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Abstract

Let M be a module over an associative ring R and σ[M ] the category of
M -subgenerated modules. Generalizing the notion of a projective generator
in σ[M ], a module P ∈ σ[M ] is called tilting in σ[M ] if (i) P is projective
in the category of P -generated modules, (ii) every P -generated module is P -
presented, and (iii) σ[P ] = σ[M ]. We call P self-tilting if it is tilting in σ[P ].
Examples of (not self-small) tilting modules are IQ/ZZ in the category of torsion
ZZ-modules, IQ⊕ IQ/ZZ in the category ZZ-Mod, certain divisible modules over
integral domains, and also cohereditary coalgebras C over a QF-ring in the
category of comodules over C. Self-small tilting modules P in σ[M ] are finitely
presented in σ[M ]. For M = P , they are just the ∗-modules introduced by
C. Menini and A. Orsatti, and for M = R, they are the usual tilting modules
considered in representation theory.

Notice that our techniques and most of our results also apply to locally
finitely generated Grothendieck categories.

1 Introduction

Tilting modules P were first defined in representation theory of finite-dimensional

algebras R by the conditions

(1) Ext1
R(P, P (Λ)) = 0, for any set Λ,

(2) Ext2
R(P,N) = 0, for all N ∈ R-Mod,

(3) there exists an exact sequence 0→ R→ P1 → P2 → 0,

with P1, P2 ∈ add (P ),

(4) P is finitely generated.

The interest in these modules stems from the fact that they allow generalizations of

Morita equivalences.
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Although it is clear that any progenerator P is tilting, it is not so obvious which

one of the conditions generalizes projectivity and which one the generator prop-

erty. Moreover one may ask if a generalization of the simply defined properties of a

progenerator really needs techniques from homological algebra to be formulated.

It will turn out that (1), (2), (3) are in fact equivalent to the properties

(i) P is projective in the category of P -generated modules,

(ii) every P -generated module is P -presented,

(iii) P is a subgenerator in R-Mod.

Here the first two properties are only related to the category Gen(P ) of P -

generated modules, whereas (iii) gives a relation of P to R-Mod. More generally, for

an R-module M , we call P a tilting module in the category σ[M ] of M -subgenerated

modules, if it satisfies (i), (ii) and if P is a subgenerator of σ[M ]. Taking M = R we

are back in R-Mod. Since P is always a subgenerator in σ[P ], P is tilting in σ[P ] if

(i) and (ii) are satisfied. Such modules are called self-tilting. To widen the range of

applications we do not demand a tilting module to be finitely generated (compare

Facchini [10], Colpi-Trlifaj [6]).

We will see that IQ/ZZ is a tilting module in the category of torsion ZZ-modules (=

σ[ IQ/ZZ]), IQ⊕ IQ/ZZ is tilting in ZZ-Mod, and over an integral domain R, the divisible

module ∂ introduced in Fuchs [12] is tilting in R-Mod. Moreover any cohereditary

coalgebra C over a QF-ring is tilting in the category of comodules over C.

It turns out that self-small self-tilting modules P are precisely the ∗-modules

introduced by Menini und Orsatti [15] (named in Colpi [2]). This observation orig-

inally resulted from discussions on the subject with R. Colpi and W. Folz. It was

the main motivation for this paper, which is an analysis and extension of the work

of C. Menini, A. Orsatti, R. Colpi, J. Trlifaj and others on the subject. Some of

the results already appear in one or the other form in their papers. Nevertheless

we provide complete proofs (modulo standard knowledge in module theory) which

simplify existing ones.

After this paper was essentially finished we received the preprint [4] of R. Colpi

which provides alternative proofs for some of our results (see 5.4).

2 Preliminaries

Let R denote an associative ring with unit and R-Mod the category of unital left

R-modules. Homomorphisms of modules will usually be written on the opposite side

of the scalars. For unexplained notation the reader is referred to [19].

LetM ∈ R-Mod. An R-module N is M-generated if there exists an exact sequence

0→ K →M (Λ) → N → 0, Λ some set,
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and N is (semi-finitely) M-presented if there exists such a sequence (with Λ finite)

where K is M -generated.

Gen(M), Pres(M), Presf (M) and σ[M ] will denote the full subcategories of

R-Mod whose objects are M -generated, M -presented, semi-finitely M -presented or

submodules of M -generated modules, respectively. Add (M) (resp. add (M)) stands

for the class of modules which are direct summands of (finite) direct sums of copies

of M . We have

add (M) ⊂ Add (M) ⊂ Pres(M) ⊂ Gen(M) ⊂ σ[M ].

Obviously M is a generator in σ[M ] if and only if Pres(M) = Gen(M) = σ[M ]. A

module N ∈ σ[M ] is a subgenerator in σ[M ] if σ[N ] = σ[M ]. A progenerator in σ[M ]

is a finitely generated projective generator in σ[M ].

σ[M ] is closed under direct sums, factor modules and submodules in R-Mod

(hence it is a Grothendieck category). Notice that for any family {Nλ}Λ of modules

in σ[M ] there exists a product in σ[M ] but it differs from the product in R-Mod

(cartesian product). This product we denote by (see [19, 15.1])∏M

Λ
Nλ = Tr(σ[M ],

∏
Λ
Nλ), and N |ΛM = Tr(σ[M ], NΛ),

where the right side is the short form for the case Nλ = N , for all λ ∈ Λ. Notice

that for any P ∈ σ[M ], we have

HomR(P,
∏M

Λ
Nλ) '

∏
Λ

HomR(P,Nλ), and HomR(P,N |ΛM) ' HomR(P,N)Λ.

Generating properties of P will be of great interest in our investigations. As a

first instance we show:

2.1 P generates P |ΛM .

Assume there is a progenerator G in σ[M ]. Let P ∈ σ[M ] and S = EndR(P ).

Then:

(1) If P generates P |ΛM , for any Λ, then HomR(G,P )S is finitely generated.

(2) If P is a generator in σ[M ], then HomR(G,P )S is finitely generated.

(3) If P is self-injective and G ∈ σ[P ], then HomR(G,P )S is finitely generated.

Proof. (1) Consider the canonical map

ϕ : HomR(G,P )⊗S SΛ → HomR(G,P )Λ, h⊗ (sλ)Λ 7→ (hsλ)Λ.

There is an epimorphism α : P (Ω) → P |ΛM , and for f ∈ HomR(G,P |ΛM) ' HomR(P,N)Λ,

the diagram
G

↓ f
P (Ω) α→ P |ΛM ,
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can be extended commutatively by some h : G → P (Ω). Denoting by ελ and πλ the

canonical injections and projections, we have

f =
k∑
i=1

(hπλi)(ελiα), where hπλi ∈ HomR(G,P ), ελiα ∈ SΛ.

This shows that ϕ is surjective and hence HomR(G,P )S is finitely generated (e.g.,

[19, 12.9]).

(2) is a special case of (1).

