

The Android mobile platform

by

Benjamin Speckmann

A Review Paper Submitted to the

Eastern Michigan University

Department of Computer Science

In Partial Fulfillment of the Requirements for the

Master of Science

in Computer Science

Approved at Ypsilanti, Michigan on April 16th , 2008

Professor Matthew Evett

Professor Krish Narayanan

Professor Elsa Valeroso Poh

ABSTRACT

The thesis is a review paper that gives an introduction to the new mobile platform Android as well as

a comparative evaluation with regard to other mobile operating systems.

The key topic of this thesis is the categorization of Android.

Therefore it first gives a historical introduction to cell phones and mobile operating systems.

Then it describes the main features of Android for a better understanding of this platform.

In the following theoretical part Android will be compared to the mobile operating systems Symbian

OS and Windows Mobile. Features and criteria defined in this part will be considered and included

in the comparison of these systems.

The practical part contains a comparison of the Software Development Kits (SDK) from Android

and Symbian OS. In this context a simple application implementation on both systems is realized to

support this comparison.

Finally an outlook and a conclusion complete this elaboration.

i

Table of content

List of Figures ... v

List of Listings .. vi

Chapter 1 : Introduction.. 1

Section 1.1 : Motivation .. 2

Section 1.2 : General problem statement... 3

Section 1.3 : Goal of the Thesis... 5

Section 1.4 : Structure ... 6

Section 1.5 : Historical development of cell phones and operating systems....................... 7

Chapter 2 : Main features of Android.. 11

Section 2.1 : What is Android?.. 11

Section 2.2 : Important features integrated in Android ... 15

Chapter 3 : Android vs. Symbian OS vs. Windows Mobile ... 16

Section 3.1 : Classification of operating systems for mobile devices 17

3.1.1 Characteristics of the mobile phone market ... 17

3.1.2 Classification criteria.. 18

3.1.2.1 Main criteria .. 19

3.1.2.2 Further criteria ... 22

Section 3.2 : Comparison of Android, Symbian OS and Windows Mobile 24

ii

3.2.1 Classification based on main criteria.. 24

3.2.1.1 Portability .. 24

3.2.1.2 Reliability .. 25

3.2.1.3 Connectivity... 27

3.2.1.4 Product Diversity... 28

3.2.1.5 Open platform.. 28

3.2.1.6 Kernel Size .. 31

3.2.1.7 Standards ... 32

3.2.1.8 Security.. 33

3.2.1.9 Special Features... 34

3.2.2 Classification based on further criteria... 34

3.2.2.1 Basic criteria .. 35

3.2.2.2 Technical criteria ... 36

3.2.2.3 Usability criteria .. 36

3.2.2.4 User Interface criteria .. 37

Section 3.3 : Conclusion.. 38

Chapter 4 : Tea Time - Application implementation with Android- and Symbian OS

SDK 43

Section 4.1 : Why compare Symbian OS to Android? .. 44

Section 4.2 : Installation process ... 45

4.2.1 System requirements... 45

iii

4.2.2 Installation .. 47

Section 4.3 : TeaTime – An application description ... 50

Section 4.4 : Life-cycle of an Android and a Symbian application 56

Section 4.5 : Software Development Kit comparison ... 59

4.5.1 Developer features between the SDKs ... 59

4.5.2 The APIs ... 63

4.5.3 Practical comparison between the APIs ... 67

4.5.3.1 Show a list of items ... 68

4.5.3.2 Achieve an action by pressing a button ... 72

4.5.3.3 Show normal input fields... 76

4.5.3.4 Access to a persistent storage .. 79

Section 4.6 : Conclusion.. 84

Chapter 5 : Conclusion .. 87

Section 5.1 : Main Advantages.. 89

Section 5.2 : Main Disadvantages ... 90

Section 5.3 : Future Prospects ... 91

Chapter 6 : Bibliography... 93

Chapter 7 : Glossar .. 97

Chapter 8 : Appendix A - source code TeaTime application on Android 100

iv

Chapter 9 : Appendix B - source code TeaTime application on Symbian OS...................... 112

v

List of Figures

Figure 1: Historical development of cell phones.. 8

Figure 2: Major components of the Android operating system.. 14

Figure 3: Android emulator - initialization .. 51

Figure 4: Symbian emulator - initialization ... 51

Figure 5: Android emulator – List of teas .. 52

Figure 6: Symbian emulator – List of teas ... 52

Figure 7: Android emulator – Add a tea... 53

Figure 8: Symbian emulator – Add a tea.. 53

Figure 9: Android emulator – countdown timer... 54

Figure 10: Symbian emulator – countdown timer.. 54

vi

List of Listings

Listing 1: Most important data of some cell phones .. 9

Listing 2: Basic criteria of operating systems .. 35

Listing 3: Technical criteria of operating systems.. 36

Listing 4: Usability criteria of operating systems... 36

Listing 5: User interface criteria of operating systems... 37

Listing 6: Result table of operating system comparison... 38

Listing 7: Minimum system requirements of Android and Symbian OS ... 46

Listing 8: Developer features of Android SDK and Symbian S60 SDK.. 60

Listing 9: Android source code – Show a lis of items.. 68

Listing 10: Symbian Source code – Show a list of items ... 70

Listing 11: Android source code – Achieve an action by pressing a button 72

Listing 12: Symbian source code – Achieve an action by pressing a button...................................... 74

Listing 13: Android source code – Show normal input fields.. 76

Listing 14: Symbian source code – Show normal input fields ... 78

Listing 15: Android source code – Access to a persistent storage ... 80

Listing 16: Symbian source code – Access to a persistent storage... 82

vii

Listing 17: TeaTime application (Android) – TeaList.java.. 102

Listing 18: TeaTime application (Android) – TeaEdit.java ... 103

Listing 19: TeaTime application (Android) – TeaTimer.java .. 106

Listing 20: TeaTime application (Android) – TeaDB.java .. 109

Listing 21: TeaTime application (Android) – tea_list.xml... 110

Listing 22: TeaTime application (Android) – tea_add.xml.. 110

Listing 23: TeaTime application (Android) – tea_timer.xml ... 111

Listing 24: TeaTime application (Symbian) – TeaList.java... 114

Listing 25: TeaTime application (Symbian) – TeaAdd.java .. 116

Listing 26: TeaTime application (Symbian) – TeaTimerCanvas.java ... 118

Listing 27: TeaTime application (Symbian) – TeaDB.java ... 122

Introduction 1

Chapter 1 : Introduction

The Personal Computer and the Internet have found revolutionary ways to connect people, to

entertain them and let them exchange information. But none of these is able to reach each person

anywhere and anytime like the cell phone does.

Based on the company “The Mobile World” in 2007 [MW2007] the global mobile phone usage had

exceeded 3.25 billion at the end of 2007 which is equivalent to around half of the worlds population.

This shows what a size is behind the brand “cell phone”. Ten years ago nobody would think about a

development like this. That this development is going on is shown by a further survey according to

the Lemelson-MIT invention index study in the beginning of 2004 [LE2004]. Nearly one in three

adults say the cell phone is the invention they most hate but cannot live without. This clearly

indicates how the cell phone affects the life of people and how important it is has become in todays

society. Considering the results of such surveys, everyone has to ask himself, how it will be possible

to take advantage of such a trend.

Google has found perhaps the adequate answer to this question, as they come out with the new open

and comprehensive platform for mobile devices called Android. It includes an operating system,

middleware, user-interface and applications. It is manufacturer spanning and able to run on every

cell phone. Unlike on the market for cell phones, where many manufacturers compete, there are only

two main competitors in the domain of cell phone operating systems which are Symbian with

“Symbian OS” and Microsoft with “Windows Mobile”. Android must successfully compete with

them if Google wants to exist on the mobile market.

Introduction 2

Section 1.1 : Motivation

The internet capable cell phone is the future!

 − Virpi Roto

This sentence released in a presentation on a technology media event from Nokia called “The Way

we live next” attracts interest [NO2007]. In the past it was never clear that the cell phone will have

such an important status in today’s society. But the development of the cell phone proves this

statement right. Last year Apple’s Iphone came on the market. It includes, besides the normal

functionalities, applications like a web browser which allows you to see web pages the way they

were designed to be seen. That makes the cell phone more similar to a PC. So not the cell phone

itself seems to be the most important thing. It is the operating system and the applications on it

which can make the difference in the future. Japan is another example for a successful future of the

cell phone. In Japan more people are connected to the internet via their mobile phone than there are

PCs with online connections [MW2006].

This massive potential market is now being discovered by one of the biggest internet companies of

the world, Google. Google’s approeach is to develop an operating system which can run on every

mobile device and not for the mobile device itself shows what their strategy is: Reach as much

people as possible.

Introduction 3

Section 1.2 : General problem statement

Android makes it easier for consumers to get and use new content and applications on their

handsets.

 − Andy Rubin

This is a brave statement but meets exactly the problems I would like to address here. The main

problem in my opinion is that most cell phone users don’t know much about their operating system

and its potential. The most common applications like telephone, SMS and in the meantime camera

functionalities are widely used. But a cell phone in today’s society is not only a tool for telephoning

and writing SMS. It is a personal item which provides entertainment and information. It is important

to keep in mind that there are different types of cell phone users. I would like to consider three

different user groups:

• The normal user who uses only the basic applications provided by the cell phone.

• The advanced user who uses a large part of the provided applications.

• The expert user who tries to get deeper into the cell phone environment, develops

applications and uses the total band of functionalities provided by the cell phone.

Each type of user has different needs and expectations. Several questions arise from this: Does the

new Android mobile platform fit the needs of the different user groups? Do users really need this

Introduction 4

new mobile platform or are other existing platforms good enough? To get a significant answer, we

will consider Android in comparison to the existing and widely used mobile platforms Symbian OS

and Windows Mobile.

Introduction 5

Section 1.3 : Goal of the Thesis

This thesis introduces cell phones and operating systems for mobile devices, in general, and

evaluates the new mobile platform Android in comparison to the existing and commonly used

mobile platforms Symbian OS and Windows Mobile. The intended audience of this thesis are the

user groups identified above, including new cell phone users, but also advanced users, who are

interested in new information, as well as developers who are engaged in application implementation

on cell phones.

In detail, the thesis

• provides an historical overview and introduction to cell phones and operating systems for

mobile devices,

• introduces and evaluates the new open mobile platform Android in comparison to the

existing and commonly used platforms Symbian OS and Windows Mobile,

• uses the implementation of a simple application on both the Android and Symbian OS to

illustrate strength and weakness of the two platforms

and can be used by the reader as an introduction to as well as a support for operating systems for

mobile devices. Why Symbian OS is used in the practical part of this Thesis to compare it to

Android is explained in Chapter 4.

Introduction 6

Section 1.4 : Structure

The paper is divided in five chapters. In detail I will proceed as follows:

• Chapter 1 provides a historical overview of operating systems for mobile devices which

builds the foundation for the usage of the Android mobile platform. This introduction is not

connected to any product or brand and is therefore usable for everyone.

• Chapter 2 introduces the mobile platform Android in detail.

• Chapter 3 compares Android to the already existing and mostly used platforms “Symbian

OS” and “Windows Mobile”. This deepens the understanding and shows the main

advantages and disadvantages. For a detailed evaluation criteria are needed which

characterize each product. These are portability, reliability, connectivity, product diversity,

open system, kernel size, standards, security and special features.

• Chapter 4 discusses and implements the application “TeaTime” on the mobile platform

“Android” as well as “Symbian OS”. TeaTime is a “countdown timer application” which

allows users to set a countdown depending on the tea they like to drink. The implementation

of this application on two different platforms deepens the understanding of programming and

also demonstrates the advantages and disadvantages Android has in comparison to other

platforms (chapter 3).

• Chapter 5 gives an outlook and a resume which evaluates the main advantages and

disadvantages of the Android mobile platform.

Introduction 7

Section 1.5 : Historical development of cell phones and operating systems

Before I explain the historical development of cell phones and operating systems it is good to know

which needs of its users the cell phone meets. The following needs represent a survey of the most

important needs for users in my opinion. They shall not be considered to be complete. Moreover

these needs are not required by every user. This is rather dependent on the user’s profile.

• A cell phone has to be small. It has to fit everywhere and it has to be possible to carry it at

any place where we are.

• A cell phone has to be cheap. It must be possible to get a cell phone also if not much

money is available.

• A cell phone has to have functionalities like playing music, making photos or accessing

the internet. In addition to telephony and SMS there must be further applications.

• A cell phone has to be comfortable in handling and needs a graphical user interface which

is easy to use. We don’t want to spend much time with searching functionalities. It has to

be clear and well arranged.

• A cell phone has to be modern. This is related to the design as well as handling.

Introduction 8

In my opinion it is possible to filter user needs out if you have a look at the historical cell phone

development. The changes which are made through the whole evolution shows exactly what user

need.

Figure 1: Historical development of cell phones

The first worldwide mobile network was introduced by the USA in 1946 and could only be used

nationally at this time, mostly for military purposes. Not until the end of the 1950’s was this

technique replaced by the Analog network (A-network). Then, in 1973, Motorola presented a

prototype of the world’s first cellular telephone. It was about one foot long, weight almost 2 pounds

and cost $3995. This cell phone which became commercially available in 1983 provided one hour of

talk time and could store 30 phone numbers. In only one year 300.000 people, worldwide, were

owners, considering price, this was remarkable market growth.

In 1982 the Finnish handset maker Nokia introduced its first Mobile phone, “Mobira Senator”. This

device looked very much like a portable radio and weight 21 pounds. The first cell phone with PDA

Introduction 9

features was introduced in 1993 by Bell South/IBM. It included phone and pager functionalities,

calculator and calendar applications as well as fax and e-mail capability. The weight was about 18

pounds and it sold for $900. Motorola’s “StarTac”, in 1996, merged fashion and functionality. Its

weight was about 3.1 pound’s which is lighter than some of today’s cell phones. Kyocera introduces

its QCP6035 mobile phone in year 2000. It was the first widely available Palm OS based phone. In

2002 the Danger Hiptop, later known as the T-Mobile Sidekick, was introduced. It was one of the

first mobile devices to include a Web browser, reliable e-mail access and instant messaging. With

the RAZRv3 Motorola again came back and started a trend towards ultra-thin, stylish phones. It was

the first mobile device which many people from high schooler to businessmen wanted to have,

primarily, because of its style and because it was fashionably. It is still one of the most popular

mobile phones today. The last very impressing innovation was presented by Apple with the release

of the iPhone in 2007, a beautifully designed cell phone that includes an innovative touch screen

navigation interface [BM2007]. The following table summarizes the most important data of these

cell phones:

 Motorola

DynaTac

8000x

Nokia

Mobira

Senator

BellSout/IBM

Simon Personal

Motorola

StarTAC

Kyocera

QCP6035

T-Mobile

Danger

HipTop

Motorola

Razr v3

Apple

Iphone

Size (cm) 1x0.3 ? ? 9.4x5.1 14.2x6.4 11.6x6.5 9.8x5.5 11.5x6.1

Weight

(pound)

1 21 18 3.1 0,5 0,4 0.218 0.3

Price ($) 3995 ? 900 900 400 ? ? 400

Specifics First cell

phone

Úse in

cars

PDA functions First

fashion

phone

PalmOS

based

Web

browser

Thin and

stylish

Web

browser,

touch

display

Listing 1: Most important data of some cell phones

Introduction 10

In a nutshell changes of the hardware related mostly to improvements in weight, price and look. The

operating system was improved by e.g. games, calendar applications, email applications and other

functionalities to use the internet. This development underlines clearly what a cell phone needs

today. It must be as small as possible, it has to be “stylish” and it has to cover a wide range of

functions especially internet connection which is used by many people in the world every day.

Main features of Android 11

Chapter 2 : Main features of Android

There should be nothing that users can access on their desktop that they can’t access on their

cell phone.

 − Andy Rubin

This statement [EM2007] given by Andy Rubin, Google’s director of mobile platforms, reflects

exactly the goal of the Android mobile stack (a stack inculdes a mobile operating system, middle

ware and applications). Android is intended to revolutionize the mobile market by bringing the

internet to the cell phone and allowing its use in the same way as on the PC.

