0.7 96.8±0.9 96.8±0.7 

5042 20.5±1.4 59.8±0.2 91.9±0.4 97.4±0.3 97.0±1.4 

Average 22.0 58.3 90.0 96.4 96.8 

Normal 

4701 9.3±0.1 21.5±0.1 39.5±0.3 62.6±0.1 78.5±0.2 

4702 8.0±0.1 19.0±0.2 32.8±0.6 54.2±0.1 65.4±0.8 

4703 11.8±0.1 26.2±0.1 47.7±0.3 68.6±1.0 79.1±0.6 

4704 12.1±0.0 26.5±0.1 47.9±0.1 69.2±0.2 79.9±0.8 

Average 10.3 23.3 42.0 63.7 75.7 
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Table 8. Starch pasting properties of the normal and waxy corn 
    

 Line PT(°C)a 
Peak Hold Final Set-back 

    (RVU)b (RVU) (RVU) (RVU) 

2009 crop 
year 

Waxy 

5036 68.5 213.9±4.4  66.8±7.6  92.7±0.5  25.9±8.1  
5037 69.8 253.3±6.5  72.5±8.2  103.9±6.9  31.4±1.3  
5039 68.8 254.0±8.7  78.5±1.3  105.3±4.7  26.8±3.4  
5040 71.0 235.4±1.6  76.0±1.4  106.1±1.7  30.2±3.1  

5041 71.7 222.3c 74.3 99.0 24.8 

5042 72.3 216.1±11.8  81.7±1.5  107.3±3.7  25.6±5.2  

Normal 

4701 71.9 156.0±3.4 91.0±1.2 181.7±0.9 90.8±2.1 
4702 71.9 140.8c 73.3 144.6 71.3 
4703 72.5 181.5±1.1 81.7±1.6 162.4±1.2 80.7±2.8 
4704 71.6 173.3±0.1 100.6±4.2 188.9±4.1 88.3±0.1 

2010 corp 
year 

Waxy 

5036 70.0 201.9±3.8 59.2±3.2 79.2±2.6 20.0±0.6 
5037 71.4 247.7±3.7 79.4±6.2 104.8±0.7 25.3±5.5 
5039 70.6 240.4±7.6 78.4±0.8 102.9±2.2 24.5±1.4 
5040 69.2 136.2±0.7 63.5±0.5 79.2±2.1 15.7±2.7 
5041 71.0 165.5±2.9 68.2±2.2 88.2±0.9 20.0±1.3 
5042 72.5 204.2±3.2 77.3±0.8 101.0±1.4 23.6±0.5 

Normal 

4701 72.7 131.6±1.6 80.1±5.4 156.8±4.4 76.7±0.9 
4702 72.5 130.5±0.9 83.8±1.1 146.8±1.1 63.0±0.0 
4703 74.7 144.1±1.0 75.5±1.7 139.3±0.7 63.7±1.2 
4704 72.4 152.3±1.5 88.2±1.8 158.4±0.6 70.3±1.2 

a PT: Pasting temperature 
b RVU: Rapid Visco-units 
c Values were analyzed one time because of limited material
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Figure 1. Gel-permeation chromatography profiles of the normal corn starch (2009 
samples). 
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Figure 2. Gel-permeation chromatography profiles of the waxy corn starch (2009 
samples). 
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Figure 3. Enzymatic hydrolysis of the starch in the dry-grind grain. A: Dry-grind grain of 2009 crops; B: Dry-grind grain  
of 2010 crops. 
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Figure 4. Enzymatic hydrolysis of the isolated starch. A: Isolated starches of 2009 crops; B: Isolated starches of 2010 
 crops. 
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Figure 5. Starch pasting profiles of the normal and waxy corn. A: Isolated starch of 2009 samples; B: Isolated starch of 2010 samples. 
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INTRODUCTION 

 The amylose extender (ae) mutant maize produces starch that contains amylose 

with elevated content and amylopectin with significantly elongated branch-chains 

compared with that of normal corn starch (Baba et al. 1982, Jane and Chen 1992, Li et 

al. 2008). The differences between the mutant and wild-type corn resulted from the 

defective functions or dysfunction of starch branching enzyme IIb in ae mutant maize 

(Hedman and Boyer 1982). Physicochemcial properties of ae maize starch are 

significantly impacted by the increased amylose/amylopectin ratio and the fine structures 

of amylopectin. It is known that ae maize starch has a B-type polymorph, higher peak 

and conclusion gelatinization temperatures, and reduced susceptibility to enzyme 

hydrolysis (Li et al. 2008, Jiang et al. 2010). The low digestibility of ae maize starch is 

attributed to its high amylose content, which restricts starch swelling during cooking and 

retains crystallinity (Li et al. 2008). 

