
Data Mining and Knowledge Discovery, 1, 1{12 (1999)c 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.On Comparing Classi�ers: A Critique of CurrentResearch and MethodsSTEVEN L. SALZBERG salzberg@cs.jhu.eduDepartment of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USAEditor:Abstract. An important componentof many datamining projects is �nding a good classi�cationalgorithm, a process that requires very careful thought about experimental design. If not done verycarefully, comparative studies of classi�cation and other types of algorithms can easily result instatistically invalid conclusions. This is especially true when one is using datamining techniques toanalyze very large databases, which inevitably contain some statistically unlikely data. This paperdescribes several phenomena that can, if ignored, invalidate an experimental comparison. Thesephenomena and the conclusions that follow apply not only to classi�cation, but to computationalexperiments in almost any aspect of data mining. The paper also discusses why comparativeanalysis is more important in evaluating some types of algorithms than for others, and providessome suggestions about how to avoid the pitfalls su�ered by many experimental studies.Keywords: classi�cation, comparative studies, statistical methods1. IntroductionData mining researchers often use classi�ers to identify important classes of ob-jects within a data repository. Classi�cation is particularly useful when a databasecontains examples that can be used as the basis for future decision making; e.g.,for assessing credit risks, for medical diagnosis, or for scienti�c data analysis. Re-searchers have a range of di�erent types of classi�cation algorithms at their disposal,including nearest neighbor methods, decision tree induction, error back propaga-tion, reinforcement learning, and rule learning. Over the years, many variationsof these algorithms have been developed and many studies have been producedcomparing their e�ectiveness on di�erent data sets, both real and arti�cial. Theproductiveness of classi�cation research in the past means that researchers todayconfront a problem in using those algorithms, namely: how does one choose whichalgorithm to use for a new problem? This paper addresses the methodology thatone can use to answer this question, and discusses how it has been addressed in theclassi�cation community. It also discusses some of the pitfalls that confront anyonetrying to answer this question, and demonstrates how misleading results can easilyfollow from a lack of attention to methdology. Below, I will use examples from themachine learning community which illustrate how careful one must be when usingfast computational methods to mine a large database. These examples show thatwhen one repeatedly searches a large database with powerful algorithms, it is all



2 STEVEN L. SALZBERGtoo easy to \�nd" a phenomenon or pattern that looks impressive, even when thereis nothing to discover.It is natural for experimental researchers to want to use real data to validatetheir systems. A culture has evolved in the machine learning community that nowinsists on a convincing evaluation of new ideas, which very often takes them form ofexperimental testing. This is a healthy development and it represents an importantstep in the maturation of the �eld. One indication of this maturation is the creationand maintenance of the UC Irvine repository of machine learning databases [15],which now contains over 100 datasets that have appeared in published work. Thisrepository makes it very easy for machine learning researchers to compare newalgorithms to previous work. The data mining �eld, although a newer area ofresearch, is already evolving a methodology of its own to compare the e�ectivenessof di�erent algorithms on large databases. Large public databases are becomingincreasingly popular in many areas of science and technology, bringing with themgreat opportunities, but also technical dangers. As we will see below, however, onemust be very careful in the design of an experimental study using publicly availabledatabases.Although the development and maintenance of data repositories has in generalbeen positive, some research on classi�cation algorithms has relied too heavily onthe UCI repository and other shared datasets, and has consequently produced com-parative studies whose results are at best confusing. To be more precise: it hasbecome commonplace to take two or more classi�ers and compare them on a ran-dom selection of datasets from the UCI repository. Any di�erences in classi�cationaccuracy that reach statistical signi�cance (more on that below) are provided assupporting evidence of important di�erences between the algorithms. My thesisin this paper is that this kind of experiment cannot be the basis for strong claimsabout the superiority of one algorithm over another; furthermore, using such a com-parison to make strong statements about an algorithm is probably misleading andtherefore potentially harmful to the �eld. As argued below, many such comparisonsare statistically invalid. The message to the data mining community is that onemust be exceedingly careful when using powerful algorithms to extract informationfrom large databases, because traditional statistical methods were not designed forthis process. Below I give some examples of how to modify traditional statisticsbefore using them in computational evaluations.2. Comparing algorithmsEmpirical validation is clearly essential to the process of designing and implement-ing new algorithms, and the criticisms below are not intended to discourage empir-ical work. Classi�cation research, which is a component of data mining as well as asub�eld of machine learning, has always had a need for very speci�c, focused studiesthat compare algorithms carefully. The evidence to date is that good evaluationsare not done nearly enough | for example, Prechelt [16] recently surveyed nearly200 experimental papers on neural network learning algorithms and found most of



