

C2Puzzle: A Novel Computational Client Puzzle for Network Security

Ming Wan, Wenli Shang, Jianming Zhao and Shengshan Zhang

Lab. of Networked Control Systems, Shenyang Institute of Automation Chinese Academy of
Sciences, Shenyang, Liaoning 110016, China

ming305.bjtu@gmail.com, shangwl@sia.cn, zhaojianming@sia.cn, zhangshengshan@sia.cn

Keywords: computational client puzzle; prime factorization; discrete logarithm problem; network
security.

Abstract. Client puzzles, a type of cryptographic puzzle, have been proposed and developed by many

scholars to guarantee network security. In this paper, we proposed C2Puzzle, a novel computational

client puzzle. By using the iterative algorithm, C2Puzzle successfully combined the basic principles

of prime factorization and discrete logarithm problem. We show that, C2Puzzle has the visible

security advantages, and the adjustability of puzzle difficulty is in fine granularity.

Introduction

Client puzzles, originating from cryptographic puzzles [1] used to hide the secret which can

merely be uncovered after some computational effort, are extensively explored and used by many

scholars to guarantee network security. For instance, various client puzzles have been proposed as a

countermeasure to DoS (Denial of Service) attacks [2,3] or Sybil attacks [4]. In general, client puzzles

are designed to supply the legitimate clients with service guarantees. For each service request, the

client is forced to solve a client puzzle before the server has to commit its valuable resources. Of

course, the computational effort for each puzzle is very moderate, whereas a large computational task

would be imposed on the adversaries if they want to generate traffic in large quantities. In a word, the

main idea of client puzzles is that by asking the client to allocate some of its own resources (CPU time

or memory) the server establishes that the client is willing to invest in the valuable service.

Up still now, there are two main categories of client puzzles [5]. The first category which is larger

is that of the CPU-bound puzzles [6,7]. Aiming at solving these puzzles, the moderate amount of CPU

time has to be consumed by the clients. The second category is that of the memory-bound puzzles

[8,9]. In this category, a number of memory look-ups have to be done in order to solve these puzzles.

In this paper, we propose C2Puzzle, a novel computational client puzzle belonging to the category of

CPU-bound puzzles. What is more, C2Puzzle is based on the basic principles of prime factorization

[4] and discrete logarithm problem [10]. For one thing, prime factorization is hard and adjustable, but

it is possible to pre-compute the solutions to the puzzles by the clients. For another, discrete logarithm

problem based on One-way Trapdoor Function is one-way and irreversible, but it is no defense

against parallel computation as the clients are given a range in which to search [11]. By using the

iterative algorithm, C2Puzzle efficiently combines prime factorization with discrete logarithm

problem to resolve the problems of pre-computation and parallel computation.

Design Details of C2Puzzle

Puzzle Generation Algorithm. Let
1

a
n

a be a series of primes, and the large number K is the

product of these primes. The equation is as follows:

1

n

i

i

K a
=

= ∏ , [1,]i n∈ (1)

Let q be a large prime which may be published by the server, and select a random number r

between 0 and 1q − .
1

x which is the puzzle solution is then randomly chosen over the range

Advanced Materials Research Online: 2013-11-21
ISSN: 1662-8985, Vols. 846-847, pp 1615-1619
doi:10.4028/www.scientific.net/AMR.846-847.1615
© 2014 Trans Tech Publications, Switzerland

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of Trans
Tech Publications, www.ttp.net. (ID: 130.203.136.75, Pennsylvania State University, University Park, USA-09/04/16,09:15:10)

http://dx.doi.org/10.4028/www.scientific.net/AMR.846-847.1615

[, ()mod(1)]r r l q+ − or [()mod(1),]r l q r+ − , where l is a changeable number indicated by the server,

and l can adjust the difficulty of the puzzle which will be depicted in next section.

