Legion: An Operating System for Wide-Area Computing
Andrew Grimshaw, Adam Ferrari, Fritz Knabe, Marty Humphrey

Department of Computer Science
Schod of Engineering and Applied Science
University of Virginia
Charlottesville, VA 22903-2442
{grimshaw, gjf2j, knabe, humphrey} @cs.virginia.edu

Abstrad
Applications enabled by the increasing availability of high-performance
networks require the ability to share resources that are spread over complex,
large-scale, heterogeneous, distributed environments gpaming multiple
administrative domains. We all this the wide-area computing problem. We
argue that the right way to solvethis problemisto build anoperating system for
the network that can abstract over a complex set of resources and povide high-
level means for sharing andmanagng them. We describe the design of one such
wide-area operating system: Legion. Through discusson of application
examples, we demonstrate the attractive features of Legion approach to

constructing awide-area operating system using distributed object components.
1. The Challenge of Resource Sharing

The Boeing Company's designers use smulation as a key tod in making ever more complex airframes at a
manageable wst. Pratt & Whitney, which designs and suppliesjet enginesto Boeing, also relies heavily on
simulation. When Boeing's enginea's smulate an airframe's behavior, they need to know how the engine
couped to that airframe will perform under various conditions. However, Pratt & Whitney cannot release its
proprietary engine simulations because of the significant intellectual property they encode. Thisrequires an
unwieldy information exchange process in which Boeing engineers ask Pratt & Whitney engineersto run
their simulation at specified datapoints and then send the results to Boeing by tape. Boeing engineers then
combine the information with their own simulation data and make necessary modifications. Then the whole

processiterates again.

In a completely different domain, Harvard Medical Schod is performing research onthe caises and
symptoms of multiple sclerosis. The are research group has devel oped image processing pipeli nes that

build three-dimensional models of characteristic brain lesions from MRI scans. To significantly advancethe

research, they need MRI scans from multi ple partner institutions as well as away to make adatabase of
image-processed results available to their research partners. Asafirst step, they would like atool that can
automaticdly identify MRI scans pertaining to the study whenever they are made & partner hospitals,
seaurely move those scans over the Internet to Harvard, and then processthem. Very little alministrative

suppat for the tool can be expected at any of the partners.

In another medical setting, seven competing Dayton, Ohio, hospitals [13] are working together to reduce
costs. By sharing patient records and making them eledronically avail able to emergency room physicians,
expensive and time-consuming tests can be avoided and better care can be provided more quickly.
However, ead hospital hasits own legacy medicd records g/stem, IS personrel, and procedures that must
be brought together in the overall solution. Moreover, each has a computing base that hosts databases and
programs cannat be shared. These dharacteristics significantly increase the dhallenge of delivering a
common appli cation that spans all the institutions.

Finally, climate modeling groups at SDSC, UCLA and Lawrence Berkeley Laboratory want to couple a
global atmospheric circulation model with aregional, meso-scae, weather model. The wupled models
would feed datato each ather, creating more acarate and detailed combined results. However, the existing
regiona model runs only ona Cray T90, while the global model runs ona Cray T3E andis being migrated
tothe IBM SP. The gplicaions need away to coordinate and exchange data with orne ancther at runtime,
be scheduled to run simultaneously on separate supercomputers, and be essily controlled by aresearcher at a

single workstation.

All of these disparate examples hare acommon thread: the need to share and manage resources. Those
resources may be hardware, software, or data, but when resources are spread over a networked environment
combining multi ple administrative domains, computing platforms, support levels, security policies, and
myriad other factors, sharing and managing them clealy becomes sgnificantly more difficult. Wecall this
the wide-area computing problem. Though instances of the problem certainly appear in LAN environments,
the rise of ubiquitous high-bandwidth networking has creaed both the need and the opportunity to addressit.
The preceding cases represent just a sampling of what people want to do.

Resource sharing is a classic computing problem with along history. The mondithic mainframe
environment led to program, data, andfile sharing, mediated by the operating system. AsLANSs appeared,
remote fil e and printer sharing entered the scene. The Internet al owed the most extensive file sharing
medanism of all, the World Wide Wéb.

The wide-area @mputing problem can be solved onan ad hoc, case-by-case, basis for ead appli cation, and
to date that is often the approach that is used. Piecemed solutions are mbbled together with scripts, sockets,
and various network tools, andif all goes well the application can be deployed. However, these solutions
tendto be brittle andlimited, and require significant programmer sophistication to implement in the first

place.

