
Incremental Learning of New Classes from Unbalanced Data

Gregory Ditzler, Gail Rosen, and Robi Polikar

Abstract—Multiple classifier systems tend to suffer from out-
voting when new concept classes need to be learned incrementally.
Out-voting is primarily due to existing classifiers being unable to
recognize the new class until there is a sufficient number of new
classifiers that can influence the ensemble decision. This problem
of learning new classes was explicitly addressed in Learn++.NC,
our previous work, where ensemble members dynamically adjust
their own weights by consulting with each other based on their
individual and collective confidence in classifying each concept
class. Learn++.NC works remarkably well for learning new
concept classes while requiring few ensemble members to do
so. Learn++.NC cannot cope with the class imbalance problem,
however, as it was not designed to do so. Yet, class imbalance is
a common and important problem in machine learning, made
even more challenging in an incremental learning setting. In
this paper, we extend Learn++.NC so that it can incrementally
learn new concept classes even if their instances are drawn
from severely imbalanced class distributions. We show that the
proposed algorithm is quite robust compared to other state-of-
the-art algorithms.

Keywords-multiple classifier systems; unbalanced data; incre-
mental learning;

I. INTRODUCTION

Learning from large volumes of data over time, including
streaming data, is typically handled by incremental or online
learning algorithms. A learning algorithm is incremental if,
for a sequence of training data sets (or instances), it produces
a sequence of hypotheses, each describing all data seen thus
far, but depends only on previous hypotheses and the current
training data. Hence, an incremental learning algorithm must
learn the new information, and retain previously acquired
knowledge, without having access to previously seen data [1],
which then raises the so-called stability–plasticity dilemma [2].
A strictly stable classifier can preserve existing knowledge,
but cannot learn new information, whereas a strictly plastic
classifier can learn new information, but cannot retain prior
knowledge. Multiple classifier systems (MCS) provide a good
balance between the two seemingly opposing goals, by simul-
taneously increasing the memory (to aid stability) and learning
capacity (to aid plasticity) of the learning algorithm: adding
new classifiers to the ensemble help learn the new data, while
retaining previous classifiers maintain existing knowledge.
However, such an approach has its own shortcomings: there
will always be classifiers trained on only a subset of the

G. Ditzler and G. Rosen are with the Dept. of Electrical & Computer
Engineering at Drexel University, Philadelphia, PA. They are supported by the
National Science Foundation (NSF) CAREER award #0845827, NSF Award
#1120622, and the Department of Energy Award #SC004335. Author email:
gregory.ditzler@gmail.com, gailr@ece.drexel.edu

R. Polikar is with the Dept. of Electrical & Computer Engineering at Rowan
University. He is supported by the NSF under Grant No: ECCS-0926159.
Author email: polikar@rowan.edu

concept classes, hence guaranteed to misclassify instances
from other classes on which they were not trained. This
is a problem, because classifiers not trained on a particular
concept class can out-vote those that were trained on that
class. Of course, classifiers not trained on a particular class
should ideally not vote for instances of that class, but that
requirement creates a paradox: the whole purpose of the
classifier is to identify the class of a previously unknown
instance. If we knew to which class an instance belongs – so
that we prevent classifiers voting on instances whose classes
they are not trained – we would not need a classifier in the
first place. Learn++.NC (New Classes) explicitly addresses
out-voting problem in ensembles [3], by allowing a classifier
not trained on a novel class to reduce or withdraw its vote on
an instance, if other member classifiers trained on the novel
class overwhelmingly choose that class. This voting procedure
is referred to as Dynamically-Weighted Consult and Vote (DW-
CAV).

As an example, consider an incremental learning algorithm
that builds classifiers from animal image databases. Let the
first database only contains images of cats and dogs. Therefore,
the classifier trained on the first database can only accurately
predict on images of cats and dogs. Later, a new database
becomes available with cats, dogs, deer, and bears. Unfortu-
nately, the classifier(s) trained on the previous database will
be unable to correctly identify images of deer and bears
(assuming the classifier is not updated). In fact, the classifier
will label all images of deer and bears as cats and dogs,
because those are the only concept classes known to the
classifier. DW-CAV presents an elegant solution to combining
classifiers that have been trained on a subset of the concept
classes within the overall context of the learning problem.

Incremental learning of new classes becomes even more
challenging if new classes are also unbalanced. Unbalanced
(or, also referred to as “imbalanced”) data occurs when one
or more classes are heavily under-represented in the training
data, a common occurrence in real world machine learning
applications [4]. Unbalanced data are usually handled by over
sampling the minority class or under sampling the majority
class data, the most successful implementation of which is
the Synthetic Minority Oversampling Technique (SMOTE)
[5]. Ensemble-based algorithms, in particular variations of
AdaBoost, have also been used in learning class imbalance
through cost-sensitive measures or appropriate (over or under)
sampling mechanisms for choosing training data. SMOTE-
Boost [6]; AdaCost [7]; DataBoost [8] and RAMOBoost [9]
are examples of such approaches. While all of the afore-
mentioned algorithms are able to address unbalanced data
(with varying levels of success), none of them are well suited



for incremental learning, let alone incremental learning of
new classes. Given that there are successful algorithms for
incremental learning of new classes, such as Learn++.NC, and
for learning from unbalanced data, such as SMOTE, a logical
approach for incremental learning of new under-represented
classes is a suitable integration of such approaches. Feasibility,
implementation and performance of such a suitable integration
constitute the focus of this work.

