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We investigate the effect of thermal expansion and gravity on the propagation of a triple flame in a hor-
izontal channel with porous walls, where the fuel and oxidiser concentrations are prescribed. The triple
flame therefore propagates in a direction perpendicular to the direction of gravity, a configuration that
does not seem to have received any dedicated investigation in the literature. In particular, we examine
the effect of the non-dimensional flame-front thickness � on the propagation speed of the triple flame
for different values of the thermal expansion coefficient a and the Rayleigh number Ra. When gravity
is not accounted for (Ra = 0), and for small values of �, the numerically calculated propagation speed is
found to agree with predictions made in previous studies based on scaling laws [1]. We show that the
well known monotonic relationship between U and �, which exists in the constant density case when
the Lewis numbers are of order unity or larger, persists for triple flames undergoing thermal expansion.
Under strong enough gravitational effects (Ra� 1), however, the relationship is no longer found to be
monotonic. For a fixed value of �, the relationship between the Rayleigh number and the propagation
speed is shown to vary qualitatively depending on the value of � chosen, exhibiting hysteresis if � is small
enough and displaying local maxima, local minima or monotonic behaviour for other values of �. All of
the steady solutions presented in the paper have been found to be stable, except for those on the middle
branches of the hysteresis curves.

� 2013 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
1. Introduction

The study of triple flames, which consist of two premixed
branches and a trailing diffusion flame, has been extensive since
their first experimental observation by Phillips [2]. Early analytical
studies were carried out by Ohki and Tsuge [3], followed by Dold
and collaborators [4,5]. These initial studies utilised the constant
density approximation, thus decoupling the underlying hydrody-
namics of the system from the equations of heat and mass. Most
analytical studies since have used this approximation while inves-
tigating several practical aspects affecting triple flames. These as-
pects include preferential diffusion [6,7], heat losses [8–10],
reversibility of the chemical reaction [11,12] and the presence of
a parallel flow [13]. For further references see the review papers
[14,15].

In this paper we dispense with the constant density approxima-
tion in order to describe the coupled effect of thermal expansion
and gravity on the propagation of the triple flame. To this end, it
is imperative to first understand this effect on the ‘‘strongly burn-
ing’’ diffusion flame, which forms one of the triple flame’s
branches. Steadily propagating triple flames are only expected for
parameter values for which the diffusion flame exists and is stable.

The diffusive-thermal instability of a planar diffusion flame in
the constant density approximation is well studied [16–25],
whereby cellular instabilities arise if the fuel and oxidiser Lewis
numbers take values smaller than unity and oscillatory instabilities
occur if the Lewis numbers take values larger than unity. The effect
of thermal expansion on this instability was recently investigated
by including the full hydrodynamics in the governing equations
[26]. In all cases a planar diffusion flame has been found to be sta-
ble if the values of the Lewis numbers are equal and unity, which
we take to be the case in the numerical calculations performed
in this paper. We have previously undertaken a comprehensive
study on the stability of a diffusion flame under the influence of
gravity and thermal expansion in the channel configuration
adopted in the present paper [27]. There is thus a clear understand-
ing of the values that the parameters can take to ensure the exis-
tence and stability of the trailing diffusion flame.

The first attempt to understand the effects of variable density
on triple flames was undertaken by Ruetsch et al. [1], who
investigated the problem numerically. They have also derived a
scaling law describing the increase in the propagation speed of
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the triple flame above the planar premixed flame speed due to
thermal expansion. The increase was attributed to the divergence
of the flow field ahead of the flame. The result was confirmed in
[28] using numerical simulation; further related numerical studies
were carried out in [29–32].

Triple flames propagating in a direction parallel to the direction
of gravity have been investigated numerically and experimentally
in [33–36]. It has been found that the propagation speed of a triple
flame propagating downwards is decreased in comparison to that
of a triple flame in the absence of gravity. The change in the prop-
agation speed has been explained in [35] as being due to an in-
crease in the acceleration of the gas ahead of the triple flame
leading edge, caused by buoyancy. Conversely, upward propaga-
tion leads to an increase in the propagation speed. To our knowl-
edge no dedicated studies have been undertaken on triple flames
propagating in a direction perpendicular to gravity.

In the present paper we investigate the combined effect of ther-
mal expansion and gravity on the propagation of a triple flame in a
horizontal channel with porous walls, where the fuel and oxidiser
concentrations are prescribed. The problem is formulated in the
low Mach number approximation. The main aim is to describe
the behaviour of the triple flame in terms of three non-dimensional
parameters; the flame-front thickness, the thermal expansion coef-
ficient and the Rayleigh number.