From a computer science perspective, the right way to solve the problemisto build an aperating system for

the network that can abstract over a complex set of resources and provide high-level means for sharing and

managing them. But will that approadh be useful to the seronautical engineas and the medicd researchers?
What do these users and the devel opers of their applications need?

2. Demands on a Wide-Area Computing Environment

It isnot difficult to produce along list of desirable fegures, and we will not develop an exhaustive (and
exhausting) list here. Instead we will briefly ook at some essential points.

Complexity management. Complexity isthe programmer's nemesis: A large-scae system composed of
different architectures, many different sites, hundreds of different applications, and pdentialy thousands of
hosts. Reducing and managing complexity is therefore critical. The object-oriented paradigm and doject-
based programming tedhniques provide programmers and application designers with encapsul ation features
and tools for abstraction that reduce and compartmentali ze complexity. We firmly believe that object-based
tedniques are the key to constructing robust, wide-areasystems.

These techniques are not enough, hovever. Compaosable, high-level interoperating services must replace
low-level interfaces such as rsh and socketsin the programmer’s toolbox. Without such services the
complexity of distributed programming goes up dramaticaly, increasing both the skill set required to
construct applications and the fragility of the resulting software.

Single system image. A major source of complexity in awide-areasystem is the large number of distinct
hosts andfile systems. This can betadled by providing programmers with an abstraction of asingle
machine and associated storage, or asingle systemimage. "Single system image" means different things to
different people--for some it means a single shared address gace, for some the aility to runpsand ¢et alist
of all processes throughout the system. For our uses, we define a single system image & a universal shared

name spacethat names all objects of interest to the system and its users: files, processes, procesors (hosts),

storage, users, services, everything. The names should be location independent (i.e., they do rot contain any
location information) and should be usable from anywhere in the system. Furthermore, as the programmer
uses resources to create his own objects, he should not be forced to explicitly place them on a particular host
or disk---the system shoud handle that. This does not mean that a programmer or user cannot specify or
know an object's location, but rather that if thisinformation is not relevant to the programmer's task, it does
not need to be known.

Multiple or ganizations. Our initial application examples illustrate the need to join multi ple organizations
and administrative domains. A system that fadlitates this ort of bridging cannot require that sites follow a
single set of policies. Instead, it must accommodate adiverse set of local use policies, accesscontrol
padlicies, and computational cultures. For example, asite might insist that users authenticate via Kerberos
before using its resources, or that users sign an "acceptable use palicy” statement, or that from 1:00 PM until
6:00 PM everyday no applications be run that consume more than five CPU minutes. Extensibility and
flexibility thus become essential system aspects---it must be possble to readily extend and configure the

system to satisfy local requirements.

Resour ce heter ogeneity. Resource heterogeneity isanatural part of the distributed environment. It includes
processor heterogeneity, dataformat heterogeneity, configuration heterogeneity (e.g., hav much memory
and dsk, which libraries are available on a host), and operating system heterogeneity. If heterogeneity isnot
managed individual users and programmers must ded with the mmplexity induced by all of the possible

permutations of hardware, OS, and resources, atask that can rapidly overwhelm even the best programmers.

Scalability. The system must be &le to grow without limit, adding new hosts and resources over time. If the
past has shown us anything it is that the number of interconnected computational resources will only
incresse. Users and organizations do na want to have abitrary limits placed onsystem size and capacity.
Any solution to the wide-area @mputing problem must be ale to comfortably accommodate the growth.
System architectures must therefore be scalable and conform to the distributed systems principle that "the
amourt of servicerequired of any single comporent of the system must not grow as the system grows." If
an architecture does not conform, then a cmporent whose load (e.g., requests per second) increases as the
system expands will at some point become saturated, and performancewill suffer.

Fault tolerance. Severa yeasago Ledie Lamport quipped, "A distributed systemis onein which | cannat
get something dore because amachine I've never head of isdown." Thisindictment isdriven by the fact

that in the absenceof mecdhanismsto deal with failure, application availability is the product of comporent

avail ability. In today's businessclimate, an unavailable gplication can easily cost thousands of dollars per
minute. A wide-areasystem must therefore beresilient to failure and provide afailure and recovery model
and associated services to applications devel opers, so that they can write robust appli cations. The model

must include notions of fault detection, fault propagation, and a set of useful failure mode assumptions.

Multi-language and legacy applications. "I dorit know what computer language they'll be usingin a
hunded yeas, bu it will be called Fortran" was apopuar refrain in the 80s. There are hurdreds of millions
of lines of legacy code today written in languages as varied as Lisp, RPG, Cobol, assembler, C/C++, Java,
and (of course) Fortran. Onething is certain: those cdeswill not be replaced overnight and we will still
want to be a@le to runthem in distributed environments. Theimplicationisthat there must be amedanism
for supporting legacy code without modification, andit must be le to support avariety of programming
languages. A wide-area @mputing environment must therefore be language-neutral .