We previously explored a simpler version for incremental
learning from imbalanced data [10]; however, that approach
assumed that certain classes are only underrepresented in
the current training batch, but themselves were not actually
a minority class. That is, the class imbalance is local and
not global. In this work, we address the more general, and
the more practical problem of global class imbalance for the
incremental learning of new classes.

The primary contribution of this work is a hybrid algo-
rithm, Learn++.NCS (New Classes with Sampling) that uses
a SMOTE wrapper to facilitate learning of a minority classes
even when new/old classes are introduced/removed intermit-
tently during an experiment. The wrapper can be extended to
learning algorithms other than Learn++.NC as demonstrated
in Section III.

II. APPROACH

Learn++.NCS employs Learn++.NC for the incremental
learning of new classes along with a SMOTE-based sampling
wrapper to better learn a minority class.

A. Learn++.NCS

Learn++.NCS, whose pseudo code is shown in Fig. 1, is
an incremental learning algorithm that avoids the classifier
out-voting suffered by other ensemble based approaches [3].
Learn++.NCS receives a series of k batches of data (pre-
sented at subsequent time stamps), where Dk contains training
instances (xi, yi) in each batch. In an incremental learning
setting, not all classes may be represented in each batch at time
k. For example, new classes may be added in time, whereas
some of the old ones may not be updated. Learn++.NCS gen-
erates Tk classifiers for each database, using BaseClassifier,
which can be any supervised learner. Learn++.NCS begins by
initializing the distribution of instance weights, Dk

t in Line
5 (of the inner loop), to be uniform, unless there is prior
knowledge (i.e., k > 1 and an ensemble is already available).
A subset of Dk is sampled with replacement according to the
probability distribution given by Dk

t . Refer to this data sample
as Dk

t .
The SMOTE wrapper, discussed in more detail in the next

section, is applied to Dk
t to select a suitable set of SMOTE

parameters to generate strategically selected synthetic data
(line 6) for the minority class. The union of the synthetic data
and Dk

t is denoted as Hk
t , which is used by BaseClassifier

to generate a new classifier (hypothesis) hkt in line 7. The
error of this hypothesis, εkt , with respect to the probability
distribution Dk

t is then calculated (line 8), where J·K is the
indicator function. If the error on Dk

t is greater than 1/2, a

Input: Batch data: Dk = {(xi, yi)} ∀i ∈ [mk]
Tk: Number of classifiers generated on the th data set
BaseClassifier: weak classification algorithm
Initialize: Dk

t (i) = 1/mk

1: for k = 1, . . . ,K do
2: Go to Step 5 to adjust instance weights
3: If k 6= 1 then set t = 0 and go to line 11
4: for t = 1, . . . , Tk do
5: Normalize instance weights Dk

t (i) using,

Dk
t (i) =

wk
t (i)∑mk

j=1 w
k
t (j)

6: Obtain Hk
t by calling SMOTE wrapper with Dk

t

and Dk

7: Call BaseClassifier with Hk
t

8: Obtain a hypothesis hkt : X 7→ Ω and a pseudo
error of the hypothesis

εkt =

mk∑
i=1

Dk
t (i)Jhkt (xi) 6= yiK

if εkt >
1
2 , generate a new hypothesis

9: Set βk
t = εkt /(1− εkt )

10: Let Ωk
t be the classes on which hkt was trained

11: Call DW–CAV with Dk to obtain a composite
hypothesis Hk

t

12: Compute pseudo error of the composite hypoth-
esis

Ek
t =

mk∑
i=1

Dk
t (i)JHk

t (xi) 6= yiK

13: Set Bk
t = Ek

t /(1− Ek
t )

14: Update instance weights

wk
t (i) = wk

t (i)B1−JHk
t (xi)6=yiK

15: end for
16: end for

Fig. 1. Learn++.NCS pseudo code

new classifier is generated otherwise the error is normalized in
line 9. The threshold for 1/2 assures that the classifier will be
performing better than random chance, and in many situations
with a large number of classes, the classifier would perform
much better than random chance. Since hkt is not trained on
every class, we store the classes on which hkt is trained as Ωk

t .
Unlike AdaBoost and other algorithms based on AdaBoost,

Learn++.NCS cumulatively combines the ensembles, and
not the individual classifiers. To do so, Learn++.NCS calls
Dynamically Weighted Consult–and–Vote (DW-CAV) where
voting weights of the classifiers are dynamically adjusted for
each instance based on the collective decisions of all current
ensemble members, and the classes on which each is trained