The paper is structured as follows. In Section 2 we provide a
non-dimensional formulation of the problem. In Section 3 we pres-
ent some important preliminary results used in later discussions,
related to the planar premixed flame and to the existence and sta-
bility of the planar diffusion flame. In Section 4, we present the
numerical results obtained. In particular, the effect of thermal
expansion and gravity on a triple flame is described, with special
emphasis on the relationship between the propagation speed U
and the flame-front thickness � for various values of the thermal
expansion coefficient a and the Rayleigh number Ra. We close
the paper with a summary of the main findings and recommenda-
tions for future studies.
2. Formulation

We investigate the problem of a triple flame propagating
through an infinitely long channel of height L, where fuel is pro-
vided at the upper wall and oxidiser at the lower wall, as shown
in Fig. 1. The fluid velocity at the walls is assumed to be zero. For
simplicity, the walls are taken to be isothermal and of equal tem-
perature. The governing equations consist of the Navier–Stokes
equations coupled to equations for temperature and mass fractions
Fig. 1. An illustration of a triple flame in a channel of height L. The walls are
assumed to be rigid and to have equal temperatures bT ¼ bT u . The mass fractions are
prescribed by bY F ¼ bY Fu; bY O ¼ 0 at the upper wall and bY F ¼ 0; bY O ¼ bY Ou at the lower
wall.
of fuel and oxidiser. The combustion is modelled as a single irre-
versible one-step reaction of the form

Fþ sO! ð1þ sÞProductsþ q;

where F denotes the fuel and O the oxidiser. The quantity s denotes
the mass of oxidiser consumed and q the heat released, both per
unit mass of fuel. The overall reaction rate x̂ is taken to follow an
Arrhenius law of the form

x̂ ¼ q̂BbY F
bY O expð�E=RbT Þ:

Here q̂, bY F , bY O, R, bT , B and E are the density, the fuel mass fraction,
the oxidiser mass fraction, the universal gas constant, the tempera-
ture, the pre-exponential factor and the activation energy of the
reaction, respectively.

2.1. Governing equations

The governing equations in the low Mach number formulation
will be written here using a co-ordinate system attached to the
flame front. More precisely, if _xF ð̂tÞ denotes the propagation speed
of the flame front relative to the laboratory (with _xF ð̂tÞ < 0 indicat-
ing a propagation to the left), we shall use the co-ordinates

ð̂t0;X0;Y 0Þ ¼ ð̂t;X � xF ð̂tÞ;YÞ:

This leads to

@

@t̂
¼ @

@t̂0
� _xF ð̂tÞ

@

@X0
:

Dropping primes, we write the governing equations as the con-
tinuity equation

@q̂
@t̂
þ @

@X
ðq̂ðû� _xF ð̂tÞÞÞ þ

@

@Y
ðq̂v̂Þ ¼ 0; ð1Þ

momentum equations

q̂
@û
@ t̂
þ q̂ðû� _xF ð̂tÞÞ

@û
@X
þ q̂v̂ @û

@Y
þ @p̂
@X

¼ l r2ûþ 1
3
@

@X
ðr � ûÞ

� �
; ð2Þ

q̂
@v̂
@t̂
þ q̂ðû� _xFðt̂ÞÞ

@v̂
@X
þ q̂v̂ @v̂

@Y
þ @p̂
@Y

¼ l r2v̂ þ 1
3
@

@Y
ðr � ûÞ

� �
þ ðq̂� q̂uÞg; ð3Þ

temperature equation

q̂
@bT
@t̂
þ q̂ðû� _xF ð̂tÞÞ

@bT
@X
þ q̂v̂ @

bT
@Y
¼ q̂DTr2bT þ q

cP
x̂; ð4Þ

fuel and oxidiser mass fraction equations

q̂
@bY F

@t̂
þ q̂ðû� _xF ð̂tÞÞ

@bY F

@X
þ q̂v̂ @

bY F

@Y
¼ q̂DFr2bY F � x̂; ð5Þ

q̂
@bY O

@t̂
þ q̂ðû� _xF ð̂tÞÞ

@bY O

@X
þ q̂v̂ @

bY O

@Y
¼ q̂DOr2bY O � sx̂; ð6Þ

and the equation of state

q̂bT ¼ q̂u
bT u: ð7Þ

Here p̂ is the hydrodynamic pressure and DT, DF, and DO denote the
diffusion coefficients of heat, fuel and oxidiser, respectively. bT u re-
fers to the temperature of the unburnt mixture which is also the
temperature of both channel walls, while q̂u is the density of the
unburnt mixture. We assume that q̂DT , q̂DF and q̂DO are constant,
as are the specific heat capacity cP, thermal conductivity k and dy-
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Fig. 3. The effect of the thermal expansion coefficient a on the numerically
calculated value of the propagation speed, Uplanar, for fixed values of the other
parameters given by b = 10, � = 1, LeF = LeO = 1, S = 1, Pr = 1 and Ra = 0.
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namic viscosity l. The flame speed _xF ð̂tÞ is an eigenvalue of the
problem and must be determined as part of the solution.

The conditions as X ? �1 correspond to the frozen solution
with no flow, which is independent of X and is given by

bT ¼ bT u; ð8Þ

bY F ¼ bY Fu
Y
L
; ð9Þ

bY O ¼ bY Ou 1� Y
L

� �
; ð10Þ

û ¼ v̂ ¼ 0; ð11Þ

where bY Fu and bY Ou refer to the prescribed mass fractions at the fuel
and oxidiser sides respectively. The channel walls are also consid-
ered rigid; thus the lateral boundary conditions are

bT ¼ bT u; bY F ¼ 0; bY O ¼ bY Ou; û ¼ v̂ ¼ 0; at Y ¼ 0; ð12ÞbT ¼ bT u; bY F ¼ bY Fu; bY O ¼ 0; û ¼ v̂ ¼ 0; at Y ¼ L: ð13Þ

Downstream as X ?1 the solution corresponds to the one-
dimensional strongly burning solution of the diffusion flame,
which is again independent of X.

For large activation energies, the flame-front region is expected
to be centred around the stoichiometric surface Y = Yst wherebY O ¼ sbY F . Upstream, the position of the stoichiometric surface
can be determined from Eqs. (8)–(10) as

Yst

L
¼ 1

1þ S
; ð14Þ

where S � sbY Fu=bY Ou is a normalised stoichiometric coefficient.
We now introduce the non-dimensional variables

x ¼ X
L
; y ¼ Y

L
; u ¼ û

S0
L

; v ¼ v̂
S0

L

;

t ¼ t̂

L=S0
L

; h ¼
bT � bT ubT ad � bT u

; yF ¼
bY FbY F;st

;

yO ¼
bY ObY O;st

; p ¼ p̂

q̂uðS0
L Þ

2 ;

where the subscript ‘st’ denotes values at the upstream stoichiom-
etric surface. Here bT ad � bT u þ qbY F;st=cP is the adiabatic flame tem-
perature, b � EðbT ad � bT uÞ=RbT 2

ad is the Zeldovich number or non-
dimensional activation energy and a � ðq̂u � q̂adÞ=q̂u is the thermal
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Fig. 2. The effect of b on the numerically calculated value of the propagation speed,
Uplanar, for fixed values of the other parameters given by a = 0.85, � = 1, LeF = LeO = 1,
S = 1, Pr = 1 and Ra = 0.
expansion coefficient. In non-dimensionalising we have used as unit
speed

S0
L ¼ ð4LeF LeOb�3YO;stð1� aÞDT B expð�E=RTadÞÞ

1=2
; ð15Þ

which is the laminar burning speed of the stoichiometric planar
flame to leading order for b� 1. Inserting the scalings above into
Eqs. (1)–(7) leads to the non-dimensional equations

@q
@t
þ @

@x
ðqðuþ UðtÞÞÞ þ @

@y
ðqvÞ ¼ 0; ð16Þ

q
@u
@t
þ qðuþ UðtÞÞ @u

@x
þ qv @u

@y
þ @P
@x
¼ �Prr2u; ð17Þ

q
@v
@t
þ qðuþ UðtÞÞ @v

@x
þ qv @v

@y
þ @P
@y

¼ �Prr2v þ �
2PrRa
a
ð1� qÞ; ð18Þ

q
@h
@t
þ qðuþ UðtÞÞ @h

@x
þ qv @h

@y
¼ �r2hþ �

�1x
1� a

; ð19Þ
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Fig. 4. The effect of the thermal expansion coefficient a on the value of �
corresponding to the extinction value of the planar diffusion flame, �ext, for fixed
values of the other parameters given by b = 10, LeF = LeO = 1, S = 1, Pr = 1 and Ra = 0.
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Fig. 6. The effect of � on the propagation speed U for several values of the thermal
expansion coefficient a with fixed values of the other parameters given by b = 10,
LeF = LeO = 1, S = 1, Pr = 1 and Ra = 0. For each a, U is scaled by the numerical value
calculated for the propagation speed of the planar premixed flame.