Security. Findly, thereis security. Thisincludes awide range of topics, such as authentication (how dol|
know whoyou are?), accesscontrol (who can do what to each resource?), and data integrity (how can |
make sure that no ane can read or modify my datain memory, on dsk, or onthe network?). Each of these
three isauesis present in the Boeing/Pratt & Whitney example above. Clearly we must be &leto provide
high levels of seaurity, bu there is more to the problem. Seaurity can befairly expensive in performance,
restricting capabilities, and other dimensions, and different users and organizations have very different
requirements and want to enforce very diff erent policies. The thallenge isto provide each user and
organization with just the right mecdhanism and policy rules but still allow different users and organizations
to interact.

If we consider these dharacteristics together it is clear that no commercially avail able middleware or
operating system meds all of them. The requirements demand awide-area operating system---nat just an
assortment of scripts and glue. We have spent the last five years designing and implementing one such
wide-areaOS: Legion.

3. The Legion Wide-Area Operating System

Legionis gructured as a system of distributed odbjects. All of the entities within Legion are represented by
independent, active objeds that communicate using a uniform remote methodinvocaion service In many
ways, Legion's fundamental object model is similar to CORBA's [1]: object interfaces are described using an

interfacedescription language (IDL), and are compil ed and linked to implementations in a given language
(e.g., C++, Java, Fortran). This approach enables componrent interoperability between multiple
programming languages and heterogeneous exeaution platforms. Objects provide aclean, retural approach
to the problems of encapsulation and interoperability: because al of the elementsin the system are objects

they can communicae with one anather regardless of locaion, reterogeneity, or implementation details.

Objects are thus our building blocks for constructing awide-areaOS. To understand that system, we will
examine how Legion solves traditional operating system problems such as resource representation and

management, task scheduling and control, naming, fil e systems, interprocesscommunicétion, and protection.

3.1. Resource Representation and Management

The abstraction, control, and management of underlying hardware resources is among the most fundamental
services provided by any operating system. Becaise alLegion system runs ontop d the unmodified
operating system of eath host in the net, it does not need to manage very low-level resources--the locd OS
doesthat job. At Legion'slevel, the resource base instead consists of multiple heterogeneous processors and

storage devices.

Both processors and storage resources are represented as objeds, called host objeds and vault objects[2].
There aetwo primary benefits resulting from this object-based approach. First, each dbject definesa
uniform interfaceto host and vault resourcesin a Legion system. Host objects provide auniform interface
to dbject (task) creation, and vault objects provide auniform storage dlocation interface, even though there
may be many diff erent implementations of each of these. Semnd, these objects naturally ad as resource
guardians and pdicy makers. For example, the host objeds used to manage the processor resources at a
given site are the points of accesscontrol for task creation at that site. If an organization participating in
Legionwishesto restrict job creation onlocd resources exclusively to local users, the host objects at the

organization's ste can enforce this policy.

This object-based model for resource representation allows a tremendous degree of extensibility and site
autonamy. Applications (acting as resource clients) need oy be avare of the generic objed interfaces for
the resources they require. Resource providers can provide desired implementations of the resource objeds.
If the administrators of aloca site wish to enforce aspedalized access control policy for their processing
resources, they can extend the implementation of the basic host objed provided by Legion to incorporate the
desired pdicy. If the owner of adisk wantsto uselocd Unix-based disk-usage acourting and guotatools,

he can use avault objed implementation that all ocates storage under the appropriate local Unix user-id for
ead client. Of course, Legion provides reasonably configurable default i mplementations of the basic
resource objects; resource providers do nd need to write any code to make their resources available to
Legion. Asnew local resource usage policies become desirable, however, Legion explicitly supports sich

natural evolution.

It isimportant to nde that resourceinterfaces are not carved in stone. If new interfaces for underlying
resources are required, new classes of resource objects can be created to extend or replace existing
interfaces. For example, a number of the processing resources in severa deployed Legion networks require
acessthrough aloca queue management system such as Codine [4] or LoadLeveler [5]. On such hasts, an
extended queue-aware version of the Legion hast objed is used.