This second chapter shows the main features of the Android mobile platform and compares it with

the commonly used mobile platforms Symbian OS and Windows Mobile.

Section 2.1 : What is Android?

The term “Android” has its origin in the Greek word andr-, meaning “man or male” and the suffix -

eides, used to mean “alike or of the species”. This together means as much as “being human”.

Andorid is a software stack for mobile devices which means a reference to a set of system programs

or a set of application programs that form a complete system. This software platform provides a

foundation for applications just like a real working platform.

Main features of Android 12

The software stack is divided in four different layers, which include 5 different groups:

• The application layer

The Android software platform will come with a set of basic applications like browser, e-

mail client, SMS program, maps, calendar, contacts and many more. All these

applications are written using the Java programming language. It should be mentioned

that applications can be run simultaneously, it is possible to hear music and read an e-

mail at the same time. This layer will mostly be used by commonly cell phone users.

• The application framework

An application framework is a software framework that is used to implement a standard

structure of an application for a specific operating system. With the help of managers,

content providers and other services programmers it can reassemble functions used by

other existing applications.

• The libraries

The available libraries are all written in C/C++. They will be called through a Java

interface. These includes the Surface Manager (for compositing windows), 2D and 3D

graphics, Media Codecs like MPEG-4 and MP3, the SQL database SQLite and the web

browser engine WebKit.

Main features of Android 13

• The runtime

The Android runtime consists of two components. First a set of core libraries which

provides most of the functionality available in the core libraries of the Java programming

language. Second the virtual machine Dalvik which operates like a translator between the

application side and the operating system. Every application which runs on Android is

written in Java. As the operating system is not able to understand this programming

language directly, the Java programs will be received and translated by the virtual

machine Dalvik. The translated code can then be executed by the operating system. A

very important notice is that applications will be encapsulated in Dalvik. For every

program an own virtual machine is available even if some programs are running parallel.

The advantage is that the different programs do not affect each other, so a program error

for example can lead to a crash of the program but not of the whole system.

• The kernel

The Linux Kernel will be used by Android for its device drivers, memory management,

process management and networking.

The following diagram shows the major components of the Android operating system listed above:

[GO2008-2]

Main features of Android 14

Figure 2: Major components of the Android operating system

Main features of Android 15

Section 2.2 : Important features integrated in Android

Android offers many features cover many areas such as application development, internet, media and

connectivity. Some of the most important ones are presented in the following list [GO2008-2].

• Application framework enabling reuse and replacement of components

• Dalvik virtual machine optimized for mobile devices

• Integrated browser based on the open source WebKit engine

• Optimized graphics powered by a custom 2D graphics library; 3D graphics based on the

OpenGL ES 1.0 specification (hardware acceleration optional)

• SQLite for structured data storage

• Media support for common audio, video, and still image formats (MPEG4, H.264, MP3,

AAC, AMR, JPG, PNG, GIF)

• GSM Telephony (hardware dependent)

• Bluetooth, EDGE, 3G, and WiFi (hardware dependent)

• Camera, GPS, compass, and accelerometer (hardware dependent)

• Rich development environment including a device emulator, tools for debugging,

memory and performance profiling, and a plugin for the Eclipse IDE

Android vs. Symbian OS vs. Windows Mobile 16

Chapter 3 : Android vs. Symbian OS vs. Windows Mobile

The third chapter deals with the comparison between Android and the operating systems Symbian

OS and Windows Mobile. Before comparing these operating systems, some basic terminology must

be established. This includes the following questions: [VA2004]

• What is an operating system?

An operating system is an organizational unit within a computer system. It is the interface

between applications and hardware. The primary function is the administration of the

available operating resources.

• What is a mobile system?

A mobile system is a computer system which isn’t linked to a certain place. It is possible

to move it or carry it around like e.g. a cell phone, a handheld or a special computer

system in a car. Although there are many similarities between a stationary and a mobile

operating system, there are also clear distinctions concerning mobility. An example for an

application where a normal operating system is not able to be used is ABS control in a

car. An operating system like Windows XP which is not stable enough to guarantee the

running of the ABS system over a long time, can not be used. This example points out

which attributes are important for a mobile system of any device: The system must be

stable and fail-proof.

Android vs. Symbian OS vs. Windows Mobile 17

Section 3.1 : Classification of operating systems for mobile devices

Mobile devices have changed their profile dramatically in the last years. The advanced mobile

phones of today integrate fully-featured personal digital assistant (PDA) capabilities with those of a

traditional mobile phone. This chapter examines the critical factors for operating systems in this

market which differentiate them from each other.

3.1.1 Characteristics of the mobile phone market

The classification of operating systems has to consider the market in which they are used. The

market for advanced mobile devices is hard to compare to other markets like the PC market where

also operating systems are used. User needs and requirements are different.

Symbian, manufacturer of the mobile operating system SymbianOS, believes that the mobile phone

market has five key characteristics that make it unique, and result in the need for a specifically

designed operating system [SY2003-1]:

1. Mobility: mobile phones are both small and mobile

2. Universal: mobile phones are ubiquitous – they target a mass market of consumer,

enterprise and professional users

3. Connection: mobile phones are occasionally connected – they can be used when

connected to the wireless phone network, locally to other devices, or on their own

Android vs. Symbian OS vs. Windows Mobile 18

4. Innovation: manufacturers need to differentiate their products in order to innovate and

compete in a fast-evolving market.

5. Open: the platform has to be open to enable independent technology and software

vendors to develop third-party applications, technologies and services

These five characteristics of the mobile phone market underline the difference to other markets

where operating systems are used. To be succesful in this market, a product must address these

characteristics without limiting functionalities.

3.1.2 Classification criteria

Try to classify operating systems for the purpose of comparison. Technical aspects of these systems

have to be considered, also user needs are very important. Because user needs differ the

identification of an ideal operating system is not possible. Only a classification or an optimal

solution relating to a certain group of individuals is possible.

In the following we will have a look at classification criteria which are important to compare

operating systems. For the purpose of clarity I will divide the criteria in several different groups.

Looking at the mobile phone market characteristics from chapter 3.1.1 we can deduce the following

criteria which are important for a successful operating system.

Android vs. Symbian OS vs. Windows Mobile 19

3.1.2.1 Main criteria

• Portability

Portability is the characteristic of being transportable from one location to another. As to

operating system for advanced mobile devices it means the possibility to use the operating

system on every cell phone, no matter which brand or type.

• Reliability

Reliability is the ability of a system to perform its required functions under stated

conditions for a specific period of time.

• Connectivity

Connectivity is the unbiased transport of packets between two end points. As to operating

systems for advanced mobile devices it means the possibility to connect supported by the

operating system like wireless, bluetooth or infrared.

• Product diversity

Product diversity is the difference, characteristic or feature which makes the product

special. As to operating systems for advanced mobile devices it constitutes the key factor

of the system which makes the product unique. The marketing strategy of the producer

plays also a major role with regard to this criterion.

Android vs. Symbian OS vs. Windows Mobile 20

• Open System

An Open System is a collection of interacting software, hardware and components with

well-defined, publicly available interfaces maintained by a consensus process. As to

operating systems for advanced mobile devices it means the free usage and expandability

of the system which allows to change it in every possible way.

The above are the main criteria I will address. They are most important for a classification of an

operating system in my opinion. They will be explained and discussed in detail. But before that I will

address another group of criteria. I would like to expand the main group with a few criteria which I

think are also important for a classification of an operating system.

• Kernel size

The kernel of the operating system is the central component which is responsible for

memory management, process and task management, and disk management. The size of

the kernel is very important to operating systems for advanced mobile devices as it is

loaded first and then remains in the main memory of the operating system. This

influences the capacity.

• Standards

A standard is a commonly approved or accepted definition or format. An operating

systems for advanced mobile devices needs standards concerning programming language,

Android vs. Symbian OS vs. Windows Mobile 21

connectivity, data exchange and networking. This is also an important factor for an open

system.

• Security

Security is the attribute of a system to be safe against attacks or other interference. As to

operating systems for advanced mobile devices it means the features of the operating

system in order to make it safe in any respect.

• Special features

Special features of operating systems are features which make the difference between

them.

These additional criteria combined with the criteria deduced from the characteristics listed in

subsection 3.1.1 are adequate in my opinion to build a foundation for a detailed and significant

classification of operating systems for advanced mobile phones which can be used by everyone.

Android vs. Symbian OS vs. Windows Mobile 22

3.1.2.2 Further criteria

There are many other criteria which can be consulted to classify an operating system. This criteria

are user-dependent, which means that every user assesses this criteria in a different way.

Because of that I will address some other groups of criteria that can be consulted for the

classification of the operating systems. These criteria will not be explained in detail because they are

either self-explanatory or user dependent. A table a the end uf this subsction displays the criteria.

The further criteria are:

Basic criteria

• Public domain or private domain.

• Manufacturer-specific or manufacturer independent.

• User driven or manufacturer driven.

• Functionality is disclosed and well documented or functionality is closed and badly

documented.

• Configuration possibility is given or configuration possibility is less given.

• Market alignment

Technical criteria

• Powermanagement

Android vs. Symbian OS vs. Windows Mobile 23

• Multitasking

• Configuration possibility

• Footprint

Usability criteria

• Acts on the assumption of experienced user or acts on the assumption of unexperienced

user

• Good usability or bad usability

• Applications

• Driver configuration

User Interface criteria

• Division between operating system and user interface

• Change of user interfaces

Android vs. Symbian OS vs. Windows Mobile 24

Section 3.2 : Comparison of Android, Symbian OS and Windows Mobile

The operating systems Android, Symbian OS and Windows Mobile will be compared using the

criteria groups of section 3.1. Each system will be proved numerically. At the end of every

evaluation I will award one point for the first place, which is the operating system that fulfills the

requirements at most, half a point for the second place and zero points for the last place. The last

chapter will be a conclusion where all points of all criteria will be summed up. The number of points

will show which operating system is “the best“ in comparison to the others with regard to the main

criteria.

3.2.1 Classification based on main criteria

3.2.1.1 Portability

Portability is a very important assessment criterion. Symbian OS has many references in this area

and is used on many cell phones and smart phones today. Because of the standadized architecture

and the openeness to software from other manufacturers a wide field of operations is available.

Windows Mobile also can run on different platforms with different features. Unfortunately Windows

Mobile also has several applications that are specific to certain hardware platforms and therefore are

not portable.

The Android Mobile platform is a Linux based system and has the big advantage that this operating

system can be used on many different platforms. The open access will help to collect a lot of

experience which will make it easier in the future to access other sections. The fact that Android is

Android vs. Symbian OS vs. Windows Mobile 25

based on the standardized programming language Java, which is also used for application

development, underlines the importance of portability for this platform.

The fact that Symbian mostly runs on Nokia cell phones and that it is not Java based lets it fall

behind Android. Also Windows Mobile doesn’t reach Android in terms of portability because some

applications are hardware platform dependent.

As a result Android gets one point, Symbian OS gets half a point and Windows Mobile zero points.

Total so far: Symbian OS = 0.5 Windows Mobile = 0 Android = 1

3.2.1.2 Reliability

Reliability is very much dependent on user experience. An operating system can be tested

extensively, but without having experience of several years in “the real world” it is very hard to give

a good estimate.

The article “Can we make operating systems reliable and secure?” from Andrew S. Tannenbaum

[AT2006] deals with the same question. Is it possible to say systems are reliable or not? This article

points out two characteristics that make current operating systems unreliable:

• Operating systems are huge

• Operating systems have very poor fault isolation

All operating systems consist of around one million lines of code. Another study which is also taken

from the above article deals with the amount of bugs to be found in executable code in average

Android vs. Symbian OS vs. Windows Mobile 26

[AT2006]. Following this study the Linux kernel has probably something like 15,000 bugs and the

Windows kernel more than double.

The large size of current operating systems and the big amount of bugs being in every operating

system show that it is not possible to understand the whole system as well as to say that the system is

totally reliable.

Because of many years of user experience and the amount cell phones working with each of the

systems it is possible to say that both, Symbian OS and Windows Mobile, are reliable enough for all

kinds of users and applications which are available at the moment. It doesn’t mean that both systems

run perfectly well but problems with the systems will not result in major difficulties.

Because Android is not available on cell phones at the moment it is not possible to say if the system

will be reliable or not. But the Linux kernel, used by Android, has existed for more than a decade

and has proven that it is stable and fail-proof. Therefore it is useful for mobile applications.

Nowdays it is often used on WebServers or similar applications which require a high degree of

reliability. So I think it is possible to say that Android will not rank behind Symbian OS and

Windows Mobile regarding reliability.

Android is not available yet, so it is very hard to compare these systems with regard to reliability.

Because Symbian OS and Windows Mobile control the biggest part of the market and Android is

Linux based I will give every operating system one point. All operating systems are so far developed

that the reliability will not differ considerably.

Total so far: Symbian OS = 1.5 Windows Mobile = 1 Android = 2

Android vs. Symbian OS vs. Windows Mobile 27

3.2.1.3 Connectivity

There are many ways to connect a cell phone to other devices, such as personal computers, the

internet or other cell phones. Although we have the possibility to connect our cell phone via cable

with the other devices, the mobility of a cell phone generally make a wireless connection preferable.

Therefore we only deal with wireless connection in this section. This can be wide area, like

connecting to the internet, or personal area which includes infrared and bluetooth links. The

operating system has to feature applications that are designed to support all the requirements as well

as multi-tasking and the most important communication protocols. It also has to provide a rich set of

APIs, which are source code interfaces to support requests for services to be made on it, to ensure

that applications can benefit fully from current connectivity possibilities and be easily adapted to

take advantage of new protocols as they are implemented.

Symbian OS features GSM telephony, Bluetooth, Infrared and WI-FI. The Symbian OS APIs enables

a development that targets all of these features and categories [SY2007].

Windows Mobile features GSM-telephony, Bluetooth, Infrared Communications and WI-FI. The

API supports the many features available on the Windows Mobile platform [WI2008-2].

Android features GSM telephony, Bluetooth, EDGE (technique to increase the data rate in GSM-

mobile network), 3D (third generation mobile standards), and WI-FI. All developers have the same

access to the framework APIs used by the core applications [GO2008-2].

Android vs. Symbian OS vs. Windows Mobile 28

Also with regard to this criterion it can be said that the three operating systems act on the same level

in most of the cases. All of them support the common and mainly used connectivity standards.

Therefore I will give each operating system one point.

Total so far: Symbian OS = 2.5 Windows Mobile = 2 Android = 3

3.2.1.4 Product Diversity

Product differentiation is not just a design matter of the operating system. Today a provider of a

product has to make sure that it is possible to innovate and develop new product lines.

All three providers of operating system which are Symbian, Microsoft and Google have contact to

phone manufacturers who are active participants in software development and help to extend the

operating system. This helps to develop new functionalities and applications very fast and enhance

the whole system.

The most important feature concerning product diversity is to make the relevant product open to the

market for development which guarantees product diversity. This is done by all vendors and gives

them one point each for product diversity.

Total so far: Symbian OS = 3.5 Windows Mobile = 3 Android = 4

3.2.1.5 Open platform

Android was built from the ground up with the explicit goal to be the first open, complete,

and free platform created specifically for mobile devices.

− Open Handset Allicance

Android vs. Symbian OS vs. Windows Mobile 29

This vision of the Android Mobile Platform is located on the web site of the Open Handset Allicance

[OHA2008]. What does “open platform” really mean when the OHA says that Android is the first

one?

Symbian [SY2003-2] and Microsoft [WI2008-1], describe their platforms as open systems

differently:

Symbian OS is the world-leading open operating system that powers the most popular and

advanced smartphones from the world’s leading handset manufacturers.

 − Microsoft

or

The Windows Mobile platform is an open platform that supports needs beyond mobile

messaging.

 − Symbian

A clear definition for the term “open platform” is needed before it can be decided which operating

system fulfill this criterion. As there is no common definition available I will list criteria which are

important in my opinion to characterize and define an open platform. This definition is not

neccessarily complete. Nevertheless, it serves as a general definition for the thesis.

Android vs. Symbian OS vs. Windows Mobile 30

An open platform:

• allows developers to implement additional functionality to the system. That includes

access to every API and other source code.

