
Dynamic Class Selection and Class Provisioningin Proportional Di�erentiated ServicesConstantinos Dovrolis Parameswaran RamanathanUniversity of Delaware University of Wisconsindovrolis@cis.udel.edu parmesh@ece.wisc.eduABSTRACTThe relative di�erentiation architecture does not require per-
ow state at the network core oredges, nor admission control, but it can only provide higher classes with better service thanlower classes. A central premise in the relative di�erentiation architecture is that users withan absolute QoS requirement can dynamically search for a class which provides the desiredQoS level. In the �rst part of this paper, we investigate this Dynamic Class Selection (DCS)framework in the context of Proportional Delay Di�erentiation (PDD). We illustrate that,under certain conditions, DCS-capable users can meet absolute QoS requirements, even thoughthe network only o�ers relative di�erentiation. For a simple link model, we give an algorithmthat checks whether it is feasible to satisfy all users, and if this is the case, computes theminimum acceptable class selection for each user. Users converge in a distributed manner tothis minimum acceptable class, if the DCS equilibrium is unique. However, suboptimal andeven unacceptable DCS equilibria may also exist. Simulations of an end-to-end DCS algorithmprovide further insight in the dynamic behavior of DCS, show the relation between DCS andthe network Delay Di�erentiation Parameters, and demonstrate how to control the trade-o�between a
ow's performance and cost using DCS.In the second part of the paper, we consider the related problem of class provisioning. At theprovisioning phase, the network manager con�gures the link to support the QoS requirementsof all tra�c types. Each tra�c type is speci�ed by an expected arrival rate and a delayrequirement. The objective of the provisioning phase is to jointly determine: the minimumlink capacity needed to support the given tra�c types, the nominal class of service for eachtra�c type, and the appropriate resource allocation between classes. Our class provisioningmethodology is also based on Proportional Delay Di�erentiation (PDD). The major advantageof PDD is that it avoids the computation of an explicit bandwidth share for each class. Theclass provisioning methodology is illustrated with examples.
This work was supported by a research fund from Cisco Systems Inc. Parts of this paper have previouslyappeared at IEEE ICNP 2001 and at the SPIE \Scalability and Tra�c Control in IP Networks" 2001 conference.1

1 IntroductionProviding some kind of service di�erentiation in packet networks, and especially in the Internet,has been a problem of considerable commercial and research importance in at least the last tenyears. The Di�erentiated Services (Di�Serv) architecture [1] was proposed as a more scalablesolution to this problem, compared to previous approaches such as the Integrated Services(IntServ) architecture. The Di�Serv vision is that stateless priority mechanisms at the networkcore can be combined with stateful mechanisms at the network edges, in order to constructversatile end-to-end services. Among the �rst Di�Serv proposals was the Virtual Leased Line(VLL) service [2]. VLL o�ers negligible queueing delays and no losses, when the VLL tra�cis shaped at the network ingress to a certain contracted rate. Recent �ndings, however, haveraised concerns about the e�ect of aggregation on the VLL service [3, 4]. Another early Di�Servproposal was the Assured service [5]. This model o�ers a certain bandwidth pro�le to a userthrough selective marking at the edges and priority dropping at the core, when the networkis appropriately provisioned. It has been shown, however, that it is di�cult to design goodprovisioning algorithms for the Assured service [6]. Also, in the context of TCP transfers, [7]showed that it may be impossible to provide a certain throughput to a TCP connection. Severalother models for scalable di�erentiated services have been proposed. The SCORE architecturecan provide per-
ow service guarantees without per-
ow state in the core routers [8]; instead,the QoS-related information is carried in the packet headers. [9] proposes a core-stateless schemein which resource management and admission control are performed only at egress routers. TheAsymmetric Best E�ort [10] provides two service classes: one for delay-sensitive applicationsand another for throughput-sensitive applications.A simpler proposal is to provide relative di�erentiation [11]. In this architecture, the networko�ers N classes of service which are ordered so that Class i is better than Class i-1 for 1 <i � N , in terms of local (per-hop) metrics for the queueing delays and packet losses. There isno admission control or reservation of resources, and so the network cannot provide absoluteQuality-of-Service (QoS) guarantees, such as a maximum end-to-end delay or loss rate. Instead,it is up to the end-points (applications, end-host protocols, users) to select the class that bestmeets their QoS requirements, cost, and policy constraints. A central premise in the relativedi�erentiation architecture is that if the end-points have absolute QoS requirements, they haveto dynamically search for a class that satis�es these requirements. Since higher classes wouldobviously cost more, users that also care to minimize the cost of their
ows, would have to searchfor the minimum acceptable class. This model of Dynamic Class Selection (DCS), however, hasnot been investigated. It also raises some critical questions that need to be answered beforeaccepting the relative di�erentiation architecture as feasible and robust. What happens when apopulation of users search for an acceptable class in a distributed manner? Does each user �ndan acceptable class when the network is well-provisioned? Which factors determine the well-provisioning of a network? Which are the important parameters in a practical DCS algorithm?Our objective in the �rst part of this paper is to investigate these questions in the contextof the Proportional Delay Di�erentiation (PDD) model [11]. We �rst argue that the PDDmodel provides an appropriate `per-hop behavior' for supporting DCS, because it maintainsthe relative class di�erentiation even when DCS causes signi�cant variations in the class loaddistribution. Also, the PDD model can control the QoS spacing between classes, allowing thenetwork provider to provision the class di�erentiation based on the absolute user QoS require-2