(3) If P is self-injective, then P |ΛP is injective in σ[P ] and hence P -generated.

Now (1) applies. 2

Putting M = R the above observations yield the well known fact that generators

as well as injective subgenerators in R-Mod are finitely generated as modules over

their endomorphism ring.

Although there may be no projectives in σ[M ] there are enough injectives and

the Ext-functor can be defined from injective resolutions.

2.2 Ext-functor in σ[M ].

By Ext1
M and Ext2

M we denote the first and second Ext-functor in σ[M ]. So for

P ∈ σ[M ] and any exact sequence 0→ K → L→ N → 0 in σ[M ], we have the long

exact sequence

0→ HomR(P,K)→ HomR(P,L)→ HomR(P,N)→
Ext1

M(P,K)→ Ext1
M(P,L)→ Ext1

M(P,N)→ Ext2
M(P,K)→ · · · .

For P ∈ σ[M ] we denote the kernel of Ext1
M(P,−) by

P⊥M := {N ∈ σ[M ] | Ext1
M(P,N) = 0}.

Putting M = R the functors Ext1
R and Ext2

R yield the familiar functors for R-Mod

and P⊥R denotes the kernel of Ext1
R(P,−).

For subgenerators we have various characterizations ([19, Section 15 and 16.3]):

2.3 Subgenerators.

(1) For N ∈ σ[M ] the following are equivalent:

(a) N is a subgenerator in σ[M ];

(b) N generates all injective modules in σ[M ];

(c) N generates the M-injective hull M̂ of M .

If σ[M ] has a progenerator G, then (a)-(c) are equivalent to:
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(d) there exists a monomorphism G→ Nk, for some k ∈ IN .

(2) For an R-module M the following are equivalent:

(a) M is a subgenerator in R-Mod (i.e., σ[M ] = R-Mod);

(b) M generates all injective modules in R-Mod;

(c) M generates the injective hull E(R) of R;

(d) there is a monomorphism R→Mk, for some k ∈ IN .

(3) A faithful R-module RM is a subgenerator in R-Mod provided

(i) RM is finitely generated over EndR(M), or

(ii) RR is finitely cogenerated, or

(iii) RM is finitely generated and R is commutative, or

(iv) σ[M ] is closed under products in R-Mod.

A finitely generated module N ∈ σ[M ] is finitely presented in σ[M ] if for any

exact sequence

0→ K → L→ N → 0

in σ[M ], L finitely generated implies that K is finitely generated.

N is called weakly M-injective if HomR(−, N) turns monomorphisms K →M (IN)

to epimorphisms, provided K is finitely generated.

2.4 Finitely presented modules in σ[M ].

(1) For a finitely generated P ∈ σ[M ], the following are equivalent:

(a) P is finitely presented in σ[M ];

(b) HomR(P,−) commutes with direct limits in σ[M ];

(c) HomR(P,−) commutes with direct limits of M-generated modules;

(d) HomR(P,−) commutes with direct limits of weakly M-injective modules.

(2) If P is finitely presented in σ[P ] then P⊥M is closed under direct sums.

(3) For any module P the following are equivalent:

(a) P is finitely presented in σ[P ];

(b) HomR(P,−) commutes with direct limits of P -generated modules.

Proof. (1) (a)⇔(b)⇔(d) are shown in [19, 25.2]).

(c)⇔(d) is clear by the fact that weakly M -injective modules are M -generated

(by [19, 16.11]).
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(2) Let {Kλ}Λ be a family of modules in P⊥M . Taking any extension of P by⊕
ΛKλ as lower sequence we construct an exact commutative diagram

0 → K
f→ L → P → 0

g ↓ i ↓ ‖
0 → ⊕

ΛKλ → Q → P → 0,

where L is some finitely generated submodule of Q and K is finitely generated. So

Im g is contained in a finite partial sum of
⊕

ΛKλ and there exists some morphism

h : L → ⊕
ΛKλ with fh = g. Now it follows by the Homotopy Lemma that the

lower sequence splits and so
⊕

ΛKλ ∈ P⊥M .

(3) By (1), it remains to show that (b) implies that P is finitely generated.

Let {Ki}I denote the direct family of finitely generated submodules of P . For

i ∈ I we have the exact exact sequence

0→ Ki → P → P/Ki → 0,

and {P/Ki}I form a direct system of P -generated modules. Since HomR(P,−) com-

mutes with its direct limit we obtain an exact sequence

0→ lim
−→

HomR(P,Ki)→ HomR(P, P )→ lim
−→

HomR(P, P/Ki) = 0.

This implies that, for some i ∈ I, there exists f ∈ HomR(P,Ki) for which the

composition P
f→ Ki → P is the identity map. So P is finitely generated. 2

Finally we fix some notation.

2.5 Canonical maps.

The functorial morphisms related to a bimodule RPS are denoted by

µN : P ⊗S HomR(P,N)→ N, p⊗ f 7→ (p)f,

νX : X → HomR(P, P ⊗S X), x 7→ [p 7→ p⊗ x],

where N ∈ R-Mod and X ∈ S-Mod.

3 Projectivity conditions

We now consider various projectivity properties. The basic relationships derived will

be most helpful for the investigation of tilting modules.

Definitions. A module P ∈ σ[M ] is called

σ[M ]-projective if P is projective in σ[M ];

Gen(M)-projective if HomR(P,−) respects exact sequences in Gen(M);
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self-Ext-projective in σ[M ] if Gen(P ) ⊂ P⊥M ;

w-Σ-quasiprojective if HomR(P,−) respects exactness of sequences

0→ K → P (Λ) → N → 0, where K ∈ Gen(P ), Λ any set;

self-pseudo-projective in σ[M ] if any diagram with exact sequence

P
α· · · P

β
... ↓

0 → K → L → N → 0,

where K ∈ Gen(P ) and L ∈ σ[M ], can be non-trivially commutatively

extended by some α : P → P , β : P → L.

Obviously we have the implications

σ[P ]-projective ⇒ Gen(P )-projective ⇒ w-Σ-quasiprojective.

By 3.3, Gen(P )-projective is equivalent to self-Ext-projective in σ[P ] and it im-

plies self-pseudo-projective in σ[P ]

Recall that a finitely generated module P is σ[M ]-projective if and only if it is M -

projective. P is said to be minimal in Gen(P ) if for any decomposition P = P ′⊕P ′′,
we have Tr(P ′, P ′′) 6= P ′′.

The interest in self-pseudo-projective modules is motivated by the following ob-

servation (see [20, 3.4, 3.8], [1, § 1]):

3.1 Self-pseudo-projective modules in σ[M ].

Let P ∈ σ[M ] and S = EndR(P ). The following are equivalent:

(a) P is self-pseudo-projective in σ[M ];

(b) Gen(P ) is closed under extensions in σ[M ].