3.2. Task/Object Management

Traditional operating systems must provide the user with interfaces to start new tasks andto control the
exeadtion of existing tasks (e.g., suspend, resume, terminate). In Legion, the notion of atask or process
corresponds closely to the Legion dbject---objeds are the active computationa entities within the system.
The Legioninterfacefor objea control (as well as the implementation of object management functions, such
as failure monitoring) is associated with aLegion dvjed type cdled the Class Manager. Class Managers are
otherwise normal Legion objects that are responsible for the management of a set of other Legion dojeds.
The objectsin the set are known as the ClassManager's instances. These instances have many simil arities:
ead exports the same object interface and each is aubject to the management padli ciesimplemented by the
shared Class Manager. Class Managers are themselves managed by higher-order Class Managers, forming a
rooted hierarchy known as a Legiondomain. A complete Legion system can be composed of any number of

domains, forming aforest of Class Manager hierarchies.

Theinterfaceexported by Class Managers suppats anatural set of object (or task) management operations,
such as methods to create objects, destroy objects, and query instance status and location. Furthermore,
Class Managers serve & palicy makers for their instances, controlling adivities such as resource usage
(permitting its instance to run orly onaknown set of trusted hasts, for example). Internally, Class Managers
ad as active monitors for their instances, maintaining up-to-date status information about each. Class
Managers monitor their instances for failures, and coordinate failure response activities in case of faults.

An additional ClassManager serviceis persistence--all Legion dyjects can be persistent, existing arbitrarily
beyondthe lifetime of their creating program. SinceLegionisintended to enable systems containing
billions of objects, it suppats the notion of objed deactivation to avoid overloading the system with idle
processs in the presence of large numbers of persistent objects. When an dbject isnot in useit can be
deactivated: its state is saved to stable storage and its containing processis deallocaed. This notion of
object activation/deectivationis smilar to traditional operating systems temporarily swapping out a running
jobto stable storage then later recovering thejob's date, allowing it to resume. To make objed deactivation
transparent to clients, the ClassManager ads as an automatic reectivation agent for itsinstances. If a dient
attempts to invoke amethod onan inactive object, the objed’s Class Manager automaticaly reactivates the
object, making readivation in Legion as transparent as resuming swapped-out processesin traditional
systems.

The decomposition d object management resporsibilitiesinto an arbitrary number of Class Managers
provides a natural distribution and resulting scalability of object management activitiesin Legion.
Furthermore, since Class Managers are extensible, replaceable objects, they provide anatural means for
extending or replacing object management mechanismsin Legion. For example, to enable certain forms of
failure resilience some Legion classes employ replication, in which case an extended version o the Class

Manager creates and manages the repli cas of each instance transparently to clients.

3.3. Naming

Naming is abasic interfaceissue in operating system design. For example, modern operating systems
typically define aname space for identifying processs (e.g., PIDs in Unix), aswell as afile system name
space for identifying files and drectories. In Legion, al entities--files, processors, storage devices,

networks, users, etc.---are represented by objects, so the object naming medhanism is of central importance.

Legion dojeds areidentified by athreelevel naming scheme. At the lowest level ead object isassigned an
Object Address(OA), which contains alist of network addresses that can be used to passmessages to the
object (an OA might contain an |P addressand port number). But since Legion dojects can migrate, OAs
will vary over time. Furthermore, clients may not care about object locations. Therefore Legion defines an
intermediate layer of location-independent names called Legion Object Identifiers, or LOIDs: unique,
immutable identifiers that are assigned to dbjeds on creation. Although higher level than OAs, LOIDs are
binary, globally unique, variable-length identifiers, and do rot constitute aconvenient user-level naming

scheme. To addressthis, the third level naming layer is a user-level, hierarchical directory service caled

context space, which all ows arbitrary Unix-like string paths to be assigned to dojects. As part of its naming
mechanism Legion provides scalable replicated binding services that allow trandation from higher-level
names to lower-level names (i.e., context pathsto LOIDs and LOIDsto OAs). Also, to reduceoverall

binding traffic, clients cache bindings in their own memory space

The Legion nraming mechanism eff ectively reduces the complexity of distributed appli cation design by
providing asingle global name spacefor al entities within the system. A typicd distributed environment
suppats separate name spaces for files, hosts, and rocesses, whereas L egion supports the same global name
spacefor al of these entities and more. Furthermore, at the highest level (context space) this naming
medanism presents an extremely ssimple interfaae of Unix-style paths.

3.4. File System

In traditional operating systems, persistent storage is typically managed in the form of afile system.
Legion's use of persistent objects, couped with the Legion gobal naming service, enables Legionto fully
subsume the notion of afile system. Users are presented with familiar concepts of paths, directories, and
universally accessiblefiles, but Legion's "file system" isalso populated with other arbitrary object types
such as Host objects, Class Managers, and user appli cation tasks.