ments. We consider a simpli�ed analytical model of DCS on a link that o�ers proportionaldelay di�erentiation. We give an algorithm that checks whether it is feasible to satisfy allusers (`well-provisioned' case), and if so, it computes the minimum acceptable class selectionfor each user. Users converge in a distributed manner to this minimum acceptable class, if theDCS equilibrium is unique. Unfortunately, suboptimal and even unacceptable DCS equilibriamay also exist. When the link is under-provisioned, an equilibrium still exists but some users,namely those with the most stringent requirements, are unsatis�ed in the highest class. We alsopresent simulation results of an end-to-end DCS algorithm in a multihop network. The simu-lations provide additional insight in several DCS aspects, such as the importance of selectingappropriate class di�erentiation parameters, the trade-o� between the performance and cost ofa
ow, and the factors that determine the well-provisioning of a network.Since the relative di�erentiation architecture does not use admission control, however, theo�ered load at a link cannot be controlled. Consequently, it is possible that an application withabsolute QoS requirements will not �nd an acceptable class through DCS. This depends onthe amount of forwarding resources at the link (transmission capacity and number of bu�ers),on the allocation of forwarding resources between classes, and on the volume and performancerequirements of the rest of the tra�c. As shown in the �rst part of this paper, if the link iswell-provisioned then there should be an acceptable class for each tra�c type. But what doesit exactly mean for the link to be well-provisioned? And how can a network manager performsuch provisioning? This is the question that we address in the second part of this paper.Speci�cally, we investigate the following instance of the provisioning problem: how can anetwork manager provision a link to meet an average delay requirement for each tra�c type,requiring the minimum link capacity? In order to provision a link, the network manager needsa workload pro�le. The workload pro�le is a speci�cation of the anticipated tra�c types in thelink, in terms of their arrival rate and average delay requirement. Given this pro�le, a classprovisioning methodology has the following outcomes:1. The nominal service class for each tra�c type.2. The minimum link capacity for the given workload pro�le.3. The required capacity allocation between classes.The class provisioning methodology that we propose is based on Proportional Delay Di�eren-tiation (PDD) scheduling [12]. The major advantage of PDD scheduling is that it avoids thecomputation of an explicit bandwidth share for each class. Instead, PDD scheduling determinesthe order of packet transmissions in order to meet the N �1 ratios of the N target class delays.Having �xed the delay ratios with PDD, we then set the N class delays to their target valuesadjusting a single knob, which is the link capacity.The structure of the paper is as follows. Section 2 discusses DCS in more detail, and showsthe relation between DCS and proportional di�erentiation. A single link DCS model and therelated analytical study are given in Section 3, while Section 4 summarizes an end-to-end DCSsimulation study. Section 5 presents the class provisioning methodology and gives examples ofits use. A discussion of related work follows in Section 6. We summarize in Section 7.3

2 DCS and proportional di�erentiationIn the context of relative di�erentiated services, the network only o�ers per-hop relative delayand loss di�erentiation between a number of classes. A user that does not have absolute QoSrequirements, can choose a class based on the maximum tari� that she is willing to pay. Thatclass will provide the best possible QoS, given her cost constraints. A user (or application)that has absolute QoS requirements, on the other hand, has to dynamically choose a class inwhich the observed QoS is acceptable. If the user is also interested in minimizing the costof the session, she would choose the least expensive, or minimum, class that is acceptable.Suppose that it is the sender that makes the class selections, and the receiver that monitors theend-to-end QoS. The receiver can notify the sender about the observed QoS through a feedbackchannel, such as the one provided by the Real-Time Control Protocol (RTCP) [13]. Based onthis feedback, the sender decides whether to stay in the same class, or switch to the higher orlower class. We refer to this user-adaptation framework, as Dynamic Class Selection (DCS). InDCS, users may experience transient performance degradations as they search for an acceptableclass. Such transient performance degradations would be unacceptable for unelastic applicationsthat require strict (or deterministic) QoS guarantees. We consider such applications outsidethe scope of relative di�erentiation. If the application is adaptive, or if it only has statisticalQoS requirements, the transient performance degradations can often be masked using a varietyof techniques based on playback-adaptation, retransmissions, FEC, or loss concealment.The proportional di�erentiation model of [11] provides an appropriate per-hop behavior forDCS due to the following reasons. First, the proportional di�erentiation model is predictable,meaning that higher classes provide better performance than lower classes, independent of theaggregate load or the class load distribution. This is particularly important in DCS, becausethe class load distribution can be strongly nonstationary as users move from one class to an-other. Relative di�erentiation mechanisms that are based on static resource partitioning be-tween classes are not predictable when the class load distribution varies. This was shown in[11] for the case of Weighted-Fair-Queueing (WFQ) scheduling, and in [14] for the case ofComplete-Bu�er-Partitioning (CBP) dropping.The second reason is that the proportional di�erentiation model is controllable, meaningthat the network provider can adjust the performance spacing between classes based on certainclass di�erentiation parameters. These di�erentiation parameters allow the network providerto provision the performance spacing between classes based on the corresponding performancespacing in the QoS requirements of di�erent tra�c types or users [15]. As shown in x4, this typeof `class provisioning' can increase the number of DCS users that can �nd an acceptable class,leading to a more e�cient network operation. Other relative di�erentiation mechanisms, suchas the strict prioritization model [11], cannot adjust the performance spacing between classes,and so the network provider has no means to provision the class di�erentiation.Finally, the proportional di�erentiation model can be applied in both queueing delays [12]and packet losses [14], and so it can support a number of DCS performance requirements, suchas a maximum end-to-end or round-trip delay, a maximum loss rate, or combinations of thesemetrics, such as a minimum TCP throughput.
4