• allows developers to re-implement and replace functionality or the whole operating

system. It helps to make an individualized, interactive system and content.

• needs standards to guarantee high quality.

• should have no costs for using the platform, develop applications for the platform or

publish own developed applications.

• uses a programming language with an open standard like Java.

• offers multifaceted ways for communication and connectivity.

• is usable on all mobile devices.

Summarizing these criteria yields the following definition of an open platform:

An “open mobile platform” is a software stack, including an operating system, middleware

and key applications, which can be used on every mobile device. It allows users to develop

additional software and change or replace functionality without limitations. The most

common standards for communication and connectivity are used. All these functionalities

have to be free of charge.

Android vs. Symbian OS vs. Windows Mobile 31

The only operating system which really fits to these criteria is the Android mobile platform. All

operating systems achieve several standards for communication and offer a software development kit

(SDK) that allows to build applications for it. But only Android is based on a free available

operating system which is based on a Linux Kernel. Another fact is that publishing your own

developed applications is free which is not the case for Symbian OS and Windows Mobile. Those

systems require payment for code signing, or need a special program for code developing for

example. This is the reason why Android gets one point and the other operating systems half a point.

Total so far: Symbian OS = 4 Windows Mobile = 3.5 Android = 5

3.2.1.6 Kernel Size

An often used assessment factor for comparing the kernel size is the “Memory footprint” which is

the amount of memory used by the operating system. For a significant classification we need to find

the operating system with the lowest “Memory Footprint” which in turn maximizes the performance

of the operating system. Symbian OS has about 200 kbyte minimal memory requirement. The

Windows Mobile platform is built on top of Windows CE which requires for a typical installation

about 300 kbyte minimal memory. The Android operating system which is a Linux kernel will need

about 250 kbyte. All the data above apply to an installation with the basic and minimal

fucntionalities possible [KD2006]. As a result Symbian OS needs less memory than Android which

needs less memory than Windows Mobile. So Symbian gets one point, Android gets half a point and

Windows Mobile zero points.

Total so far: Symbian OS = 5 Windows Mobile = 3.5 Android = 5.5

Android vs. Symbian OS vs. Windows Mobile 32

3.2.1.7 Standards

Standards in general make the platform more open and attractive for developers. If standards exist it

is easier for everyone and especially for developers, to get to know the new system. Therefore we

need

• a standard for internationalization like Unicode,

• a standardized programming language like Java,

• a standardized network protocol like TCP/IP,

• a standard for email exchange like POP3, IMAP4 or SMTP,

• a standard for sending textmessages and mutimedia messages like SMS and MMS,

• a standard for data communication between devices like Bluetooth, Infrared or OBEX,

• a standard which helps to make internet content visible for slow data rates like WAP,

• and a standard for data synchronization like SyncML.

Most of the major standards are supported by all three of the operating systems. Every operating

system uses the most common standards concerning networking, e-mails, messaging and

communication, but only Android is based on the standardized programming language Java. This is

also the only programming language used to develop applications. The advantage of Java is that its

programs can run on any platform without having to be rewrited. This is also a positive aspect of

portability. As a result Android gets one point, Symbian OS and Windows Mobile each half a point.

Total so far: Symbian OS = 5.5 Windows Mobile = 4 Android = 6.5

Android vs. Symbian OS vs. Windows Mobile 33

3.2.1.8 Security

Symbian OS offers a new platform security architecture which provides a platform with the ability to

defend itself against malicious or badly implemented programs. The architecture consists of two

high level components: “Certificate management” and “Cryptography”. These two modules form the

basis for a number of high level components which include Certificate management control panel

item, Software installation and Secure communications [SY2002]. Windows Mobile also has its

own Security Model. It contains a combination of security policies, roles and certificates to address

configuration, remote access and application execution. These features control access to a device. If

a user or an application, for example, is allowed to access, security policies control the boundaries

for the actions, access and functionalities [MS2007]. Android is a multiprocess system, where each

application (and parts of the system) runs as its own process. Most security between applications and

the system is enforced at the process level through standard Linux facilities, such as user and group

IDs that are assigned to applications. Additional finer-grained security features are provided through

a “permission” mechanism that enforces restrictions on the specific operations that a particular

process can form [GO2008-1].

Every platform has its own security model that covers the most important actions concerning

software installation, secure communication etc. This makes them equal and results in one point for

each operating system.

Total so far: Symbian OS = 6.5 Windows Mobile = 5 Android = 7.5

Android vs. Symbian OS vs. Windows Mobile 34

3.2.1.9 Special Features

This section deals with features or applications which are designed to make the system unique. The

Android mobile platform has significant advantages in this case. The new integrated browser based

on the open source WebKit engine allows to access web pages through the internet the same way as

through the PC. Also the virtual machine Dalvik optimized for mobile devices, is a feature which

enables every application runs in its own process. This is very important for stability and reliability

issues.

Windows Mobile has, due to its outstanding position in the computer market, the advantage that the

synchronization between the PC and the cell phone is very easy. Symbian OS however has no

special features which must be mentioned in my opinion. The communication with the Internet and

the Personal Computer will play a major role in the future with regard to mobile platforms.

Therefore Android gets one point, Windows Mobila half a point and Symbian OS zero points.

Total so far: Symbian OS = 6.5 Windows Mobile = 5.5 Android = 8.5

3.2.2 Classification based on further criteria

This section contains a list with further criteria which help to classify the three mobile operating

platforms. I divided the criteria in 4 different groups which are “Basic criteria”, “Technical criteria”,

“Usability criteria” and “User interface criteria”. The user can utilize these to personalize his choice

of an operating system for his mobile device.

Android vs. Symbian OS vs. Windows Mobile 35

3.2.2.1 Basic criteria

 Android Symbian OS Windows Mobile

Public domain or private

domain.

Public domain private domain private domain

Manufacturer-specific or

manufacturer independent.

manufacturer independent manufacturer specific manufacturer specific

User driven or

manufacturer driven.

user driven manufacturer driven manufacturer driven

Functionality is disclosed

and well documented or

functionality is closed and

bad documented.

Functionality is disclosed

and well documented

Functionality is disclosed

and well documented

Functionality is disclosed

and well documented

Configuration possibility is

given or configuration

possibility is less given.

Configuration possibility is

given

Configuration possibility is

less given

Configuration possibility is

less given

Market alignment universal smartphone market universal

Listing 2: Basic criteria of operating systems

Android vs. Symbian OS vs. Windows Mobile 36

3.2.2.2 Technical criteria

 Android Symbian OS Windows Mobile

Powermanagement Yes Yes Yes

Multitasking Yes Yes Yes

Configuration possibility high low middle

Footprint (min. memory

requirements)

approx. 250 kbyte approx 200 kbyte approx. 300 kbyte

Listing 3: Technical criteria of operating systems

3.2.2.3 Usability criteria

 Android Symbian OS Windows Mobile

Acts on the assumption of

ex-/unexperienced user.

Acts on the assumption of

unexperienced user

Acts on the assumption of

unexperienced user

Acts on the assumption of

unexperienced user

Good or bad usability good good good

Applications high middle middle

Driver configuration good good good

Listing 4: Usability criteria of operating systems

Android vs. Symbian OS vs. Windows Mobile 37

3.2.2.4 User Interface criteria

 Android Symbian OS Windows Mobile

Division between OS and

user interface

Yes Yes Yes

Change of user interfaces possible hardly possible hardly possible

Listing 5: User interface criteria of operating systems

Android vs. Symbian OS vs. Windows Mobile 38

Section 3.3 : Conclusion

In section 3.2 the Android platform, Symbian OS and Windows Mobile were compared with regard

to the main criteria for a mobile operating system. Every criterion was explained in detail and

applied to the three operating systems. At the end of every criterion classification points were given

from one to zero. The best operating system relating to the criterion got one point, the second got

half a point and the third zero points. The total sum of points added for each operating system will

show which of them is the “best” with regard to the main criteria. The following table shows the

results in detail:

 Android Symbian OS Windows Mobile

Portability 1 0.5 0

Reliability 1 1 1

Connectivity 1 1 1

Product diversity 1 1 1

Open system 1 0.5 0.5

Kernel size 0.5 1 0

Standards 1 0.5 0.5

Security 1 1 1

Special features 1 0 0.5

Result 8.5 6.5 5.5

Listing 6: Result table of operating system comparison

Android vs. Symbian OS vs. Windows Mobile 39

With regard to the main criteria the new Android mobile platform gets most points. It is the only

truly “open system” which makes the major difference in my opinion. Also the special feature like

the Web browser and the virtual machine Dalvik play a major role in this comparison. Standards in

connectivity, portability and security are more or less achieved by every operating system in the

same way.

For a meaningful evaluation with regard to the “Further criteria” I will go back to the main user

groups defined in section 1.2.:

• The normal user who uses only the basic applications provided by the cell phone.

• The advanced user who uses a large part of the provided applications.

• The expert user who tries to get deeper into the cell phone environment, develops

applications and uses the total band of functionalities provided by the cell phone.

These groups will now serve as example groups. They represent a large number of users. It should be

said that all operating systems have a very high standard and can be used by every user group. No

company develops an operating system for cell phones which is usable only by a special group of

users. A successful product must meet the needs of all user groups. The following analysis regarding

the user groups has to be seen as an indication respectively a personal evaluation based on true data

and experience which kind of users would be more satisfied with what kind of mobile operating

system.

Android vs. Symbian OS vs. Windows Mobile 40

The normal user needs an operating system with which he is familiar. Options to configurate the

system as well as develop applications for it are not necessary. Important is a good documentation,

easy and familiar usability/handling and just the basic features like telephone, SMS or camera usage.

All these features are supported by all three operating systems.

Nevertheless I would recommend the operating system Windows Mobile for the normal user. The

most important point for this decision is the user’s familiarity with the system. Windows sets

standards with its operating systems for personal computers in usability and handling. Operating

systems like Windows XP run on the majority of personal computers, therefore many users are close

to this system. The look and feel, the structure and the handling of Windows Mobile is similar to the

PC based operating system. That makes the user feel comfortable and familiar and enables an easy

access to it.

The advanced user needs an operating system that offers not only the basic features like SMS,

telephone or camera usage, he needs functionalities which allow the advanced usage of the system as

defined above. Advanced usage includes functionalities like data exchange, synchronization and

usage of applications like calendar or e-mail synchronization programs. Also design and usability

features are very important for this user as well as technical criteria like multitasking. This allows

e.g. to hear music and check e-mails at the same time. For this user it is very hard to find an

adequate solution. Every operating system seems to be appropriate. Depending on the operating

system he uses for his personal computer (which will most of the time be Windows) I would

recommend Windows Mobile or Symbian OS. Both, especially Windows Mobile, offer fully

developed tools to synchronize or update the cell phone operating system with the applications on

Android vs. Symbian OS vs. Windows Mobile 41

the computer. Calendar or e-mail programs like Outlook will be updated very easily through a

standardized program which is already on the cell phone. The problem Android has at this time

respectively why I don’t recommend it to that user group is the following: It does not yet completely

fit to the requirements of the advanced user. As it is a very new system without practical experience

it needs more efforts and time for a further development like for example PC synchronisation. When

this development is achieved there will be no question for me to recommend this system also to the

groups of normal and advanced users.

The expert user needs an operating system that offers not only the basic features and tools. In

addition he wants to discover the operating system, find solutions for common problems like data

exchange and tries new ways. He also attaches much importance to design and wants to use his cell

phone like a computer. Also personalization of the operating system which includes changes with

regard to the operating system as well as own developed applications are very important for this

user. A very good documentation is also not required, because he likes to try things out. Technical

criteria like memory requirements, multitasking and power management are of particular

importance.

The right choice for this user is only the mobile platform Android. This operating system is the only

truly open system which allows major changes inside the operating system and offers common basic

standards for programming. Also the new Web browser which allows the usage like a normal PC

based browser is important.

Android vs. Symbian OS vs. Windows Mobile 42

It is again important to realize that all operating systems can be used by everybody because all

operating systems meet the requirements of a modern mobile operating system. The Android will be

more challenging for the user compared to the other two systems while there is little experience with

it at the moment. Therefore it provides for new features like the web browser. This fits perfectly to

the present general trend and could therefore attract many users.

The above findings suggest three conclusions:

• there is not (yet) the ideal mobile operating system, but their usefulness differ in relation to

user requirements. So users should be aware of their requirements and the functionalities

they really want and then choose the adequate operating system.

• Android can threaten the market dominance of the other two systems when it achieves more

practical experience and the system is further developed. Then it will have the potential to

become attractive not only to the expert user, but also to the normal and the advanced user.

This could make the mobile operating systems Windows Mobile as well as Symbian OS

superfluous.

• We have seen that the requirements of the user groups as definded above are much different.

Producers of cell phones could be well advised to differentiate their cell phones according to

user groups in order to meet their specific requirements even better.

Tea Time - Application implementation with Android- and Symbian OS SDK 43

Chapter 4 : Tea Time - Application implementation with Android-

and Symbian OS SDK

The fourth chapter of this elaboration deals with a comparison of the two Software Development

Kits (SDK) from Android and Symbian OS platform “S60”. A simple application will form the basis

for this comparison.

At the beginning we will have a look at the installation process, the system requirements for an

installation and the usage of both SDKs. The installation process includes the SDK itself as well as

the Integrated Development Environment (IDE) or other tools which are required to develop

applications. Next, a list of developer features related to these SDKs will be presented. Based on

own experiences through the application implementation the list will be put to the proof and

expanded if necessary. A closer look at the APIs of both platforms which are mainly used for the

implementation of the TeaTime application will give a deeper understanding where the differences

of both APIs are. At the end a conclusion will complete this chapter.

Tea Time - Application implementation with Android- and Symbian OS SDK 44

Section 4.1 : Why compare Symbian OS to Android?

For a valuable analysis of an SDK it is not only important to have a theoretical look at its features,

you also need practical experience with them. For that I will compare two products which serve the

same functionalities and operate on the same user group and market.

The mostly installed operating system is Symbian OS. It runs on almost every Nokia cell phone

which is the world’s leading mobile phone supplier and on many others like Motorola or Samsung.

This high market penetration makes Symbian OS a very good candidate for a comparison with

Android. Another very important reason for Symbian OS as a comparison is the possibility to

develop mobile applications in Java. Primarily C++ is used to develop Symbian applications but it is

also possible to use Java 2 Micro Edition (J2ME) which is a Java based environment for applications

running on mobile devices. These applications are then portable across many devices which is the

same with Android applications. The use of a standardized programming language like Java is

another major criterion for the comparison of Android with Symbian OS.

Tea Time - Application implementation with Android- and Symbian OS SDK 45

Section 4.2 : Installation process

4.2.1 System requirements

None of the SDKs have special or exceptional hardware requirements. All requirements will be

fulfilled by almost every computer these days, even though there are some differences. The Android

SDK is able to run with a lower processor and less RAM requirements than the Symbian OS SDK.

There are also major differences regarding software requirements. Both SDKs require a Java

Runtime Environment version 5 or higher but Symbian OS needs an additional Active Perl

installation. Another advantage of the Android SDK is that it can be installed on all common

operating systems like Windows, Mac or Linux whereas Symbian OS SDK has to be installed on a

Windows machine. This is a disadvantage in an open market as it is required today. The IDEs

recommended by both companies are the common standards with Eclipse, NetBeans or Apache Ant.

This is not decisive for a comparison. The following table shows the minimum system requirements

needed to develop Android- respectively Symbian OS-applications briefly:

Tea Time - Application implementation with Android- and Symbian OS SDK 46

 Android Symbian OS

Hardware Requirements

(minimum)

200 megahertz online processor 1 GHz processor (minimum IDS

and OS requirement of processor is

500 MHz)

 32 MB RAM and 32 MB Flash 512 MB RAM (minimum IDE and

OS requirement is 128 MB of

RAM)

Software Requirements (minimum) JDK 5 or JDK 6 (JRE alone is not

sufficient)

Java Runtime Version 1.5.0 or

newer

Active Perl Version 5.6.1 or newer

 Windows XP or Vista

Mac OSX 10.4.8 or newer (only

x86)

Linux (tested on Linux Ubuntu

Dapper Drake)

Microsoft Windows XP SP2 or

Microsoft Windows 2000 SP4.