ON COMPARING CLASSIFIERS 3them to have serious experimental de�ciencies. His survey found that a strikinglyhigh percentage of new algorithms (29%) were not evaluated on any real problemat all, and that very few (only 8%) were compared to more than one alternativeon real data. In the survey by Flexer [7] of experimental neural network papers,only 3 out of 43 studies in leading journals used a separate data set for parametertuning, which leaves open the possibility that many of the reported results wereoverly optimistic.Classi�cation research comes in a variety of forms: it lays out new algorithms anddemonstrates their feasibility, or it describes creative new algorithms which maynot (at �rst) require rigorous experimental validation. In the data mining world,classi�cation studies may demonstrate the usefulness of algorithms on importantproblems from the real world. It is important that work designed to be primarilycomparative does not undertake to criticize work that was intended to introducecreative new ideas or to demonstrate feasibility on an important domain. Thisonly serves to suppress creative work (if the new algorithm does not perform well)and encourages people instead to focus on narrow studies that make incrementalchanges to previous work. On the other hand, if a new method outperforms anestablished on some important tasks, then this result would be worthwhile report-ing because it would be unexpected, and it might yield important insights aboutboth algorithms. Perhaps most important, comparative work should be done ina statistically acceptable framework. Work intended to demonstrate feasibility, incontrast to purely comparative work, might not always need statistical comparisonmeasures to be convincing.2.1. Data repositoriesIn conducting comparative studies, classi�cation researchers and other data minersmust be careful not to rely too heavily on stored repositories of data (such as theUCI repository) as its source of problems, because it is di�cult to produce majornew results using well-studied and widely shared data. For example, Fisher's irisdata has been around for 60 years and has been used in hundreds (maybe thousands)of studies. The NetTalk dataset of English pronunciation data (introduced bySejnowski and Rosenberg, [20] has been used in numerous experiments, as has theprotein secondary structure data (introduced by Qian and Sejnowski [17]), to citejust two examples. Holte [10] collected results on 16 di�erent datasets, and foundas many as 75 di�erent published accuracy �gures for some of them. Any newexperiments on these and other UCI datasets run the risk of �nding \signi�cant"results that are no more than statistical accidents, as explained in Section 3.2. Notethat the repository still serves many useful functions; among other things, it allowssomeone with a new algorithmic idea to test its plausibility on known problems.However, it is a mistake to conclude, if some di�erences do show up, that a newmethod is \signi�cantly" better on these datasets. It is very hard { sometimesimpossible { to make such an argument in a convincing and statistically correctway.



4 STEVEN L. SALZBERG2.2. New algorithmsAlthough this paper deals primarily with comparative studies, an important classof research in experimental machine learning (and, more generally, in data mining)is that which develops a substantially new method. This requires a description ofthe algorithm and its motivation, and usually includes a demonstration on someproblem of interest. Often the problem is what motivated the new algorithm inthe �rst place. Numerous examples of this abound; the point is that after the algo-rithm is introduced, it is not unusual to see additional papers appear that modifythe algorithm to improve it in various ways. These improvements are importantin establishing a method and clarifying when it is and is not useful. By beingaware that some research has di�erent goals, one can avoid the mistake of pro-ducing a comparative study that takes a well-known, highly re�ned method andblindly compares it to a brand new method on a random sample of datasets froma data repository. Nonetheless, examples of such studies (e.g., comparing k-NN toa much newer algorithm) are still appearing in the machine learning community[22]. On the other hand, it would be interesting if a new method were shown tobeat k-NN consistently. It would also be interesting to quantify more precisely theconditions under which a particular algorithm could be expected to outperform orunderperform k-NN.2.3. Comparative studies and proper methodologyThe comparative study, whether it involves classi�cation algorithms or other dataextraction techniques, does not usually propose an entirely new method; most oftenit proposes changes to one or more known algorithms, and uses careful comparisonsto show where and how the changes will improve performance. Although thesestudies may appear super�cially to be quite easy to do, in fact it requires consid-erable skill to be successful at both improving known algorithms and designing theexperiments. Here I focus on design of experiments, which has been the subjectof little concern in the machine learning community until recently (with some ex-ceptions, such as [14] and [11]); this is rather unfortunate because the result is agrowing number of poorly-designed experiments.Included in this category are papers that neither introduce a new algorithm norimprove an old one; instead, they consider one or more known algorithms andconduct experiments on known datasets, typically datasets from the UCI repository.They may also include small variations on known algorithms. The goal of thesepapers is ostensibly to highlight the strengths and weaknesses of the algorithmsbeing compared. Although the goal is worthwhile, the approach taken by suchpapers is simply not valid, for reasons to be explained below. However, it seemsthat some researchers have a di�erent view of this issue, as evidenced by the factthat recent conferences and journals have contained examples of such papers.Consider one consequence of accepting the proposition that a comparative studyof known algorithms on known datasets is a reasonable approach to research. Given



ON COMPARING CLASSIFIERS 5the large number of machine learning systems available via the Internet today, andthe rapidly growing number of publicly available datasets (at UCI and elsewhere),this would generate a ludicrously large number of \research" studies. Obviouslymany of these studies would be nearly identical, but the question is which, if any,are even worth doing. It is highly likely that the vast majority of these experimentswill not reveal striking new di�erences between algorithms. One must thereforethink very carefully before doing such an experiment, in order to express precisequestions that the experiment is likely to answer.3. Statistical validity: a tutorialStatistics o�ers many tests that are designed to measure the signi�cance of anydi�erence between two or more \treatments." These tests can be adapted for usein comparisons of classi�ers, but the adaptation must be done carefully, becausethe statistics were not designed with computational experiments in mind. For ex-ample, in one recent machine learning study, fourteen di�erent variations on severalclassi�cation algorithms were compared on eleven datasets. This is not unusual;many other recent studies report comparisons of similar numbers of algorithmsand datasets. All 154 of the variations in this study were compared to a defaultclassi�er, and di�erences were reported as signi�cant if a two-tailed, paired t-testproduced a p-value less than 0.05. This particular signi�cance level was not nearlystringent enough, however: if you do 154 experiments, then you have 154 chancesto be signi�cant, so the expected number of \signi�cant" results at the 0.05 levelis 154 � 0:05 = 7:7. Obviously this is not what one wants. In order to get resultsthat are truly signi�cant at the 0.05 level, you need to set a much more stringentrequirement. Statisticians have been aware of this problem for a very long time; itis known as the multiplicity e�ect. At least two recent papers have focused theirattention nicely on how classi�cation researchers might address this e�ect [8, 6].In particular, let � be the probability that if no di�erences exist among our algo-rithms, we will make at least one mistake; i.e., we will �nd at least one signi�cantdi�erence. Thus � is the percent of the time in which we (the experimenters) makean error. For each of our tests (i.e., each experiment), let the nominal signi�cancelevel be ��. Then the chance of making the right conclusion for one experiment is1� ��.If we conduct n independent experiments, the chance of getting them all right isthen (1���)n. (Note that this is true only if all the experiments are independent;when they are not, tighter bounds can be computed. If a set of di�erent algorithmsare compared on the same test data, then the tests are clearly not independent. Infact, a comparison that draws the training and test sets from the same sample willnot be independent either.) Suppose that in fact no real di�erences exist amongthe algorithms being tested; then the chance that we will not get all the conclusionsright | in other words, the chance that we will make at least one mistake is� = 1� (1� ��)n



6 STEVEN L. SALZBERGSuppose for example we set our nominal signi�cance level �� for each experimentto 0.05. Then the odds of making at least one mistake in our 154 experiments are� = 1 � (1 � :05)154 = 0:9996. Clearly, a 99.96% chance of drawing an incorrectconclusion is not what we want! Again, we are assuming that no true di�erencesexist; i.e., this is a conditional probability. (More precisely, there is a 99.96% chancethat at least one of the results will incorrectly reach \signi�cance" at the 0.05 level.)In order to obtain results signi�cant at the 0.05 level with 154 tests, we need toset 1� (1���)154 � 0:05, which gives �� � 0:0003. This criterion is over 150 timesmore stringent than the original � � 0:05 criterion.The above argument is still very rough, because it assumes that all the experi-ments are independent of one another. When this assumption is correct, one canmake the adjustment of signi�cance described above, which is well known in thestatistics community as the Bonferroni adjustment. When experiments use identi-cal training and/or test sets, the tests are clearly not independent. The use of thewrong p-value makes it even more likely that some experiments will �nd signi�cancewhere none exists. Nonetheless, many researchers proceed with using a simple t-test to compare multiple algorithms on multiple datasets from the UCI repository;see, e.g., Wettschereck and Dietterich [22]. Although easy to conduct, the t-testis simply the wrong test for such an experimental design. The t-test