3 A single link DCS modelIn this section, we study an analytical model of DCS in the simpli�ed case of a single link. Thelink provides proportional delay di�erentiation, while the users search for the minimum classthat provides them with an average queueing delay that is less than a certain threshold.Consider a network link L. The o�ered rate in L is �, the capacity is C, and the utilizationis u = �=C < 1. Assume that the link has adequate bu�ers to avoid any packet losses. Lo�ers N classes of service, which are relatively di�erentiated based on the Proportional DelayDi�erentiation (PDD) model of [12]. Speci�cally, if �di is the average queueing delay in class i,the PDD model requires that �di�dj = �i�j 1 � i; j � N (1)where �1 = 1 > �2 > : : : > �N > 0 are the Delay Di�erentiation Parameters (DDPs). Notethat according to the PDD model, higher classes have lower average delays, independent of theclass loads. For the purposes of this section, we assume that all packets have the same size(normalized to one `data unit'). As shown in [12], when the class load distribution f�ng isgiven, the average queueing delay in class i under the PDD constraints is�di = �i �qagPNn=1 �n�n (2)where �qag = PNn=1 �n �dn is the average aggregate backlog in L. From the conservation law[16], the aggregate backlog �qag is independent of the class load distribution or the schedulingalgorithm, when the latter is work-conserving. �qag only depends on the link utilization and onthe statistical properties (burstiness) of the tra�c.Suppose now that a population of users U = f1; : : : ; Ug create the tra�c of link L. Eachuser j generates a stationary
ow with an average rate rj , and can tolerate a maximum averagequeueing delay �j in L. The total o�ered rate to L is � =PUj rj. Without loss of generality, Uis ordered so that �1 � �2 � : : : � �U > 0. Suppose that each user j in U selects a class cj 2f1; : : : Ng. The corresponding Class Selection Vector (CSV) c is de�ned as c = (c1; c2; : : : ; cU).Given a CSV c, the o�ered rate in each class i is�i(c) = UXj:cj=i rj (3)From (2) and (3), we see that the CSV c determines the average delay �di(c) in each classi, when the DDPs and the average aggregate backlog are given. Also note that the averageaggregate backlog does not depend on the CSV c. The objective of each user is to select theminimum class that meets the user's delay requirement. A user j is said to be satis�ed with c if�dcj (c) � �j ; otherwise, the user is said to be unsatis�ed with c. The CSV c is called acceptable,if all users in U are satis�ed with c. When c is acceptable, we also say that class cj is acceptablefor user j. CSVs can be compared in the following sense: c0 � c when c0j � cj for all j = 1 : : : U .The set of acceptable CSVs is denoted by CA. Note that CA may be the null set; thisoccurs when the user requirements cannot be met with the given link capacity and DDPs. IfCA 6= ; and c 2 CA, we say that the user population U is satis�ed with c, or simply satis�able.5

Equivalently, the link L is said to be well-provisioned for U . If CA = ;, the user population issaid to be unsatis�able, and the link is said to be under-provisioned for U .The following result expresses an important property of the PDD model. When one oremore users move to a higher class, the delay of all classes increases. The class delays decrease,on the other hand, when one or more users move to a lower class1.Proposition 1: If c and c0 are two di�erent CSVs such that c � c0, the average delay in eachclass i is �di(c0) � �di(c).A second important property of the PDD model is that when a user moves from one class toanother, while the rest of the users stay in the same class, the user observes a consistent classordering, i.e., the higher class provides a lower delay. In the following, the notation c0 = ciijmeans that the CSV c0 is identical to c, except that the j'th entry of c is replaced with class i(j 2 f1; : : : ; Ug and i 2 f1; : : : ; Ng).Proposition 2: Suppose that c0 = cikj with k 2 f1; : : : ; Ng. If k > cj then �dk(c0) � �dcj (c).Similarly, if k < cj then �dk(c0) � �dcj (c).3.1 The well-provisioned caseFirst consider the case when U is satis�able. We start with some important properties for theset of acceptable CSVs CA. A CSV is said to be ordered when users with more stringent delayrequirements select higher classes. The following property shows that an acceptable CSV c canbe always replaced with a lower acceptable CSV c0 � c that is ordered. As shown in the proofof this property, the CSV c0 is such that c0j = mink=j;:::;Ufckg for j = 1; : : : ; U .Proposition 3: Given an acceptable CSV c we can always construct another acceptable CSVc0 � c, such that c0i � c0j for any i < j (i; j 2 f1; : : : Ug).The following property shows that given two acceptable CSVs, we can construct another ac-ceptable CSV in which each user selects the minimum between the two acceptable classes forthat user. For example, if (1,2,2,3,4) and (1,1,3,4,4) are two acceptable CSVs, then the CSV(1,1,2,3,4) is also acceptable. To express this `per-user minimum class' operation, we writecm = minfc1; c2g, or more generally, cm = minfc1; : : : ; ckg.Proposition 4: Suppose that c1 and c2 are two acceptable CSVs. The CSV cm, with cmj =min(c1j ; c2j) (j = 1; : : : ; U), is also acceptable.3.1.1 Feasibility test and minimum acceptable CSVWe can now examine whether there exists a CSV in which all users are satis�ed, i.e., whetherthe link L is well-provisioned for U (CA 6= ;). If the link is well-provisioned, what is the CSVwith the minimum acceptable class for each user? Such a CSV would be optimal for the user1The proofs of the results in this section can be found in the Appendix.6