 Supported Development

Environments (IDE):

Eclipse 3.2 (Europa) or newer and

JDT, WST and ADT plugins for

Eclipse.

Apache Ant 1.6.5 or newer.

Supported Development

Environment (IDE):

Eclipse 3.2 or newer and

EclipseME version 1.7.7 or newer.

NetBeans IDE with Mobility Pack

5.5 or newer.

Listing 7: Minimum system requirements of Android and Symbian OS

Tea Time - Application implementation with Android- and Symbian OS SDK 47

4.2.2 Installation

As a detailed installation instruction is included in both SDK packages I will not explain in detail

how the installation is done. A description of my experience with the actual installation of both

systems will be more helpful for a useful comparison.

The environment to develop applications for Android consists of the Android SDK, the IDE Eclipse

and the Java Development Kit (JDK) which has to be preinstalled for the installation of both,

Android SDK and Eclipse. The following versions of the tools mentioned above are used:

• Android SDK: android-sdk m5-rc15

• JDK: jdk1.6.0_01

• Eclipse: eclipse 3.3.2 (europa)

• Eclipse plugin: ADT plugin

• Underlying operating system: Windows XP

The installation of all these components worked without a problem and needed about 5 minutes. The

Android developer page is clearly designed with direct links to the sources needed. The whole page

is much focused on understanding and using Android, what makes it very easy to get in touch with

it. Google seems to go on with their concept of making information available in a simple and

focused way comparable to their search engine that is also just focused on the search functionality.

After installing the SDK, which is done by simply extracting the downloaded ZIP-file in a folder, the

path to the SDK has to be set in the path variable at your environment variables. The Eclipse is also

Tea Time - Application implementation with Android- and Symbian OS SDK 48

installed by just extracting the downloaded ZIP-file to a save place. A very good option in using

Eclipse as your IDE is the automatic installation of the Eclipse plugin for using Android with it. You

only have to use the automatic update functionality which downloads and installs the plugin from a

URL allocated by Google. This URL is the following:

• https://dl-ssl.google.com/android/eclipse/

After installing this plugin you are free to go on with the development of Android applications.

The development Environment for Symbian OS consists of the Symbian SDK, the IDE Eclipse, the

Java Runtime Environment (JRE) and Active Perl. Active Perl and the JRE have to be preinstalled

for an installation of the Symbian SDK. The following versions of the tools mentioned above are

used:

• Symbian SDK: S60 3rd edition SDK with Feature Pack 2 (Symbian OS v9.1)

• JRE: jre1.6.0_01

• Eclipse: eclipse 3.3.2 (europa)

• Eclipse plugin: EclipseME

• Active Perl: ActivePerl-5.10.0.1002

• Underlying operating system: Windows XP

Tea Time - Application implementation with Android- and Symbian OS SDK 49

Symbian offers three different kinds of SDKs depending on the cell phone. There is the UIQ (User

Interface Quartz) used preferably by Sony Ericsson and Motorola, the S60 (Series 60 User Interface)

preferably used by Nokia and Nokia Series 80 also preferably used by Nokia. The S60 platform is

the leading smartphone platform in the world and is therefore picked as the comparative platform to

Android.

The installation of all these components worked not as fast as the installation of the environment for

Android. It took about 45 minutes to install everything. The Symbian SDK- and the Active Perl

installation, which are both executable files, took 90% of the time. The executable files create a

Wizard which guides you through the installation process. This is a nice feature for absolute

beginners but not essential. Another disadvantage in comparison to Google’s installation process is

the way information and sources are presented and made available. None of the software is directly

available on the Symbian website. All sources are linked to their manufacturer or user (for example

Nokia). Both websites, Symbian as well as Nokia, are overloaded with information nobody needs for

application development and installation of the SDK. This makes the finding process of sources

much harder and costs much more time. The installation of Eclipse is the same as with Android and

the automatic update functionality for the Eclipse plugin is also given. The URL where Eclipse

downloads the plugin is the following:

• http://www.eclipseme.org/updates

 The installation of Active Perl is very straight forward but is another additional expense in

comparison to Android. The installation documentation which is available for both SDKs is helpful

and should be used for the installation.

Tea Time - Application implementation with Android- and Symbian OS SDK 50

Section 4.3 : TeaTime – An application description

For a useful comparison of an application development process the question came up which simple

application to develop. This application shall run on both platforms equally and shall use some of

the major functionalities offered by both SDKs. Graphical and technical features are not required as

they do not contribute to a simple comparison because of the different premises of the SDKs. The

requirements which should be met by the application shall be restricted to the following. The

application should be able to:

• display text,

• display input fields which can be used to save data put in by the user,

• use the most important functionalities of a persistent storage like adding or deleting

content,

• show a functionality like a count-down timer.

TeaTime is an application which fulfils all the requirements and doesn’t go beyond the scope of this

elaboration. It uses the basic functionalities which should be supported by a Software Development

Kit and makes it possible to compare both SDKs form Google and Symbian.

The TeaTime application allows to define teas and their brewing time and can be used as count-

down timer and reminder.

Tea Time - Application implementation with Android- and Symbian OS SDK 51

The following screenshots show how the TeaTime application looks like, realized with Android and

Symbian OS:

Before the application starts, the emulator has to be initialized.

Figure 3: Android emulator - initialization

Figure 4: Symbian emulator - initialization

Tea Time - Application implementation with Android- and Symbian OS SDK 52

After starting a list of tea sorts will be displayed on display1. The tea data shown come from a

persistent storage.

Figure 5: Android emulator – List of teas

Figure 6: Symbian emulator – List of teas

Display1 offers four command opportunities to add a tea, to delete a tea, to enter the count-down

timer display for each tea sort and to exit the application. Pressing command “Delete” on display1,

the selected tea sort will be deleted out of the persistent storage. Using the button also reloads the

screen. The updated list of tea sorts will be displayed then.

Tea Time - Application implementation with Android- and Symbian OS SDK 53

On command “Add”, display2 appears. Three input fields for defining the name of the tea, the

minutes and the seconds for the brewing time are displayed. Display2 offers a button to save the data

in a persistent storage. Using this button the data will be saved and you return automatically to

display1 with the updated list of teas.

Figure 7: Android emulator – Add a tea

Figure 8: Symbian emulator – Add a tea

Tea Time - Application implementation with Android- and Symbian OS SDK 54

Selecting the name of a tea sort on display1 makes you go to display3 which in fact is the count-

down application. The minutes and the seconds which are defined for every tea in the persistent

storage are displayed on the screen depending on the tea sort you select.

Figure 9: Android emulator – countdown

timer

Figure 10: Symbian emulator – countdown

timer

Display3 offers four command opportunities to start, stop or reset the count-down timer and to

cancel the timer and go back to display1, which is on Android the arrow in the loewr right corner.

The time which is shown on this display comes from the minutes and seconds defined in the

persistent storage. The minutes and seconds depend on the tea you selected earlier.

Tea Time - Application implementation with Android- and Symbian OS SDK 55

In the next part of this practical chapter we will have a look at the two implementations of the

application. A comparison table showing developer features between Android SDK and S60 SDK

will serve as a support which guides us through this implementation and helps us with the

comparison. Some of these features will be questioned critically in order to consider them with the

experience got through the process of implementation. Also features which do not come up in the

table but become important through the implementation process will be considered.

Tea Time - Application implementation with Android- and Symbian OS SDK 56

Section 4.4 : Life-cycle of an Android and a Symbian application

Before we begin to have a closer look at the Software Development Kits of both platforms it is

important to know which application model is used by Android and the S60 platform. The

application model defines how an application is managed and how management responsibilities are

divided between the application and the underlying system. It can also be described by the following

questions:

• How is an application started and stopped?

• When can an application give access to system resources?

• How does it discover its initialization parameters?

The Android application model is defined by four building blocks which make up an application.

These components are:

• Activity: Class that presents the User Interface of an application.

• Intent Receiver: Class that handles execution of code in the application in reaction of

external events.

• Service: Class that runs in the background, not interacting with the user.

• Content Provider: Class that implements standard methods to let other applications

store or retrieve data handled by the content provider.

Tea Time - Application implementation with Android- and Symbian OS SDK 57

All these components have to be listed in a file called AndroidManifest.xml. This XML file contains

all components of the application as well as their capabilities and requirements. It is not necessary

for a complete application to include all components. The TeaTime application for example uses the

Intent Receiver to react on button usage and the Activity to display the user interface.

The Activity is the most common component of an Android application. It describes usually a single

screen on the cell phone. Because most applications consist of multiple screens the same amount of

Activities has to be created for it. The TeaTime application for example needs a screen to display a

list of teas, a screen with input fields to add data to the database and a screen that displays the count-

down timer. Each of these screens has to be implemented by an Activity. Moving between these

screens is accomplished by starting the Activity. You do that with the method “startSubActivity()”.

The layout of an Activity can be designed using XML files. Each activity class has an XML layout

as a view screen which represents the activity class. The structure of these XML layout files is very

simple. It is a tree of tags where each tag is the name of a View class. So you can connect every

element you create in your activity to the XML layout file. This model is inspired by the web

development model, which allows you to separate the presentation of your application (its User

Interface) form the application logic.

Application development on the S60 platform is, as I mentioned before, based on the Java 2

Platform Micro Edition (J2ME). Supported by it is the “MIDlet Model” which is used for the

application implementation of TeaTime. A MIDlet is a Java program which has to extend the

Tea Time - Application implementation with Android- and Symbian OS SDK 58

abstract MIDlet class found in the javax.microedition.midlet package. The main class defines three

life-cycle notification methods which have to be overridden by the MIDlet. These methods are the

following:

• startApp()

• pauseApp()

• destroyApp()

Another important point in understanding the MIDlet life-cycle is the state in which a MIDlet can be

found. The three possible states are the following:

• paused: The MIDlet instance has been constructed and is inactive

• active: The MIDlet is active

• destroyed: The MIDlet has been terminated

The MIDlet’s initial state is paused. When the system activates the MIDlet the startApp() method

will automatically be invoked. It creates and displays the application’s user interface. After it returns

from startApp(), the MIDlet’s state changed from paused to active. If there is any problem with the

initialization of the MIDlet an Exception will be thrown and a shift to the destroyed state follows.

Tea Time - Application implementation with Android- and Symbian OS SDK 59

Section 4.5 : Software Development Kit comparison

4.5.1 Developer features between the SDKs

The following table is an abridgement of a comparison chart [NP2008] which shows important

relational features of the SDKs. These features only concentrate on the use of the SDKs. This

abridgement helps us to compare both of them. The most important points of this chart have to be

questioned and compared with the experience made in the implementation process of TeaTime.

These features must not to be seen as complete. For a more valuable comparison we have to take a

closer look at the Application Programming Interface (API) and the opportunities this API features.

But before we go deeper into the API lets have a look at the following table:

 Android S60

Costs Free Free; could be more depending on

tools used

Wide-scale app availability Depends on device availability Now

Native development Yes Yes

Languages supported for native

development

Java C++

Digital certificates No Available, required for some

phones

Retail support No, but Android Developer

Challenge offers money and

Limited

Tea Time - Application implementation with Android- and Symbian OS SDK 60

publicity

Platform maturity Immature Mature

First-party support Yes Yes

Community support Excellent Excellent

Application installation method Unknown; installation on emulator

is not reflective of production

devices

Direct, PC suite

Emulator available Yes Yes

Remote debugging Yes Yes

Target device variety Poor (that will change, though) Good

Touch screen support Single touch No

App availability and variety Poor (that will change, though) Excellent

Underlying architecture Linux Symbian

Flash availability No Yes

Java availability Yes Yes

Listing 8: Developer features of Android SDK and Symbian S60 SDK

Some of these features have already been discussed in previous chapters and will therefore only be

briefly mentioned.

Both SDKs offer a free development of applications. Just for the usage of high quality tools like

Visual Studio, if you develop in C++, extra costs will accrue from using S60 SDK . The support for

both systems especially at the time where I developed the TeaTime application was excellent. My

Tea Time - Application implementation with Android- and Symbian OS SDK 61

experience for example with the major discussion groups/forums was excellent. Fast and valuable

answers helped very much. The discussion groups are accessible by the following websites which

are also linked on the company’s websites:

• Android discussion groups: http://code.google.com/android/groups.html

• Nokia discussion board (for Symbian S60): http://discussion.forum.nokia.com/forum/

For an application installation on the Android platform Google offers, unlike to the information in

the table above, the Android Debug Bridge called adb. It is a versatile tool that lets you manage the

state of a device or emulator. The Eclipse also offers a plugin called ADT plugin which installs the

applications .apk files automatically on the device or emulator. The experience I had with

application installation on the emulator was just positive. It ran the first time I tried.

Symbian respectively Nokia offers the PC suite which is the official synchronization application of

Nokia between a Nokia cell phone and the PC. Beside the installation of the applications .sis files

you can also transfer any kind of data with this software. For the installation of the TeaTime

application on the emulator there is also a plugin available which allows you to deploy the developed

Java MIDlets without problem on the emulator. An advantage for Android is the possibility to use a

touch screen for handling the operating systems user interface. An example touch screen application

is already implemented on Android’s emulator. The touch screen interface for the S60 is officially

announced for some time in year 2008. The availability of application to extend the operating

system is poor with regard to Android at the moment. This is the consequence of the advantage of

experience Nokia or Symbian have on the mobile market. Google started a developer’s challenge

Tea Time - Application implementation with Android- and Symbian OS SDK 62

where they spend about 10 million dollars prize money to heat up the development of free available

applications. The missing Flash availability on the Android platform will attract attention for

example when you use the web browser. Many web pages have Flash elements which then can not

be seen on the Andorid web browser. But since the SDK is out for free development, Macromedia

will for sure be thinking about initializing Flash for the Android platform. Symbian is able to show

flash but only on the cell phone itself because there is no real web browser available.

To sum it up it can be said, without having a detailed look at the APIs, that a good application

development is possible on both systems by comparing the features above. Android offers more

interesting possibilities with the web browser or the touch screen for all different kinds of

applications. The challenge will show what is exactly possible with this new platform. To get an

even better possibility to compare the platforms, we need to have a look at the APIs. This will be

done in the following regarding the requirements of the application defined in chapter 4.3.

Tea Time - Application implementation with Android- and Symbian OS SDK 63

4.5.2 The APIs

Google’s Software Development Kit supports a relatively large subset of the Java Standard Edition

5.0 library. This includes amongst the following standard APIs:

• java.io – provides classes for system input and output through data streams

• java.net – provides classes for implementing networking applications

• java.security – provides classes for the security framework

• java.util – provides classes for collections framework, legacy collection classes, event

model, date/time facilities and internationalization

• javax.sound.midi – provides classes for interfaces and classes for Input and Output,

sequencing and synthesis of MIDI data (Musical Instrument Digital Interface)

• org.apache.http – provides classes for standard information transfer.

Things like a printing API which are normally given by the Java Standard Edition 5.0 library were

left out because they didn’t make sense or better APIs were available that are specific for Android

like user interfaces. Important APIs developed by Google itself are related to Android specific

functionalities. Some APIs in this field are:

• android.graphics – provides low level graphic tools like canvases, color filters etc.

• android.media – provides Media Player and Recorder

• android.net – provides help for network access, beyond the normal java.net API

Tea Time - Application implementation with Android- and Symbian OS SDK 64

• android.opengl – provides OpenGL utilities for 2D/3D graphics

• android.telephony – provides tools to make, receive and monitor phone calls

• android.database.sqlite – provides classes to manage its own private database

• android.view – provides classes to expose basic user interface classes that handle screen

layout

• android.widget – provides UI elements to use on the application screen

• android.content – provides classes for accessing and publishing data on the device

• android.app – provides high level classes encapsulating the overall Android application

model

An overview of all classes available by the Android API is directly linked on the Android

Developer’s page.

