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Abstract. Client puzzles, a type of cryptographic puzzle, have been proposed and developed by many 

scholars to guarantee network security. In this paper, we proposed C2Puzzle, a novel computational 

client puzzle. By using the iterative algorithm, C2Puzzle successfully combined the basic principles 

of prime factorization and discrete logarithm problem. We show that, C2Puzzle has the visible 

security advantages, and the adjustability of puzzle difficulty is in fine granularity. 

Introduction 

Client puzzles, originating from cryptographic puzzles [1] used to hide the secret which can 

merely be uncovered after some computational effort, are extensively explored and used by many 

scholars to guarantee network security. For instance, various client puzzles have been proposed as a 

countermeasure to DoS (Denial of Service) attacks [2,3] or Sybil attacks [4]. In general, client puzzles 

are designed to supply the legitimate clients with service guarantees. For each service request, the 

client is forced to solve a client puzzle before the server has to commit its valuable resources. Of 

course, the computational effort for each puzzle is very moderate, whereas a large computational task 

would be imposed on the adversaries if they want to generate traffic in large quantities. In a word, the 

main idea of client puzzles is that by asking the client to allocate some of its own resources (CPU time 

or memory) the server establishes that the client is willing to invest in the valuable service.  

Up still now, there are two main categories of client puzzles [5]. The first category which is larger 

is that of the CPU-bound puzzles [6,7]. Aiming at solving these puzzles, the moderate amount of CPU 

time has to be consumed by the clients. The second category is that of the memory-bound puzzles 

[8,9]. In this category, a number of memory look-ups have to be done in order to solve these puzzles. 

In this paper, we propose C2Puzzle, a novel computational client puzzle belonging to the category of 

CPU-bound puzzles. What is more, C2Puzzle is based on the basic principles of prime factorization 

[4] and discrete logarithm problem [10]. For one thing, prime factorization is hard and adjustable, but 

it is possible to pre-compute the solutions to the puzzles by the clients. For another, discrete logarithm 

problem based on One-way Trapdoor Function is one-way and irreversible, but it is no defense 

against parallel computation as the clients are given a range in which to search [11]. By using the 

iterative algorithm, C2Puzzle efficiently combines prime factorization with discrete logarithm 

problem to resolve the problems of pre-computation and parallel computation. 

Design Details of C2Puzzle 

Puzzle Generation Algorithm. Let 
1

a
n

a be a series of primes, and the large number K  is the 

product of these primes. The equation is as follows: 

1

n

i

i

K a
=

= ∏ , [1, ]i n∈                                                                                                                            (1) 

Let q  be a large prime which may be published by the server, and select a random number r  

between 0 and 1q − . 
1

x  which is the puzzle solution is then randomly chosen over the range 
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[ , ( )mod( 1)]r r l q+ −  or [( )mod( 1), ]r l q r+ − , where l  is a changeable number indicated by the server, 

and l  can adjust the difficulty of the puzzle which will be depicted in next section. 

Then, compute 
n

y  by using the following equations: 

1

( ) * mod

( )

ix

i i i

i i

y f x i a q

x f x
+

 = =


=
, [1, ]i n∈                                                                                                     (2) 

Here, we successfully adopt the iterative algorithm, and the base 
i

a  of each iteration is a prime 

factor of K , and all of the prime factors of K are in ascending order, for instance, if e f≤ , then 

e fa a≤ , where , [1, ]e f n∈ . The iteration time i  in Eq. 2 can guarantee that there is no periodic cycle in 

the sequence from 
1

x  to 
n

x . The reasons are as follows: if we only adopt the discrete logarithm 

equation modix

i iy a q= , owning to the modular arithmetic it would probably occur the periodic cycle 

in the sequence from 
1

x to nx , namely j j cx x += . Therefore, when a malicious attacker finds the law of 

periodic cycle in the iterative process, he or she can acquire a shortcut to avoid the massive 

computational expenses. 

In addition, by virtue of introducing the modular arithmetic, several different numbers which can 

get the same ny  after Eq. 2 may exist in the range [ , ( )mod( 1)]r r l q+ −  or [( )mod( 1), ]r l q r+ − . In order 

to resolve this problem, the server needs to compute the sum Sum  as follows: 

1

n

i

i

Sum x
=

=∑ , [1, ]i n∈ , n nx y=                                                                                                            (3) 

At this stage, the puzzle generation algorithm is accomplished successfully, and the corresponding 

puzzle is the set { , , , , , }nK q r l y Sum . 

Puzzle Verification. When a client receives the puzzle challenge from the server, he or she firstly 

computes the prime factorization of K  and gets all of the prime factors 
1

a na . After that, according 

to Eq. 2 and Eq. 3, the client implements a brute force to search for a candidate solution 'x  from 

[ , ( ) mod( 1)]r r l q+ −  or [( ) mod( 1), ]r l q r+ − , and computes 'ny  and 'Sum . If 'n ny y=  and 'Sum Sum= , he 

or she finds that 'x  is the puzzle solution. And then the client answers the puzzle solution 'x  to the 

server. 

After the server receives the puzzle solution 'x , it only needs to compare 'x  with its own 
1

x , if 

consistent, then the server will provide the service for the client; and if inconsistent, then server will 

reject the client. 

Discussion 

Advantages of C2Puzzle. Compared with other countermeasures which not only need some 

modifications to the network protocols or infrastructures but also are nonviable to be deployed for 

economic or other factors, C2Puzzle is very practical and easy to accomplish. As was discussed 

before, it merely needs to install some small software on most types of client hardware for the puzzle 

computation. The advantages of C2Puzzle can be summarized in Table 1. 