min CSV (c1; c2; : : : ; cU)f// c = (c1; c2; : : : ; cU).// Initially, call min CSV (1; 1; : : : ; 1).compute class rates �(c); // From (3).compute class delays �d(c); // From (2).if (c 2 CA) // (i.e., �dcj (c) � �j for all j 2 U)return (ĉ = c);else fk = maxj=1:::U j such that cj < N ;if (k == 1 and c1==N-1)return (U : Unsatis�able);else if (k == 1)min CSV (c1 + 1; c1 + 1; : : : ; c1 + 1; c1 + 2);else // (c1==N-1)min CSV (c1; c2; : : : ; ck�1; ck + 1; : : : ; ck + 1);ggFigure 1: Algorithm to compute the minimum acceptable CSV ĉ.population, because all users would be satis�ed, and with the minimum cost for each user. Letĉ be such an optimal CSV. Formally, ĉ is de�ned asĉ = minc2CAfcg (4)Based on Proposition 4, ĉ is also acceptable, and by de�nition, unique. We refer to ĉ as theminimum acceptable CSV.A bruteforce approach to compute ĉ is to search through all CSVs. A more e�cient algo-rithm is shown in Figure 1. The algorithm determines the minimum acceptable CSV ĉ, giventhe rates and delay requirements of the users in U , the average aggregate backlog �qag (which isan invariant given U and L), and the DDPs. The algorithm generates the sequence of orderedCSVs in increasing order2. For each CSV, it is examined whether it is acceptable. If this isthe case, we can show (based on Proposition 3) that this is the minimum acceptable CSV ĉ,and the algorithm terminates. If there is no acceptable CSV in the sequence of ordered CSVs,then the user population U is unsatis�able, and the link L is under-provisioned for U (CA = ;).CSVs of the form (ci; ci; : : : ; ci) with ci 6= 1 are not examined, because if they are acceptable,then the lower CSV (1; 1; : : : ; 1) is also acceptable.2By increasing order, we mean that if ck is generated before cl, ck � cl.7

Note that whether link L is well-provisioned for the user population U depends on the userrates frig, the user delay requirements f�ig, the speci�ed DDPs f�ig, and the average aggregatebacklog �qag. The latter depends on the tra�c burstiness and the link utilization u. The `inverse'problem is to determine the optimal DDPs and the minimum link capacity (or the maximumutilization) that can satisfy a user population U ; we study this class provisioning problem in[15].3.1.2 Distributed DCS modelThe algorithm of Figure 1 computes the minimum acceptable CSV in a centralized manner. Inpractice, users would act independently to select the minimum class that satis�es their delayrequirement, without knowing the class selections and delay requirements of other users. Whatis the resulting CSV in this distributed DCS model?In the distributed DCS model, users perform the following class transitions. A user j issupposed to only know the queueing delay �dcj = �dcj (c) in the class cj that she uses. If �dcj > �jand cj < N the user moves to the higher class cj + 1, expecting to get a lower average delay(Proposition 2). If the user is already in the highest class N and �dcj > �j, the user staysunsatis�ed in class N . Also, if �dcj � �j and cj > 1, the user moves to the lower class cj � 1, inorder to examine whether the higher delay of that class is also acceptable (Proposition 2). Ifclass cj � 1 is not acceptable, the user returns to class cj . Note that the occasional transitionsto a lower class are necessary in order for users to search for the minimum acceptable class.It is important to note that in this distributed DCS model a user does not stay in anacceptable class inde�nitely. So, strictly speaking, the user population does not converge to acertain CSV, even when U is satis�able. We can de�ne, though, a distributed DCS equilibrium~c as a CSV such that, �rst, all unsatis�ed users are in the highest class, and second, when asatis�ed user moves to the lower class, while all other users remain in the same class, that userbecomes unsatis�ed. Formally, let Us(c) and Uu(c), respectively, be the set of satis�ed andunsatis�ed users for a CSV c. We say that a CSV ~c is a distributed DCS equilibrium if it meetsthe following two conditions: ~cj = N for all j 2 Uu(~c) (5)8j 2 Us(~c) (with ~cj > 1); j =2 Us(c0) where c0 = ~ci~cj�1j (6)If ~c 2 CA, we say that it is an acceptable DCS equilibrium; otherwise, it is an unacceptable DCSequilibrium.Ren and Park considered a game theoretic model of DCS in [17]. Speci�cally, [17] showedthat the users converge to a distributed DCS equilibrium (Nash equilibrium), under either se-quential or concurrent class transitions, when three `per-hop control' properties are met. ThePDD model satis�es these properties because of Equation 1, Proposition 1, and Proposition 2.So, the results of [17] regarding the existence and stability of the DCS equilibria are applicableto our PDD-based link model. The major result of [17] is that there can be no persistent cyclesin a sequence of CSVs that results from DCS class transitions. Cycles can occur with concurrentclass transitions, but they are only transient, in the sense that from any CSV on the cycle thereexist class transitions (sequential or concurrent) that lead to a distributed DCS equilibrium.It is easy to see that the minimum acceptable CSV ĉ is an acceptable DCS equilibrium. So,if there is only one DCS equilibrium, it has to be ĉ. Additionally, it can be shown that if all8