Suppose that RP is finitely generated and minimal, and S is right perfect or PS is

finitely generated and S is semiperfect. Then (a)-(b) are equivalent to:

(c) P is self-Ext-projective in σ[M ].

w-Σ-quasiprojective modules were introduced in Menini-Orsatti [15] to charac-

terize ∗-modules. The following is a key result for the application of this notion.

3.2 w-Σ-quasiprojective modules.

(1) For a module P the following are equivalent:

(a) P is w-Σ-quasiprojective;

(b) HomR(P,−) respects exact sequences 0→ K → L→ N → 0,

where K ∈ Gen(P ) and L ∈ Pres(P ).
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(2) Let P be w-Σ-quasiprojective. Then:

(i) Factors of P -presented modules by P -generated submodules are P -presented.

(ii) For N ∈ Presf (P ), µN : P ⊗S HomR(P,N)→ N is an isomorphism.

(iii) If SX is finitely generated then νX : X → HomR(P, P ⊗S X) is epic.

(3) If Gen(P ) = Pres(P ) the following are equivalent:

(a) P is w-Σ-quasiprojective;

(b) P is Gen(P )-projective.

Proof. (1) (b)⇒(a) is trivial.

(a)⇒(b) For any morphism h : P → N , we have an exact commutative diagram

P (Λ′)

k ↓
P (Ω) α· · · P (Λ) γ· · · P

q ↓ p ↓ h ↓
0 → K

f→ L
g→ N → 0

↓ ↓
0 0 ,

where Λ, Λ′, and Ω are suitable sets.

By (a), there exists α : P (Ω) → P (Λ) with αp = qf . By construction, the kernel

of

pg : P (Λ) → N

is equal to Im k + Imα and hence is P -generated. Again applying (a), we obtain

some γ : P → P (Λ) with γpg = h proving our statement.

(2) (i) follows from the above proof, and (ii),(iii) from the proof of 5.1.

(3) follows immediately from (1). 2

Observation (3) implies Colpi [2, Corollary 4.2].

Next we investigate a projectivity property of P with respect to M .

3.3 Gen(M)-projective modules.

For P ∈ σ[M ], the following are equivalent:

(a) P is Gen(M)-projective;

(b) HomR(P,−) respects exact sequences 0→ K → L→ N → 0,

where K ∈ Gen(M) and L ∈ σ[M ];

(c) for each K ∈ Gen(M), Ext1
M(P,K) = 0 (i.e., Gen(M) ⊂ P⊥M );
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(d) (i) Ext1
M(P,M (Λ)) = 0, for any set Λ;

(ii) Ext2
M(P,N) = 0, for each N ∈ σ[M ].

Proof. (a)⇒(b) Let f : P → N be any morphism. From the exact sequence in (b)

and the M -injective hull i : L→ L̂, we construct the commutative diagram,

P

f ↓
0 → K → L

g→ N → 0

‖ i ↓ h ↓
0 → K → L̂

p→ L̂/K → 0 ,

where the lower exact sequence is in Gen(M) and the right hand square is a pullback.

By hypothesis there exists α : P → L̂ satisfying αp = fh. Now the pullback property

yields some k : P → L with

fh = αp = kip = kgh.

Since h is mono we conclude f = kg. This proves our assertion.

(b)⇒(a) and (b)⇔(c) are obvious.

(c)⇒(d) Clearly Ext1
M(P,M (Λ)) = 0, for any Λ.

For any N ∈ σ[M ], consider the exact sequence

0→ N → N̂ → N̂/N → 0,

where N̂ denotes the M -injective hull of N . From this we obtain the exact sequence

0 = Ext1
M(P, N̂/N)→ Ext2

M(P,N)→ Ext2
M(P, N̂) = 0,

proving Ext2
M(P,N) = 0.

(d)⇒(c) By the connecting morphisms of the Ext-functor, (ii) implies that P⊥M

is closed under factor modules. Hence (i) implies Gen(M) ⊂ P⊥M . 2

4 Tilting modules

Definition. We call P ∈ σ[M ] a tilting module in σ[M ] if

(i) P is Gen(P )-projective,

(ii) every P -generated module is P -presented (i.e., Gen(P )=Pres(P )),

(iii) P is a subgenerator in σ[M ].
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P is called self-tilting if it is tilting in σ[P ], i.e., if (i) and (ii) hold.

For a tilting module P in σ[M ] we always have σ[M ] = σ[P ] (by (iii)). So it is

enough to study self-tilting modules in detail. Notice that we do not assume a tilting

module to be finitely generated.

Clearly any projective generator in σ[M ] is tilting in σ[M ]. The next proposition

shows how close tilting modules are to projective generators.

4.1 Proposition. Let P be a self-tilting module.

(1) If P is a self-generator then P is self-projective.

(2) The following are equivalent:

(a) P is a generator in σ[P ];

(b) P is projective in σ[P ].

Proof. (1) and (2) (a)⇒(b) are obvious. (b)⇒(a) will follow from 4.2(d), since for

P projective in σ[P ], σ[P ] = P⊥P . 2

Applying our knowledge about projectivity conditions from section 3 we obtain

the following characterizations of

4.2 Self-tilting modules.

For a module P the following are equivalent:

(a) P is self-tilting;

(b) Gen(P )=Pres(P ) and P is w-Σ-quasiprojective;

(c) Gen(P )=Pres(P ) and Gen(P ) ⊂ P⊥P ;

(d) Gen(P ) = P⊥P ;

(e) (i) Ext1
P (P, P (Λ)) = 0, for any set Λ,

(ii) Ext2
P (P,N) = 0, for all N ∈ σ[P ],

(iii) for N ∈ σ[P ], HomR(P,N) = 0 = Ext1
P (P,N) = 0 implies N = 0.

In case σ[P ] has a progenerator G, then (iii) is equivalent to

(iv) there exists an exact sequence

0→ G→ P1 → P2 → 0, where P1, P2 ∈ Add (P ).

If P is self-tilting, then Gen(P ) is closed under extensions and products in σ[P ].
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Proof. (1) (a)⇔(b) and (b)⇔(c) follow from 3.2 and 3.3, respectively.

(c)⇒(d) Obviously Gen(P ) ⊂ P⊥P .

Let N ∈ P⊥P and N → N̂ the P -injective hull. With a P -representation of N̂/N ,

we obtain - by a pullback construction - the commutative exact diagram

K == K

↓ ↓
0 → N → Q → P (Λ) → 0

‖ ↓ ↓
0 → N → N̂ → N̂/N → 0

↓ ↓
0 0 .

By 3.1, Gen(P ) is closed under extensions in σ[P ] and hence Q ∈ Gen(P ). Since

Ext1
P (P (Λ), N) = 0 the central sequence splits and so N ∈ Gen(P ).

(d)⇒(c) (see also [6, Lemma 1.2]) Let N ∈ Gen(P ) and Λ = HomR(P,N). With

the canonical sequence on the bottom and any extension on the top we have the

diagram
0 → K → L → P → 0

‖ α
... β

...