Input: Instance x, Classifiers, hkt , along with training
information in Ωk

t , and normalized pseudo error βk
t

Initialize: W k
t = log(1/βk

t )
1) Compute a confidence factor Zc

Zc =
∑
k

∑
t:ωc∈Ωk

t

W k
t

2) Compute class specific confidence

Pc(i) =
1

Zc

∑
k

∑
t:hk

t (x)∈Ωk
t

W t
k


3) If Pj(i) = Pl(i) = 1 (j 6= l) such that Ej∪El = ∅

then set Pj(i) = Pl(i) = 0 (where Ej is the set
of classifiers whose training data included ωc)

4) Update classifier voting weights for x

Ŵ k
t = W k

t

∏
c:ωc /∈Ωk

t

(1− Pc(i))

5) Compute final (or current) hypothesis for x

Hf (x) = arg max
y∈Ω

∑
k

∑
t:hk

t (x)=y

Ŵ k
t

Fig. 2. DW-CAV pseudo code

[3]. DW-CAV, whose pseudo-code is shown in Fig. 2, first
initializes classifier-voting weights (W k

t ), based on the log
normalized classifier errors on their own training data. A
normalization constant, Zc, is computed for each class c,
which is the sum of the initial weights of the classifiers that
were trained on class c. Then, a preliminary confidence, Pc(i),
is computed for each instance xi, and each class ωc, which is
given by,

Pc(i) =
1

Zc

∑
k

∑
t:hk

t (x)∈Ωk
t

W t
k

 (1)

Thus, Pc(i) is the ratio of the weight of the classifiers that
choose class c for instance i to the total weight of the classifiers
trained on class c.
Pc(i) can be interpreted as follows: a large value of Pc(i)

(e.g., close to 1) indicates an overwhelming majority of
classifiers trained on class c identify xi belonging to class c.
If classifiers trained on class c overwhelmingly choose class
c for xi, then classifiers not trained on c realize that they are
trying to identify a class on which they were not trained, and
hence reduce their voting weight in proportion to Pc(i) using,

Ŵ k
t = W k

t

∏
c:ωc /∈Ωk

t

(1− Pc(i)) (2)

The current ensemble decision is obtained as the composite
hypothesis H(xi) using weights determined by DW-CAV

Input: Dk
t and Dk

Ĉ: set of minority classes
α: change threshold (default=0.05)
Initialize: SMO AMOUNT[c]=0 ∀c ∈ Ĉ

1: for c ∈ Ĉ do
2: Convert Dk to a binary classification problem with

c as the minority class. Call this data set H.
3: Sort Dk

t into Hmin (minority class c) and Hmaj (all
other classes except c)

4: Train a classifier with Hmin and Hmaj
5: Test the classifier with H and compute the f-

measure on the majority (fmaj) and minority class
(fmin).

6: Set γ = fmaj − αfmaj, fold = 0, and
SMO AMOUNT[c]=100

7: while true do
8: Generate H′ by calling SMOTE on Hmin with

SMO AMOUNT[c]% of oversampling.
9: Generate a new classifier with {Hmin,Hmaj,H′}

then test on H and compute fmaj and fmin.
10: if (fmaj ≥ γ)&&(fmin ≥ fold) then
11: SMO AMOUNT[c] += 100
12: else
13: break
14: end if
15: fold = fmin
16: end while
17: end for

Fig. 3. SMOTE wrapper pseudo code

using,

Hf (x) = arg max
y∈Ω

∑
k

∑
t:hk

t (x)=y

Ŵ k
t (3)

Finally, the distribution weights are updated using,

wk
t (i) = wk

t (i)B1−JHk
t (xi)6=yiK (4)

This process is repeated iteratively for k ∈ [K] and t ∈ [Tk].

B. SMOTE Wrapper

A SMOTE wrapper is used by Learn++.NCS to determine
an appropriate level of synthetic minority instances (SMOTE
percentage) to be used by the algorithm. A wrapper is useful
for several reasons: it limits the amount of prior knowledge
needed, it avoids the heuristic of using a rule of thumb to
select SMOTE parameters; and it reduces the number of free
parameters by performing a parameter search.

The wrapper, whose pseudo code is shown in Fig. 3,
receives bootstrap data sample Dk

t from Learn++.NCS in
line 6 of Fig. 1, the training data set Dk, the labels of the
set of minority classes Ĉ and a change threshold α (default
0.05). The minority classes can be determined empirically by



1: Input: x` minority data ∀` ∈ [L] where L is the
cardinality of the minority data
SMO: Amount of SMOTE (%)
Initialize: S = ∅

2: for ` = 1, . . . , L do
3: Find k nearest neighbors of x`

4: Q = bSMO/100c
5: while Q 6= 0 do
6: Randomly select one of the k neighbors, call this

x̄
7: Select a random number α ∈ [0, 1]
8: x̂ = x` + α(x̄− x`)
9: Append x̂ to S

10: Q = Q− 1
11: end while
12: end for
13: Output: Synthetic data S

Fig. 4. SMOTE pseudo code

examining prior probabilities or by using prior knowledge
(e.g., in a credit card fraud scenario the minority class will
be associated with fraudulent charges). The wrapper begins
by converting Dk into a binary classification problem, where
c is the current minority class and all other classes are
considered part of the majority class. Similarly, Dk

t is split
into a majority (Hmaj) and minority (Hmin) class subsets. A
hypothesis is generated by calling BaseClassifier on Dk