users start from the lowest class, i.e., if the initial CSV is c = (1; 1; : : : ; 1), then the resultingDCS equilibrium is ĉ. Other DCS equilibria can also exist however. For example, considerthe case of two users and two classes in a well-provisioned link. Suppose that the minimumacceptable CSV is ĉ = (1; 1), and that the CSVs (1; 2) and (2; 1) are unacceptable. Since(1; 1) is acceptable, the CSV (2; 2) is also acceptable (the users encounter the same averagedelays in both CSVs). Consequently, the CSV (2; 2) is also an acceptable DCS equilibrium.Such acceptable equilibria are suboptimal for the users, because the users need to pay for ahigher class than the minimum acceptable class that exists for them. On the other hand,such equilibria may be more preferable for the network provider, since they can lead to highernetwork revenues.The resulting DCS equilibria can also be unacceptable, even when the link is well-provisioned.For example, consider a well-provisioned link with three users and three classes, and let ĉ =(1; 2; 2). It is possible that the CSVs (1; 2; 3), (1; 3; 2), and (1; 3; 3) are unacceptable. Inthat case, the CSV (1; 3; 3) is an unacceptable DCS equilibrium, even though the link is well-provisioned. Unacceptable DCS equilibria are of course suboptimal both for the users and thenetwork provider.3.2 The under-provisioned caseSuppose now that U is unsatis�able (CA = ;). By de�nition, there are some users that cannotmeet their delay requirement in any class. Based on the distributed DCS model of the previousparagraph, these users remain unsatis�ed in the highest class. As in the well-provisioned case,it can be shown that the population of users converges to a distributed DCS equilibrium, thatis always unacceptable in this case. The following result shows that, in the under-provisionedcase, a distributed DCS equilibrium ~c is such that the unsatis�ed users have the most stringent(i.e., smallest) delay requirements.Proposition 5: If U is unsatis�able, a distributed DCS equilibrium~c is always of the followingform, with S being the number of satis�ed users (0 � S < U) in ~c~c = (c1; : : : ; cS ; N; : : : ; N) (7)So, when U is unsatis�able, S users with the largest delay requirements are satis�ed, whilethe rest U � S users with the smallest delay requirements are unsatis�ed in the highest class.The maximum value of S and the minimum acceptable class for those S satis�ed users can bedetermined using a centralized algorithm that is similar to the algorithm of Figure 1 (see [18]).In practice, the unsatis�ed users may leave the network, or change their rates and/or delaysrequirement. Such user behavior leads to a network load relaxation, and to a new user popula-tion U 0 that may be satis�able. Unsatis�ed users, in practice, also introduce some cost for thenetwork provider (in the form of loosing customers for example).4 Simulation study of an end-to-end DCS algorithmThe model of x3 considers only a single link, and assumes that users accurately know theaverage queueing delay in the class that they use. Also, the model does not specify the de�ning9

DCS algorithm:f Dk= k'th RTD measurement;if (Dk > Dmax) fc = minfc+ dlog2 Dk�DminDmax�Dmin e; Ng;Do not increase class in next fIDk time units;gif (Dk < �Dmax) fc = maxfc� 1; 0g;Do not decrease class in next fDDk time units;gg Figure 2: Simulated DCS algorithm.timescales for the class average delays and the period in which users adjust their class selections.In this section, we focus on an end-to-end DCS algorithm that takes into account all these issues.The behavior of this DCS algorithm in a multi-hop network that is loaded with heavy tailedcross-tra�c is studied with simulations.A complete DCS algorithm: In the following DCS algorithm, the user speci�es a re-quirement Dmax on the maximum Round-Trip Delay (RTD) in the
ow's path. The sendertimestamps each packet k before transmitting it, while the receiver returns the timestampsback to the sender in the same class that they are received in, so that the sender can measurethe RTD Dk of each packet k. In a bi-directional
ow, such as a telephony session, the
ow oftimestamps back to the sender can be piggybacked with the reverse data
ow. The minimumRTD Dmin is also measured, in order to estimate the total propagation and transmission delaysin the path; obviously it must be that Dmax > Dmin. After the k'th timestamp is received,the DCS sender estimates a short-term average RTD ~D using an exponential running-averageof the form ~Dk+1 = (1 � w) ~Dk + wDk where 0 < w � 1 is the averaging weight. ~D expressesthe performance timescales that the user is interested in. For instance, if w = 1 the user caresabout per-packet RTDs, which may be the case in a highly interactive application. If w = 0:01,the last 500 RTDs contribute 99% to ~Dk, while the last 100 RTDs contribute 63% to ~Dk. Inthe following experiments w is set to 0.01, except one experiment which considers per-packetRTD constraints (w=1).The Dynamic Class Selection (DCS) algorithm is shown in Figure 2. The class that theuser selects is denoted by c, with c 2 f1; : : : ; Ng. When the measured RTD Dk is larger thanDmax, the class selection is increased. This decision is based on the last RTD Dk, instead of theaverage ~Dk, in order to react faster to excessive delays in the current class. The class increase isbased on the deviation of the measured queueing delay Dk �Dmin from the maximum allowedqueueing delay Dmax�Dmin. In this particular case, the DCS algorithm assumes that the DDPs10

5ms
75Mbps

5ms
75Mbps

5ms
75Mbps

5ms
25Mbps

5ms
75Mbps

5ms
75Mbps

25Mbps
5ms

5ms
75Mbps

75Mbps

5ms
75Mbps

5ms

5ms

25Mbps

.