Then, compute
n

y by using the following equations:

1

() * mod

()

ix

i i i

i i

y f x i a q

x f x
+

 = =


=
, [1,]i n∈ (2)

Here, we successfully adopt the iterative algorithm, and the base
i

a of each iteration is a prime

factor of K , and all of the prime factors of K are in ascending order, for instance, if e f≤ , then

e fa a≤ , where , [1,]e f n∈ . The iteration time i in Eq. 2 can guarantee that there is no periodic cycle in

the sequence from
1

x to
n

x . The reasons are as follows: if we only adopt the discrete logarithm

equation modix

i iy a q= , owning to the modular arithmetic it would probably occur the periodic cycle

in the sequence from
1

x to nx , namely j j cx x += . Therefore, when a malicious attacker finds the law of

periodic cycle in the iterative process, he or she can acquire a shortcut to avoid the massive

computational expenses.

In addition, by virtue of introducing the modular arithmetic, several different numbers which can

get the same ny after Eq. 2 may exist in the range [, ()mod(1)]r r l q+ − or [()mod(1),]r l q r+ − . In order

to resolve this problem, the server needs to compute the sum Sum as follows:

1

n

i

i

Sum x
=

=∑ , [1,]i n∈ , n nx y= (3)

At this stage, the puzzle generation algorithm is accomplished successfully, and the corresponding

puzzle is the set { , , , , , }nK q r l y Sum .

Puzzle Verification. When a client receives the puzzle challenge from the server, he or she firstly

computes the prime factorization of K and gets all of the prime factors
1

a na . After that, according

to Eq. 2 and Eq. 3, the client implements a brute force to search for a candidate solution 'x from

[, () mod(1)]r r l q+ − or [() mod(1),]r l q r+ − , and computes 'ny and 'Sum . If 'n ny y= and 'Sum Sum= , he

or she finds that 'x is the puzzle solution. And then the client answers the puzzle solution 'x to the

server.

After the server receives the puzzle solution 'x , it only needs to compare 'x with its own
1

x , if

consistent, then the server will provide the service for the client; and if inconsistent, then server will

reject the client.

Discussion

Advantages of C2Puzzle. Compared with other countermeasures which not only need some

modifications to the network protocols or infrastructures but also are nonviable to be deployed for

economic or other factors, C2Puzzle is very practical and easy to accomplish. As was discussed

before, it merely needs to install some small software on most types of client hardware for the puzzle

computation. The advantages of C2Puzzle can be summarized in Table 1.

Table 1 The advantages of C2Puzzle
Advantage Analytical Description

Stateless There is no client’s information in C2Puzzle, and all of the parameters in

C2Puzzle are generated only by the server.

Pre-constructed The server can pre-construct a lot of puzzles with different difficulty and

store these puzzles in its database.

Computation Guarantee The client firstly must compute prime factorization to acquire each

prime ia , and then carries out the iterations of modular exponentiation

with the base ia to search for the solution
1

x .

Against Pre-computation The malicious attackers cannot dope out the discrete logarithm problem

1616 Advances in Mechatronics, Automation and Applied Information
Technologies

because of the random number r and the changeable number l .

Against Parallel computation The client must first accomplish the prime factorization of K , and then

deals with discrete logarithm problem.

Easy to Verity There is only one comparison to verify the solution.

Correlation-free The large number K , the random number r and the changeable

number l in each puzzle are different and unrelated.

Adjustability of Difficulty. This characteristic is referred to as puzzle granularity [11]. Adjustability

of puzzle difficulty means the cost of solving the puzzle can be increased or decreased in fine

granularity, and the difficulty of the puzzles should be adjusted flexibly according to the strength of

an attack. The adjustability of difficulty in C2Puzzle can be profoundly manifested in the following

four aspects: prime factorization, iteration time, search range and modulus.

We implement C2Puzzle in VC++ 6.0, and then we test the adjustability of difficulty by the four

aspects mentioned above. The test computer configuration is as follows: the CPU is AMD Athlon 64

X2 Dual Core Processor 4000+ whose frequency is 2.1GHz, and the physical memory is 1GB.