 Starch is classified into rapidly-digestible starch (RDS), slowly-digestible starch 

(SDS), and resistant starch (RS), depending on its digestion rate and extent (Englyst et 

al. 1992). RDS causes rapid increase in plasma glucose and acute insulinemic 

response, while SDS releases glucose slowly and steadily, leading to a moderate 

increase in blood glucose and maintain the blood glucose level (Lehmann and Robin 

2007).  Consumption of SDS provides many health benefits: 1) Improve metabolic profile 

in obese, diebetes, and insulin-resistant subjects (Harbis et al. 2004, Wolever 2003); 2) 
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Improve cognition and mental performance (Benton et al. 2003); 3) Regulate satiety/ 

food intake (Lehmann and Robin 2007). 

 Several studies have been reported to produce SDS through physical and 

chemical modifications of starch, including heat-moisture treatment and enzyme 

digestion (Guraya et al. 2001, Shi et al. 2003). There are few studies, however, 

conducted on naturally occurring SDS. Amylopectin, instead of amylose, is the molecule 

associated with SDS (Zhang et al. 2008). SDS content is significantly impacted by the 

fine structures of amylopectin, such as branch density (Ao et al. 2007) and branch-chain-

length (Zhang et al. 2008). Starch from ae wx double mutant rice (Kuob et al. 2010) and 

maize (Gerard et al. 2001) contained a significant portion of SDS, resulting from the long 

branch-chains of amylopectin. 

 The objectives of this study were to: 1) determine the content of slowly-digestible 

starch in several ae wx double mutant corn lines, and 2) understand the effects of starch 

structures on the SDS content. 

 

MATERIALS AND METHODS 

 Materials. Four ae wx double mutant corn (09-159-2, 09-167-1, 09-188-3, and 

09-201-2) and one ae single mutant corn (09-148-3) were obtained from Truman State 

University. Porcine pancreatic α-amylase (PPA) and amyloglucosidase from Aspergillus 

niger were obtained from Sigma Aldrich Corporation (St. Louis, MO). All other chemicals 

were reagent grade and were from either Sigma Aldrich Co. (St. Louis, MO) or Fisher 

Scientific (Pittsburgh, PA) and used without further purification. 

Branch-chain-length distribution of amylopectin. Amylopection of ae mutant 

starch was separated from amylose and collected using a gel-permeation 

chromatography (GPC) column packed with Sepharose CL-2B gel (Pharmacia Inc., 

Piscataway, NJ). The amylopectin of the mutant corn starch was debranched with 

isoamylase (Megazyme International Irelands. Ltd. Co., Wicklow, Ireland) following the 
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method reported by Jane and Chen (1992). The debranched sample was labeled with 8-

amino-1,3,6-pyrenetrisulfonic acid (APTS), and analyzed using a fluorophore-assisted 

capillary electrophoresis (P/ACEDQ, Beckman Courter, Fullerton, CA) following the 

method reported by Jiang et al. (2010).  

Starch thermal properties. Thermal properties of the mutant corn starch were 

analyzed using a differential scanning calorimeter (Diamond DSC, Perkin-Elmer, 

Norwalk, CT) following the procedures of Song and Jane (2000). The starch sample 

(~7 mg, dsb) with excess water (3×) was heated at 10 °C /min from 20 to 150 °C in a 

sealed stainless steal pan. An empty pan was used as the reference. Starch 

gelatinization onset (To), peak (Tp), and conclusion temperature (Tc), and enthalpy 

change (∆H) were obtained using Pyris software (Perkin-Elmer).  