Legion's suppat of ageneralized persistent object spacein place of atraditional rigid file system provides
the basis for an extensible file system servicein which individual files are austomized to better suit
application requirements. For example, Legionfile objects can be made to support appli cation-spedfic
acaesspatterns. Consider afilelogicaly containing atwo-dimensional grid of dataitems: in atraditional
fileinterface acessto asingle row or column of the grid might require multi ple file operations, bu in
Legion an extended file type can be used to represent the 2-D fil e oject, providing additional methods

allowing row and column access.

3.5. Interprocess Communication

To enable interprocesscommunication, Legion supports a variation of remote methodinvocation designed
to addressthe needs of wide-area gplications. Wide-areasystems communication can be costly, in terms of
both latency and bandwidth. Applicationsin the wide-areaoperating system require dfective tods for
reducing interprocess communicaion, and for tolerating the high latencies involved. To addressthisisaue,
Legion supports a remote methodinvocaion model known as maao-dataflow (MDF) in addition to (and
built upon) abasic, low-level message-passng service.

MDF is an asynchronaus remote methodinvocation protocol that enables multiple concurrent method
invocaionsfrom asingle client aswell asthe overlap of remote methods and locd computation.
Furthermore, MDF methods encode data-dependencies for remote methodresults. In MDF, aremote
methodcdler need never receive the results of that method. If the results are neaded only as parameters for
other future methodinvocations, thisfact is encoded in the methodinvocation protocol and the remote
methodimplementation will forward the results diredly to the objects that will handle the gpropriate future
invocations. Legion automates this protocol, enabling the dient (typicaly through the use of a Legion-
aware compil er such as MPLC [6]) to specify complete program graphs of interdependent remote method
invocations, and enabli ng objects to match incoming parameters into complete methodinvocations
(including data dependencies).

3.6. Protection

Seaurity isan integral part of the services required from awide-areaOS. Resource providersin the system
desire protection from user applications and from parts of the system outside their local domain.
Furthermore, they require the ility to ensure that locd resources are managed by the wide-areaOSin a
manner that preserves local policies. Applications programmers have a @mplementary set of concerns,
wanting to ensure that the desired security properties of their applications are achieved. To enable the
expression and enforcement of security padlicies, by both resource providers and application programmers,

Legion provides a set of seaurity mechanisms developed as an integral part of the Legion dojed architecture.

The basic seaurity service provided by Legionis user-sel ectable data privacy and integrity within the Legion
message passng layer. Legion alows messagesto be fully encrypted for privacy, digested and signed for
integrity checking, or sent in the clear if low performance overhead is an application griority. Cryptographic
servicesin Legion are based on the RSA public key system [7]. To protect against certain kinds of public
key tampering, objects encode their RSA public keys directly into their LOIDs. Simply by knowing the
name (LOID) for an dojed, aclient isaswured of being able to communicae seaurely with that objed.

In any operating system, access control and resource protection are central issues. In Legion, all resources
are represented by objects, so aacesscontrol and resource protedion are specified entirely at the object level.
Accesscontrol in Legionis enforced autonamously by invoked oljects on a per-method kasisusing a
mandatory internal method called Mayl. When a methodinvocaion arrives at an dbject, it isfirst processed
by the object's Mayl method,which can enforce a arbitrary accesscontrol policy. Typicaly, access control
dedsions are made by Mayl onthe basis of credentials passed along with method rameters. Credentials

1C

consist of afreeform set of rights signed by aresponsible client. For example, a credential might read, "the
beaer hastheright to call the read method onfil e 'paper.txt’, signed Adam," where "paper.txt" and "Adam"
are object names. The default Mayl implementation is based onuser-configurable access control lists,

including the notion of groups (supported by Group objects).

In order for system-level aacesscontrol medhanisms to interface with and apply to human users, operating
systems must define mecdhanisms for user identity and authentication. Like al other Legion entities, users
are represented by objects which are assigned unique LOIDs. Whil e the user's LOID contains his public key
the user keeps his private key safe through arbitrary local means, such asasmart card. Trusted Legion
programs exeauted by the user (e.g., the Legionlogin shell) rely onthe user's private key to sign appropriate
credentials for outgoing methods. These credentials form the basis for authenticating the user and are
typically used in conjunction with per-object accesscontrol lists to enforce user accesscortrol.

Provide Users
Access '
‘!” Run storage ssersirsgs Collaborate - ‘
o —
e programs —

===

Be&eley iiD‘S_CI _ UVa U Michigan
0 = v
Cllray T;O l@ i%

SP2 Centurion

SP2

ol o[l

Figure 1. The Legion System. L egion ads as a wide-areaoperating system, providing the abstradion of aglobally
accesgble objed spaceto users. Thisobjed spaceis sipparted by, and provides an interfaceto, awidely distributed,
heterogeneous resource base spanning multi ple administrative domains.