The SDK for Symbian OS S60 is provided by Nokia and is based on the Java 2 platform Micro

Edition (J2ME). This J2ME platform is extended and enhanced by the Mobile Information Device

Profile (MIDP). MIDP provides for the core application functionality required by a mobile

application. This includes the user interface, network connectivity, local data storage and application

life-cycle management. This whole functionality is packaged as a standardized Java Runtime

Environment and a set of Java technology APIs. The MIDP API encompasses the four core

Tea Time - Application implementation with Android- and Symbian OS SDK 65

Connected Limited Device Configuration (CLDC) packages (java.lang, java.io, java.util,

javax.microedition.io), plus the following three MIDP-specific packages:

• javax.microedition.lcdui – provides a set of features for implementation of user interfaces

for MIDP.

• javax.microedition.midlet – defines MIDP applications and the interactions between the

application and the environment in which it runs.

• javax.microedition.rms – The MIDP provides a mechanism for MIDlets to persistently

store data and later retrieve it.

In addition to these packages, MIDP also adds four new classes to the core CLDC packages:

• java.util.Timer – Used to schedule tasks for future execution in a background thread

• java.util.TimerTask – Used by java.util.Timer to define tasks for later execution

• javax.microedition.io.HttpConnection – Interface that defines everything necessary for

HTTP connection

• java.lang.IllegalStateException – A RuntimeException that indicates that a method has

been invoked at an illegal or inappropriate time.

The CLDC and the MIDP are both standard-based technologies for developing applications that run

on mobile devices. There are more APIs available which extend the functionality of the Java ME

Tea Time - Application implementation with Android- and Symbian OS SDK 66

platform. This APIs will not be considered in this elaboration because they are irrelevant for the

development of the TeaTime application. The most important ones will be listed in the following:

Mobile Media API (MMAPI) – provides for audio, video and other time-based multimedia support to

resource constraint devices

• File Connection API – provides access to file systems residing on mobile devices

• Bluetooth API – provides the functionality to communicate with other devices using

bluetooth wireless technology and OBEX protocol for Object Exchange

• Mobile 3D Graphics API – provides access to a high level library to manage and run3D

scenes and objects inside the application

• Wireless Messaging API (WMA) – provides platform-independent access to wireless

communication resources like SMS and MMS

A comparison of the APIs shows that Google as well as Symbian (respectively Nokia) provide a

large variety of functionalities which can be used for appliation implementation. Both provide for

basic APIs to display text and simple graphics as well as high level APIs for 3D graphics. Also the

important standards for connection and communication like bluetooth or wireless are supported by

both sides. Symbian has the advantage of experience and know how which is guaranteed through the

J2ME API development that is done by many big companies like Motorola, Sony Ericsson, Nokia or

Texas Instruments. Googles API offers on the first look everything you need for comfortable

Tea Time - Application implementation with Android- and Symbian OS SDK 67

application implementation but one has to keep in mind that it is not tested under real life conditions

over years whereas Symbian is.

4.5.3 Practical comparison between the APIs

After we have got an overall view of about the most important APIs provided by the SDKs we will

have a closer look at the APIs I used to develop the TeaTime application. I will divide the TeaTime

application in different minor applications and then apply the different APIs on the respective

application parts. The minor applications are the following:

• Show a list of items

• Achieve an action by pressing a button

• Show normal input fields

• Give access to a persistent storage

• Realize a count-down timer

Tea Time - Application implementation with Android- and Symbian OS SDK 68

4.5.3.1 Show a list of items

Android:

For displaying items on the screen you have to use the following APIs:

• andorid.app.Activity

• android.widget.SimpleCursorAdapter

• android.app.ListActivity

The code for the implementation of a list looks like this:

1

2

3

4

5

6

7

8

9

10

11

// Create a Cursor

 myTeaCursor = myDBHelper.callUpAllTeas();

 startManagingCursor(myTeaCursor);

// Create an array to specify the fields we want to display in the list

 String[] from = new String[]{TeaDB.KEY_NAME};

// and an array of the fields we want to bind those fields to

 int[] to = new int[]{android.R.id.text1};

// Now create a simple cursor adapter and set it to display

 ListAdapter tea = new SimpleCursorAdapter(this,

 android.R.layout.simple_list_item_1, myTeaCursor, from, to);

 setListAdapter(tea);

Listing 9: Android source code – Show a lis of items

Tea Time - Application implementation with Android- and Symbian OS SDK 69

At the line 2 and 3 a Cursor is defined called “myTeaCursor” which is set to the beginning of a

result list defined by a database expression. In line 5 the array “from” which specifies the fields we

want to display in the list is created. Because we just want to show the tea name in the database we

define “KEY_NAME” which is the tea name field in our database. The second array “to” in line 7

contains the tag name in the corresponding XML file we want to bind the names of array “from” to.

The ID “android.R.id.text1” defines the id in our Output XML-file where the list has to be displayed.

Because it is just the name which has to be displayed only one ID is needed. The final step is done

by defining a SimpleCursorAdapter in line 9 to 10. In this SimpleCursorAdapter the context “this”,

the layout “simple_list_item_1” which is a standard Android layout for lists, the cursor

“myTeaCursor” and the arrays “from” and “to” which contain the data for the User Interface and the

views to which the data has to be bound have to be defined.

Symbian OS:

For a list implementation in Symbian OS S60 API you have to use the following APIs:

• javax.microedition.lcdui.List

• javax.microedition.rms.RecordStore

• javax.microedition.lcdui.Display

Tea Time - Application implementation with Android- and Symbian OS SDK 70

The code for the implementation of a list is the following:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

// Get the number of teas saved in the RecordStore

 teaNumber = rs.getNumRecords();

// Create a String array with the size of the teanumber

 String[] teaList = new String[teaNumber];

// Save all names of the teas in the string array

 teaList = db.callUpAllTeas(teaNumber, rs);

// Define a display

 display = Display.getDisplay(this);

// Define a list “menu” and save all names from the string array in it

 menu = new List("Menu Items", Choice.IMPLICIT);

 for (int i = 0; i < teaNumber; i++) {

 menu.append(teaList[i], null);

 }

// Display the list “menu” on the screen

 display.setCurrent(menu);

Listing 10: Symbian Source code – Show a list of items

First a string array has to be created which contains the list with tea names in line 4. For that the

number of teas which is in our persistent storage is needed. We get this number when we execute the

method “getNumRecords()” on our RecordStore “rs”. This is done in line 2. What a RecordStore

exactly is will be explained in the minor application “Add or Delete items in the persistent storage”.

In this tea list all the tea names available in our RecordStore will be saved to the String array in line

Tea Time - Application implementation with Android- and Symbian OS SDK 71

6. The following line 8 defines a Display object which is unique to this MIDlet. This object is able to

display a List object on the screen called “menu” (see line 15) which is created in line 10. To create

a List object “menu” we just have to define it and append the names from our String to it done in

line 11 and 12.

Conclusion:

Displaying a list with both APIs is very simple. An advantage in my opinion is that Android

separates the view and the logic by using XML files which makes the code more manageable. The

usage of the SimpleCursorAdapter API in Android enables displaying the list without using any

loops which is very comfortable and fast. How such a XML file might look can be seen in the minor

application “Show normal input fields” in this section or the applications source code in the

appendix.

Tea Time - Application implementation with Android- and Symbian OS SDK 72

4.5.3.2 Achieve an action by pressing a button

Android:

For implementing a command button you need the following APIs:

• android.view.menu

• android.view.menu.Item

For this implementation the following code is needed which defines a delete button in the Android

Menu and reacts when the Menu button is selected:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

// Create the Menu button “Delete”

public boolean onCreateOptionsMenu(Menu menu) {

 menu.add(0, DELETE_ID, R.string.menu_delete);

 return true;

}

// Activity Handler for the menu button

public boolean onMenuItemSelected(int featureId, Item item) {

 switch(item.getId()) {

 case DELETE_ID:

 delete();

 return true;

 }

 return super.onMenuItemSelected(featureId, item);

}

Listing 11: Android source code – Achieve an action by pressing a button

Tea Time - Application implementation with Android- and Symbian OS SDK 73

Both methods are available through the Android API and will be executed automatically by starting

the Activity. The OnCreatOptionsMenu() method (line 2) creates a simple menu button by just

calling the menu.add() method (line 3). A group (0), an ID and a title, which is a link to a resource

file, have to be defined for this method. The onMenuItemSelected() method (line 7) will be called

automatically by selecting any button on the screen. Comparing the IDs of the buttons inside this

method (line 8 and 9) allows us to assign any action we want to the button. In our case we choose the

ID “DELETE_ID” and the action “delete()” (line 10) which deletes a tea out of the database.

Symbian OS:

For implementing a command button you have to use the following APIs:

• javax.microedition.lcdui.Command

• javax.microedition.lcdui.CommandListener

The following code is needed to implement the command activity with the Symbian SDK:

1

2

3

4

5

6

7

// Define a Command object

static Command deleteCommand = new Command("Delete Tea",

 Command.SCREEN, 2);

// Use the standardized method add a button to the menu and activate

the CommandListener

public void startApp() throws MIDletStateChangeException{

 menu.addCommand(deleteCommand);

Tea Time - Application implementation with Android- and Symbian OS SDK 74

8

9

10

11

12

13

14

15

16

 menu.setCommandListener(this);

}

// Standardized method will be called by selecting a button

public void commandAction(Command c, Displayable d){

 String label = c.getLabel();

 if (label.equals("Delete Tea"))

 delete();

 }

}

Listing 12: Symbian source code – Achieve an action by pressing a button

In the variable declaration of the class (line 2) a Command “deleteCommand” is created. A name, a

pre-defined command and a priority number has to be defined for this object. In the “startApp()”

method (line 6), which is a predefined method of a MIDlet that will always be called when the

MIDlet is executed, the command has to be added to the menu (line 7). This menu will then be set to

the CommandListener (line 8) which guarantees that the “commandAction()” method (line 11) will

be automatically called when the delete command is selected. In the “commandAction()” the label of

the button, which is selected, will be read (line 12). Based on this result the delete method is called

(line 13 and 14).

Tea Time - Application implementation with Android- and Symbian OS SDK 75

Conclusion:

Both APIs offer a standardized way to define buttons and actions to these. They both use an Activity

Handler or Listener which reacts automatically if a button is selected. In this case it is not possible to

decide which way I would prefer because they are more or less identical.

Tea Time - Application implementation with Android- and Symbian OS SDK 76

4.5.3.3 Show normal input fields

Android:

For the implementation of input fields following APIs have to be used:

• android.widget.EditText

The following code is needed to implement the input fields:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

// Create a EditText object

 myNameText = (EditText) findViewById(R.id.name);

// set the View to the layout defined by the id “tea_add” in the XML

 setContentView(R.layout.tea_add);

// The Output XML File

<LinearLayout android:orientation="horizontal"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content">

 <TextView android:layout_width="100sp"

 android:layout_height="wrap_content"

 android:text = "Tea Name: "

 android:layout_marginLeft="5px" />

 <EditText android:id="@+id/name"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_weight="1"/>

</LinearLayout>

Listing 13: Android source code – Show normal input fields

Tea Time - Application implementation with Android- and Symbian OS SDK 77

Line 2 shows the definition of the EditText object “myNameText”. A unique ID will be assigned to

that object which helps to bind the object to the correct tag in the Output XML File. The method

“setContentView()” (line 4) defines the XML file which has to be used as the output file for this

Activity. In this example it is the XML file “tea_add.xml”. The XML file needs to define the Layout

style (line 6), which is linear, a “TextView” tag for the name of the input field (line 9) and the

“EditText” tag for the input field itself (line 13). The “EditText” tag has the same “id” we defined

for the EditText object in the Activity. This assigns the object in the Activity class to the input field

defined in the XML file.

Symbian OS:

For the implementation of input fields following APIs have to be used:

• javax.microedition.lcdui.Form

• javax.microedition.lcdui.TextField

The following code is needed to implement the input fields:

1

2

3

4

5

// Create a Form for displaying the content

 Form teaForm = new Form ("Add a Tea");

// Create a textfiel for the input fiels

 TextField name = new TextField ("Tea Name", "", 20,

 TextField.ANY);

Tea Time - Application implementation with Android- and Symbian OS SDK 78

6

7

8

9

10

11

// A stadardized method which is automatically called. The textfield

appends to the Form object which can be displayed on the screen

protected void paint(Graphics g) {

 teaForm.append(name);

 display.setCurrent(teaForm);

}

Listing 14: Symbian source code – Show normal input fields

To display an input field you first have to create a Form object “teaForm” which defines the frame of

the screen (line 2). This object “teaForm” can be appended to a TextField (line 9) which is created in

line 4 . A name, the size of the textfield and the value type have to be defined for the Textfield. The

Method paint() which is a standardized Method for a MIDlet is responsible for showing the input

field on the screen (line 8). This will be done by the “setCurrent()” method which appends the form,

containing the text field to the display Object (line 10).

Conclusion:

On the first glance the solution for displaying textfields provided by the Android APIs seems to be

more complex than the solution given by the Symbian API. But the first impression is wrong. You

need just 2 lines of java code to define an input field in the Activity. The many lines defined in the

XML file are not as bad as it seems. The tags are very easy to implement and to understand and the

separation of the view from the logic is worth it.

Tea Time - Application implementation with Android- and Symbian OS SDK 79

Access to a persistent storage

Android:

Using a persistent storage the following APIs have to be used:

• android.database.Cursor

• android.database.sqlite.SQLiteDatabase

Android provides a SQLite database which is a fully relational database management system. You

can use standard SQL to handle with it which is very comfortable.

The following code is needed if you want to manage the SQLite database:

1

2

3

4

5

6

7

8

9

10

11

// Standardized method to create the database

 myDb = mCtx.createDatabase(DATABASE_NAME, DATABASE_VERSION, 0,

 null);

// Standardized method to open the database

 myDb = mCtx.openDatabase(DATABASE_NAME, null);

// Standardized method to insertn a row to the database

 myDb.insert(DATABASE_TABLE, null, initialValues);

// Standardized method to delete a row out of the database

 myDb.delete(DATABASE_TABLE, "_id" + "=" + id, null) > 0;

// Standardized method to execute a SQL query to the database

 myDb.query(true, DATABASE_TABLE, new String[] {

Tea Time - Application implementation with Android- and Symbian OS SDK 80

12

13

14

15

 KEY_ROWID, KEY_NAME, KEY_BREWTIME_MINUTES,

 KEY_BREWTIME_SECONDS}, KEY_ROWID + "=" + rowId,

 null, null, null, null);

}

Listing 15: Android source code – Access to a persistent storage

The API of Android for database management exposes fully methods to manage a SQLite Database.

Writing of standard SQL is not necessary any more because all standards method like create, delete

or execute SQL code are implemented by pre-defined methods.

In line 2 a Context in which the Database is created has to be defined. A definition of the name and

the version of the database is enough to create it. Open the database also requires the Context object

and the database name like it is done in line 5. To insert values into the database a definition of the

database name and the content values is needed (line 7). The content values, in our example named

by “initialValues”, are an object of type ContentValues. This ContentValues object holds all values

of one row which have to be inserted to the database. The values can be added to the ContentValues

object with the method add(). The method to delete a complete row out of the database is provided

in line 9. The name of the database, the “where Clause” and the “where Argument” to execute this

command successfully has to be defined. The last method provided in line 11 to 14 demonstrates a

standard “Select command”. It queries the given table and returns a Cursor over the result set. A

distinct value (true/false), the table name and a String array consisting of the table, the columns, the

Tea Time - Application implementation with Android- and Symbian OS SDK 81

selection, the selection arguments, the groupBy argument, the having argument and the orderBy

argument can be defined in this method.

Symbian OS:

Using a persistent storage the following APIs have to be used:

• javax.microedition.rms.RecordStore

• javax.microedition.rms.RecordFilter

• javax.microedition.rms.RecordEnumeration

• javax.microedition.rms.RecordComperator

Symbian doesn’t provide a fully relational database management system like Android does. Their

solution of a persistent storage is called RecordStore. A RecordStore is able to save an array of

bytes. All values have to be converted into byte arrays before they can be added to the RecordStore.