assumes thatthe test sets for each \treatment" (each algorithm) are independent. When twoalgorithms are compared on the same data set, then obviously the test sets are notindependent, since they will share some of the same examples|assuming the train-ing and test sets are created by random partitioning, which is the standard practice.This problem is widespread in comparative machine learning studies. (One of theauthors of the study cited above has written recently, in an apparent about-face,that the paired t-test has \a high probability of Type I error ... and should neverbe used" [4].) It is worth noting here that even statisticians have di�culty agreeingon the correct framework for hypothesis testing in complex experimental designs.For example, the whole framework of using alpha levels and p-values has beenquestioned when more than two hypotheses are under consideration [18].3.1. Alternative statistical testsOne obvious problem with the experimental design cited above is that it only con-siders overall accuracy on a test set. But when using a common test set to comparetwo algorithms, a comparison must consider four numbers: the number of examplesthat Algorithm A got right and B got wrong (A > B), the number that B got rightand A got wrong (B > A), the number that both algorithms got right, and thenumber that both got wrong. If one has just two algorithms to compare, then asimple but much improved (over the t-test) way to compare them is to compare thepercentage of times A > B versus B > A, and throw out the ties. One can thenuse a simple binomial test for the comparison, with the Bonferroni adjustment formultiple tests. An alternative is to use random, distinct samples of the data to



ON COMPARING CLASSIFIERS 7test each algorithm, and to use an analysis of variance (ANOVA) to compare theresults.A simple example shows how a binomial test can be used to compare two algo-rithms. As above, measure each algorithm's answer on a series of test examples.Let n be the number of examples for which the algorithms produce di�erent output.We must assume this series of tests is independent; i.e., we are observing a set ofBernoulli trials. (This assumption is valid if the test data is a randomly drawnsample from the population.) Let s (successes) be the number of times A > B, andf (failures) be the number of times B > A. If the two algorithms perform equallywell, then the expected value E(s) = 0:5n = E(f). Suppose that s > f , so it lookslike A is better than B. We would like to calculateP (s � observed valuejp(success) = 0:5)which is the probability that A \wins" over B at least as many times as observedin the experiment. Typically, the reported p-value is double this value because a2-sided test is used. This can be easily computed using the binomial distribution,which gives the probability of s successes in n trials asn!s!(n� s)!psqn�sIf we expect no di�erences between the algorithms, then p = q = 0:5. Suppose thatwe had n = 50 examples for which the algorithms di�ered, and in s = 35 casesalgorithm A was correct while B was wrong. Then we can compute the probabilityof this result as50Xs=35 n!s!(n� s)! (0:5)n = 0:0032Thus it is highly unlikely that the algorithms have the same accuracy; we can rejectthe null hypothesis with high con�dence. If we make this into a 2-sided test, wemust double the probability to 0.0064, but we can still reject the null hypothesis. Ifwe had observed s = 30, then the probability would rise to 0.1012 (for the one-sidedtest), or just over 10%. In this case we might say that we cannot reject the nullhypothesis; in other words, the algorithms may in fact be equally accurate for thispopulation.The above is just an example, and is not meant to cover all comparative stud-ies. The method applies as well to classi�ers as to other data mining methodsthat attempt to extract patterns from a database. However, the binomial test isa relatively weak test that does not handle quantitative di�erences between al-gorithms, nor does it handle more than two algorithms, nor does it consider thefrequency of agreement between two algorithms. If the N is the number of agree-ments and N >> n, then it can be argued that our belief that the algorithms aredoing the same thing should increase regardless of the pattern of disagreement. Aspointed out by Feelders and Verkooijen [6], �nding the proper statistical procedure



8 STEVEN L. SALZBERGto compare two or more classi�cation algorithms can be quite di�cult, and requiresmore than an introductory level knowledge of statistics. A good general referencefor experimental design is Cochran and Cox [2], and descriptions of ANOVA andexperimental design can be found in introductory texts such as Hildebrand [9].Jensen [12, 13] discusses a framework for experimental comparison of classi�ersand addresses signi�cance testing, and Jensen and Cohen [11] discuss some speci�cways to remove optimistic statistical bias from such experiments. One importantinnovation they discuss is randomization testing, in which one derives a referencedistribution as follows. For each trial, the data set is copied and class labels arereplaced with random class labels. Then an algorithm is used to �nd the mostaccurate classi�er it can, using the same methodology that is used with the originaldata. Any estimate of accuracy greater than random for the copied data reectsthe bias in the methodology, and this reference distribution can then be used toadjust the estimates on the real data.3.2. Community experimentsIn fact, the problem in the machine learning community is worse than stated above,because many people are sharing a small repository