t so
that a baseline f-measure for the majority class is obtained and
is used to set a threshold γ = (1 − α)fmaj, where fmaj (fmin)
is the f -measure when the target is the majority (minority)
class. This threshold will serve as a stopping criterion, which
determines when enough synthetic data have been injected into
Dk

t before a severe degradation of the f-measure occurs. The
SMOTE percentage (SMO) is initialized to 100%, amounting
to doubling minority class data. Next, the wrapper enters a
loop, which continues until the stopping criterion is met. Inside
the loop, SMOTE (refer to Fig. 4) is called with SMO and
Hmin, returning the synthetic minority data H′. A new base
classifier is then generated with Hmaj, Hmin, and H′ (i.e.,
original data plus the synthetic data generated using SMOTE).
fmaj and fmin are computed for the new classifier on Dk. If fmin
has increased and fmaj has not dropped below γ, the current
value of SMOTE is saved, continuing the loop; otherwise, the
loop is broken and the current value of SMO is kept for class
c.

Our SMOTE wrapper differs from other wrappers, such as
the one presented in [11]. Specifically, the proposed wrapper:
1) is performed at each boosting iteration rather then applying
the wrapper to a single classifier; 2) focuses on maximizing
the f-measure on the majority and minority classes; and 3) has
lower computational complexity than the methods presented
in [11] because the proposed approach is not searching for an

TABLE I
CLASS INTRODUCTION AND REMOVAL FOR THE OCR DATA SET

ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9

D1 0 257 248 0 0 248 248 0 0 252
D2 0 0 247 257 0 0 247 252 0 0
D3 248 0 0 256 0 0 0 252 248 0
D4 247 256 0 0 257 242 0 0 247 252
DH 60 60 60 60 60 60 60 60 60 60

under-sampling percentage for the majority instances.

III. EXPERIMENTS

The proposed approach, denoted as Learn++.NCS (which
includes Learn++.NC and the SMOTE wrapper), is compared
against the original Learn++.NC implementation [3], Bagging
[12], and arc-x4 [13], all of which can learn incrementally.
Note that SMOTE itself cannot learn incrementally, and there-
fore is not included in the comparisons. However, the SMOTE
wrapper, as used in Learn++.NCS is also independently
applied to Bagging and arc-x4 (without using Learn++.NC)
in order to make a fair comparison that will allow us to
determine how to properly attribute any observed difference in
performance. Specifically, we want to know whether SMOTE
wrapper can allow any incremental learning algorithm to
accommodate unbalanced data, or Learn++.NCS does really
have any tangible advantage over the incremental learning
algorithms. Each experiment is averaged over 15 independent
trials. We report the individual class performances (i.e., recall
of every class – majority and minority) on four experiments
using two real-world multi-class data sets, and the overall rank
of each algorithm after each new database introduction.

A. Data Set Description & Classifier Selection

The optical character recognition (OCR) database consists
of ten classes with 64 attributes (reduced to 62 due to zero
variance in two of the features), obtained from handwritten
numeric characters (0-9) [14]. The class introduction/removal
learning scenario for the OCR data set is shown in Table I.
We created a particularly challenging learning scenario, where
multiple new classes are introduced and removed at the same
time in each data set. Each training data set is denoted as Dk

for k = 1, . . . , 4 and DH is a hold-out data set for testing
the classifiers. We sample DH without replacement from the
entire database to form the testing set, then sample the Dk

with replacement from the remaining data. We set the number
of minority class instances to 25 (about 5% of all training data
during that time stamp) for each time stamp a minority class
is presented for learning. For example, if ω0 is the minority
class for an experiment, then number of class ω0 instances in
the training set at each time stamp will be [0,0,25,25]. Due
to space constraints, we present only a small representative
portion of the different minority class combinations to demon-
strate the general behavior of the algorithm. Similar results
are obtained when other combinations of classes are in the
minority.



0 5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of Classifiers

P
e
rf

o
rm

a
n
c
e

 

 

Learn
++

.NCS

Learn
++

.NC

Arc−x4

Bagging

(a) OCR data with ω0 and ω2 as the under-represented classes

0 5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# of Classifiers

P
e
rf

o
rm

a
n
c
e

 

 

Learn
++

.NCS

Learn
++

.NC

Arc−x4

Bagging

(b) OCR data with ω1 and ω6 as the under-represented classes

Fig. 5. Algorithm comparison on OCR database with different classes being a part of the minority class (number of classifiers vs. raw classification accuracy).
The vertical lines represent the time stamps where there is a transition to a new data set.

0 10 20 30

0.4

0.5

0.6

0.7

0.8

# of Classifiers

P
e
rf

o
rm

a
n
c
e

 

 

Learn
++

.NCS

Learn
++

.NC

Arc−x4

Bagging

(a) COVTYPE data with ω1 and ω7 as the under-represented classes

0 5 10 15 20 25 30

0.4

0.5

0.6

0.7

0.8

# of Classifiers

P
e
rf

o
rm

a
n
c
e

 

 

Learn
++

.NCS

Learn
++

.NC

Arc−x4

Bagging

(b) COVTYPE data with ω2 and ω3 as the under-represented classes

Fig. 6. Algorithm comparison on COVTYPE database with different classes being a part of the minority class (number of classifiers vs. raw classification
accuracy). The vertical lines represent the time stamps where there is a transition to a new data set.