0 → K → P (Λ) → N → 0,

which can be extended by some α : L → P (Λ) (since Ext1
P (P, P (Λ)) = 0) and

β : P → N commutatively. Since P is projective with respect to the lower se-

quence we conclude (by the Homotopy Lemma) that the first sequence splits. Hence

Ext1
P (P,K) = 0 implying K ∈ Gen(P ).

(d)⇒(e) (i) and (ii) are shown in 3.3; (iii) is obvious.

(e)⇒(d) By 3.3, Gen(P ) ⊂ P⊥P . Let N ∈ P⊥P and put N = Tr(P,N). By (ii),

P⊥P is closed under factor modules and so N/N ∈ P⊥P . Moreover, since Gen(P )

is closed under extensions in σ[P ] (by 3.3), HomR(P,N/N) = 0. Now (iii) implies

N/N = 0 and so N is P -generated.

(e) (iii)⇒(iv) First we observe that Gen(P ) = P⊥P implies that for any set Λ,

P |ΛP is P -generated and hence by 2.1, HomR(G,P )S is finitely generated, say by

{f1, . . . , fk}. Then the map

i : G→ P k, g 7→ ((g)f1, . . . , (g)fk),

is a monomorphism and HomR(P k, P )
Hom(i,P )→ HomR(G,P ) is epi. Hence P is injec-

tive with respect to i and so is P n, for n ∈ IN .
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Consider the diagram

0 → G
i→ P k → P k/G → 0

β
... α

... ‖
P (Ω′) → P (Ω) h→ P k/G → 0,

where the lower sequence is some P -presentation of P k/G. By the given projectivity

conditions there exist α : P k → P (Ω) and β : G → P (Ω) yielding a commutative

diagram. Now Im β is contained in a finite summand of P (Ω′), and by the injectivity

property just mentioned, there exists γ : P k → P (Ω′) with iγ = β. By the Homotopy

Lemma we get some morphism P k/G → P (Ω) which splits h and hence P k/G ∈
Add (P ).

(iv)⇒(iii) Let N ∈ σ[P ] be such that HomR(P,N) = 0 = Ext1
P (P,N) = 0.

Applying HomR(−, N) to the sequence in (iv) yields the exact sequence

0 = HomR(P1, N)→ HomR(G,N)→ Ext1
R(P2, N) = 0,

and so HomR(G,N) = 0 and N = 0.

It follows from the preceding arguments that Gen(P ) is closed under extensions

and products in σ[P ]. 2

By definition, a module P ∈ σ[M ] is tilting in σ[M ] if it is self-tilting and P is

a subgenerator in σ[M ]. Besides the general characterization of the latter condition

in 2.3 there are additional properties of a self-tilting module P which make it a

subgenerator in σ[M ] and we give some of them in our next proposition.

4.3 Tilting modules in σ[M ].

For a module P ∈ σ[M ] with S = EndR(P ), the following are equivalent:

(a) P is tilting in σ[M ];

(b) P is self-tilting and a subgenerator in σ[M ];

(c) P is self-tilting, P cogenerates a subgenerator of σ[M ], and Gen(P ) is closed

under products in σ[M ];

(d) Gen(P ) = P⊥M ;

(e) (i) Ext1
M(P, P (Λ)) = 0, for any set Λ,

(ii) Ext2
M(P,N) = 0, for all N ∈ σ[M ],

(iii) for N ∈ σ[M ], HomR(P,N) = 0 = Ext1
M(P,N) = 0 implies N = 0.

In case σ[M ] has a progenerator G, (iii) is equivalent to
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(iv) there exists an exact sequence

0→ G→ P1 → P2 → 0, where P1, P2 ∈ Add (P ).

Under these conditions HomR(G,P )S is finitely generated.

Proof. (a)⇔(b) is just the definition.

(b)⇒(d), (e) is clear by 4.2 since σ[P ] = σ[M ].

(d)⇒(c) It follows from 4.2 that Gen(P ) is closed under products. Since injective

modules in σ[M ] are in P⊥M they are P -generated and hence P is a subgenerator in

σ[M ].

(c)⇒(b) Let N be a subgenerator in σ[M ] which is cogenerated by P . Then N

is contained in a product of copies of P in σ[M ], which is P -generated. This implies

σ[P ] = σ[N ] = σ[M ].

(e)⇒(d) We show that M̂ , the M -injective hull of M , is P -generated. Then the

assertion will follow from 4.2.

Let M = Tr(P, M̂). (i), (ii) imply that M̂/M ∈ P⊥M and that P is self-pseudo-

projective in σ[M ], i.e., Gen(P ) is closed under extensions in σ[M ]. Therefore

HomR(P, M̂/M) = 0 and M̂/M = 0 (by (iii)). So M̂ ∈ Gen(P ).

The final assertion follows from 2.1. 2

Putting M = R = G the above theorem describes tilting modules in R-Mod.

Notice that P cogenerates a subgenerator in R-Mod if and only if P is a faithful

R-module and hence we have:

4.4 Tilting modules in R-Mod.

For an R-module P with S = EndR(P ), the following are equivalent:

(a) P is tilting in R-Mod;

(b) P is self-tilting and a subgenerator in R-Mod;

(c) P is self-tilting, RP is faithful and PS is finitely generated;

(d) Gen(P ) = P⊥R;

(e) (i) Ext1
M(P, P (Λ)) = 0, for any set Λ,

(ii) Ext2
M(P,N) = 0, for all N ∈ σ[M ],

(iii) there exists an exact sequence

0→ R→ P1 → P2 → 0, where P1, P2 ∈ Add (P ).

The conditions in 4.4(e) were used in Colpi-Trlifaj [6, 1.1] to define (not finitely

generated) tilting modules in R-Mod and (d)⇔(e) was shown in [6, 1.3]. For RP

finitely generated, 4.4 corresponds to Colpi [3, Theorem 3].
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5 Self-small tilting modules

A module P is said to be self-small if, for any set Λ, the canonical map

HomR(P, P )(Λ) → HomR(P, P (Λ))

is an isomorphism. This implies that µP (Λ) : P ⊗S HomR(P, P (Λ)) → P (Λ) is also an

isomorphism (where S = EndR(P )).

Combined with projectivity conditions self-small modules have very interesting

properties.

5.1 Self-small w-Σ-quasiprojective modules.

Let RP be self-small and w-Σ-quasiprojective and S = EndR(P ). Then:

(1) For every P -presented module N , µN : P ⊗S HomR(P,N)→ N

is an isomorphism.

(2) For every left S-module X, νX : X → HomR(P, P ⊗S X)

is an epimorphism.

(3) Pres(P ) is closed under direct limits.

(4) HomR(P,−) commutes with direct limits of P -presented modules.