11

4. Legion in Practice

The set of services provided by Legion comprise awide areg crossdomain, heterogeneous operating system
(seeFigure 1, above). The primary goal of this operating systemis to effectively support wide-area
applications. So how are gplications structured to use Legion's srvices and to satisfy their requirementsin
thiswide-areaOS environment? To answer this question we return to one of our motivating examples: the
MRI data mllection system for Harvard Medical Schod.

The componrents of the MRI data wlledion applicationrun oncentral servers at Harvard and onfront-end
computers located at the MRI centers. The achitectureisasimple star. At ead leaf nodethereisan MR
collection dbject that scansthe local disk for specialy tagged MRI images that have been dumped by the
scanner. Theseimages are copied into the persistent data space of the object so that they will not be lost
when the scanner's "dumping directory" is automatically wiped. Periodically the MRI coll ection dject calls
the central processng objed at Harvard to udoad the data in encrypted form, authenticating itself through
theinclusion of appropriately signed certificates in the methodinvocaions. When it receives a mmplete
batch of scans, the central processing object starts an image processing pipeline, which consists of objeds
automaticdly scheduled orto local compute servers. The results are inserted in the projed’s image database.

When aleaf nodeisrebooted, the node's host object starts automatically and registers with its manager in the
larger Legion ret. The Class Manager object for the MRI coll ection comporent detects, via paling of the
host object manager, that the node is up and requests arestart of the MRI coll ection doject for that node.

The host object onthe node handles the request, detecting simultaneoudly if the MRI coll ection abject has
been upgraded and, if so, downloading the new executable automatically. Asit comes upthe MRI

collection dbject recoversits gate, which may included as-yet-untransmitted MRI scans.

Both the host object and MRI collection dojed Class Managers have replicated persistent state. If the Class
Manager goes down, its own higher-order Class Manager will detect the lossand restart it using the replica
This detection and restart behavior recurses up atree of metamanagers (typicaly only one or two levels) to

the roat Legion manager object, which has a hot spare.
The ClassManager, haost, and aher objectsin the system are all configured with strict accesscontrol. Calls

to various objects must present credentials to gain authorization. The MRI coll ection application and its
Legioninfrastructure is owned and accessble only by a small set of Legion users at Harvard. These users

12

can centrally monitor and configure the system using Legion tods that provide views of all the hosts,

objects, etc., that are running or down.

5. Related Work

Thereisarich literature on distributed systems going badk over two decades. A goodstarting placeis Sape
Mullender's two distributed systems bodks[9,10]. These books are a mllection of lecture notes from five
separate instances of "The Advanced Course in Distributed Systems." Another good sourceis the Coulouris,
Dollimore, and Kindberg textbodk [11]. An excellent treatment of distributed operating systems can be
foundin Tanenbaum [12].

5.1 Metacomputing Systems

The Globe project [13], at Vrije University, shares many common goal s and attributes with Legion. Both
occupy middieware roles (running on top of existing hast operating systems and retworks), both support
implementation flexibility, bah have asingle uniform object model and architecture, and both use class
objects to abstract implementation cetails. But where aGlobe object is passive andis asaumed to be
physicdly distributed over potential y many resources in the system, aLegion doject is active. In addition,
we dort preclude the possibility of an object being physically distributed over multi ple resources but we
expect that it will usually reside within asingle address pace These different views of objectslead to
different mecdhanisms for interobject communicaion: Globe loads part of the object (called alocal object)
into the address gpaceof the caller whereas Legion sends a message of a specified format from the caller to
the callee Ancther important differenceis Legion's use of core objed types. Our core objects are designed
to have interfaces that provide useful abstractions that in turn enable awide variety of implementations. We
are not aware of similar effortsin Globe. We believe that the design and development of the wre objed
types define the achitecture of a system, and utimately determine its utility and success.

The Globus project [14], at Argonne National Laboratory and the University of Southern California, and
Legion share acommon hese of target environments, technical objedives, and target end users, aswell asa
number of similar design features. However, we have fundamentally different philosophies driven by
fundamentally different high level objectives. Globus drivesto provide abasic set of servicesthat makesit
possible to write applications that operate in awide-areaenvironment. The Globus implementationis based
onthe compasition of working comporents into a mmposite metacomputing toolkit. Legion strives to
reduce complexity and provide the programmer with a single view of the underlying resources. Legion

builds higher-level system functionality ontop of a single unified object model.