CT

CT

(Receivers)

Monitored
DCS
Flows

H H H H2 31

Per-hop

Cross-Traffic
Senders/Receivers

Cross-Traffic
Receivers/Senders

5

. . .

Per-hop

Flows
DCS

Monitored

(Senders)

Figure 3: Simulation topology.in each hop are ratioed as �1=�i = 2i�1, and so the appropriate class increase is given by thelogarithmic formula shown. The DDPs can be estimated measuring the queueing delay ratiosbetween successive classes. A DDP-based class increase can move the user to the appropriateclass faster. We emphasize, though, that it is not required that the sender knows the actualDDPs in the network, and that a simpler class increase formula can be used instead. Afterthe class increase, the sender waits for some time fIDk before a further class increase. Thisadaptation delay is needed in order to measure the resulting RTD in the new class selection.A typical value for the adaptation delay factor would be fI=1 (i.e., wait for one RTD), but amore delay-sensitive user can set fI to less than one assuming that the class increase will causea lower RTD. Unless stated otherwise, fI=1.The class is decreased, on the other hand, when the RTD is lower than �Dmax (� < 1). �is a tolerance factor for the maximum RTD that triggers a class decrease. A user that is not sointerested to minimize the cost of her
ow can reduce �. The class is only decremented by one,since the reaction latency is not as critical in the class decrease as in the class increase case.A class decrease is also followed by an adaptation delay fDDk. Cost-sensitive users can set fDclose to one, while delay-sensitive users can set fD to a higher value. Unless stated otherwise,fD = 4 and �=0.9. Note that when � < 1, it is possible that a user settles in a class that isnot the minimum acceptable class. This is a trade-o� for the user, since a lower � reduces the`annoyance' of lower class transitions, but it can also lead to a suboptimal class.Simulation topology and parameters: Figure 3 shows the multi-hop simulation topology.The monitored DCS
ows go through �ve backbone hops, while Cross-Tra�c (CT) is generatedfrom bi-directional
ows that go through the topology in the vertical direction. CT=50 such
ows are created in each hop. The link capacities and propagation delays are given in Figure 3.Note that the monitored DCS
ows have a minimum RTD Dmin=70 msec due to propagationdelays. The class adjustments are performed at the DCS nodes labeled as `Senders'. The CTsources are either DCS
ows themselves, or they generate packets with a given, average classload distribution (non-DCS
ows). Both directions in the backbone path are equally loadedfrom CT sources. All tra�c sources generate 500-byte packets, based on a Pareto distributionwith in�nite variance (�=1.5). The monitored DCS
ows have an average rate of 400kbps, or11

100 packets per second. The rate of the CT sources is adjusted to cause a certain utilization uin the backbone links; u is set to 90% in the following experiments.The backbone links use the WTP scheduler [12, 19], to provide proportional delay di�erenti-ation3. The network o�ers N=8 classes with DDPs �1=�i = f1; 2; 4; 8; 12; 16; 24; 32g (i = 1 : : : 8),unless stated otherwise. Notice that these DDPs are not entirely consistent with the `power-of-two' DDPs that the algorithm of Figure 2 assumes. When the CT is created from non-DCS
ows, the average class load distribution is (10,20,20,15,15,10,5,5)4 . When the CT is createdfrom DCS
ows, the class load distribution is determined from the delay requirements of those
ows. The number of bu�ers in the links is adequately large to avoid losses.Performance metrics: The performance of a DCS
ow is measured with the fraction P ofRTD values ~Dk that are lower than the speci�ed maximum RTD Dmax. For K RTD values,P = PKk I(Dmax� ~Dk)K where I(x) is zero if x < 0 and one otherwise. We refer to P as theacceptable delay ratio. Note that the acceptable delay ratio is based on the running average ~Dk,and not on the individual RTD measurements, because ~Dk expresses the performance timescalesthat the user cares about. The cost of a DCS
ow is measured with the average class metricC. If the k'th packet was sent in class ck, the average class of a DCS
ow that transferred Kpackets is C = Pk ckK A lower value of C causes a lower cost for the user, since higher classes areassumed to be more expensive (in a monetary or other sense). The DCS framework introducesa trade-o� between the performance and cost of a
ow. Higher classes lead to lower delays, butthey also cost more. The objective of the DCS algorithm is to achieve a high acceptable delayratio P and a low average class C. The exact point in this trade-o� can be chosen from theuser, based on her performance/cost sensitivity. The algorithm of Figure 2 allows the controlof this trade-o�, through the parameters fI , fD, and �.Static versus dynamic class selection: We �rst compare the DCS algorithm with asimple static class selection scheme. A monitored
ow has a maximum RTD requirementDmax=100msec. Figure 4-a shows a sample path of the RTD average ~D in the case of threestatic class selections for that
ow. Class-1 provides excessive delays, and the acceptable delayratio is only P=0.12. Class-8, on the other extreme, leads to much lower delays than needed,and P=1.00. Class-3 turns out to be the minimum class that leads to an acceptable RTD foralmost all packets (P=0.99). So, Class-3 is the minimum acceptable class for this
ow. Figure4-b shows what happens when the monitored
ow uses DCS instead of a static class selection.The class selection variations are also shown (scaled by a factor of ten). Note that DCS meetsthe speci�ed RTD constraint, and the acceptable delay ratio is P=1.00. The average classmetric is C=2.92, and so the
ow uses mainly Class-3, at least in an average sense. This isalso shown from the class selection variations in the graph. In other words, in the resultingDCS equilibrium of this experiment, the DCS
ow selects (in an average sense) the minimumacceptable class for that
ow, namely Class-3. The oscillations around Class-3 are caused byattempts to �nd a lower acceptable class, and by some excessive RTDs, due to tra�c bursts,that cause temporary class increases.3In the high utilization range that we simulate here, the WTP scheduler can achieve the PDD model quiteaccurately (see [12]).4Each CT source generates tra�c with this class load distribution.12