Proof. (1) With a P -presentation of N as lower sequence we have the commutative

exact diagram

P ⊗S HomR(P,K) → P ⊗S HomR(P, P (Λ)) → P ⊗S HomR(P,N) → 0

µK ↓ ' ↓ ↓ µN
0→ K → P (Λ) → N → 0,

where µK is epi (K is P -generated) and hence µN is an isomorphism.

(2) Let S(Ω) → S(Λ) → X → 0 be an S-presentation of X. Tensoring with PS
yields an exact sequence

0→ U → P ⊗S S(Λ) → P ⊗S X → 0,

where U is P -generated. Applying HomR(P,−) we obtain the commutative exact

diagram
S(Λ) → X → 0

↓ ' ↓ νX
HomR(P, P ⊗S S(Λ)) → HomR(P, P ⊗S X) → 0,

showing that νX is epi.
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(3) For any family {Nλ}Λ of P -presented modules, the map

ν :
⊕

Λ HomR(P,Nλ) → HomR(P, P ⊗S
⊕

Λ HomR(P,Nλ))

' HomR(P,
⊕

ΛNλ),

is injective (on any finite partial sum) and is epic by (1). The isomorphism on the

right hand side follows from (2). This proves that HomR(P,−) commutes with direct

sums in Pres(P ).

Now let {Ni, fij}I be a direct system of P -presented modules. Putting Ni,j = Ni,

for any i ≤ j, the direct limit is defined by an exact sequence of the form (see [19,

24.2]) ⊕
i≤j

Ni,j →
⊕
I

Ni → lim
−→

Ni → 0.

By 3.2, lim
−→

Ni is P -presented.

(4) In a canonical way, {HomR(P,Ni),HomR(P, fij)}I is a directed family of S-

modules and we have a pure exact sequence in S-Mod (e.g., [19, 33.9]),

0→ X →
⊕
I

HomR(P,Ni)→ lim
−→

HomR(P,Ni)→ 0.

Since P ⊗S − preserves exactness of this sequence and commutes with direct limits

we obtain a short exact sequence (with the isomorphism from 2.5(2))

0→ P ⊗S X →
⊕
I

Ni → lim
−→

Ni → 0.

HomR(P,−) is exact on this sequence and we get the commutative exact diagram

0→ X → ⊕
I HomR(P,Ni) → lim

−→
HomR(P,Ni) → 0

νX ↓ ' ↓ α ↓
0→ HomR(P, P ⊗S X) → HomR(P,

⊕
I Ni) → HomR(P, lim

−→
Ni) → 0.

Since νX is epi (by 5.1(2)) we conclude that α is an isomorphism. 2

Self-small tilting modules in σ[M ] and R-Mod can be described by the character-

ization of subgenerators (in 2.3) and of tilting modules (in 4.3, 4.4). There are some

more properties which are worth mentioning.

5.2 Self-small self-tilting modules.

For an R-module P the following are equivalent:

(a) P is self-small and self-tilting;

(b) (i) P is finitely presented in σ[P ] and Ext1
P (P, P ) = 0,

(ii) Ext2
P (P,N) = 0, for all N ∈ σ[P ],
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(iii) for N ∈ σ[P ], HomR(P,N) = 0 = Ext1
P (P,N) = 0 implies N = 0.

If σ[P ] has a progenerator G, then (iii) is equivalent to

(iv) there exists an exact sequence

0→ G→ P1 → P2 → 0, where P1, P2 ∈ add (P ).

Under these conditions HomR(G,P )S is finitely presented in Mod-S.

Proof. (a)⇒(b) By 5.1, HomR(P,−) commutes with direct limits in Gen(P )(=

Pres(P )) and hence P is finitely presented in σ[P ] (by 2.4). The remaining assertions

follow from 4.2. Since RP is finitely generated we have P1, P2 ∈ add (P ).

(b)⇒(a) By 2.4(2), Ext1
R(P, P ) = 0 implies Ext1

R(P, P (Λ)) = 0.

For any Λ, P |ΛP is P -presented and by 5.1 we have

P ⊗S SΛ ' P ⊗S HomR(P, PΛ) ' P |ΛP .

Since G is a progenerator in σ[P ], this implies

HomR(G,P )⊗S SΛ ' HomR(G,P ⊗S SΛ) ' HomR(G,P |ΛP ) ' HomR(G,P )Λ.

By [19, 12.9] this is equivalent to HomR(G,P )S being finitely presented. 2

Specializing to σ[P ] = R-Mod we obtain:

5.3 Self-small tilting modules in R-Mod.

For a self-small R-module P with S = EndR(P ), the following are equivalent:

(a) P is tilting in R-Mod;

(b) RP is faithful and self-tilting and Gen(P ) is closed under products in R-Mod;

(c) RP is faithful and self-tilting and PS is finitely generated (finitely presented);

(d) (i) RP is finitely presented and Ext1
R(P, P ) = 0,

(ii) Ext2
R(P,N) = 0, for all N ∈ R-Mod (i.e. proj.dim (P ) ≤ 1),

(iii) there exists a short exact sequence

0→ R→ P1 → P2 → 0, where P1, P2 ∈ add (P ).

Proof. (a)⇔(b) follows from 4.3, (c)⇒(a) from 2.3.

(a)⇒(c) and (c)⇔(d) follow from 5.2. 2

Notice that 5.3 yields the characterization of the classical tilting modules we

mentioned in the introduction.
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5.4 Remarks. ∗-modules are characterized as self-small w-Σ-quasiprojective mod-

ules P for which Gen(P )=Pres(P ) (e.g., Colpi [2, Theorem 4.1]). In view of 3.2 they

are just the self-small self-tilting modules. The characterization given in 5.2 was

obtained in Folz [11, 3.12].

Combining 2.5, 5.1, 2.3, and 4.3 we obtain characterizations of ∗-modules and

finitely generated tilting modules in R-Mod as given in Menini-Orsatti [5, Theorem

4.3], Colpi [2, Proposition 1.5] and [3, Theorems 3 and 5]. It was shown in Trlifaj

[17] that such modules are finitely generated. In Colpi-Menini [5, Proposition 1.7] it

is proved that finitely generated tilting modules in R-Mod are finitely presented in

R-Mod. Both results are subsumed in 5.2.

In the recent preprint Colpi [4] alternative proofs can be found for 2.1, 4.2,(d)⇔(e),

and 5.2.

The isomorphisms obtained in 5.1 indicate the existence of equivalences between

the categories Pres(P ) or Gen(P ) and certain subcategories of S-Mod. To describe

these let Q be any cogenerator in σ[P ] and put U = HomR(P,Q). Then we have for

any X ∈ S-Mod,

Ke νX = {x ∈ X |P ⊗S Sx = 0} = Re(X,U).

This can be easily seen from the canonical isomorphism

HomS(X,U) = HomS(X,HomR(P,Q)) ' HomR(P ⊗S X,Q),

using the cogenerator property of Q.