1 In asymptotic studies with b ?1, of course ah is unimportant and can be set to
zero. However, for finite values of b, say b = 10 (which is commonly used in numerical
studies), ah has a noticeable effect.
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q
@yF

@t
þ qðuþ UðtÞÞ @yF

@x
þ qv @yF

@y
¼ �

LeF
r2yF �

��1x
1� a

; ð20Þ

q
@yO

@t
þ qðuþ UðtÞÞ @yO

@x
þ qv @yO

@y
¼ �

LeO
r2yO �

��1x
1� a

; ð21Þ

q ¼ 1þ a
1� a

h
� ��1

; ð22Þ

where P is a modified pressure given by P ¼ p� �Pr
3 ðr � uÞ and

U � � _xF=S0
L is the non-dimensional propagation speed relative to

the laboratory. The non-dimensional parameters are defined as

Ra ¼ gðq̂u � q̂adÞL3

mq̂uDT
; � ¼ lFl

L
¼ DT=S0

L

L
;

LeF ¼
DT

DF
; LeO ¼

DT

DO
; and Pr ¼ m

DT
;

which are the Rayleigh number, the flame-front thickness lFl mea-
sured against the unit length L, the fuel and oxidiser Lewis numbers
and the Prandtl number, respectively.

It is worth pointing out that, since L�1 is a measure of the
mixture fraction gradient in this configuration, the parameter �
can be considered as a non-dimensional representation of the
latter. More precisely, it can be checked that � is related to the
parameter B used in Dold’s original analysis of a triple flame
[4] by � = B/b. Note that � can also be interpreted as defining a
Damköhler number by

Da ¼ 1
�2ð1� aÞ :

The non-dimensional reaction rate is

x ¼ b3

4LeF LeO
qyFyO exp

bðh� 1Þ
1þ ahðh� 1Þ

� �
; ð23Þ

where ah is a heat release parameter given by ah ¼ ðbT ad � bT uÞ=bT ad.
Note that in the low Mach number approximation the two param-
eters a � ðq̂u � q̂adÞ=q̂u and ah are in fact equal, which follows from
Eq. (7). In this paper, however, we leave the two distinct to aid com-
parison of our results with those previously obtained in the con-
stant density approximation [7], where ah appears in the reaction
term x and only there. To assess the effect of thermal expansion
we shall vary the coefficient a, while maintaining ah = 0.85 con-
stant, as in [7,8]. Thus as a ? 0 the equations in our study reduce
to those of the constant density approximation.1

Finally, Eqs. (12) and (13) imply that the boundary conditions
are

h ¼ 0; ð24Þ
yF ¼ ð1þ SÞy; ð25Þ

yO ¼
Sþ 1

S
ð1� yÞ; ð26Þ

u ¼ v ¼ 0 as x! �1; y ¼ 0 or y ¼ 1: ð27Þ

@u
@x
¼ @v
@x
¼ @h
@x
¼ @yF

@x
¼ @yO

@x
¼ 0 as x! þ1: ð28Þ

The non-dimensional problem is now fully formulated and is gi-
ven by Eqs. (16)–(22) subject to the boundary conditions Eqs. (24)–
(28). The non-dimensional parameters in this problem are a, ah, b,
Pr, Ra, �, S, LeF and LeO.

3. Preliminary study: the planar premixed flame and the planar
diffusion flame

As a preliminary study whose results will be useful for subse-
quent discussions, in this section we investigate the planar pre-
mixed flame and the planar diffusion flame. We will begin with a
discussion of how the propagation speed of the planar premixed
flame is affected by the parameters a and b. We will then study
the planar diffusion flame to determine the values of �, a and Ra
for which it is expected to exist in a stable state.

3.1. Planar premixed flame

The equations governing the planar premixed flame are the sta-
tionary, y-independent form of Eqs. (16)–(22) subject to the
boundary conditions

h ¼ 0; yF ¼ 1; yO ¼ 0; u ¼ v ¼ 0 as x! �1; ð29Þ
@u
@x
¼ @v
@x
¼ @h
@x
¼ @yF

@x
¼ @yO

@x
¼ 0 as x! þ1: ð30Þ



Fig. 7. Streamlines and reaction rate contours in a frame of reference attached to
the flame-front for a = 0 and � = 0.015, � = 0.05, � = 0.12 and � = 0.2, respectively
from top to bottom. The propagation speeds, when scaled by the numerically
calculated propagation speed of a planar premixed flame, are given by U = 0.83,
U = 0.56, U = 0.04 and U = �2.07, respectively.