The following code is needed if you want to manage a RecordStore:

1

2

// Open a RecordStore or create it when it doesn’t exist

 RecordStore rs = RecordStore.openRecordStore(“MyTeaDatabase”,

Tea Time - Application implementation with Android- and Symbian OS SDK 82

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 true)

// Delete a Record in the RecordStore

 rs.deleteRecord(recordId);

// Get a Record out of the RecordStore

 b = rs.getRecord(id);

// Insert a Record into a RecordStore

 RecordStore rs;

 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 DataOutputStream outputStream = new DataOutputStream(baos);

 outputStream.writeUTF(teaName);

 outputStream.writeInt(brewMinutes);

 outputStream.writeInt(brewSeconds);

 byte[] b = baos.toByteArray()

 rs.addRecord(b, 0, b.length);

Listing 16: Symbian source code – Access to a persistent storage

The API of the S60 for RecordStore management exposes also standardized methods to manage the

RecordStore like insert, update or delete Records in a RecordStore.

To create and open a RecordStore a method is provided shown in line 2. The name of the

RecordStore and a boolean value have to be defined for that. The boolean value defines if the

RecordStore should be created if it doesn’t exist. Also deleting and reading a record out of the

Record Store is very straight forward (see line 5 and 7). The ID of the Record has to be defined in

the methods. Much more effort is adding a Record to the Record store. The RecordStore only

Tea Time - Application implementation with Android- and Symbian OS SDK 83

accepts byte values which requires a compilation of the values you want to store into byte values.

You first have to create a ByteArrayOutpuStream “baos” (line 10) and a DataOutputStream

“outputstream” (line 11). In this “outputstream” you can put in the values with methods like

writeUTF() for text or writeInt() for integer values (line 12 to 14). The ByteArrayOutputStream

object then helps to save the data in the byte array by commute them with the method toByteArray()

(line 15). After that the byte stream can be saved into the RecordStore with the method

“addRecord()” (line 16).

Conclusion:

As you can see both APIs provide a standardized pool of methods for managing their solution of a

persistent storage. Each of the mostly used database querys can be done by invoking one method of

the Android API. Also the advanced J2ME API used by Symbian offers for the most databases

querys standardized methods. But inserting a record in the record store for example causes much

more effort. The reason for this is the record store itself which is only able to store byte values.

Therefore a byte stream has to be created. The values have to be saved into it and then inserted into

the record store. In comparison to the one method solution provided by Google, 5 lines of Java code

are needed in the solution used by Symbian.

Tea Time - Application implementation with Android- and Symbian OS SDK 84

Section 4.6 : Conclusion

In the fourth chapter we looked at the installation process, the TeaTime application itself, the life-

cycle of both Android and Symbian applications and developer features including a detailed

consideration of the APIs. This leads us to a better understanding what is needed for a successful

application development on both systems. It also helped us to compare both ways and possibilities of

the whole application development process.

The installation process of the whole environments was easier than expected. Both systems have a

simple way with detailed descriptions available at the company websites even if the installation of

the Symbian environment took about 40 minutes longer. This is referred to the different installation

ways. The Android installation files are coming in ZIP format. After extracting them at a save place,

the path in the environment variables to that sources has to be set. The Symbian installation files are

coming in executable format. Wizards are created which guides you through the installation process.

This is very comfortable but it takes a long time.

The application life-cycles, which are coined by the Activity in Android and the MIDlet in Symbian

OS, are easy to understand. Both classes contain standard methods for starting, pausing and

destroying the application. The solution of providing content to the user is in my opinion better

implemented by Google’s Android. The source code for the view, which is implemented by the

XML standard, is separated from the logic of the application. This brings clarity and better

reusability of the code and is oriented to the MVC (Model View Control) pattern which also

implements a separation of code. This should be the way for source code has to be developed in the

future.

Tea Time - Application implementation with Android- and Symbian OS SDK 85

The APIs of both systems seem to fulfil the possibility to use the common standards in graphics,

connection, data transfer or communication. The only serious difference between those APIs is the

realization of a persistent storage. Android offers a real SQLite database which can be used by API

methods or by normal SQL commands. Symbian realized the persistent storage with a solution

called RecordStore which allows saving byte streams. The RecordStore is much smaller then a real

database but also even slower. If you just need a small amount of data the usage of a RecordStore

makes no big difference. If you have an application which is not using a small amount of data only,

like an e-mail program which can store a lot of e-mails and contacts, a real database should be

required. Nevertheless one also has to keep in mind that the API used by Symbian is much more

matured. It is used since years and is enhanced by several big companies like Motorola, Sony

Ericsson or Texas Instruments. The API of Android is available since the end of 2007 which is not a

long time to get proved. The functionality which I used for the emulator was very good and in

comparison to the API of Symbian not worse. There is a difference in running an application on an

emulator or a real device.

Nevertheless the application development on the Android platform was convincing. The very simple

installation and the very good documented API as well as the perfect example documentation to all

kinds of basic problems made it easy to get to know to the system and to use it. The implementation

process of Symbian was as good as the implementation process of Android but the longer process

and the unclear way of presenting sources, documentation and example code made the application

development more difficult and took much more time. The first impression which is in my opinion

very important and very formative for the advanced impression was also more positive working with

regard to Android. This includes not only the documentation and the examples mentioned before.

Tea Time - Application implementation with Android- and Symbian OS SDK 86

Even things like design and usage of the emulator play a role. The look and feel of Android’s

emulator is modern and contemporary and the application handling (e.g. deleting applications) is

done with one shell command.

Looking at the results of chapter four and based on my own experience I would prefer and

recommend the application development on Android.

Conclusion 87

Chapter 5 : Conclusion

The goal of this masterthesis is to describe, characterize and categorize the new mobile operating

platform Android. While working on this elaboration the author made positive as well as negative

experience, which shall be reviewed in the following conclusion. At the same time it helps the reader

to decide which mobile operating system might be convenient for him.

The elaboration is divided in a more theoretical part where technical features are considerd and a

more practical part where an implementation of a simle application helps to assess Android.

The systematic assessment of the technical features as well as features like openness of standards

comes to the result that Android is superior to its competitive systems. When one adds the category

“user needs” to this assessment then Symbian OS as well as Windows Mobile can have advantages

for specific user groups. But even then one has to take into account that Andorid is not available on

cell phones yet. When the system is further developed it could become a threat to the other two

systems and make them superfluous.

The practical chapter demonstrates the comfortable way in which applications can be developed on

the Android platform. Also in this part the author comes to the conclusion that Android has

advantages in comparison with Symbian OS. The good information organization, the very useful

examples, the well organized API and the innovative life-cycle of applications made it very easy to

start developing on that system.

Conclusion 88

As an overall conclusion it can be said, that the Android mobile operating system seems to be a good

decision for an operating system on every cell phone. It meets all the requirements an mobile

operating system has to meet in the future but practical experience in the real world is indispensable.

Consequently one has to keep in mind that Android is not available on a cell phone at the moment

which makes it difficult to give a final and realistic conclusion.

In detail the experience made throughout the whole elaboration shows the following advantages and

disadvantages of the mobile operating system Android. These apply only in comparison with the

operating systems Windows Mobile and Symbian OS which were integrated in this elaboration.

Conclusion 89

Section 5.1 : Main Advantages

• The mobile platform Android is an open platform.

• The installation of Android is possible on every cell phone.

• The installation of the whole environment to develop Android applications is possible on

every operating system.

• Android requires a low footprint of 250 kbyte

• The application model/life-cycle is future oriented with the source code separation of

view and logic.

• The emulator of the Android platform has a modern design and is easy to use.

• Application installation on the emulator/device is possible via Android Debug Bridge

(adb) or via Eclipse (with ADT plugin)

• Google offers a very good documentation as well as many examples which cover the

most basic and important techniques used to get in touch with Android and the

application development on it.

• Android supports all established techniques and standards for media, communication and

data transfer.

• Android offers a real database which is SQLite.

• Android has an integrated web browser which allows a PC like usage

• Android relies on open operating system Linux version 2.6

 90

• Android uses the standardized and open programming language Java

• The register based virtual machine Dalvik which is optimized for low memory

requirements

• Google itself

Section 5.2 : Main Disadvantages

• No experience with Android in the “real world”.

• Not many efficient applications available.

• The market leader is not present in the “Open Handset Alliance”.

• The openness regarding the source code could be a problem concerning security.

This elaboration will be published through the Eastern Michigan University and can be used as a

reference and evaluation of the new mobile operating platform Android.

 91

Section 5.3 : Future Prospects

In the present Master Thesis technical features of mobile operating systems were used to compare

the Android platform with other mobile platforms like Symbian OS or Windows Mobile. For a

future look not only actual techniques, standards and methods have to be considered. Also trends and

user needs should be of interest.

Which is the most important technology that is used at the moment and which will influence the

future of normal and wireless communication most? These questions have to be answered if one

wants to know where the future of cell phones and operating systems will be.

Nokias CEO Olli-Pekka Kallasvuo made the following statement at the Nokia World 2006

Conference regarding to future of cell phones and therefore mobile operating systems:

The Internet has transformed the way we live our lives and communicate with each other,

and we expect it to play a key role in the next phase of Nokia's growth.

 − Olli-Pekka Kallasvuo

The message “Internet is the future” which is as true now as it was in the past will most likely be the

biggest challenge for cell phones and mobile operating systems in the future. the complete internet

will have to take place on the cell phone as it does on the personal computer today. More cell phones

than personal computers circulate around the world which shows the enormous potential of the

mobile market. A successful operating system, which Andorid wants to be, has to focus on such a

 92

trend. It has to meet all possibilities of the internet, even if it is a webbrowser, connectivity standards

or special applications.

The important characteristic of being small and being able to go everywhere makes the cell phone

interesting for more or less every industry. Based on an article in a German newspaper it should also

be possible to use the cell phone as a wallet in the future. Contact-free payment with an implemented

chip is another possibility. This example indicates again how important application development for

mobile operating systems is. A successful mobile operating system needs to offer the actual and

most important applications. The first step with an open platform, where everybody is able to

develop applications, is done by Android.

The trend for cell phones and its mobile devices is clear: Integrate as many functioality in a device as

possible. Radio and Television, Timer and Clock, Internet and communication, everything is

possible with the cell phone and its operating system.

Bibliography 93

Chapter 6 : Bibliography

[AT2006] Andrew S. Tannenbaum

Can we make operating systems reliable and secure?

[BM2007] Ben Morisson

The Symbian OS Architecture Sourcebook: Design and Evolution of a Mobile

Phone OS

2007, John Wiley & Sons

[EM2007] Andy Rubin

Interview with Andy Rubin by CNET NEWS.com

http://www.zdnetasia.com/insight/communications/0,39044835,62034932,00.

htm

[GO2008-1] Google

 Security and Permissions in Android

 http://code.google.com/android/devel/security.html

Bibliography 94

[GO2008-2] Google

 What is Andorid?

 http://code.google.com/android/what-is-android.html

[KD2006] Kai-Oliver Detken

Mobiler Einsatz – hoffentlich sicher. Stärken und Schwächen von Palm OS &

Co.

[MS2007] Microsoft

 Windows Mobile Security Model

[MW2006] Martin Williams

 InfoWorld

 More mobile Internet users than wired in Japan.

[NO2007] Virpi Roto, Principal Scientist, Nokia Research Center

 Internet User Experience: Emotions and Values

Bibliography 95

[NP2008] Nilay Patel

 iphone SDK comparison chart

 http://www.engadget.com/2008/03/06/iphone-sdk-comparison-chart

[OHA2008] The Open Handset Alliance

 Official website of the Open Handset Alliance

[SY2002] Symbian

 Symbian OS Security Guide

[SY2003-1] Symbian

 Symbian White Paper : Why is a different operating system needed?

[SY2003-2] Symbian

 Symbian White Paper : Symbian in the Enterprise

 [SY2007] Symbian

 Symbian OS Version 9.4 description

Bibliography 96

[WI2008-1] Windows

 Official Windows webpage: What is Windows Mobile?

 http://www.microsoft.com/windowsmobile/articles/benefits.mspx

[WI2008-2] Windows

 Windows Mobile Features

 http://msdn2.microsoft.com/en-us/library/bb158483.aspx

[VA2004] Volker Claus, Andreas Schwill

Duden. Informatik. Ein Fachlexikon für Studium und Praxis

Glossar 97

Chapter 7 : Glossar

API Application Programming Interface

Source code interface provided to support requests made by computer

programs.

Activity A simple class of the Android API.

Bug A Bug is an error in a computer program.

GSM Global System for Mobile communications

Communication standard for mobile phones

IDE Integrated Development Environment

A software application that provides facilities to computer

programmers like Eclipse.

J2ME Java 2 Platform, Micro Edition

Specification of a subset of the Java platform which allows developers

to use Java and J2ME wireless toolkit to create applications.

Glossar 98

MIDlet Mobile Information Device toolkit

Java program for embedded devices.

OHA Open Handset Alliance

A business alliance whose goal is to develop open standards for mobile

devices.

PDA Personal Digital Assistant

A PDA is a handheld comuter comparable to a cell phone.

RAM Random Access Memory

RAM is a type of computer data storage.

SDK Software Development Kit

A set of development tools that allows a software engineer to create

applications for a certain software package.

UI User Interface

Is the interface by which people interact with a system for example a

computer or software.

Glossar 99

XML Extensible Markup Language

is a very simple and flexible text format derived from SGML

Appendix A - source code TeaTime application on Android 100

Chapter 8 : Appendix A - source code TeaTime application on

Android

package com.google.android.teatime;

import android.app.ListActivity;

import android.content.Intent;

import android.database.Cursor;

import android.os.Bundle;

import android.view.Menu;

import android.view.View;

import android.view.Menu.Item;

import android.widget.ListAdapter;

import android.widget.ListView;

import android.widget.SimpleCursorAdapter;

import com.google.android.teatime.TeaDB;

/**
 * TeasList class. Values will be initialized at the beginning and the
 * method onCreate() automatically called. Creates and handles the List
 * screen which is the first screen of the application.
 *

 * @ author Benjamin

 */

public class TeaList extends ListActivity {

 private static final int ACTIVITY_CREATE = 0;

 private TeaDB myDBHelper;

 private Cursor myTeaCursor;

 private static final int ADD_ID = Menu.FIRST;

 private static final int DELETE_ID = Menu.FIRST + 1;

 @Override
 /**
 * Method which will be called if the Activity starts and creates
 the screen.
 */

 public void onCreate(Bundle icicle) {

 super.onCreate(icicle);

 setContentView(R.layout.tea_list);

 myDBHelper = new TeaDB(this);

 myDBHelper.open();
 fillData();
 }

 /**
 * Listener method which reacts when a item in the list is
 selected. The it forwards to the Timer screen.
 */

 protected void onListItemClick(ListView l, View v, int position,

Appendix A - source code TeaTime application on Android 101

 long id) {

 super.onListItemClick(l, v, position, id);

 Intent i = new Intent(this, TeaTimer.class);

 Bundle bundle = new Bundle();

 bundle.putLong("ID", id);
 i.putExtras(bundle);

 startSubActivity(i, ACTIVITY_CREATE);
 }
 /**
 * Method which destroys the application

 * @param icicle

 */

 public void onDetroy(Bundle icicle) {

 myDBHelper.close();
 }
 /**
 * Method which returns all tea names stored in the database
 */

 private void fillData() {

 // Get all of the rows from the database and create the
 item list
 myTeaCursor = myDBHelper.callUpAllTeas();
 startManagingCursor(myTeaCursor);

 // Create an array to specify the fields we want to display
 in the list (only NAME)

 String[] from = new String[] { TeaDB.KEY_NAME };

 // and an array of the fields we want to bind those fields
 to (in this case just text1)

 int[] to = new int[] { android.R.id.text1 };

 // Now create a simple cursor adapter and set it to display

 ListAdapter tea = new SimpleCursorAdapter(this,

 android.R.layout.simple_list_item_1,
 myTeaCursor, from, to);
 setListAdapter(tea);
 }

 /**
 * Creates the Menu (Add + Delete)
 */

 public boolean onCreateOptionsMenu(Menu menu) {

 super.onCreateOptionsMenu(menu);

 menu.add(0, ADD_ID, R.string.menu_add);

 menu.add(0, DELETE_ID, R.string.menu_delete);

 return true;