Let Kog(SU) denote the full subcategory of S-Mod determined by all modules

which are cogenerated by U , and Kogf (SU) the class of finitely generated modules

in Kog(SU). By 5.1, for any self-small self-tilting module P , νX is an isomorphism

for all objects in Kog(SU) and clearly

Kog(SU) = {X ∈ S-Mod | X ' HomR(P,N), N ∈ Gen(P )}.

This yields the following

5.5 Equivalences.

For an R-module P with S = EndR(P ), let Q be a cogenerator in σ[P ] and

U = HomR(P,Q).

(1) If P is w-Σ-quasiprojective we have an equivalence

HomR(P,−) : Presf (P )→ Kogf (SU).

(2) If P is self-small and w-Σ-quasiprojective we have an equivalence

HomR(P,−) : Pres(P )→ Kog (SU).
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(3) If P is self-small and self-tilting we have an equivalence

HomR(P,−) : Gen(P )→ Kog (SU).

In each case the inverse functor is P ⊗S −.

Proof. (1) By 3.2 and 5.1 we have natural isomorphisms

µ : P ⊗S HomR(P,−)→ idPresf (P ), ν : idKogf (SU) → HomR(P, P ⊗S −).

From these the assertions follow.

(2) and (3) are shown by similar arguments. 2

Remarks. Observation (1) in 5.5 generalizes the fact that any self-projective

module defines an equivalence between finitely P -presented R-modules and finitely

presented S-modules (e.g., [19, 46.11]).

The equivalence in (2) was described in [2, Proposition 3.7].

(3) is essentially the Brenner-Butler Theorem (e.g., [1, Theorem 3.7]). It was

noticed in Menini-Orsatti [15] and Colpi [2] that equivalences as described in (3) are

induced by self-small self-tilting modules (= ∗-modules).

5.6 Corollary. Let P be a self-tilting R-module P with S = EndR(P ). Then P is

self-small if and only if Im HomR(P,−) is closed under S-submodules.

Proof. If P is self-small the assertion follows from 5.5(4).

Assume that Im HomR(P,−) is closed under submodules. Clearly for every set

Λ, SΛ ∈ Im HomR(P,−). If Im HomR(P,−) is closed under submodules, this implies

S(Λ) ∈ Im HomR(P,−) and hence

HomR(P, P )(Λ) ' S(Λ) ' HomR(P, P ⊗S S(Λ)) ' HomR(P, PΛ),

showing that P is self-small. 2

Examples of self-small tilting modules are abundant in representation theory (e.g.,

[1], [14]). The following example of a not finitely generated tilting module is due to

Fuchs [12] and was further investigated in Facchini [9, 10]. More examples of this

type will be considered in the subsequent sections.

5.7 Divisible modules over integral domains.

Let R be a commutative integral domain. Then the divisible R-module ∂ intro-

duced in Fuchs [12], § 3, is tilting in R-Mod.

Proof. As shown in [12, § 3], the ∂-generated modules are precisely the divisible

R-modules. By [12, Proposition 11], ExtnR(∂,D) = 0, for all divisible R-modules D

and for all n ≥ 1. By [12, Lemma 14], every ∂-generated module is ∂-presented and

hence ∂ is tilting in R-Mod. 2
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6 (Semi-) cohereditary modules

As in the classical situation hereditary modules provide interesting examples for

tilting modules. Since there may be no projectives in our categories we refer to the

characterization of hereditary modules by injectives.

Let Inj (M) denote the class of all injectives, and w-Inj (M) the class of all weakly

M -injectives in σ[M ]. For any subgenerator P ∈ σ[M ], we have Inj (M) = Inj (P )

and (by [19, 16.11])

Inj (M) ⊂ w-Inj (M) ⊂ Gen(P ).

Moreover, Inj (M) = w-Inj (M) if and only if M is locally noetherian.

In case M is a submodule of a direct sum of finitely presented modules in σ[M ],

any module in σ[M ] is weakly M -injective if and only if it is absolutely pure in σ[M ]

([19, 35.4]).

Recall that P ∈ σ[M ] is locally coherent in σ[M ] if every finitely generated sub-

module of P is finitely presented in σ[M ], and P is (semi-) hereditary in σ[M ] if

every (finitely generated) submodule of P is projective in σ[M ].

We call a module P ∈ σ[M ] (semi-) cohereditary in σ[M ] if every factor module

of P in (weakly) M -injective.

The following technical properties will be needed.

6.1 Proposition. Let M be an R-module.

(1) M is locally noetherian if and only if Inj (M) is closed under direct limits.

(2) If M is locally coherent then w-Inj (M) is closed under direct limits.

(3) Suppose that M is a submodule of a direct sum of finitely presented modules

and w-Inj (M) is closed under direct limits. Then M is locally coherent.

Proof. (1) is shown in [19, 27.3].

(2) Assume M to be locally coherent and let {Pi}I be a direct family of weakly

M -injective modules. For every finitely generated K ⊂ M and f : K → lim
−→

Pi, we

have an exact diagram
0 → K → M

↓f⊕
I Pi → lim

−→
Pi → 0

Since the lower sequence is pure and K is finitely presented, there exists some mor-

phism g : K → ⊕
I Pi and - by the weak injectivity property of

⊕
I Pi - some

morphism h : M → ⊕
I Pi yielding a commutative diagram. This proves that lim

−→
Pi

is weakly M -injective.

(3) Now assume that M is a submodule of a direct sum of finitely presented

modules and w-Inj (M)is closed under direct limits.
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Every finitely generated submodule K ⊂ M is contained in some finitely pre-

sented module L ∈ σ[M ]. For any direct family {Pi}I of weakly M -injective modules,

we have the commutative exact diagram

lim
−→

HomR(L, Pi) → lim
−→

HomR(K,Pi) → 0

↓ ΦL ↓ ΦK

HomR(L, lim
−→

Pi) → HomR(K, lim
−→

Pi) → 0,

where ΦL is an isomorphism and ΦK is mono. From the diagram we conclude that

ΦK is also epi and so HomR(K,−) commutes with direct limits of weakly M -injective

modules. So K is finitely presented in σ[M ] (by 2.4) and M is locally coherent. 2

Next we list some elementary statements about (semi-) cohereditary modules.

6.2 Proposition. Let M be an R-module.

(1) If P1, ..., Pk are cohereditary in σ[M ] then so is
⊕k

i=1 Pi.

(2) If M is locally noetherian then any direct sum of cohereditary modules in σ[M ]

is cohereditary in σ[M ].

(3) Let M be a submodule of a direct sum of finitely presented modules in σ[M ].

(i) Any finite direct sum of semi-cohereditary modules is semi-cohereditary.

(ii) If M is locally coherent in σ[M ], then any direct sum of semi-cohereditary

modules is semi-cohereditary.

Proof. (1) Let P1, P2 be cohereditary in σ[M ] and P = P1⊕P2. For any submodule

K ⊂ P , P1/(K ∩ P1) is M -injective and we have

P/K ' P1/(K ∩ P1)⊕ P 2,

where P 2 is some factor module of P2 and hence is also M -injective. So P/K is

M -injective and P is cohereditary.