TABLE II
CLASS INTRODUCTION AND REMOVAL FOR THE COVTYPE DATA SET

ω1 ω2 ω3 ω4 ω5 ω6 ω7

D1 5000 0 5000 5000 0 0 5000
D2 0 5000 5000 0 5000 5000 0
D3 5000 5000 0 0 5000 0 5000
D4 5000 5000 0 5000 0 5000 0
DH 100 100 100 100 100 100 100

The forest cover type (COVTYPE) contains 54 attributes
and is used to determine type of forest cover (Aspen, Douglas-
fir, etc) [14]. There are seven classes for this data set. The class
introduction/removal learning scenario for the COVTYPE data
set is presented in Table II. The same sampling techniques
were applied to the COVTYPE data set as in the OCR data
set. Because this is a much larger dataset, we set the number
of minority class instances to 250 for any given database Dk

in the COVTYPE data set.

A multi-layer perceptron neural network (MLPNN) was
used as the base classifier for all experiments. The MLPNN is
trained with a 64×20×10 (OCR) or 50×20×7 (COVTYPE)
structure with an error goal of 0.1. Sigmoid activation func-
tions are applied to the hidden and output layers. Learn++.NC
generates five classifiers on each database with the exception
of D4 where it generates 15 classifiers. Additional classifiers
are generated on the last data set to demonstrate the stability
and the ability of Learn++.NCS to continue learning while
other approaches quickly forget previously learned knowledge
with additional classifiers if all classes are not represented in
the database.

For each data set tested, we experiment with two different
combinations of minority classes. Note that the minority
classes are chosen arbitrarily.



TABLE III
ACCURACIES FOR EACH INDIVIDUAL CLASS AND THE AVERAGE ACCURACY (LAST COLUMN) ON THE HOLD OUT TESTING DATA SET FOR THE OCR

PROBLEM. ω0 AND ω2 ARE THE MINORITY CLASSES. THE RANK OF EACH ALGORITHM ON EACH INTRODUCTION OF A NEW DATA SET IS INDICATED IN
THE LAST COLUMN.

ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 µ̄
Bagging

D1 0 94.7 93.4 0 0 94.3 97.9 0 0 92.6 47.3 (2.5)
D2 0 80.0 96.3 81.1 0 60.1 99.0 93.3 0 27.0 53.7 (1)
D3 61.7 51.1 93.9 97.2 0 35.2 99.0 99.4 37.8 2.22 57.8 (2)
D4 99.2 95.6 41.2 27.8 94.4 96.3 46.2 56.9 88.7 93.0 73.9 (4)

Arc-x4
D1 0 94.7 93.1 0 0 94.8 97.6 0 0 92.4 47.3 (2.5)
D2 0 79.3 95.9 85.6 0 56.1 99.3 92.6 0 21.8 53.1 (2)
D3 68.1 49.2 93.1 98.7 0 26.3 99.3 99.4 35.0 1.56 57.1 (3)
D4 99.3 96.4 35.3 25.7 95.4 97.1 48.4 57.4 93.1 95.3 74.4 (3)

Learn++.NC
D1 0 96.1 88.8 0 0 95.4 98.9 0 0 94.8 47.4 (1)
D2 0 73.3 71.9 88.6 0 50.9 99.1 91.0 0 21.9 49.7 (4)
D3 40.4 34.1 43.2 89.0 0 42.3 59.0 94.7 84.4 30.1 51.7 (4)
D4 52.2 91.8 36.0 85.9 90.7 85.8 93.1 91.6 84.1 66.3 77.7 (2)

Learn++.NCS
D1 0 93.7 90.6 0 0 96.7 98 0 0 91.4 47.0 (4)
D2 0 70.1 90.7 79.8 0 67.0 99.1 90.0 0 33.0 53.0 (3)
D3 87.1 43.3 75.3 92.7 0 56.2 81.2 94.3 85.4 32.1 64.8 (1)
D4 97.4 90.9 73.6 83.9 91.1 91.1 88.3 93.4 86.6 75.3 87.2 (1)

TABLE IV
ACCURACIES FOR EACH INDIVIDUAL CLASS AND THE AVERAGE ACCURACY (LAST COLUMN) ON THE HOLD OUT TESTING DATA SET FOR THE OCR

PROBLEM. ω1 AND ω6 ARE THE MINORITY CLASSES. THE RANK OF EACH ALGORITHM ON EACH INTRODUCTION OF A NEW DATA SET IS INDICATED IN
THE LAST COLUMN.

ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 µ̄
Bagging

D1 0 87.9 97.1 0 0 92.7 96 0 0 93.0 46.7 (3)
D2 0 73.3 98.8 78.9 0 51.3 98.2 92.2 0 33.2 52.6 (2)
D3 67.2 45.3 97.6 96.7 0 28.4 98.2 98.7 37.1 3.0 57.2 (4)
D4 99.7 88.6 39.1 30.0 93.9 95.0 44.4 63.2 91.0 93.2 73.8 (4)

Arc-x4
D1 0 94.3 97.3 0 0 96.7 95.9 0 0 90.7 47.5 (1)
D2 0 73.9 99.6 86.4 0 57.2 98.7 93.8 0 17.9 52.7 (1)
D3 71.2 46.9 96.0 97.2 0 30.7 98.7 99.0 39.1 1.78 58.1 (3)
D4 99.7 87.1 37.9 29.3 94.7 97.4 47.8 62.0 93.9 95.4 74.5 (3)

Learn++.NC
D1 0 77.8 98.4 0 0 97.0 93.4 0 0 95.7 46.2 (4)
D2 0 38.1 97.9 84.6 0 60.2 78.2 87.7 0 26.1 47.3 (4)
D3 91.6 13.4 88.7 87.2 0 63.1 39.2 91.2 76.6 34.8 58.6 (2)
D4 98.7 41.1 89.2 82.3 92.8 89.8 15.7 93.2 90.8 78.7 77.2 (2)

Learn++.NCS
D1 0 89.6 97.8 0 0 93.9 95.9 0 0 94.2 47.1 (2)
D2 0 61.4 98.1 88.4 0 53.8 97.4 88.7 0 32.3 52.0 (3)
D3 89.2 35.6 83.9 90.0 0 40.1 80.9 91.8 79.7 37.2 62.8 (1)
D4 98.0 82.4 82.7 84.4 87.9 91.7 89.7 92.6 86.2 80.7 87.6 (1)

B. Results on the OCR Data Set

Our first OCR experiment under-samples ω0 and ω2 using
the approach described in the previous section. Each minority
class represents only ≈1.3% of the training data after the
minority classes have been formed as described in the previous
section. Table III presents the class specific performances
on the OCR data set for Learn++.NC, arc-x4, bagging and
Learn++.NCS. The µ̄ column is the average accuracy across
all classes. The final accuracies after each batch of data are
ranked (low rank↔ high accuracy). Generally, Learn++.NCS,
arc-x4, and bagging outperform Learn++.NC on the minor-

ity class. This, of course, should come as no surprise as
Learn++.NC has no mechanism to learn a minority class,
and the other classifiers do have such a mechanism. We
observe from Fig. 5 that Learn++.NCS learns the minority
class faster than bagging or arc-x4 when ω0 is introduced
in D3 and Learn++.NCS is leading by a large margin on
the specific accuracy of ω0. Also, Learn++.NCS maintains
a sustained average accuracy (µ̄) after instances from a new
class are introduced, both with D3 and with D4. Also note
that Learn++.NC and Learn++.NCS are able to maintain their
classification performance as additional classifiers are added



to the ensemble as shown in Fig. 5(a), even when the new
classifiers are trained on datasets that include only a subset of
the classes. On the other hand, bagging and arc-x4’s overall
accuracy deteriorate as classifiers are added with the last data
set. This result is important, as indicates that the sensitivity of
Learn++.NCS (and Learn++.NC) to the variations in its pri-
mary free parameter (i.e., the number of classifiers generated
with each batch of data) is well controlled.

The second OCR experiment uses ω1 and ω6 as the mi-
nority classes (note that ω0 and ω2 are no longer not part
of the minority class for this experiment). The same class
introduction/removal scheme is applied as in Table I, only
now the imbalanced classes are ω1 and ω6 with only 25
instances in the training data sets. The class specific accuracies
on ω6 for bagging and arc-x4 incur a sudden drop when D4 is
introduced. This suggests, again, that bagging and arc-x4 are
quick to forget the minority class as it has not been present in
the last two data sets.

More generally, bagging and arc-x4 will “forget” any class
that has not been present in current or recent data sets as
an effect of outvoting (similar results are found in [3]). A
similar effect was observed with class ω2 in the previous OCR
experiment. This effect can also be observed in Fig. 5(b),
which shows that after 22 classifiers, the accuracy of arc-x4
and bagging drop off as classifiers trained on D4 are added
to the ensemble; however, Learn++.NCS maintains a steady
accuracy.

C. Results on Forest Covertype Data Set

We conducted two similar experiments with the COVTYPE
database, introducing two new minority classes in each experi-
ment. First, ω1 and ω7 were under-sampled (Table II) to create
an imbalanced learning scenario, whose results are shown in
Fig. 6(a) and Table V. Minority class aside, we see that arc-
x4 and bagging clearly “forget” classes once a new data set
is presented that does not include data from a previously seen
class. While there is some inevitable drop in classification per-
formance with the sudden introduction of new classes observed
with all algorithms, Learn++.NCS handles this sudden change
best and does not appear to suffer from forgetting classes since
it is designed to avoid such problems. For example, consider
the introduction/removal of ω6 (majority) and ω7 (minority).
The class specific accuracy of arc-x4 and bagging plummet
whenever ω6 or ω7 are not present in the database, even
though these classes were previously introduced and should
have been therefore learned. In terms of the prediction on
the minority class, Learn++.NCS starts with reasonably good
accuracy on ω1 although class accuracy is typically lower than
that of bagging; however, Learn++.NCS predicts much better
on ω7 compared to all other approaches as observed in Table
V. Similar results are encountered when ω2 and ω3 are a part
of the minority population as presented in Fig. 6(b) and Table
VI. From this table,we observe that Learn++.NCS predicts
better than other algorithms on a minority class that has not
been recently presented. Similar to our observations in Fig. 5
with respect to the OCR dataset, and Fig. 6(a) shows similar