Prime Factorization: In order to improve the efficiency of prime factorization, we introduce

Rabin-Miller strong pseudo-prime test [12] in Pollard ρ prime factorization algorithm [13]. In our

rough estimation we test the time required for solving the prime factorization, and the test results are

shown in Fig. 1. The numbers whom we estimate ranges from 1 bit to 64 bits, and the results are

obtained running randomly about 1000 different numbers between two bits. From Fig. 1 we can see

that along with the increase of bit the spending time of prime factorization takes on a nonlinear

growth, and an approximately 64-bit integer which is about 20-digit in the decimal system is

factorized in about 6.5ms. Therefore, we can adjust the difficulty of the puzzle by constructing

different large integers.

Iteration Time: In this part, we depict how iteration time can adjust the difficulty of the puzzle.

Suppose that for any [1,]i n∈ the base ia is equal to 2, 101 and 1021 respectively, 385575647q = ,

1000r = , 2000l = and 100n N= in our estimation. Fig. 3 shows the test results of iteration time. For

example, when 10N = , the iteration time n is 1000. It can be seen from Fig. 3 that with iteration time

going up the spending time to solve a puzzle approximates a linear growth. At the same time, when

the base ia becomes larger, the spending time increases a little more.

10 20 30 40 50 60
0

1

2

3

4

5

6

7

test number (bit)

ti
m

e
(m

s)

0 4 8 12 16 20

0

2

4

6

8

10

iteration time (N)

ti
m

e
(s

)

Base 2

Base 101

Base 1021

Fig.1 Time of prime factorization Fig.2 Time of different iteration times

Search Range: In C2Puzzle, the non-negative integer l can control the length of a search range to

adjust the difficulty of a puzzle. Similarly, we also suppose that for any [1,]i n∈ the base ia is equal to

2, 101 and 1021 respectively, 385575647q = , 1000r = , 500n = and 100l L= in our estimation. For

example, when 10L = , the search range l is 1000. Fig. 4 shows the test results of search range. From

this figure we can come to the conclusion that along with the increase of l the spending time to solve

a puzzle approximates a linear growth. At the same time, when the base ia becomes larger, the

spending time also increases a little more. In C2Puzzle, the average number of solving a puzzle

requires / 2l modular exponentiations.

Advanced Materials Research Vols. 846-847 1617

Modulus: Although the modulus q may be published beforehand by the server, we still analyze its

influence on the difficulty of a puzzle. The same to the above, in this estimation we also assume that

for any [1,]i n∈ the base ia is equal to 2, 101 and 1021 respectively, 1000r = , 2000l = , 500n = and

jq m= which is an element in the prime set {7, 41, 233, 4229, 60257, 532951, 2295121, 15485863,

385575647}, here [1,9]j ∈ . For example,
1

7m = and
2

41m = . The prime jm is randomly selected in

different digit integer. The test results are depicted in Fig. 5. When the modulus q becomes larger,

the spending time to solve a puzzle increases correspondingly. At the same time, with ia going up the

spending time also increases a little more.

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

search range (L)

ti
m

e
(s

)

Base 2

Base 101

Base 1021

m1 m2 m3 m4 m5 m6 m7 m8 m9
0

0.5

1

1.5

2

2.5

modulus

ti
m

e
(s

)

Base 2

Base 101

Base 1021

Fig. 3 Time of search range Fig.4 Time of different modulus

To sum up the above arguments, each aspect stated above can efficiently adjust the difficulty of a

puzzle. The server can choose different aspects to change the difficulty of a puzzle according to the

strength of the attack, and along with worsening of the attack, a client has to invest more cost to

search a solution. Meanwhile, it is obvious that the more the adjustable aspects are, the smaller the

possibility for a client to pre-compute a solution is.