 }
 /**
 * Activity Handler for the menu buttons (Add + Delete)
 */

 public boolean onMenuItemSelected(int featureId, Item item) {

 switch (item.getId()) {

 case ADD_ID:

 createTea();

 return true;

 case DELETE_ID:

Appendix A - source code TeaTime application on Android 102

 myDBHelper.deleteTea(this.getSelectedItemId());

 fillData();

 return true;

 }

 return super.onMenuItemSelected(featureId, item);

 }
 /**
 * Forward to the "add tea" activity
 */

 private void createTea() {

 Intent i = new Intent(this, TeaEdit.class);

 startSubActivity(i, ACTIVITY_CREATE);
 }
 /**
 * Delete the whole Database
 *

 * @param name the name of the Database

 */

 public void deleteDB(String name) {

 this.deleteDatabase(name);

 }

Listing 17: TeaTime application (Android) – TeaList.java

package com.google.android.teatime;

import android.app.Activity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

import android.widget.EditText;

/**
 * TeasEdit class. Values will be initialized at the beginning and the method
 * onCreate() automatically called. Creates a tea in the database and provides
 * the screen for this
 *

 * @author Benjamin

 */

public class TeaEdit extends Activity {

 private EditText myNameText;

 private EditText myBrewTimeMinutesText;

 private EditText myBrewTimeSecondsText;

 private TeaDB myDBHelper;

 @Override
 /**
 * Method which will be called if the Activity starts and creates the
 * screen. Includes the onClick() Method which is a Listener which reacts

Appendix A - source code TeaTime application on Android 103

 * if the add button will be selected.
 */

 protected void onCreate(Bundle icicle) {

 super.onCreate(icicle);

 setContentView(R.layout.tea_add);

 myNameText = (EditText) findViewById(R.id.name);

 myBrewTimeMinutesText = (EditText) findViewById(R.id.brewTimeMinutes);

 myBrewTimeSecondsText = (EditText) findViewById(R.id.brewTimeSeconds);

 Button confirmButton = (Button) findViewById(R.id.confirm);

 myDBHelper = new TeaDB(this);

 myDBHelper.open();

 confirmButton.setOnClickListener(new View.OnClickListener() {

 public void onClick(View view) {

 myDBHelper.createTea(myNameText.getText().toString(),

 Integer.valueOf(myBrewTimeMinutesText.getText().toString()),

 Integer.valueOf(myBrewTimeSecondsText.getText().toString()));
 myDBHelper.close();

 setResult(RESULT_OK, null, null);

 finish();
 }

 });
 }

}

Listing 18: TeaTime application (Android) – TeaEdit.java

package com.google.android.teatime;

import java.io.IOException;

import java.util.Timer;

import java.util.TimerTask;

import android.app.Activity;

import android.media.MediaPlayer;

import android.os.Bundle;

import android.os.Handler;

import android.util.Log;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

/**
 * TeaTimer class. Values will be initialized at the beginning and the method

Appendix A - source code TeaTime application on Android 104

 * onCreate() automatically called. Creates and handles the Timer screen.
 *

 * @author Benjamin

 */

public class TeaTimer extends Activity {

 private TeaDB myDBHelper;

 Bundle bundle;
 Handler handler;
 TextView tv;
 Timer t;

 long sec = -1;

 long min = -1;

 long seconds = -1;

 long minutes = -1;

 @Override
 /**
 * Method which will be called if the Activity starts and creates the
 screen.
 */

 public void onCreate(Bundle icicle) {

 super.onCreate(icicle);

 setContentView(R.layout.tea_timer);

 Button startButton = (Button) findViewById(R.id.start);

 Button resetButton = (Button) findViewById(R.id.reset);

 Button stopButton = (Button) findViewById(R.id.stop);

 myDBHelper = new TeaDB(this);

 myDBHelper.open();
 bundle = getIntent().getExtras();
 minutes = myDBHelper.getMinutes(bundle.getLong("ID"));
 seconds = myDBHelper.getSeconds(bundle.getLong("ID"));
 min = minutes;
 sec = seconds;

 tv = (TextView) findViewById(R.id.brewTime);

 handler = new Handler();

 tv.setText(min + " m : " + sec + " s");

 startButton.setOnClickListener(new Button.OnClickListener() {

 public void onClick(View view) {

 if (min == 0 && sec == 0) {

 t.cancel();

 } else

 runTimer();
 }
 });

 resetButton.setOnClickListener(new Button.OnClickListener() {

 public void onClick(View view) {

 sec = seconds;
 min = minutes;
 t.cancel();

Appendix A - source code TeaTime application on Android 105

 tv.setText(min + " m : " + sec + " s");
 }
 });

 stopButton.setOnClickListener(new Button.OnClickListener() {

 public void onClick(View view) {

 t.cancel();
 }
 });
 }

 /**
 * The Countdown Timer function
 */

 private void runTimer() {

 t = new Timer();

 t.schedule(new TimerTask() {

 public void run() {

 if (sec == 0) {

 min -= 1;
 sec = 60;
 }
 sec -= 1;

 handler.post(new Runnable() {

 public void run() {

 tv.setText(min + " m : " + sec + " s");

 if (sec == 0 && min > 0) {

 min -= 1;
 sec = 60;

 } else if (sec == 0 && min == 0) {

 cancel();
 playSound();
 }
 }
 });
 }
 }, 1000, 1000);
 }

 /**
 * Method which reads a mediafile and plays
 */

 private void playSound() {

 MediaPlayer mp = new MediaPlayer();

 try {

 mp.setDataSource("/system/media/audio/ringtones/Ready.mp3");

 } catch (IOException e) {

 Log.e("ioexception", "", e);
 }

 try {

 mp.prepare();

 } catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();
 }
 mp.start();
 }

Appendix A - source code TeaTime application on Android 106

}

Listing 19: TeaTime application (Android) – TeaTimer.java

package com.google.android.teatime;

import java.io.FileNotFoundException;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.database.SQLException;

import android.database.sqlite.SQLiteDatabase;

/**
 * TeaDB class. Values will be initialized at the beginning and the constructor
 * automatically called. Provides all important methods to handle the database.
 *

 * @ author Benjamin

 */

public class TeaDB {

 public static final String KEY_NAME = "name";

 public static final String KEY_BREWTIME_MINUTES = "brewTimeMinutes";

 public static final String KEY_BREWTIME_SECONDS = "brewTimeSeconds";

 public static final String KEY_ROWID = "_id";

 // Database creation sql statement

 private static final String DATABASE_CREATE ="CREATE TABLE IF NOT EXISTS "

 + "TeaTable"
 + " (_id integer primary key autoincrement, name text not
 null, brewTimeMinutes long not null, brewTimeSeconds
 long not null);";

 private static final String DATABASE_NAME = "TeaTimeDatabase";

 private static final String DATABASE_TABLE = "TeaTable";

 private static final int DATABASE_VERSION = 2;

 private SQLiteDatabase myDb = null;

 private final Context mCtx;

 /**
 * Constructor - takes the context to allow the database to be
 * opened/created
 *

 * @param ctx the Context within which to work

 */

 public TeaDB(Context ctx) {

 this.mCtx = ctx;

 }

 /**

Appendix A - source code TeaTime application on Android 107

 * Open the teaTable database. If it cannot be opened, try to create a new
 * instance of the database. If it cannot be created, throw an exception
 * to signal the failure
 *

 * @return this (self reference, allowing this to be chained in an

 * initialization call)

 * @throws SQLException if the database could be neither opened or created

 */

 public TeaDB open() throws SQLException {

 try {

 myDb = mCtx.openDatabase(DATABASE_NAME, null);

 } catch (FileNotFoundException e) {

 try {

 myDb = mCtx.createDatabase(DATABASE_NAME,

 DATABASE_VERSION, 0,

 null);

 myDb.execSQL(DATABASE_CREATE);

 } catch (FileNotFoundException ex1) {

 throw new SQLException("Could not create database");

 }
 }

 return this;

 }

 public void close() {

 myDb.close();
 }

 /**
 * Create a new Tea using the name and brewTime provided. If the Tea is
 * successfully created return the new rowId for that Tea, otherwise
 * return a -1 to indicate failure.
 *

 * @param name the name of the Tea

 * @param brewTime the brewTime of the Tea

 * @return rowId or -1 if failed

 */

 public long createTea(String name, int brewTimeMinutes, int

 brewTimeSeconds) {

 ContentValues initialValues = new ContentValues();

 initialValues.put(KEY_NAME, name);

 initialValues.put(KEY_BREWTIME_MINUTES, brewTimeMinutes);

 initialValues.put(KEY_BREWTIME_SECONDS, brewTimeSeconds);

 return myDb.insert(DATABASE_TABLE, null, initialValues);

 }

 /**
 * Delete the Tea with the given rowId
 *

 * @param rowId id of Tea to delete

 * @return true if deleted, false otherwise

 */

 public boolean deleteTea(long id) {

 return myDb.delete(DATABASE_TABLE, "_id" + "=" + id, null) > 0;

 }

 /**

Appendix A - source code TeaTime application on Android 108

 * Return a Cursor over the list of all Teas in the database
 *

 * @return Cursor over all Teas

 */

 public Cursor callUpAllTeas() {

 return myDb.query(DATABASE_TABLE, new String[]{ KEY_ROWID, KEY_NAME,

 KEY_BREWTIME_MINUTES, KEY_BREWTIME_SECONDS }, null,

 null, null, null, null);

 }

 /**
 * Return a Cursor positioned at the Tea that matches the given rowId
 *

 * @param rowId id of Tea to retrieve

 * @return Cursor positioned to matching Tea, if found

 * @throws SQLException if Tea could not be found/retrieved

 */

 public Cursor catchUpTea(long rowId) throws SQLException {

 Cursor result = myDb.query(true, DATABASE_TABLE,

 new String[]{ KEY_ROWID, KEY_NAME, KEY_BREWTIME_MINUTES,

 KEY_BREWTIME_SECONDS }, KEY_ROWID + "=" +

 rowId, null, null, null, null);

 if ((result.count() == 0) || !result.first()) {

 throw new SQLException("No Tea matching ID: " + rowId);

 }

 return result;

 }

 /**
 * Update the Tea using the details provided. The Tea to be updated is
 * specified using the rowId, and it is altered to use the Name and
 * BrewTime values passed in
 *

 * @param rowId id of note to update

 * @param name value to set Tea name to

 * @param brewTime value to set Tea brewTime to

 * @return true if the Tea was successfully updated, false otherwise

 */

 public boolean updateTea(long rowId, String name, long brewTimeMinutes,

 long brewTimeSeconds) {

 ContentValues args = new ContentValues();

 args.put(KEY_NAME, name);

 args.put(KEY_BREWTIME_MINUTES, brewTimeMinutes);

 args.put(KEY_BREWTIME_MINUTES, brewTimeSeconds);

 return myDb.update(DATABASE_TABLE, args, KEY_ROWID + "=" + rowId,

 null) > 0;

 }

 /**
 * Get the minutes of the tea.
 *

 * @param rowId id of tea to get the minutes of it

 * @return minutes of the tea sort in regard to the tea ID

 */

 public long getMinutes(long rowId) {

 long minutes = 0;

 Cursor result = myDb.query(true, DATABASE_TABLE,

Appendix A - source code TeaTime application on Android 109

 new String[]{ KEY_ROWID, KEY_NAME, KEY_BREWTIME_MINUTES,

 KEY_BREWTIME_SECONDS }, KEY_ROWID + "=" +

 rowId, null, null, null, null);

 if ((result.count() == 0) || !result.first()) {

 throw new SQLException("No Tea matching ID: " + rowId);

 } else {

 result.first();
 minutes = result.getLong(2);
 }

 return minutes;

 }

 /**
 * Get the seconds of the tea.
 *

 * @param rowId id of tea to get the minutes of it

 * @return minutes of the tea sort in regard to the tea ID

 */

 public long getSeconds(long rowId) {

 long minutes = 0;

 Cursor result = myDb.query(true, DATABASE_TABLE,

 new String[]{ KEY_ROWID, KEY_NAME, KEY_BREWTIME_MINUTES,

 KEY_BREWTIME_SECONDS }, KEY_ROWID + "=" +

 rowId, null, null, null, null);

 if ((result.count() == 0) || !result.first()) {

 throw new SQLException("No Tea matching ID: " + rowId);

 } else {

 result.first();
 minutes = result.getLong(3);
 }

 return minutes;

 }

}

Listing 20: TeaTime application (Android) – TeaDB.java

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout android:id="@+id/background1"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <ListView android:id="@android:id/list"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" android:layout_weight="1">
 </ListView>

</LinearLayout>

Appendix A - source code TeaTime application on Android 110

Listing 21: TeaTime application (Android) – tea_list.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <LinearLayout android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="100sp"
 android:layout_height="wrap_content" android:text="Tea Name: "
 android:layout_marginLeft="5px" />
 <EditText android:id="@+id/name"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:layout_weight="1" />
 </LinearLayout>
 <LinearLayout android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="100sp"
 android:layout_height="wrap_content" android:text="Brewing
 Minutes: "
 android:layout_marginLeft="5px" />
 <EditText android:id="@+id/brewTimeMinutes"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:layout_weight="1"
 />
 </LinearLayout>
 <LinearLayout android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content">

 <TextView android:layout_width="100sp"
 android:layout_height="wrap_content" android:text="Brewing
 Seconds: "
 android:layout_marginLeft="5px" />
 <EditText android:id="@+id/brewTimeSeconds"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:layout_weight="1"
 />
 </LinearLayout>
 <Button android:id="@+id/confirm" android:text="Confirm"
 android:layout_width="110sp" android:layout_height="wrap_content" />

</LinearLayout>

Listing 22: TeaTime application (Android) – tea_add.xml

Appendix A - source code TeaTime application on Android 111

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical" android:layout_width="fill_parent"
 android:layout_height="fill_parent" android:gravity="center">
 <TextView android:id="@+id/brewTime"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:textSize="60sp" />

 <LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="horizontal" android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:gravity="center_horizontal|bottom">
 <Button android:id="@+id/start" android:layout_width="90sp"
 android:layout_height="wrap_content" android:text="START"
 android:textSize="15sp" android:textStyle="bold" />
 <Button android:id="@+id/reset" android:layout_width="90sp"
 android:layout_height="wrap_content"
 android:layout_marginLeft="10px"
 android:text="RESET" android:textSize="15sp"
 android:textStyle="bold" />
 <Button android:id="@+id/stop" android:layout_width="90sp"
 android:layout_height="wrap_content"
 android:layout_marginLeft="10px"
 android:text="STOP" android:textSize="15sp"
 android:textStyle="bold" />
 </LinearLayout>

</LinearLayout>

Listing 23: TeaTime application (Android) – tea_timer.xml

Appendix B - source code TeaTime application on Symbian OS 112

Chapter 9 : Appendix B - source code TeaTime application on

Symbian OS

package com.symbian.os.teatime;

import java.io.IOException;

import javax.microedition.lcdui.Choice;

import javax.microedition.lcdui.Command;

import javax.microedition.lcdui.CommandListener;

import javax.microedition.lcdui.Display;

import javax.microedition.lcdui.Displayable;

import javax.microedition.lcdui.List;

import javax.microedition.midlet.MIDlet;

import javax.microedition.midlet.MIDletStateChangeException;

import javax.microedition.rms.InvalidRecordIDException;

import javax.microedition.rms.RecordStore;

import javax.microedition.rms.RecordStoreException;

import javax.microedition.rms.RecordStoreFullException;

import javax.microedition.rms.RecordStoreNotFoundException;

import javax.microedition.rms.RecordStoreNotOpenException;

public class TeaList extends MIDlet implements CommandListener {

 Display display = null;

 List menu = null;

 TeaDB db = null;

 int teaNumber=0;

 RecordStore rs = null;

 // command

 static final Command exitCommand = new Command("EXIT", Command.CANCEL, 0);

 static final Command addCommand = new Command("Add Tea",Command.SCREEN,1);

 static final Command deleteCommand = new Command("Delete Tea",

 Command.SCREEN, 2);

 String currentMenu = null;

 // constructor.

 public TeaList() throws RecordStoreFullException,

 RecordStoreNotFoundException, RecordStoreException {

 rs = RecordStore.openRecordStore("TeaTableDatabase", true);