5 10 15 20 25 30 35 40
Time (sec)

0

20

40

60

80

100

120

140

160

180

R
T

D
 r

un
ni

ng
−

av
er

ag
e

(m
se

c)

Static class selections

Class−1
Class−3
Class−8

(a) Three static class selections 5 10 15 20 25 30 35 40
Time (sec)

0

20

40

60

80

100

120

R
T

D
 r

un
ni

ng
−

av
er

ag
e

(m
se

c)

Dynamic class selection

DCS delay
DCS class (x10)

(b) Dynamic class selectionFigure 4: Static versus dynamic class selection for a
ow with Dmax=100msec.Satis�ed and unsatis�ed DCS
ows: In this experiment, we focus on four monitored DCS
ows with diverse maximum RTD requirements. The value of Dmax for these
ows is 300, 150,100, and 75msec. We only show ~D for
ows 3 and 4. The �rst three
ows �nd a class inwhich the acceptable delay ratio is P=1.00, and so they are satis�ed. The average class forthese
ows is C=1.06, 2.13, and 4.17, respectively. The fourth
ow, on the other hand, requiresthat Dmax=75msec, which is only 5msec more than the propagation delays. The
ow movesto Class-8, but still cannot meet its RTD requirement. The acceptable delay ratio for this
owis only C=0.13, which implies that it is unsatis�ed. In other words, the unsatis�ed users, ifthey exist, are
ows with the most stringent requirements, they move to the highest class, andthey remain unsatis�ed there. The satis�ed users, on the other hand, converge to an acceptableclass, oscillating around that DCS equilibrium.The performance versus cost tradeo� in DCS: To illustrate the performance versus costtrade-o�, consider a
ow that has a stringent requirement Dmax=100msec on the individualRTDs of each packet. Such a constraint means that w=1 in the RTD estimator. Figure 6-a shows a sample path of the per-packet RTDs with the `typical' DCS parameters that wementioned earlier (fI=1, fD=4, �=0.9). The acceptable delay ratio is only P=0.81, and theaverage class is C=2.92. Violating the RTD bound in about 20% of the packets would probablybe unacceptable for several interactive applications. Figure 6-b shows the resulting sample pathof per-packet RTDs, when the DCS parameters are selected as fI=0.9, fD=20, and �=0.8. Theacceptable delay ratio now is signi�cantly improved to P=0.97, and only 3% of the packets misstheir deadlines. The average class C is increased from 2.92 to 4.21, though, which shows theprice that has to be paid for the more stringent QoS. This experiment illustrates two importantpoints. First, the DCS framework can be used to meet absolute RTD requirements not only in13

5 10 15 20 25 30 35 40
Time (sec)

0

20

40

60

80

100

120

R
T

D
 r

un
ni

ng
−

av
er

ag
e

(m
se

c)

DCS flow #3 (maximum RTD: 100msec)

DCS delay
DCS class (x10)

(a) Flow-3: Dmax=100msec 5 10 15 20 25 30 35 40
Time (sec)

0

10

20

30

40

50

60

70

80

90

100

R
T

D
 r

un
ni

ng
−

av
er

ag
e

(m
se

c)

DCS flow #4 (maximum RTD: 75msec)

DCS delay
DCS class (x10)

(b) Flow-4: Dmax=75msecFigure 5: A satis�ed and an unsatis�ed DCS
ow.

5 10 15 20 25 30 35 40
Time (sec)

0

20

40

60

80

100

120

140

160

P
er

−
pa

ck
et

 R
T

D
 v

al
ue

s

Typical DCS parameters

DCS per−packet delays
DCS class (x10)

(a) fI = 1; fD = 4; � = 0:9 5 10 15 20 25 30 35 40
Time (sec)

0

20

40

60

80

100

120

140

160

P
er

−
pa

ck
et

 R
T

D
 v

al
ue

s

Special DCS parameters

DCS per−packet delays
DCS class (x10)

(b) fI = 0:9; fD = 20; � = 0:8Figure 6: Controlling the DCS parameters to meet a per-packet RTD requirement.14

5 10 15 20 25 30 35 40
Time (sec)

60

80

100

120

140

160

180

200

R
T

D
 r

un
ni

ng
−

av
er

ag
e

(m
se

c)