and sudden deterioration in the raw classification accuracies of
arc-x4 and Bagging’s as classifiers are added to the ensemble.
This result can be attributed to arc-x4 and bagging generating
classifiers that can only accurately predict on the classes that
are currently present in the most recent batch of data. From
Fig. 6(a) and 6(b), we also observe that Learn++.NCS learns
the new data faster than arc-x4 or bagging, which in turn can
be attributed to arc-x4 and bagging suffering from out-voting.

D. Significance Summary

The non-parametric rank-based Friedman’s hypothesis test
was applied to check whether any of the algorithms perform
significantly better/worse than others (i.e., null hypothesis is
that the ranks are randomly distributed). While it is impor-
tant to know that there may be one algorithm that provides
significantly better results, the Friedman hypothesis test does
not indicate which algorithm(s) are better. Therefore, the
ranks from the Friedman test were used with the Bonferroni-
Dunn correction procedure, as described in [15], to determine
significance between algorithms. All statistical analysis were
run with a 90% confidence level. The ranks indicated in
the experimental result tables are used for the statistical
hypothesis testing. We found that the Friedman test rejects
the null hypothesis, when tested on the second to last and last
data set, and Learn++.NCS provides statistically significant
improvement over Bagging and arc-x4. Significance was also
found after the introduction of the 3rd data set as well. We can
also state, with statistical significance, that Learn++.NCS im-
proves the minority class accuracy over Learn++.NC. While,
Learn++.NCS consistently performed better in minority class
accuracy than all other algorithms, the differences were not
significant.

IV. CONCLUSION

In this work we presented a wrapper approach for
Learn++.NC, which allows for the learning of new classes that
are under-represented in the training data. We have confirmed
previous findings in [3] and demonstrated that the wrapper
method in conjunction with Learn++.NC is highly robust
in predicting new classes, particularly if they are under-
represented in the training data. Learn++.NCS has the desired
property to quickly and correctly predict a minority class
when a new minority class is introduced. The results show
that Learn++.NCS is very robust and resilient to outvoting
commonly observed with classifier ensembles. Learn++.NCS
typically predicted on minority classes better than other en-
semble based approaches that can learn incrementally such as
arc-x4 and bagging, even when the minority class was not
present in the most recent database. The proposed approach
learns the new classes (minority or majority) not by generating
a large number of classifiers to avoid outvoting, but rather
a classifier consulting procedure that dynamically assigns
instance specific classifier weights. Furthermore, unlike arc-
x4 and bagging, Learn++.NCS does not appear to overfit, and
retains its performance even when additional classifiers are
generated with no new data. While there is some overhead



TABLE V
ACCURACIES FOR EACH INDIVIDUAL CLASS AND THE AVERAGE

ACCURACY (LAST COLUMN) ON THE HOLD OUT TESTING DATA SET FOR
THE COVTYPE PROBLEM. ω1 AND ω7 ARE THE MINORITY CLASSES. THE

RANK OF EACH ALGORITHM ON EACH INTRODUCTION OF A NEW DATA
SET IS INDICATED IN THE LAST COLUMN.

ω1 ω2 ω3 ω4 ω5 ω6 ω7 µ̄
Bagging

D1 86.1 0 83.4 93.9 0 0 88.2 50.2 (4)
D2 70.9 11.7 94.7 34.9 34.7 13.5 0.20 37.2 (4)
D3 54.0 70.1 81.0 7.53 89.9 3.80 88.0 56.3 (4)
D4 67.7 80.1 2.67 95.2 2.67 89.5 0 48.3 (4)

Arc-x4
D1 87.6 0 89.3 90.1 0 0 89.6 51.0 (3)
D2 37.9 40.1 97.7 8.67 58.1 28.1 0.20 38.7 (3)
D3 52.3 73.7 85.6 0.93 89.9 7.33 88.9 57.0 (3)
D4 55.7 89.9 6.07 96.8 4.47 92.4 0 49.3 (3)

Learn++.NC
D1 86.5 0 93.9 89.5 0 0 87.7 51.1 (2)
D2 35.7 44.7 88.9 73.3 65.6 63.1 11.3 54.7 (1)
D3 39.9 79.1 85.9 68.8 91.2 69.5 88.7 74.7 (2)
D4 50.7 84.7 61.4 93.7 78.2 87.4 68.3 74.9 (1)

Learn++.NCS
D1 87.8 0 92.1 88.7 0 0 90.4 51.3 (1)
D2 40.5 37.3 87.1 65.3 62.5 66.0 11.4 52.9 (2)
D3 43.7 77.8 84.8 60.9 90.9 71.3 93.7 74.7 (1)
D4 40.0 85.1 58.5 94.3 77.1 86.3 78.9 74.3 (2)

TABLE VI
ACCURACIES FOR EACH INDIVIDUAL CLASS AND THE AVERAGE

ACCURACY (LAST COLUMN) ON THE HOLD OUT TESTING DATA SET FOR
THE COVTYPE PROBLEM. ω1 AND ω2 ARE THE MINORITY CLASSES. THE

RANK OF EACH ALGORITHM ON EACH INTRODUCTION OF A NEW DATA
SET IS INDICATED IN THE LAST COLUMN.