Fig. 8. Streamlines and reaction rate contours in a frame of reference attached to
the flame-front for a = 0.1 and � = 0.015, � = 0.05, � = 0.13 and � = 0.2, respectively
from top to bottom. The propagation speeds, when scaled by the numerically
calculated propagation speed of a planar premixed flame, are given by U = 0.84,
U = 0.58, U = �0.06 and U = �1.82, respectively.
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The stationary, one-dimensional problem is solved using the fi-
nite-element package Comsol Multiphysics. The aim is to investi-
gate the effect of the parameters a and b on the numerically
calculated planar premixed flame propagation speed Uplanar, which
can be compared to its asymptotic value as b ?1. We give the
other parameters fixed values of � = 1, LeF = LeO = 1, S = 1, Pr = 1,
ah = 0.85 and Ra = 0.

In the limit b ?1 the (dimensional) propagation speed of the
stoichiometric planar flame undergoing thermal expansion should
approach the asymptotically derived value S0

L , given by Eq. (15).
Thus, since we have scaled the velocity by this value, the numeri-
cally calculated propagation speed Uplanar should approach unity
for all values of a as b ?1. Figure 2 shows that the numerically
calculated value of Uplanar does indeed approach unity with
increasing b for a fixed value of a = 0.85, as expected.

For the remainder of this paper we let b take a typical value,
namely b = 10. From Fig. 2 it can be seen that for this value of b,
the propagation speed Uplanar deviates from its expected value of
unity by about 12%. However, to achieve a notable increase in
accuracy would involve significant extra computational cost.

It will also be useful in later discussions to describe how Uplanar

varies with the thermal expansion coefficient a. Figure 3 presents a
plot of Uplanar versus a for a fixed value of b = 10.
3.2. Planar diffusion flame

Steadily propagating triple flames are not expected if � exceeds
the extinction value �ext of the planar diffusion flame. Here we
therefore numerically solve the underlying one-dimensional equa-
tions independent of x, to produce a plot of �ext versus a, which is
provided in Fig. 4.

A plot of the values of � for which the trailing planar diffusion
flame becomes unstable under gravity will also be useful in later
discussions. This stability problem was investigated in a recent pa-
per [27], from which important results relevant to our study are
summarised in Fig. 5. Shown is a plot of the critical value of � ver-
sus the Rayleigh number Ra, for a = 0.85. This critical value defines
the neutral stability curve which separates the two stability re-
gions in the figure. These regions, labelled A and B, define the re-
gions of stability and instability of the planar diffusion flame,
respectively.
4. Results for a triple flame propagating in a channel

In this section we present the results obtained by solving the
stationary form of Eqs. (16)–(22) with boundary conditions Eqs.
(24)–(28) using the finite-element package Comsol Multiphysics.
The main aim of the work is to calculate the propagation speed U
in terms of the parameters a, � and Ra, which represent thermal
expansion, strain rate and gravity, respectively. The other parame-
ters are assigned the values b = 10, ah = 0.85, LeF = LeO = 1, S = 1 and
Pr = 1 throughout this section. We begin with an investigation into
the effect of thermal expansion on a triple flame in the absence of
gravity. This is followed by a study on the combined effects of gas
expansion and gravity.



Fig. 9. Streamlines and reaction rate contours in a frame of reference attached to
the flame-front for a = 0.5 and � = 0.015, � = 0.05, � = 0.13 and � = 0.21, respectively
from top to bottom. The propagation speeds, when scaled by the numerically
calculated propagation speed of a planar premixed flame, are given by U = 1.15,
U = 0.69, U = 0.02 and U = �2.00, respectively.

Fig. 10. Streamlines and reaction rate contours in a frame of reference attached to
the flame-front for a = 0.85 and � = 0.015, � = 0.05, � = 0.14 and � = 0.22, respectively
from top to bottom. The propagation speeds, when scaled by the numerically
calculated propagation speed of a planar premixed flame, are given by U = 1.98,
U = 1.00, U = �0.01 and U = �2.26, respectively.
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4.1. Effect of thermal expansion on a triple flame in the absence of
gravity