Starch digestibility without cooking. 200mg starch (dsb) was suspended in 

19mL of sodium phosphate buffer (0.1M, pH6.9) in a test tube. The suspension was 

equilibrated at 37 ºC for 1 hr. 1ml of the freshly prepared porcine pancrease α-amylase 

(PPA) solution (200units/ml) was added to the suspension. The test tube was vortexed 

and then incubated at 37ºC with shaking (100rpm). At each time interval (0hr, 3hr, 6hr, 

12hr, 24hr, and 48hr), 0.3mL of the suspension was removed to a micro-centrifuge tube, 

and centrifuged at 6,600 g for 5 min. 0.1ml of the supernatant was transferred to 0.89ml 

sodium acetate buffer solution (0.1M, pH 4.5). 10µl of the amyloglucosidase (2-3 units of 

activity) was added into the transferred solution. The mixture was vortexed and then 

incubated at 50 ºC for at least 2 hr, 0.1mL of the solution was removed for GOPOD 

analysis. 

Starch digestibility after cooking. The RDS, SDS, and RS contents were 

analyzed using Englyst’s method (1992) with modifications. The starch samples (1.0g, 

dsb) in an acetate buffer solution (20 ml, 0.1 M, pH 5.2) were pre-cooked in a boiling-

water bath for 20 min before the analysis. The RDS and SDS contents of the cooked 

starch samples were determined after 20 and 120 min hydrolysis, respectively. 
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RESULTS AND DISCUSSION 

 Amylopectin branch-chain-length distributions of the ae wx and ae mutant corn 

starch are shown in Table 1. The ae corn starch had smaller portion of short branch-

chains (DP<12, 9.9%) and larger portion of long branch-chains (DP>37, 43.9%), 

compared with that of the ae wx samples (DP<12, 11.7-12.6%; DP>37, 29.8-31.0%). As 

a result, the average branch-chain-length of the ae starch (DP 34.7) was significantly 

longer than that of the ae wx samples (DP 29.1-29.4). The results were similar to the 

previous reports (Jane et al. 1999, Li et al. 2008). The ae gene-containing mutant corn 

starch showed significantly longer branch-chain-length than that of the normal maize 

starch (DP 24.4) (Jane et al. 1999). 

 Starch thermal properties of the mutant corn lines are shown in Table 2. Onset 

gelatinization temperatures (To) of the ae wx corn starch ranged from 64.3 to 69.7°C, 

whereas that of the ae corn starch was 64.6°C. Gelatinization conclusion tempe rature 

(Tc) of the ae corn starch (104.4°C), however, was significantly highe r than that of the ae 

wx corn (91.2-95.7°C). Gelatinization enthalpy change o f the ae corn starch (11.0 J/g) 

was smaller than that of the ae wx corn starch (18.6-20.2 J/g). The differences were 

attributed to the crystalline structures of the mutant corn starch. It is known that 

amylopectin contributes to the starch crystallinity, whereas amylose molecules are 

present in the amorphous form (Jane 2006). The ae corn starch contained mainly 

amylose and a small proportion of amylopectin and, thus, had smaller gelatinization 

enthalpy change than that of the ae wx starch. 

 Enzymatic hydrolysis of the uncooked starch using porcine pancrease α-

amylases is shown in Figure1 and summarized in Table 3. Starch digestive rate of B73, 

a normal corn line, was substantially greater than that of the ae-containing mutant corn. 

After 48hr hydrolysis, 82.1% of the normal corn starch was hydrolyzed, whereas that of 

the mutant corn starch ranged from 29.8% to 34.7% (Table 3). Nonetheless, the ae wx 

corn starch displayed similar hydrolysis kinetics to that of the ae corn starch. The results 
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were in agreement with the previous reports that ae-containing mutant starch was less 

susceptible to enzymatic hydrolysis than the wild-type counterparts (Gerard et al. 2001, 

Kubo et al. 2010). 

 RDS, SDS, and RS contents of the mutant corn and normal corn were analyzed 

using the Englyst’s method (1992), and the data are summarized in Table 4. After 

cooking, the normal corn starch contained no RS, and the starch was almost all rapidly 

digestible (RDS 98.2%). In the contrary, ae corn starch contained a large portion of RS 

(25.3%), and a significant portion of SDS (5.2%). The ae wx samples had a RS content 

ranging from 4.2 to 8.1%, much less than that of the ae starch. The large content of RS 

in ae maize was associated with its thermal properties. Tc of the ae corn starch (104.4°C, 

Table 2) was above water-boiling temperature, suggesting that the ae starch granules 

retained partial crystalline structures after heating in boiling water, which contributed to 

the resistance of cooked ae starch to enzyme hydrolysis. ae wx corn starch contained 

larger portions of SDS (6.7-7.9%) than that of ae (5.2%) and normal corn starch (1.8%). 