ω1 ω2 ω3 ω4 ω5 ω6 ω7 µ̄
Bagging

D1 87.9 0 83.3 90.5 0 0 89.5 50.2 (4)
D2 80.1 4.00 85.9 51.9 24.8 23.7 2.60 39.0 (4)
D3 77.9 41.0 73.9 30.9 91.3 13.1 91.6 60.0 (4)
D4 84.5 59.5 1.40 94.5 4.53 90.8 0 47.9 (4)

Arc-x4
D1 89.7 0 78.7 95.9 0 0 91.8 50.9 (3)
D2 62.5 10.9 81.6 44.2 35.9 52.9 1.20 41.3 (3)
D3 80.1 41.5 67.1 23.2 93.3 24.7 93.5 60.5 (3)
D4 91.4 47.1 1.53 96.7 9.13 93.9 0 48.5 (3)

Learn++.NC
D1 93.4 0 82.5 95.7 0 0 92.4 52.0 (1)
D2 50.9 18.6 26.9 45.0 46.9 86 21.5 42.2 (2)
D3 83.5 28.5 24.7 43.3 92.4 87.8 95.3 65.1 (2)
D4 86.1 34.6 9.67 96.1 85.0 91.3 79.8 68.9 (2)

Learn++.NCS
D1 93.7 0 79.4 95.6 0 0 92.2 51.6 (2)
D2 60.1 19.6 65.7 73.3 42.8 72.7 12.9 49.6 (1)
D3 86.1 27.9 61.1 70.2 90.8 77.7 94.1 72.6 (1)
D4 88.7 36.3 36.5 94.0 80.2 90.9 73.0 71.4 (1)

computation in determining classifier weights for DW-CAV,
we argue that the overhead associated with DW-CAV is far
less expensive than the overhead in generating new classifiers.

REFERENCES

[1] R. Polikar, L. Udpa, S. S. Udpa, and V. Honavar, “Learn++: an
incremental learning algorithm for supervised neural networks,” IEEE
Trans. on Syst., Man and Cybern., vol. 31, no. 4, pp. 497–508, 2001.

[2] S. Grossberg, “Nonlinear neural networks: Principles, mechanisms, and
architectures,” Neural Networks, vol. 1, no. 1, pp. 17–61, 1988.

[3] M. Muhlbaier, A. Topalis, and R. Polikar, “Learn++.NC: Combining
ensemble of classifiers with dynamically weighted consult-and-vote for
efficient incremental learning of new classes,” IEEE Transactions on
Neural Networks, vol. 20, no. 1, pp. 152–168, 2009.

[4] H. He and E. Garcia, “Learning from imbalanced data,” IEEE Trans. on
Data and Knowl. Disc., vol. 12, no. 9, pp. 1263–1284, 2009.

[5] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[6] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “SMOTE-
Boost: Improving prediction of the minority class in boosting,” in
European Conf. on Princ. and Pract. of Knowl. Disc. in Data., 2003,
pp. 1–10.

[7] Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, “Cost-sensitive boosting
for classification of imbalanced data,” Pattern Recognition, vol. 12,
no. 40, pp. 3358–3378, 2007.

[8] H. Guo and H. L. Viktor, “Learning from imbalanced data sets with
boosting and data generation: The Databoost-IM approach,” Sigkdd
Explorations, vol. 6, no. 1, pp. 30–39, 2004.

[9] S. Chen, H. He, and E. Garcia, “RAMOBoost: Ranked minority over-
sampling in boosting,” IEEE Trans. on Neur. Netw., vol. 21, no. 10, pp.
1624–1642, 2010.

[10] G. Ditzler, M. Muhlbaier, and R. Polikar, “Incremental learning of new
classes in unbalanced datasets: Learn++.UDNC,” in Multiple Classifier
Systems (MCS 2010), ser. Lecture Notes in Computer Science, N. El
Gayar et al., eds., vol. 5997, 2010, pp. 33–42.

[11] N. V. Chawla, L. O. Hall, and A. Joshi, “Wrapper-based computation
and evaluation of sampling methods for imbalanced datasets,” in ACM
SIGKDD Workshop on Utility-Based Data Mining, 2005, pp. 1–10.

[12] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.
123–140, 1996.

[13] ——, “Arcing classifiers,” The Annals of Statistics, vol. 26, no. 3, pp.
801–824, 1998.

[14] A. Frank and A. Asuncion, “UCI machine learning repository,”
University of California, Irvine, School of Information and Computer
Sciences, 2010. [Online]. Available: http://archive.ics.uci.edu/ml

[15] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.