In this section we investigate the effect of thermal expansion on
a triple flame in the absence of gravity. We therefore let Ra = 0
throughout the section. Since the aim of the study is to calculate
U, we will begin with a plot of U versus � for several values of
the thermal expansion coefficient a. In order to fully understand
the effect of the two parameters � and a, we will end with a com-
parison of how the streamlines and reaction rate contours change
with increasing � for several fixed values of a.
0 0.05 0.1 0.15 0.2 0.25
ε

Fig. 11. The effect of � on the propagation speed U for selected values of the
Rayleigh number with the values of the other parameters given by b = 10,
LeF = LeO = 1, S = 1, Pr = 1 and a = 0.85.
4.1.1. Propagation speed of a triple flame
Figure 6 shows a plot of the propagation speed U of the triple

flame (scaled by the numerically calculated propagation speed
Uplanar of the planar premixed flame, shown in Fig. 3) versus � for
several values of the thermal expansion coefficient a. We begin
by noting that the curve labelled a = 0 corresponds to the constant
density case, which was studied analytically in [13] in the limit
�? 0. We have checked that this curve is consistent with the ana-
lytical results of [13] in this limit. The maximum value we let �
take for each a is the extinction value �ext of the trailing planar dif-
fusion flame, which can be found in Fig. 4. The monotonic relation-
ship between U and �, with U decreasing to negative values when �
is close to �ext, is a well known property of constant density triple
flames with Lewis numbers greater than or equal to unity [7]. It is
found that this property remains valid for triple flames undergoing
thermal expansion, for all values of a, as shown in Fig. 6.

It can also be seen in Fig. 6 that, if a > 0, U approaches a value
larger than that of the planar premixed flame as � approaches zero
(i.e. U/Uplanar > 1 as �? 0). This result agrees with previous studies,
which have found that thermal expansion causes an increase in the
propagation speed of a triple flame above the speed of the planar
premixed flame [1,28].
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Fig. 12. Comparison of the relationship between propagation speed U and the Rayleigh number Ra for several fixed values of �. The other parameters take fixed values given
by b = 10, LeF = LeO = 1, S = 1, Pr = 1 and a = 0.85. A dashed line indicates that the steady solutions have been found to be unstable in time-dependent simulations; all other
solutions have been found to be stable.
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In fact, it can be derived (see [1]) that under the influence of
thermal expansion, and in the limit �? 0, the ratio of the propaga-
tion speed of the triple flame to that of the planar premixed flame
can be approximated by the formula

U
Uplanar

� qu

qb

� �1=2

¼ 1
1� a

� �1=2

as �! 0: ð31Þ

Thus in the case a = 0.85, say, the propagation speed of the triple
flame (when scaled by the propagation speed of the planar pre-
mixed flame) can be expected to approach the value 2.58 as
�? 0. Therefore our results are in good agreement with the predic-
tions made in [1], as can be seen in Fig. 6.
4.1.2. Comparative cases for fixed a
Figures 7–10 show the reaction rate contours and streamlines of

the system for increasing values of �, with several fixed values of
the thermal expansion coefficient a. Examining, for example,
Fig. 10 shows the mechanism for the increase in triple flame speed
above that of the planar premixed flame with thermal expansion as
�? 0, discussed in the previous section.

The figure shows that, for small �, ahead of the flame front the
streamlines diverge. As explained in detail in [1], the divergence of
the streamlines occurs because the fluid velocity normal to the
flame front increases with thermal expansion, while the fluid
velocity tangential to the flame front remains the same. The flow



Fig. 13. Streamlines and reaction rate contours in a frame of reference attached to
the flame-front for Ra = 1000 and � = 0.015, � = 0.05, � = 0.1 and � = 0.22, respec-
tively from top to bottom. The propagation speeds are given by U = 1.73, U = 0.86,
U = 0.38 and U = �1.98, respectively.

Fig. 14. Streamlines and reaction rate contours in a frame of reference attached to
the flame-front for Ra = 5000 and � = 0.015, � = 0.05, � = 0.1 and � = 0.22, respec-
tively from top to bottom. The propagation speeds are given by U = 1.71, U = 0.53,
U = 0.62 and U = �2.11, respectively.
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velocity vector is therefore bent towards the centreline (or stoichi-
ometric surface) of the triple flame as it crosses the flame front.
This must be accommodated by a divergence of the streamlines,
which causes a drop in the horizontal component of the fluid
velocity just ahead of the flame front. For small �, since the flame
front is quasi-planar, the fluid velocity just ahead of the flame
should be approximately equal to the propagation speed of the pla-
nar-premixed flame S0

L . Thus, since the fluid velocity drops ahead of
the flame front, the fluid velocity upstream of the flame must be
above S0