Summary

In this paper, we propose C2Puzzle, a novel computational client puzzle for network security. By

using the iterative algorithm, C2Puzzle successfully combines prime factorization with discrete

logarithm problem, and is advantageous to withstand pre-computation and parallel computation to a

certain extent. After we describe the puzzle generation and verification in detail, we give the readable

discussions about the advantages of C2Puzzle, and show the adjustability of puzzle difficulty by four

special aspects.

Acknowledgments

This work is supported in part by Hi-Tech Research and Development Program of China

(No.2012AA041102-03) and in part by National Natural Science Foundation of China No.61164012.

The authors are grateful to the anonymous referees for their insightful comments and suggestions.

1618 Advances in Mechatronics, Automation and Applied Information
Technologies

References

[1] R. C. Merkle: Secure Communications over Insecure Channels, Communications of the ACM,

Vol.21, No.4 (1978), p.294-299.

[2] M. S. Fallah: A Puzzle-based Defense Strategy against Flooding Attacks Using Game Theory,

IEEE Transactions on Dependable and Secure Computing, Vol.7, No.1 (2010), p.5-19.

[3] Y. K. Jing, J. T. C. Ming, D. Niyato: Rate Limiting Client Puzzle Schemes for Denial-of-Service

Mitigation, in: Proceedings of 2013 IEEE Wireless Communications and Networking

Conference, Shanghai, China (2013), p.1848-1853.

[4] F. Tegeler, X. M. Fu: SybilConf: Computational Puzzles for Confining Sybil Attacks, in:

Proceedings of 2010 INFOCOM on Computer Communications Workshops, San Diego, USA

(2010), p.1-2.

[5] A. Jeckmans: Practical Client Puzzle from Repeated Squaring, Technical Report, Centre for

Telematics and Information Technology, University of Twente (2009),

http://eprints.eemcs.utwente.nl/15951/.

[6] B. Groza, D. Petrica: On Chained Cryptographic Puzzles, in: Proceedings of the 3rd

Romanian-Hungarian Joint Symposium on Applied Computational Intelligence, Timisoara,

Romania (2006), p.182-191.

[7] Y. Gao, W. Susilo, Y. WU, et al: Efficient Trapdoor Based Client Puzzle against DoS Attacks,

Book Chapter in Network Security (2010), p.229-249.

[8] M. Abadi, M. Burrows, M. Manasse, et al: Moderately hard, Memory-bound Functions, ACM

Transactions on Internet Technology (2005), Vol.5, No.2, p.299-327.

[9] S. Doshi, F. Monrose, A. D. Rubin: Efficient Memory Bound Puzzles Using Pattern Databases, in:

Proceedings of Applied Cryptography and Network Security: 4th International Conference,

Singapore (2006), p.98-113.

[10] A. K. Lenstra, J. Lenstra: Algorithms in Number Theory, in: Handbook of Theoretical Computer

Science, Volume A, MIT Press/Elsevier, Amsterdam (1990), p.673-715.

[11] S. Tritilanunt, C. Boyd, E. Foo, et al: Toward Non-parallelizable Client Puzzles, in: Proceedings

of Cryptology and Network Security: 6th International Conference, Singapore (2007),

p.247-264.

[12] R. C. C. Cheung, A. Brown, W. Luk, et al: A Scalable Hardware Architecture for Prime

Number Validation, in: Proceedings of IEEE International Conference on Field-programmable

Technology, Queensland, Australia (2004), p.177-184.

[13] J. Buchmann, V. Muller: Algorithms for Factoring Integers,

http://www.cdc.informatik.tu-darmstadt.de/~buchmann/Lecture%20Notes/Algorithms%20for%

20factoring%20integers.pdf.

Advanced Materials Research Vols. 846-847 1619

Advances in Mechatronics, Automation and Applied Information Technologies
10.4028/www.scientific.net/AMR.846-847

C2Puzzle: A Novel Computational Client Puzzle for Network Security
10.4028/www.scientific.net/AMR.846-847.1615

http://dx.doi.org/www.scientific.net/AMR.846-847
http://dx.doi.org/www.scientific.net/AMR.846-847.1615