For finite direct sums the assertation follows by induction.

(2) Let {Pλ}Λ be a family of cohereditary modules in σ[M ] and K ⊂⊕Λ Pλ. Now⊕
Λ Pλ is the direct limit of its finite partial sums, and hence

⊕
Λ Pλ/K is the direct

limit of M -injective modules (by (1)) which is M -injective (by 6.1).

(3) As noticed above the weakly M -injectives are just the absolutely pure modules

in σ[M ].

(i) Let P1, P2 be semi-cohereditary in σ[M ] and P = P1⊕P2. For any submodule

K ⊂ P , we have a short exact sequence

0→ P1/(K ∩ P1)→ P/K → P 2 → 0,
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where P 2 is some factor module of P2 and so P 2 and P1/(K∩P1) both are absolutely

pure in σ[M ]. By [19, 35.2], this implies that P/K is absolutely pure in σ[M ] and

so P is semi-cohereditary. Now the assertion follows by induction.

(ii) In view of 6.1 the proof of (2) applies. 2

6.3 Cohereditary modules.

(1) For an M-injective, locally noetherian subgenerator P ∈ σ[M ], the following

are equivalent:

(a) P is cohereditary in σ[M ];

(b) every injective module is cohereditary in σ[M ];

(c) every indecomposable injective module is cohereditary in σ[M ].

In case σ[M ] has a projective subgenerator L, (a)-(c) are equivalent to:

(d) L is hereditary in σ[M ].

(2) For a subgenerator P ∈ σ[M ], the following are equivalent:

(a) Gen(P ) = Inj (M);

(b) P is locally noetherian and cohereditary in σ[M ].

Proof. (1) (a)⇔(b)⇒(c) follow from 6.2; (a)⇔(d) is shown in [19, 39.9].

(c)⇒(b) This follows again by 6.2 since P is a direct sum of indecomposables (by

Matlis’ Theorem).

(2) (a)⇒(b) By Gen(P ) = Inj (M), factor modules and direct sums of copies of

P are M -injective and so P is cohereditary and locally noetherian (by [19, 27.3]).

(b)⇒(a) Since P is a subgenerator in σ[M ], Gen(P ) ⊃ Inj (M). By (1), P (Λ) is

cohereditary for any Λ, implying Gen(P ) ⊂ Inj (M). 2

6.4 Semi-cohereditary modules.

(1) For a weakly M-injective, locally coherent subgenerator P ∈ σ[M ], the following

are equivalent:

(a) P is semi-cohereditary in σ[M ];

(b) every weakly M-injective module is semi-cohereditary in σ[M ].

In case σ[M ] has a projective subgenerator L, (a)-(c) are equivalent to:

(d) L is semi-hereditary in σ[M ].

(2) For a module P , which is a submodule of a direct sum of finitely presented

modules in σ[P ], the following are equivalent:
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(a) Gen(P ) = w-Inj (P );

(b) P is locally coherent and cohereditary in σ[M ].

Proof. (1) (a)⇔(b) follows from 6.2; (b)⇔(c) is shown in [19, 39.5].

(2) Apply 6.1 and 6.2(3). 2

Next we show that (semi-) cohereditary modules and rings provide non-trivial

examples of tilting modules.

6.5 Cohereditary and tilting modules.

(1) For P ∈ σ[M ] the following are equivalent:

(a) P is tilting in σ[M ] and Gen(P ) = Inj (M) ;

(b) Inj (M) = Gen(P ) = P⊥M ;

(c) Pres(P ) = Gen(P ) = Inj (M);

(d) P is locally noetherian and cohereditary and every injective module in

σ[M ] is embedded in some P (Λ);

(e) P is locally noetherian and cohereditary and any indecomposable M-

injective module in σ[M ] is embedded in P.

(2) Let M be locally noetherian and assume its M-injective hull M̂ to be cohered-

itary in σ[M ],

(i) If {Uω}Ω is a representing family of indecomposable injectives in σ[M ],

then U =
⊕

Ω Uω is tilting in σ[M ].

(ii) If there exists a progenerator G ∈ σ[M ] and Ĝ denotes its M-injective

hull, then P := Ĝ⊕ Ĝ/G is a tilting module in σ[M ].

Proof. (1) (a)⇔(b)⇒(c) is clear by definition.

(c)⇒(d) By 6.3, P is locally noetherian and cohereditary. Now Gen(P ) =

Pres(P ) implies that every P -generated module is contained in some direct sum

P (Λ).

(d)⇒(e) Every uniform submodule of P (Λ) embeds in P (e.g., [13, p. 43]).

(e)⇒(a) Clearly Inj (M) = Gen(P ) (by 6.3) and P is Gen(P )-projective since all

short exact sequences in Gen(P ) split. Any P -generated moduleN isM -injective and

so is a direct sum of indecomposable injective modules (⊂ P ). Therefore N ⊂ P (Λ)

for some Λ, and N is in fact a direct summand, i.e., N ∈ Pres(P ).

(2) (i) By 6.3, U is cohereditary in σ[M ]. So U is tilting by (1)(e).

(ii) By definition of P , there exists an exact sequence

0→ G→ P1 → P2 → 0, where P1, P2 ∈ Add (P ).

Now the assertion follows from 4.3. 2
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Putting M = R = G we obtain the

6.6 Corollary. For a ring R with R-injective hull E(R), let {Uω}Ω be a minimal

representing family of indecomposable injectives in R-Mod and U =
⊕

Ω Uω.

If R is noetherian and left hereditary then U and E(R) ⊕ E(R)/R are tilting

modules in R-Mod and E(R)⊕E(R)/R contains all the Uω’s (as direct summands).

In particular, IQ⊕ IQ/ZZ is a tilting module in ZZ-Mod.

Note that by the above examples, for a noetherian hereditary ring the minimal

injective cogenerator need not be tilting (in fact it is not a subgenerator) in R-Mod.

It was observed by Colpi-Menini [5, Theorem 3.3] that the existence of a finitely

generated tilting module P ∈ R-Mod with Gen(P ) = Inj (R) implies that R is

left artinian and hereditary (since by 6.5 the indecomposable injectives are finitely

generated). For such rings the minimal injective cogenerator is clearly tilting in

R-Mod. The following proposition generalizes this situation.

6.7 Cogenerators as tilting modules.

Let Q denote the minimal injective cogenerator of σ[M ]. Then the following are

equivalent:

(a) There exists a tilting P ∈ σ[M ] with essential socle and Gen(P ) = Inj (M);

(b) M is locally of finite length, and there exists a cohereditary cogenerator in σ[M ];

(c) Q is locally of finite length and a cohereditary subgenerator in σ[M ];

(d) Q is tilting in σ[M ] and Gen(Q) = Inj (M).