 }

 /**
 * Start the MIDlet by creating a list of items and associating the exit
 * command with it.
 */

Appendix B - source code TeaTime application on Symbian OS 113

 public void startApp() throws MIDletStateChangeException{

 db = new TeaDB();

 try {

 teaNumber = rs.getNumRecords();

 String[] teaList = new String[teaNumber];

 teaList = db.callUpAllTeas(teaNumber, rs);

 display = Display.getDisplay(this);

 menu = new List("Menu Items", Choice.IMPLICIT);

 for (int i = 0; i < teaNumber; i++) {

 menu.append(teaList[i], null);

 }

 menu.addCommand(exitCommand);

 menu.addCommand(addCommand);

 menu.addCommand(deleteCommand);

 menu.setCommandListener(this);

 display.setCurrent(menu);

 } catch (RecordStoreNotOpenException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();

 } catch (NullPointerException e) {

 e.printStackTrace();

 } catch (RecordStoreException e) {

 e.printStackTrace();
 }
 }

 public void pauseApp() {

 display = null;

 menu = null;

 }

 public void destroyApp(boolean unconditional) {

 notifyDestroyed();
 }

 /**
 * a generic method that will be called when selected any of the items on
 * the list.
 */

 public void callStopWatch() {

 System.out.println();

 display = Display.getDisplay(this);

 try {

 display.setCurrent(new TeaTimerCanvas(this,

 db.getMinutes(db.getRecordID(rs,

 this.menu.getString(this.menu.getSelectedIndex())), rs),

 db.getSeconds(db.getRecordID(rs,

 this.menu.getString(this.menu.getSelectedIndex())), rs)));

 } catch (InvalidRecordIDException e) {

 e.printStackTrace();

 } catch (RecordStoreException e) {

 e.printStackTrace();

Appendix B - source code TeaTime application on Symbian OS 114

 } catch (IOException e) {

 e.printStackTrace();
 }
 }
 /**
 * Handle events.
 */

 public void commandAction(Command c, Displayable d){

 String label = c.getLabel();

 if (label.equals("Exit")) {

 //destroyApp(true);

 } else if (label.equals("Add Tea")) {

 display = Display.getDisplay(this);

 display.setCurrent(new TeaAdd(this, rs));

 } else if (label.equals("Delete Tea")){

 System.out.println("Button Delete Tea");

 try {

 db.deleteTea(db.getRecordID(rs,

 this.menu.getString(this.menu.getSelectedIndex())), rs);

 } catch (RecordStoreNotFoundException e) {

 e.printStackTrace();

 } catch (RecordStoreException e) {

 e.printStackTrace();

 } catch (IOException e) {

 e.printStackTrace();
 }

 try {

 startApp();

 } catch (MIDletStateChangeException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();
 }

 } else {

 callStopWatch();
 }
 }

 public void deleteRS() throws RecordStoreNotFoundException,

 RecordStoreException{

 RecordStore.deleteRecordStore("TeaTableDatabase");
 }
}

Listing 24: TeaTime application (Symbian) – TeaList.java

package com.symbian.os.teatime;

Appendix B - source code TeaTime application on Symbian OS 115

import javax.microedition.lcdui.*;

import javax.microedition.lcdui.Form;

import javax.microedition.lcdui.TextField;

import javax.microedition.midlet.MIDletStateChangeException;

import javax.microedition.rms.RecordStore;

public final class TeaAdd extends Canvas implements CommandListener {

 Form teaForm = new Form ("Add a Tea");

 TextField name = new TextField ("Tea Name", "", 20, TextField.ANY);

 TextField minutes = new TextField ("Minutes", "", 1, TextField.NUMERIC);

 TextField seconds = new TextField ("Seconds", "", 2, TextField.NUMERIC);

 public TeaList localTest;

 public Display display;

 private TeaDB db;

 RecordStore localRS = null;

 public static final Command exitCommand = new Command("Back",

 Command.BACK, 0);

 public static final Command addCommand = new Command("Add",

 Command.SCREEN, 2);

 public TeaAdd(TeaList test, RecordStore rs) {

 localRS = rs;
 localTest = test;

 display = Display.getDisplay(test);

 teaForm.addCommand(exitCommand);

 teaForm.addCommand(addCommand);

 teaForm.setCommandListener(this);

 }

 protected void paint(Graphics g) {

 teaForm.append(name);
 teaForm.append(minutes);
 teaForm.append(seconds);
 display.setCurrent(teaForm);
 }

 public void commandAction(Command command, Displayable displayable) {

 String label = command.getLabel();

 if (label.equals("Back")) {

 try {

 localTest.startApp();

 } catch (MIDletStateChangeException e) {

 e.printStackTrace();
 }

 } else if (label.equals("Add")) {

 db = new TeaDB();

 db.createTea(name.getString(),

 Integer.valueOf(minutes.getString()).intValue(),

 Integer.valueOf(seconds.getString()).intValue(), localRS);

 try {

 localTest.startApp();

 } catch (MIDletStateChangeException e) {

 e.printStackTrace();

Appendix B - source code TeaTime application on Symbian OS 116

 }
 }
 }
}

Listing 25: TeaTime application (Symbian) – TeaAdd.java

package com.symbian.os.teatime;

import javax.microedition.lcdui.*;

import javax.microedition.midlet.MIDletStateChangeException;

public final class TeaTimerCanvas extends Canvas implements Runnable,

CommandListener {

 public Display display;

 //public TeaTimer localTimer;

 public TeaList localTimer;

 public int canvasWidth;

 public int canvasHeight;

 public int minutes = 0;

 public int seconds = 0;

 public int saveMinutes = 0;

 public int saveSeconds = 0;

 boolean test = false;

 public long a_long_fld;

 public long b_long_fld;

 public boolean stopWatchStatus;

 public static final Command backCommand = new Command("Back",

 Command.STOP, 0);

 public static final Command startCommand = new Command("Start",

 Command.SCREEN, 1);

 public static final Command stopCommand = new Command("Stop",

 Command.SCREEN, 1);

 public static final Command resetCommand = new Command ("Reset",

 Command.SCREEN, 1);

 public TeaTimerCanvas(TeaList timer, int min, int sec){

 stopWatchStatus = false;

 localTimer = timer;

 display = Display.getDisplay(timer);
 saveMinutes = min;
 saveSeconds = sec;
 // return the Width and Height of the Canvas,respectively
 canvasWidth = getWidth();
 canvasHeight = getHeight();

Appendix B - source code TeaTime application on Symbian OS 117

 addCommand(backCommand);

 addCommand(startCommand);

 addCommand(stopCommand);

 addCommand(resetCommand);

 setCommandListener(this);

 minutes = saveMinutes;
 seconds = saveSeconds;

 b_long_fld = System.currentTimeMillis();
 }

 public final void paint(Graphics g) {

 // String stopWatchString = Integer.toString(minutes) + ":" +
 // Integer.toString(seconds+saveSeconds);

 String stopWatchString = Integer.toString(minutes) + ":" +

 Integer.toString(seconds);
 g.setColor(255, 250, 250);
 g.fillRect(0, 0, canvasWidth, canvasHeight);
 g.setColor(0, 0, 0);
 g.drawString(stopWatchString, canvasWidth/2, canvasHeight/3, 17);

 display.callSerially(this);

 }

 long prevMin = System.currentTimeMillis();

 long prevSec = System.currentTimeMillis();

 public final void run() {

 if (stopWatchStatus == true){

 if(seconds < 0)

 {

 if(minutes >= 0){

 seconds = 59;
 minutes--;

 prevMin = System.currentTimeMillis();
 }

 }

 else if(System.currentTimeMillis() - prevSec > 1000)

 {
 seconds--;

 prevSec = System.currentTimeMillis();
 }
 repaint();
 }
 }

 public final void commandAction(Command command, Displayable displayable)

 {

 if (command == startCommand) {

 } else if (command == stopCommand){

 stopWatchStatus = false;

 } else if (command == backCommand){

 try {

 localTimer.startApp();

 } catch (MIDletStateChangeException e) {

 e.printStackTrace();

Appendix B - source code TeaTime application on Symbian OS 118

 }

 } else if (command == resetCommand){

 stopWatchStatus = false;

 minutes = saveMinutes;
 seconds = saveSeconds;
 }
 }
}

Listing 26: TeaTime application (Symbian) – TeaTimerCanvas.java

package com.symbian.os.teatime;

import java.io.ByteArrayInputStream;

import java.io.ByteArrayOutputStream;

import java.io.DataInputStream;

import java.io.DataOutputStream;

import java.io.IOException;

import javax.microedition.midlet.MIDletStateChangeException;

import javax.microedition.rms.InvalidRecordIDException;

import javax.microedition.rms.RecordComparator;

import javax.microedition.rms.RecordEnumeration;

import javax.microedition.rms.RecordFilter;

import javax.microedition.rms.RecordStore;

import javax.microedition.rms.RecordStoreException;

import javax.microedition.rms.RecordStoreFullException;

import javax.microedition.rms.RecordStoreNotOpenException;

public class TeaDB {

 //RecordStore db = null;
 //RecordStore tempDB = null;

 /**
 * Constructor - Open the teaTable database. If it cannot be opened, try to
 * create a new instance of
 * the database. If it cannot be created, throw an exception to signal the
 * failure

 * @return this (self reference, allowing this to be chained in an

 * initialization call)

 * @throws SQLException if the database could be neither opened or created

 */

 public TeaDB() {

 }

 /**

Appendix B - source code TeaTime application on Symbian OS 119

 * Create a new Tea using the name and brewTime provided. If the Tea is
 * successfully created
 * return the new rowId for that Tea, otherwise return a -1 to indicate
 * failure.

 * @param name the name of the Tea

 * @param brewTime the brewTime of the Tea

 * @return rowId or -1 if failed

 */

 public RecordStore createTea(String teaName, int brewMinutes, int

 brewSeconds, RecordStore rs){

 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 DataOutputStream outputStream = new DataOutputStream(baos);

 try {

 outputStream.writeUTF(teaName);
 outputStream.writeInt(brewMinutes);
 outputStream.writeInt(brewSeconds);

 } catch (IOException e) {

 e.printStackTrace();
 }

 byte[] b = baos.toByteArray();

 try {

 rs.addRecord(b, 0, b.length);

 } catch (RecordStoreNotOpenException e) {

 e.printStackTrace();

 } catch (RecordStoreFullException e) {

 e.printStackTrace();

 } catch (RecordStoreException e) {

 e.printStackTrace();
 }

 System.out.println("See ya!");

 return rs;

 }

 /**
 * Delete the Tea with the given rowId

 * @param rowId id of Tea to delete

 * @return true if deleted, false otherwise

 */

 public void deleteTea(int recordId, RecordStore rs){

 try {

 rs.deleteRecord(recordId);

 rs.enumerateRecords((RecordFilter)null, (RecordComparator)

 null, true);

 } catch (RecordStoreNotOpenException e) {

 e.printStackTrace();

 } catch (InvalidRecordIDException e) {

 e.printStackTrace();

 } catch (RecordStoreException e) {

 e.printStackTrace();
 }
 }

 /**
 * Return a Cursor over the list of all Teas in the database

 * @return Cursor over all Teas

 * @throws RecordStoreException

 * @throws RecordStoreNotOpenException

Appendix B - source code TeaTime application on Symbian OS 120

 * @throws RecordStoreException

 * @throws RecordStoreNotOpenException

 * @throws IOException

 */

 public String[] callUpAllTeas(int teaNumber, RecordStore rs) throws

 RecordStoreNotOpenException, RecordStoreException, IOException,
 NullPointerException{

 String[] teaArray = new String[rs.enumerateRecords(null, null,

 true).numRecords()];

 RecordEnumeration re = rs.enumerateRecords((RecordFilter)null,

 (RecordComparator) null, true);

 int i = 0;

 while (re.hasNextElement()){

 byte[] nextRec = re.nextRecord();

 ByteArrayInputStream bais = new ByteArrayInputStream(nextRec);

 DataInputStream dis = new DataInputStream(bais);

 teaArray[i]= dis.readUTF();
 i++;
 }

 return teaArray;

 }

 /**
 * Return a Cursor positioned at the Tea that matches the given rowId

 * @param rowId id of Tea to retrieve

 * @return Cursor positioned to matching Tea, if found

 * @throws RecordStoreNotOpenException

 * @throws IOException

 * @throws SQLException if Tea could not be found/retrieved

 */

 public String catchUpTea(int id, RecordStore rs) throws

 RecordStoreNotOpenException, IOException{

 byte[] b = null;

 try {

 b = rs.getRecord(id);

 } catch (InvalidRecordIDException e) {

 e.printStackTrace();

 } catch (RecordStoreException e) {

 e.printStackTrace();
 }

 ByteArrayInputStream bais = new ByteArrayInputStream(b);

 DataInputStream dis = new DataInputStream(bais);

 String name = dis.readUTF();

 return name;

 }

 /**
 * Get the minutes of the tea.

 * @param rowId id of tea to get the minutes of it

 * @return minutes of the tea sort in regard to the tea ID

 * @throws RecordStoreNotOpenException, IOException

 */

 public int getMinutes(int id, RecordStore rs){

 String name = null;

 int minutes = 0;

Appendix B - source code TeaTime application on Symbian OS 121

 int seconds = 0;

 byte[] b = null;

 try {

 b = rs.getRecord(id);

 } catch (InvalidRecordIDException e) {

 e.printStackTrace();

 } catch (RecordStoreException e) {

 e.printStackTrace();
 }

 ByteArrayInputStream bais = new ByteArrayInputStream(b);

 DataInputStream dis = new DataInputStream(bais);

 try {

 name = dis.readUTF();
 minutes = dis.readInt();
 seconds = dis.readInt();

 } catch (IOException e) {

 e.printStackTrace();
 }

 return minutes;

 }

 /**
 * Get the seconds of the tea.

 * @param rowId id of tea to get the minutes of it

 * @return minutes of the tea sort in regard to the tea ID

 */

 public int getSeconds(int id, RecordStore rs){

 String name = null;

 int minutes = 0;

 int seconds = 0;

 byte[] b = null;

 try {

 b = rs.getRecord(id);

 } catch (InvalidRecordIDException e) {

 e.printStackTrace();

 } catch (RecordStoreException e) {

 e.printStackTrace();
 }

 ByteArrayInputStream bais = new ByteArrayInputStream(b);

 DataInputStream dis = new DataInputStream(bais);

 try {

 name = dis.readUTF();
 minutes = dis.readInt();
 seconds = dis.readInt();

 } catch (IOException e) {

 e.printStackTrace();
 }

 return seconds;

 }

 protected void destroyApp(RecordStore rs) throws

 MIDletStateChangeException {

 try {

 rs.closeRecordStore();

 } catch (RecordStoreNotOpenException e) {

 e.printStackTrace();

 } catch (RecordStoreException e) {

Appendix B - source code TeaTime application on Symbian OS 122

 e.printStackTrace();
 }
 }

 public int getRecordID(RecordStore rs, String name1) throws

 InvalidRecordIDException, RecordStoreException, IOException{

 int recordID = 1;

 boolean found = false;

 RecordEnumeration re = rs.enumerateRecords((RecordFilter)null,

 (RecordComparator) null, false);

 re.keepUpdated(true);

 while (re.hasNextElement() && found == false){

 byte[] nextRec = re.nextRecord();

 ByteArrayInputStream bais = new ByteArrayInputStream(nextRec);

 DataInputStream dis = new DataInputStream(bais);

 String name2 = dis.readUTF();

 if (name1.equalsIgnoreCase(name2)){

 found = true;

 if (re.hasNextElement() == true){

 re.nextRecord();
 recordID = re.previousRecordId();

 } else if (re.hasPreviousElement() == true){

 re.previousRecord();
 recordID = re.nextRecordId();
 }
 }
 }

 return recordID;

 }

 protected void pauseApp() {

 // not neccessary

 }

 protected void startApp() throws MIDletStateChangeException {

 // notneccessary

 }

 public void deleteRS(String name) throws RecordStoreNotOpenException,

 RecordStoreException{

 RecordStore.deleteRecordStore(name);
 }
}

Listing 27: TeaTime application (Symbian) – TeaDB.java