A positive correlation between SDS content and the proportion of long B-chains of 

amylopectin was reported by Zhang et al. (2008). It suggested that the long B-chains 

facilitated molecular association and complex formation, contributing to the slowly 

digestive rates of the ae wx starch. 

 

CONCLUSIONS 

 Starch of ae gene-containing mutant corn had large portion of long branch-chains 

and longer average branch-chain-length of amylopectin. The ae gene-containing mutant 

corn starch was less susceptible to enzyme hydrolysis compared with that of normal corn 

starch, in both uncooked and cooked form. The ae mutant corn starch contained large 

portions of RS, whereas the ae wx starch contained significant portions of SDS. The 

results suggested that ae wx double mutant maize is a potentially significant source of 

slowly-digestible starch. 
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Table 1. Amylopectin branch-chain-length distributiona of the ae-containing mutant corn 
starch 

 
Lines DP<12 DP13-24 DP25-36 DP>37 ave. CL b 

ae wx 

201-2 11.9±0.0 42.1±0.2 15.1±0.1 30.9±0.1 29.4±0.3 

167-1 N/A c N/A N/A N/A N/A 

188-3 12.6±0.1 41.3±0.8 16.3±0.5 29.8±1.2 29.1±0.5 

159-2 11.7±0.1 41.6±0.6 15.7±0.4 31.0±1.0 29.4±0.0 

ae 148-3 9.9±0.3 32.5±0.0 13.7±0.2 43.9±0.5 34.7±1.6 
a Molar basis 
b Average branch-chain-length of amylopectin 
c Data is not available 
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Table 2. Starch thermal properties of the ae-containing mutant corn lines 
 

Lines 
Gelatinization  

 
To(°C) a Tp(°C) T c(°C) △H(J/g)  

ae wx 

201-2 69.2±0.7 79.1±0.6 95.7±0.3 18.7±0.5  

167-1 69.7±0.6 79.6±0.9 95.2±1.8 18.6±0.1  

188-3 64.3±0.3 78.7±0.1 92.1±0.5 20.2±0.1  

159-2 65.0±0.4 78.4±0.0 91.2±0.1 18.9±0.2  

ae 148-3 64.6±0.5 82.6±0.7 104.4±0.3 11.0±0.4  
a To= onset gelatinization temperature, Tp= peak temperature, Tc= conclusion 
temperature, ∆H= enthalpy change. 
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Table 3. Percentage starch hydrolysis (%) of the ae-containing mutant corn and a 
normal corn without cooking 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Lines 3h 6h 10h 24h 48h 

ae wx 

201-2 6.7±0.3 10.2±0.5 14.8±0.6 25.1±0.7 31.8±0.7 

167-1 6.7±0.1 10.3±0.3 14.8±0.3 23.4±0.1 29.8±0.2 

188-3 9.1±0.4 14.0±0.0 19.7±0.1 29.9±0.1 34.5±0.2 

159-2 7.1±0.2 11.2±0.2 15.9±0.3 26.9±0.5 31.9±0.6 

ae 148-3 9.0±0.1 13.6±0.3 18.4±0.5 29.5±0.4 34.7±0.5 

Wild type B73 14.8±0.0 26.6±0.3 41.1±0.1 72.8±0.3 82.1±0.5 
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Table 4. RDS, SDS, and RS content of the mutant corn starch after cooking (Englyst et 
al. 1992) 

 

 

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 
Lines RDS% SDS% RS% 

ae wx 

201-2 87.5±0.7 7.9±0.6 4.6±1.4 

167-1 84.0±1.0 7.9±0.6 8.1±0.4 

188-3 88.2±1.1 7.6±2.0 4.2±0.9 

159-2 87.5±2.2 6.7±1.9 5.8±0.3 

ae 148-3 69.5±0.1 5.2±1.0 25.3±1.0 

Wild type B73 98.2±1.5 1.8±0.8 0.0±0.6 
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Figure 1. Enzymatic hydrolysis of the ae-containing mutant corn starch and a normal 
corn starch (B73) without cooking. 
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