L .
4.2. Effect of gravity on a triple flame

In this section we investigate the combined effects of thermal
expansion and gravity on a triple flame. Throughout this section
we let the thermal expansion coefficient take the typical value
a = 0.85. Note that we only consider values in parameter space
for which the underlying planar diffusion flame is stable, as shown
in Fig. 5. Since the aim of the study is to calculate the propagation
speed U, we will begin with a plot of U versus � for several values of
the Rayleigh number Ra. We will then plot graphs of U versus Ra
for selected values of � to further capture the complex relation-
ships that are displayed between the physical parameters and
the propagation speed. We will end with a comparison of how
the streamlines and reaction rate contours change with increasing
� for several fixed values of Ra.
4.2.1. Propagation speed of a triple flame
Figure 11 shows a plot of the propagation speed U of the triple

flame versus �, for selected values of the Rayleigh number Ra. The
figure shows, firstly, that in the limit �? 0 the Rayleigh number
has very little effect on the propagation speed of a triple flame. This
could be easily deduced by considering Eq. (18) and noting that, as
�? 0, the buoyancy term does not enter the problem at O(1) un-
less Ra = O(��2). Secondly, the figure shows that there is a critical
Rayleigh number, calculated as approximately Ra = 3400, above
which the graph of U versus � ceases to be monotonic. Finally, it
shows the complex behaviour of the system for even higher values
of Ra. It is found that there can exist three different steady solu-
tions for some low values of � (i.e. the system exhibits hysteresis).
It is also found that at � � 0.1, there is a local maximum in the
graph of U versus �. As � approaches its extinction value �ext, U is
found to fall to negative values as in the case without gravity.

Some of the complex behaviour of the system can be captured
by maintaining � fixed and varying Ra. Graphs of U versus Ra for
selected values of � are plotted in Fig. 12. In Fig. 12a and b, in which
� takes a low value, the hysteresis displayed by the system can be
clearly seen, whereby for certain values of Ra there are three solu-
tions for U. The middle branches of these hysteresis curves have
been found to consist of unstable solutions. For a slightly higher
value of � there is no longer found to be a multiplicity of solutions;
the propagation speed has a local minimum at a certain value of Ra
before increasing as Ra reaches higher values, as shown in Fig. 12c.
In Fig. 12d, in which � = 0.1, U is seen to increase monotonically



Fig. 15. Streamlines and reaction rate contours in a frame of reference attached to
the flame-front for Ra = 15,000 and � = 0.015, � = 0.05, � = 0.1 and � = 0.22, respec-
tively from top to bottom. The propagation speeds are given by U = 1.71, U = 0.71,
U = 0.99 and U = �2.71, respectively.
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with Ra. Figure 12e shows that if U � 0 for a triple flame without
gravity, the propagation speed remains near zero as Ra increases.
Finally, Fig. 12f shows that when � is near its extinction value (with
the propagation speed being negative), U decreases monotonically
with Ra.

For sufficiently small �, as in Fig. 12a–c, it can be seen that U de-
creases with increasing Ra for not too large Ra. This can be ex-
plained by considering the physical behaviour of the system,
which we proceed to investigate next.

4.2.2. Comparative cases for fixed Ra
Figures 13–15 show the reaction rate contours and streamlines

of the system with increasing values of �, for several fixed values of
Ra. We begin by noting that the solutions plotted in Figs. 13–15
Fig. 16. An illustration of a triple flame for �? 0 under small gravitational effects.
In a frame of reference attached to the triple flame, the fluid flows across the (quasi-
planar) flame front at an angle h to the horizontal at the planar premixed flame
speed S0

L ; the fluid velocity along the centreline is therefore smaller than the planar
premixed flame speed.
have all been found to be stable as they do not lie on the middle
branch of the hysteresis curves in Fig. 12 discussed in the previous
section. From these diagrams it can be seen that buoyancy forces
cause the formation of vortices upstream of the flame (or down-
stream of a negatively propagating triple flame). For higher values
of Ra, the vortex formed is found to be larger in its size and the
strength of its flow.

These vortices can be explained as being caused by the temper-
ature gradient from cold to hot along the positive x-direction in the
channel. It has been found that in a channel or pipe in the absence
of a flame, differentially heated end walls cause the fluid in the
channel or pipe to flow from hot to cold along the top of the do-
main, and from cold to hot along the bottom of the domain [37].
The flow is explained in [37] as being be due to buoyancy forces
caused by the change in density with temperature. A similar mech-
anism can explain the vortices caused by a triple flame in a channel
and thus the reduction in the propagation speed of the triple flame
for small values of �, when the Rayleigh number is increased above
zero. The flow of fluid from hot to cold at the top of the domain and
cold to hot at the bottom causes a downward flow in front of a pos-
itively propagating triple flame, bending the stoichiometric isosur-
face ahead of the flame downwards. Effectively this reduces the
component of the propagation velocity in the horizontal direction.