13

The Globus approach of adding value to existing high-performance @mputing services, enabling them to
interoperate and work well in awide-areadistributed environment, has a number of advantages. For
example, this approach takes great advantage of code reuse, and buil ds on user knowledge of famili ar todls
and work environments. But this sum-of-services approach has a number of drawbadks: as the number of
services grows in such a system, the lack of acommon programming interface ard model becomes a
significant burden onend wsers. By providing a mmon olject programming model for all services, Legion
enhances the ability of usersandtool buildersto employ the many services that are needed to effectively use
ametacomputing environment: schedulers, 1/0 services, application comporents, and so on.Furthermore, by
defining a @mmon olject model for all applications and services Legion allows a more direct combination
of services. For example, traditional system-level agents such as schedulers can be migrated in Legion just
as normal application processes are, since both are normal Legion dojects exporting the standard object-
mandatory interface. We believe the long-term advantages of basing a metacomputing system on a whesive,
comprehensive and extensible design ouweigh the short-term advantages of reusing existing parall el and
distributed computing services.

5.2. Legion and CORBA

CORBA, the Common Object Request Broker Architecture [8], isawell-known dstributed abject standard.
CORBA's most recent version, 3.0, defines communication protocols, naming and binding mecdanisms,
invocaion methods, persistence and many other features and services esential for an object-based

architedure. Itsfeature set and Legion's overlap in many aress.

Nevertheless, the two architectures are distinct in their underlying emphasis. CORBA wasinitialy a
reaction to the software integration problem. Diff erences between software componrentsin location, vendor,
implementation language, or execution datform made buil ding integrated appli cations difficult if not
impossble. The CORBA developers focused onenabling interoperability, and the architecture provides a

common, ojed-based playing field where comporents can communicate and interad.

In contrast, the Legion project began with fundamental computing resources on a wide-areanetwork---CPU,
disk, data, etc.---and bult an overarching framework for them. This OS-style goproadch targeted the ability
to manage and reason about these resources. The goal was to reconstruct a wherent computing environment
with core OS cgpabilities over acomplex, heterogeneous environment. One outcome of this approach is that
Legion can be used simply for its high-level OS services to run, schedule, and manage legacy applicationsin
anetwork. But it also provides the same sort of common daying field as CORBA (and can mimic the
CORBA standard) for integrating applications. The two aspects combined give Legionitsred power.

14

As CORBA evolves, some operating system-type services are starting to be defined for it. Scdability and
other wide-area oncerns are becoming more important. It remainsto be seen how well its architecture will

acommodate these changes.

5.3. The World Wide Web

What is commonly referred to asthe "Web" is not asingle entity whose characteristics can beisolated and
analyzed. Instead, the Web is abroad category of applications, protocols, and libraries, primarily focused
uponcontent delivery to end-user clients running Web browsers. Advancesin Web browser interfaces and
functionality have driven the Web revolution, transforming the World Wide Web from atool used by afew
scientists into the omnipresent phenomenonit istoday. Given the Web's broad scope, and the fact that the
Web ismost users primary experience of distributed computing today, it isimportant to consider the Web's

rolein the wide-areaOS.

First, we ague that the Web in its current form clearly does not constitute awide-areaOS of itsown. Basic
operating system isaues, such as resource management and task scheduling, are smply naot defined as part of
the Web's dructure. We view this not as an indictment of the Web, lbut arecognition o the Web'sred
strengths as aremote access medium for distributed content, and as a ubiquitous interface technology for

acaesdng distributed applications.

Given these strengths, the Web constitutes a perfect front-end, a interface to applications running in wide-
areaOSs, such as Legion (seeFigure 2, below). Applicationinterfaces can be written in Java, or they may
use HTML and the Common Gateway Interface (CGI). They can communicae with back-end applicaions
using either native socket protocols or HTTP, or using higher-level interfaces provided by the wide-areaOS.
Viewed this way, the Web and wide-areaOSs such as Legion are complementary. For many users, the Web

provides the most natural window into the Legion uriverse.

15

i [=[Bx] B =] £
Fe Edt View Go Communicator Help Fie Edt View Go Communicalor Heb

FEY YNy H - -22za2808 [
HE! s
e) iy -
: 1,. §“*
WwWw ‘ b= D |
I ‘ Iﬂucxblc
I;‘I [rsigned Java Applet Window L’:/J [[Ursigned Java Applel Wirdow
Legion
Applications
Legion OS Legion Services

Figure 2. Legion and the Web. The Web provides an ided interfacetechnology for building front-ends for distributed
applicaions. Core gplicaions execute within Legion, using the Legion wide-areaOS services. Clients running web
browsersinterad with applicaionsin avariety of ways, ranging from standard HTTP and CGl, to control via adive
content using sockets or Legion method invocation as communication media.