of datasets and repeatedlyusing those same datasets for experiments. Thus there is a substantial danger thatpublished results, even when using strict signi�cance criteria and the appropriatesigni�cance tests, will be mere accidents of chance. The problem is as follows.Suppose that 100 di�erent people are studying the e�ects of algorithms A and B,trying to determine which one is better. Suppose that in fact both have the samemean accuracy (on some very large population of datasets), although the algorithmsvary randomly in their performance on speci�c datasets. Now, if 100 people arestudying the e�ect of algorithms A and B, we would expect that �ve of them willget results that are statistically signi�cant at the p � 0:05 level, and one will getsigni�cance at the 0.01 level! (Actually, the picture is a bit more complicated,since this assumes the 100 experiments are independent.) Clearly in this case theseresults are due to chance, but if the 100 people are working separately, the ones whoget signi�cant results will publish, while the others will simply move on to otherexperiments. Denton [3] made similar observations about how the reviewing andpublication process can skew results. Although the data mining community is muchbroader than the classi�cation community, it is likely that benchmark databaseswill emerge, and that di�erent researchers will test their mining techniques on them.The experience of the machine learning community should serve as a cautionarytale.In other communities (e.g., testing new drugs), experimenters try to deal withthis phenomenon of \community experiments" by duplicating results. Proper du-plication requires drawing a new random sample from the population and repeatingthe study. However, this is not what happens with benchmark databases, whichnormally are static. If someone wants to duplicate results, they can only re-run thealgorithms with the same parameters on the same data, and of course the results



ON COMPARING CLASSIFIERS 9will be the same. Using a di�erent partitioning of the data into training and testsets does not help; duplication can only work if new data becomes available.3.3. Repeated tuningAnother very substantial problem with reporting signi�cance results based on com-putational experiments is something that is often left unstated: many researchers\tune" their algorithms repeatedly in order to make them perform optimally on atleast some datasets. At the very least, when a system is being developed, the devel-oper spends a great deal of time determining what parameters it should have andwhat the optimal values should be. For example, the back propagation algorithmhas a learning rate and a momentum term that greatly a�ect learning, and thearchitecture of a neural net (which has many degrees of freedom) has an enormouse�ect on learning. Equally important for many problems is the representation ofthe data, which may vary from one study to the next even when the same basicdataset is used. For example, numeric values are sometimes converted to a discreteset of intervals, especially when using decision tree algorithms [5].Whenever tuning takes place, every adjustment should really be considered aseparate experiment. For example, if one attempts 10 di�erent combinations ofparameters, then signi�cance levels (p-values) would have to be, e.g., 0.005 in orderto obtain levels comparable to a single experiment using a level of 0.05. (Thisassumes, unrealistically, that the experiments are independent.) But few if anyexperimenters keep careful count of how many adjustments they consider. (Kiblerand Langley [14] and Aha [1] suggest, as an alternative, that the parameter settingsthemselves be studied as independent variables, and that their e�ects be measuredon arti�cial data. A greater problem occurs when one uses an algorithm that hasbeen used before: that algorithmmay already have been tuned on public databases.Therefore one cannot even know how much tuning took place, and any attempt toclaim signi�cant results on known data is simply not valid.Fortunately, one can perform virtually unlimited tuning without corrupting thevalidity of the results. The solution is to use cross-validation entirely within thetraining set itself. The recommended procedure is to reserve a portion of the train-ing set as a \tuning" set, and to repeatedly test the algorithm and adjust its pa-rameters on the tuning set. When the parameters appear to be at their optimalsettings, accuracy can �nally be measured on the test data.Thus, when doing comparative evaluations, everything that is done to modify orprepare the algorithms must be done in advance of seeing the test data. This pointwill seem obvious to many experimental researchers, but the fact is that papers arestill appearing in which this methodology is not followed. In the survey by Flexer[7], only 3 out of 43 experimental papers in leading neural network journals useda separate data set for parameter tuning; the remaining 40 papers either did notexplain how they adjusted parameters or else did their adjustments after using thetest set. Thus this point is worth stating explicitly: any tweaking or modifyingof code, any decisions about experimental design, and any other parameters that