Proof. (a)⇒(b) By 6.5, P is locally noetherian and cohereditary. Moreover every

P -generated module is contained in some direct sum P (Λ), which is a direct sum of

M -injective hulls of simple modules.

Let K ⊂ L ⊂ P be submodules with L finitely generated. Then L/K is embed-

ded in a finite direct sum of injective hulls of simple modules and hence is finitely

cogenerated. So L is artinian (e.g., [19, 31.1]).

(b)⇒(c) Under the given conditions every cogenerator is a subgenerator in σ[M ]

and Q is cohereditary by 6.3.

(c)⇒(d) By 6.5(e), Q is tilting in σ[M ]; by 6.3(2), Gen(Q) = Inj (M).

(d)⇒(a) is trivial. 2

The preceding observations yield a number of examples for tilting modules. As

special cases we notice:
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6.8 IQ/ZZ and ZZp∞ are self-tilting.

The ZZ-module IQ/ZZ is tilting in σ[ IQ/ZZ], the category of torsion ZZ-modules.

For any prime p ∈ IN , the ZZ-module ZZp∞ is tilting in σ[ZZp∞ ], the category of

p-torsion ZZ-modules.

As noticed previously (see 4.1) tilting modules are close to projective generators.

The above example gives a tilting module in a category without projectives (see [19,

18.12]). We can generalize these considerations in the following way.

6.9 Semi-cohereditary and self-tilting modules.

For an R-module P the following are equivalent:

(a) P is self-tilting and Gen(P ) = w-Inj (P );

(b) Gen(P ) ⊂ P⊥P and for any finitely generated submodule K ⊂ P k, where

k ∈ IN , we have P k/K ∈ Add (P ).

If P is a direct summand of a direct sum of finitely presented modules in σ[P ], then

(a)-(c) are equivalent to:

(c) P is locally coherent and semi-cohereditary, and for any finitely generated sub-

module K ⊂ P k, k ∈ IN , we have P k/K ∈ Add (P ).

If P satisfies these conditions then every finitely presented module in σ[P ] is embedded

in P (IN).

Proof. (a)⇒(b) By assumption P k/K is P -presented and hence we have an exact

diagram
0 → K → P k → P k/K → 0

β
... α

... ‖
0 → L → P (Λ) → P k/K → 0,

where L is P -generated. The projectivity of P yields some α : P k → P (Λ), and

then there exists β : K → L extending the diagram commutatively. By the weak

injectivity of L we obtain some morphism P k → L which shows that the lower

sequence splits (by the Homotopy Lemma). So P k/K ∈ Add (P ).

(b)⇒(a) Let N be a P -generated module. For any finitely generated K ⊂ P k and

f : K → N , we have - by a pushout construction - the commutative exact diagram

0 → K → P k → P k/K → 0

f ↓ ↓ ‖
0 → N → Q → P k/K → 0.

Since P k/K ∈ Add (P ), Ext1
P (P k/K,N) = 0 and the lower sequence splits. This

proves that N is weakly P -injective.
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Now assume that P is a direct summand of a direct sum of finitely presented

modules in σ[P ].

(a)⇒(c) Gen(P ) = w-Inj (M) implies that P is semi-cohereditary and that any

direct limit of weakly M -injective modules is weakly M -injective. Hence P is locally

coherent by 6.1.

(c)⇒(b) By 6.4, Gen(P ) = w-Inj (P ). Since P is pure projective, Gen(P ) ⊂ P⊥P .

The final assertion is clear by the fact that every finitely presented module in

σ[P ] is submodule of some P k/K, K finitely generated (see [19, 25.1]). 2

The conditions of 6.9 are obviously satisfied by the modules considered in 6.5

- 6.8. Moreover any projective module over a von Neumann regular ring satisfies

6.9(c).

7 Cohereditary coalgebras

In this section R denotes a commutative ring. Let ∆ : C → C ⊗R C be a coalgebra

over R with counit ε : C → R, and Comod-C the category of right C-comodules.

For basic properties of coalgebras we refer to [21].

C is a subgenerator in Comod-C and Comod-C is a Grothendieck category if and

only if C is flat as an R-module.

C∗ = HomR(C,R) is an R-algebra and every right C-comodule is a left C∗-

module, and Comod-C is a subcategory of C∗-Mod. If C is projective as an R-module

then Comod-C is a full subcategory of C∗-Mod with subgenerator C, i.e.

Comod-C = σ [C∗C] .

Definition. We call a coalgebra C right cohereditary if every factor of C by a

right coideal is injective in Comod-C. If CR is projective this is equivalent to the

property that every factor of C by a left C∗-submodule is injective as C∗-module,

i.e., C is cohereditary in σ[C∗C].

Assume CR to be projective. Then the Finiteness Theorem for comodules says

that every finite subset of a right C-comodule M is contained in a subcomodule which

is finitely gnerated as R-module. This implies that over a noetherian (artinian) ring

R, C is a locally noetherian (artinian) left C∗-module.

It is also known that over any self-injective ring R, C is injective in σ[C∗C],

and over a noetherian injective ring R (= QF-ring), every module in σ [C∗C] is a

submodule of some direct sum C(Λ).

Hence 6.3 yields the following characterization of cohereditary coalgebras.
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7.1 Right cohereditary coalgebras.

Let R be a (noetherian) QF-ring and C an R-coalgebra with CR projective.

(1) The following are equivalent:

(a) C is a right cohereditary coalgebra;

(b) C is cohereditary in σ [C∗C];

(c) every injective module is cohereditary in σ [C∗C];

(d) every indecomposable injective module is cohereditary in σ [C∗C]:

If these conditions are satisfied, C is tilting in σ [C∗C].

(2) The following are equivalent:

(a) C is a right cohereditary coalgebra and C is finitely generated as C∗-

module;

(b) C∗ is a left hereditary algebra and σ[C∗C] = C∗-Mod;

(c) C is tilting in C∗-Mod and Gen(C) = Inj (C).

Proof. (1) (a)⇔(b) is clear by the correspondence between right comodules and left

C∗-modules; (b)⇔(c)⇔(d) follows from 6.3.

In the situation given, C is tilting in σ [C∗C] by 6.5 since C is a cogenerator in

σ [C∗C] and locally of finite length.

(2) If C is finitely generated as C∗-module then, by the Finiteness Theorem,

C is finitely generated as R-module which means σ [C∗C] = C∗-Mod, i.e., C is a

subgenerator in C∗-Mod. Now the assertions follow from 6.3 and 6.5. 2

Remarks. Cohereditary coalgebras over fields were considered in Nǎstǎsescu-

Torrecillas-Zhang [16] (under the name hereditary coalgebras). Our characterization

7.1 extends most of their Theorem 4 from base fields to QF-rings. Since in 7.1, C

has locally finite length as C∗-module, their proof (2)⇒(1) applies to show that (a)

is equivalent to

inj.dim(S) ≤ 1, for any simple S ∈ σ [C∗C] ,

where the injective dimension is considered in σ [C∗C].
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