Table 1 The advantages of C2Puzzle 
Advantage Analytical Description 

Stateless There is no client’s information in C2Puzzle, and all of the parameters in 

C2Puzzle are generated only by the server. 

Pre-constructed The server can pre-construct a lot of puzzles with different difficulty and 

store these puzzles in its database. 

Computation Guarantee The client firstly must compute prime factorization to acquire each 

prime ia , and then carries out the iterations of modular exponentiation 

with the base ia  to search for the solution 
1

x . 

Against Pre-computation The malicious attackers cannot dope out the discrete logarithm problem 
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because of the random number r  and the changeable number l . 

Against Parallel computation The client must first accomplish the prime factorization of K , and then 

deals with discrete logarithm problem. 

Easy to Verity There is only one comparison to verify the solution. 

Correlation-free The large number K , the random number r  and the changeable 

number l  in each puzzle are different and unrelated. 

 

Adjustability of Difficulty. This characteristic is referred to as puzzle granularity [11]. Adjustability 

of puzzle difficulty means the cost of solving the puzzle can be increased or decreased in fine 

granularity, and the difficulty of the puzzles should be adjusted flexibly according to the strength of 

an attack. The adjustability of difficulty in C2Puzzle can be profoundly manifested in the following 

four aspects: prime factorization, iteration time, search range and modulus. 

We implement C2Puzzle in VC++ 6.0, and then we test the adjustability of difficulty by the four 

aspects mentioned above. The test computer configuration is as follows: the CPU is AMD Athlon 64 

X2 Dual Core Processor 4000+ whose frequency is 2.1GHz, and the physical memory is 1GB. 

Prime Factorization: In order to improve the efficiency of prime factorization, we introduce 

Rabin-Miller strong pseudo-prime test [12] in Pollard ρ prime factorization algorithm [13]. In our 

rough estimation we test the time required for solving the prime factorization, and the test results are 

shown in Fig. 1. The numbers whom we estimate ranges from 1 bit to 64 bits, and the results are 

obtained running randomly about 1000 different numbers between two bits. From Fig. 1 we can see 

that along with the increase of bit the spending time of prime factorization takes on a nonlinear 

growth, and an approximately 64-bit integer which is about 20-digit in the decimal system is 

factorized in about 6.5ms. Therefore, we can adjust the difficulty of the puzzle by constructing 

different large integers. 

Iteration Time: In this part, we depict how iteration time can adjust the difficulty of the puzzle. 

Suppose that for any [1, ]i n∈  the base ia  is equal to 2, 101 and 1021 respectively, 385575647q = , 

1000r = , 2000l = and 100n N=  in our estimation. Fig. 3 shows the test results of iteration time. For 

example, when 10N = , the iteration time n  is 1000. It can be seen from Fig. 3 that with iteration time 

going up the spending time to solve a puzzle approximates a linear growth. At the same time, when 

the base ia  becomes larger, the spending time increases a little more. 
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Fig.1 Time of prime factorization                        Fig.2 Time of different iteration times 

Search Range: In C2Puzzle, the non-negative integer l  can control the length of a search range to 

adjust the difficulty of a puzzle. Similarly, we also suppose that for any [1, ]i n∈  the base ia  is equal to 

2, 101 and 1021 respectively, 385575647q = , 1000r = , 500n =  and 100l L=  in our estimation. For 

example, when 10L = , the search range l  is 1000. Fig. 4 shows the test results of search range. From 

this figure we can come to the conclusion that along with the increase of l  the spending time to solve 

a puzzle approximates a linear growth. At the same time, when the base ia  becomes larger, the 

spending time also increases a little more. In C2Puzzle, the average number of solving a puzzle 

requires / 2l  modular exponentiations. 
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Modulus: Although the modulus q  may be published beforehand by the server, we still analyze its 

influence on the difficulty of a puzzle. The same to the above, in this estimation we also assume that 

for any [1, ]i n∈  the base ia  is equal to 2, 101 and 1021 respectively, 1000r = , 2000l = , 500n =  and 

jq m=  which is an element in the prime set {7, 41, 233, 4229, 60257, 532951, 2295121, 15485863, 

385575647}, here [1,9]j ∈ . For example, 
1

7m =  and 
2

41m = . The prime jm  is randomly selected in 

different digit integer. The test results are depicted in Fig. 5. When the modulus q  becomes larger, 

the spending time to solve a puzzle increases correspondingly. At the same time, with ia  going up the 

spending time also increases a little more. 
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Fig. 3 Time of search range                                    Fig.4 Time of different modulus 

To sum up the above arguments, each aspect stated above can efficiently adjust the difficulty of a 

puzzle. The server can choose different aspects to change the difficulty of a puzzle according to the 

strength of the attack, and along with worsening of the attack, a client has to invest more cost to 

search a solution. Meanwhile, it is obvious that the more the adjustable aspects are, the smaller the 

possibility for a client to pre-compute a solution is. 

Summary 

In this paper, we propose C2Puzzle, a novel computational client puzzle for network security. By 

using the iterative algorithm, C2Puzzle successfully combines prime factorization with discrete 

logarithm problem, and is advantageous to withstand pre-computation and parallel computation to a 

certain extent. After we describe the puzzle generation and verification in detail, we give the readable 

discussions about the advantages of C2Puzzle, and show the adjustability of puzzle difficulty by four 

special aspects.  
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