10 STEVEN L. SALZBERGmay a�ect performance must be �xed before the experimenter has the test data.Otherwise the conclusions might not even be valid for the data being used, muchless any larger population of problems. The reasons for this requirement should beobvious: any experimenter knows that one can adjust an implemented system witha variety of parameters to optimize its performance on a �xed dataset, and thereby\prove" one algorithm's superiority to others. The conclusions from such a studywill not provide useful information about the algorithms. Despite the obviousness ofthis point, some papers still demonstrate favored treatment towards one algorithmin order to make it appear better than it really is.3.4. Generalizing resultsA commonmethodological approach in recent comparative studies is to pick severaldatasets from the UCI repository and perform a series of experiments, measuringclassi�cation accuracy, learning rates, and perhaps other criteria. Whether or notthe choice of datasets is random, the use of such experiments to make more generalstatements about classi�cation algorithms is not necessarily valid.In fact, if one draws samples from a population to conduct an experiment, anyinferences one makes can only be applied to the original population, which in thiscase means the UCI repository itself. It is not valid to make general statementsabout other datasets. The only way this might be valid would be if the UCIrepository were known to represent a larger population of classi�cation problems.In fact, though, as argued persuasively by Holte [10] and others, the UCI repositoryis a very limited sample of problems, many of which are quite easy for a classi�er.(Many of them may represent the same concept class, for example many might bealmost linearly separable, as suggested by the strong performance of the perceptronalgorithm on one well-known comparative study [21].) Thus the evidence is strongthat results on the UCI datasets do not apply to all classi�cation problems, andthe repository is not a proper \sample" of classi�cation problems.This is not by any means to say that the UCI repository should not exist. Therepository serves several important functions. Having a public repository keeps thecommunity honest, in the sense that any published results can be checked. A secondfunction is that any new idea can be \vetted" against the repository as a way ofchecking it for plausibility. If it works well, it might be worth further investigation.If not, of course it may still be a good idea, but the creator will have to think upother means to demonstrate its feasibility. The dangers of repeated re-use of thesame data should spur the research community to continually enlarge the repository,so that over time it will become more representative of classi�cation problems ingeneral. In addition, the use of arti�cial data should always be considered as a wayto test more precisely the strengths and weaknesses of a new algorithm. The datamining community must likewise be vigilant not to come to rely too heavily on anystandard set of databases.There is a second, related problem with making broad statements based on resultsfrom a common repository of data. The problem is that someone can write an



ON COMPARING CLASSIFIERS 11algorithm that works well on some of these datasets speci�cally; i.e., the algorithmis designed with the datasets in mind. If researchers become familiar with thedatasets, they are likely to be biased when developing new algorithms, even if theydo not consciously attempt to tailor their algorithms to the data. In other words,people will be inclined to consider problems such as missing data or outliers becausethey know these are problems represented in the public datasets. However, theseproblems may not be important for di�erent datasets. It is an unavoidable factthat anyone familiar with the data may be biased.4. ConclusionAs some researchers have recently observed, no single classi�cation algorithm isthe best for all problems. The same observation can be made for data mining: nosingle technique is likely to work best on all databases. Recent theoretical work hasshown that, with certain assumptions, no classi�er is always better than another one[23, 19]. However, experimental science is concerned with data that occurs in thereal world, and it is not clear that these theoretical limitations are relevant. Someresearch on classi�cation algorithms therefore focuses on characterizing the typesof problems for which di�erent classi�ers work best. Other research emphasizesthe creation of new algorithms and families of algorithms, which may representcreative new ways of thinking about learning, or speci�c technical improvementssuch as reducing the asymptotic time complexity of an algorithm. Comparativestudies typically include at least one new algorithm and several known methods;these studies must be very careful about their methods and their claims. Thepoint of this paper is not to discourage empirical comparisons; clearly, comparisonsand benchmarks are an important, central component of experimental computerscience, and can be very powerful if done correctly. Rather, this paper's goal is tohelp experimental researchers steer clear of problems in designing a comparativestudy. For a speci�c problem domain, a straightforward comparison of results onnew data from that domain may su�ce to show the merit of a new algorithm.When the domain chosen is important in its own right, a demonstration that analgorithm works well for that problem is clearly a valuable contribution.AcknowledgmentsThanks to Simon Kasif and Eric Brill for helpful comments and discussions. Thanksto Alan Salzberg for help with the statistics and for other comments. This work wassupported in part by the National Science Foundation under Grants IRI-9223591and IRI-9530462. The views expressed here are the author's own, and do notnecessarily represent the views of those acknowledged above or the National ScienceFoundation.
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