More precisely, for small values of � (for which the flame front is
quasi-planar), the fluid velocity perpendicular to the flame front
across the flame is approximately given by the planar premixed
flame speed S0

L . Thus, when the stoichiometric isosurface ahead
of the flame is bent to an angle h to the horizontal by the down-
ward flow ahead of the flame, the propagation speed can be ex-
pected to be approximately U ¼ S0

L cos h, as shown in Fig. 16.
Therefore for small �, an increase in the Rayleigh number (which
causes the vortices ahead of the flame to be stronger, and hence
bends the stoichiometric isosurface further downwards and in-
creases h) leads to a decrease in the propagation speed U, in the ab-
sence of other effects.

This physical behaviour is best illustrated by considering the
triple flame under the influence of gravity but in the absence of
thermal expansion, so that the acceleration of the flow field as it
crosses the triple flame does not mask the effects of buoyancy.
To do this, we must make use of the Boussinesq approximation,
and expand the ideal gas equation of density, given by Eq. (22), as
Fig. 17. The vertical component of the velocity vector and the reaction rate along
the centreline of the triple flame located at y ¼ 1

2, both scaled by their maximum
values, in the Boussinesq approximation (a ? 0) for � = 0.05 and Ra = 50. The
vertical velocity component is clearly negative just ahead of the flame-front as
expected.
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q ¼ 1� ahþ Oða2Þ: ð32Þ

This gives q = 1 to leading order in every term in Eqs. (16)–(21) ex-
cept the buoyancy term in Eq. (18), which becomes �2PrRah.

Now we numerically solve Eqs. (16)–(21) with boundary condi-
tions Eqs. (24)–(28) in the Boussinesq approximation, for a small
value of the Rayleigh number, as �? 0. Plotted in Fig. 17 is the ver-
tical component of the velocity along the centreline of the triple
flame located at y ¼ 1

2. It can be seen that there is a downwards
flow upstream of the point where the reaction rate reaches a max-
imum, and an upwards flow downstream of it. This clearly illus-
trates the vortex formed by the triple flame and the downwards
flow ahead of the flame front.
5. Conclusion

In this study, the effect of thermal expansion and gravity on a
triple flame propagating in a horizontal channel where the fuel
and oxidiser concentrations are prescribed at the walls has been
investigated. This seems to be the first paper dedicated to triple
flame propagation in a direction perpendicular to gravity. The
problem has been formulated in the low Mach number approxima-
tion and solved numerically. The effect of the flame-front thickness
� on the propagation speed U has been described for several values
of the thermal expansion coefficient a and the Rayleigh number Ra.

It has been found that the well-known monotonic relationship
between U and � that is present in the constant density case (which
arises in the limit a ? 0) remains valid for a – 0, when Ra = 0 (i.e.
in the absence of gravity). In fact, the influence of a on the triple
flame for Ra = 0 is found to agree with the conclusions of the pio-
neering study [1], where the physical mechanism for the increase
in propagation speed has been explained.

Under the influence of gravity we have shown that the mono-
tonic relationship between U and � is only present for values of
Ra below a critical value which has been determined. Further, it
has been shown that, if Ra takes a value higher than this critical va-
lue, there is a local maximum in the graph of U versus �, as can be
seen in Fig. 11. The system has been shown to exhibit hysteresis for
even higher values of the Rayleigh number.

The complex relationship between U and Ra has been further
investigated by fixing � and varying Ra. It has been found that
the graph of U versus Ra (see Fig. 12) depends strongly on the value
of � chosen. Time-dependent simulations have shown that all of
the steady solutions presented are stable, except for solutions on
the middle branch of the hysteresis curves presented in Fig. 12. Fi-
nally, a physical argument has been provided, which explains the
decrease of U with increasing gravity for small values of �.

We believe that the results of this paper provide valuable in-
sight into the behaviour of a triple flame under gravitational effects
and illustrate the complexity and variety of the scenarios that
arise. A further aspect of the problem which is worth considering
in future studies is the time-dependent behaviour of triple flames
in situations where the underlying planar diffusion flame is itself
unstable due to gravitational effects.
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