6. Conclusion

Rapidly falling wide-areabandwidth prices are bringing with them increasing demand for wide-area
applications: applications whose physical and software componrents are geographically distributed,

run onmultiple platforms, and dten overlap multiple alministrative domains. Complexity management in
this environment is critical to reduce the mgnitive burden ondesigners and programmers. We believe that
simply extending existing tod sets and cobbling together ad-hoc solutions with scripts and socketsis a
fundamentall y flawed approacd to the problem. Instead, system software that provides higher level
abstractionsisrequired.

Wide-areaOS software has the adility to simplify the cnstruction d applications for wide-areasystems
much in the same way that operating systems smplified the development of applicationsfor single CPU

16

systems over thirty yeasago. We further believe that object-based approaches to wide-areaoperating

systems are best-suited to the problem due to their complexity encapsulation properties.

Five yeas ago we set out to design and huild awide-areaOS. We started from scratch and designed the
system from first principlesto mee the needs of awide-areg multi-organization system. Theresult, Legion,
isan operational system that isrunning at a number of sitesin the United States, including the two NSF
supercomputer centers (SDSC and NCSA), two of the DoD supercomputer centers (NAVO and ARL),
NASA ARC, and at a number of universities. (See <http://legion.virginia.edu> for more information m

Legion.)

A number of scientific gpplications have been ported to Legionfrom areas as diverse & molecular biology,
materials science, ocean and atmospheric science, el ectrical engineering, and computer science. Our
experienceto date has been good--users have responded particularly well to the ancept of a single global
object space, and the subsidiary notion o aglobal extensible file system that the objea space supports.
Furthermore, the object model has proven a anvenient medium for expressing a range of user-required
system services auch as the Message Passing Interface (MPI), apopuar library for developing distributed
memory parallel programs. Starting from our successful base of system deployment and application
suppat, we ae continuing the development of higher-level servicesin Legion, driven by the demands of

exemplary applications, such as those described in this paper.

Acknowledgments

The authors thank Charles Guttmann d the Department of Radiology, Harvard Medical School, for the MR
example, and Greg Follen of NASA LERC for briefing us on Boeing and Pratt & Whitney. Finadly, thanks to

Sarah Wells for her assistance on the manuscript.
References:

[1] De, P.,and T. W. Ferratt, "An Information System Involving Compteting Organizations,”
Communications of the ACM, vol. 41, no.12, pp.90-98, Decanber, 1998.

[2] Object Management Group. The Comnon Object Request Broker: Architecture and Secification,
Revision 2.2 OMG Document 96.0304, Framingham, MA, 1988.

17

[3] Grimshaw, A.S., M. Lewis, A.J. Ferrari, and J.F. Karpovich, "Architectural Support for Extensibility
and Autonomy in Wide-AreaDistributed Object Systems,” Technical Report CS98-12, Department of
Computer Science, University of Virginia, June, 1998.

[4] GENIAS Sftware GmbH. Codine reference manual, Genias, May 1993.http://www.genias.de/

[5] IBM. Load_eveler User's Guide, Release 2.1 (IBM SH26-7226
http://mww.rs6000. bm.com/software/sp_products/loadlev.html

[6] Grimshaw, A.S. "Easy-to-use objed-oriented parallel processing with Mentat," | EEE Computer, pp. 39
51,May 1993.

[7] RSA Laboratories. RSA Reference Library Implementation 2.0 http://www.rsa.com

[8] Sedharaman, K., ed."The CORBA Conrection”, specia issue Comrrunications of the ACM, vol. 48, no.
11, November, 1998.

[9] Mullender, S. Distributed Systems - Second Edition, Addison-Wedey, ACM Press 1993.

[10] Mullender, S. Distributed Systems, ACM Press 1989.

[11] Coulouris, G., J. Dallimore, and T. Kindberg. Distributed Systems: Concepts and Design, Addison-
Wedley, 1994.

[12] Tanenbaum, A.S. Distributed Operating Systems, Prentice-Hall, 1995.

[13] Van Steen, M., P. Homburg, and A.S. Tanenbaum. "Globe: A Wide-AreaDistributed System," |IEEE
Concurrency, vol. 7, no.1, pp.70-78, January, 1999.

[14] Foster, I. and C. Kesselman. "Globus: A metacomputing infrastructure toalkit," International Journal of
Supercomputer Applications, 11(2):115128, 1997.

18