DDPs: {1,2,4,8}

Flow−1 (Dmax=195msec)
Flow−2 (Dmax=135msec)
Flow−3 (Dmax=105msec)
Flow−4 (Dmax=90msec)

(a) Well provisioned DDPs 5 10 15 20 25 30 35 40
Time (sec)

60

80

100

120

140

160

180

200

R
T

D
 r

un
ni

ng
−

av
er

ag
e

(m
se

c)

DDPs: {1,2,3,4}

Flow−1 (Dmax=195msec)
Flow−2 (Dmax=135msec)
Flow−3 (Dmax=105msec)
Flow−4 (Dmax=90msec)

(b) Poorly provisioned DDPsFigure 7: The e�ect of the DDPs on DCS
ows.terms of short-term averages, but also for individual packets. Second, meeting a more strictperformance requirement requires the use of higher classes, and thus a larger cost. A practicalDCS algorithm has to provide the
exibility to control this trade-o�.Class provisioning and the selection of DDPs: How is the selection of DDPs importantin satisfying DCS
ows? Suppose that four DCS monitored
ows have a Dmax requirement of195, 135, 105, and 90msec, respectively, and the network o�ers four classes. Consider, �rst, thecase that �1=�i = f1; 2; 4; 8g (i = 1 : : : 4). Figure 7-a shows that with these DDPs each DCS
ow gets an almost perfect acceptable delay ratio P � 1.00. The average class C for the four
ows is 1.28, 1.97, 2,87, and 3.59, respectively. The given DDPs in this experiment were chosenbased on the queueing delay requirements of the DCS
ows. To see how, note that the minimumRTD in the path (due to propagation and transmission delays) is about Dmin=75msec. So,the four
ows can tolerate up to 120, 60, 30, and 15msec of queueing delays in the round-trippath. These maximum queueing delays are ratioed as: 120/15=8, 60/15=4, and 30/15=2. So,the DDPs in this case are ratioed based on the corresponding ratios of the queueing delayrequirements of the DCS
ows.Figure 7-b, on the other hand, shows what happens if the network operator chooses theDDPs �1=�i = f1; 2; 3; 4g (i = 1 : : : 4). These DDPs do not match well the queueing delayrequirements of the DCS
ows. Speci�cally, these DDPs only provide a maximum delay ratioof four between the highest and the lowest class, while the DCS
ows require a maximumratio of eight. The result of this mismatch is that the
ow with the tightest delay requirement(Flow-4) remains unsatis�ed in the highest class with an acceptable delay ratio P=0.29. It isimportant to note that the network utilization is the same in both cases; the only di�erenceis the speci�ed DDPs. This experiment illustrates the importance of selecting DDPs that are15

5 10 15 20 25 30 35 40
Time (sec)

0

10

20

30

40

50

60

70

80

90

100

110

R
T

D
 r

un
ni

ng
−

av
er

ag
e

(m
se

c)

Cross−traffic delay requirement: 30 to 50msec

DCS delay
DCS class (x10)

(a) More demanding CT
ows 5 10 15 20 25 30 35 40
Time (sec)

0

10

20

30

40

50

60

70

80

90

100

110

R
T

D
 r

un
ni

ng
−

av
er

ag
e

(m
se

c)

Cross−traffic delay requirement: 40 to 60msec

DCS delay
DCS class (x10)

(b) Less demanding CT
owsFigure 8: The e�ect of the CT delay requirements on a DCS
ow.appropriate for the delay requirements of DCS
ows. The problem of computing the optimalDDPs and the minimum link capacity that are required for a certain user population is studiedin the second part of this paper, in x5.The e�ect of the Cross-Tra�c (CT) performance requirements: In the experimentof this paragraph, all sources, both monitored and CT, generate DCS
ows. In this scenario,an important parameter is the delay requirements of the CT
ows. Since they also performDCS, the more stringent delay requirements they have, the higher classes they use, and so theharder it becomes for any DCS
ow to �nd an acceptable class. Figure 8 shows what happensto a monitored DCS
ow with a maximum RTD requirement Dmax=90msec, in two di�erentcases of CT delay requirements. In Figure 8-a, the CT
ows ask for a maximum RTD that isuniformly distributed in the range 30-50msec. Note that the minimum RTD in the CT path isabout 30msec. So, some of the CT
ows in this case ask for practically zero queueing delays.Such a demanding CT load causes a relatively low acceptable delay ratio to the monitored
ow(P=0.86), while its average class is C=3.69. In Figure 8-b, on the other hand, the CT
owsare less demanding, asking for a maximum RTD in the range 40-70msec. Even though theaggregate load and the DDPs remain the same, the monitored DCS
ow is able now to get aperfect acceptable delay ratio (P=1.00) with a lower cost (C=1.94).5 Class provisioningIn the provisioning phase, the objective of the network manager is to con�gure a network linkat a desired operating point. The "knobs" that the manager can control are the link forwarding16

WWW

Traffic Distribution

D
el

ay
 R

eq
ui

re
m

en
t

Voice

Bulk

(a) Delay requirement for three tra�ctypes
WWW

Class-2

Class-1

Traffic Distribution

D
el

ay
 R

eq
ui

re
m

en
t

Voice

Class-3

Bulk

(b) Under-provisioned di�erentiation
WWW

Traffic Distribution

D
el

ay
 R

eq
ui

re
m

en
t

Voice

Class-2

Class-1

Class-3

Bulk

(c) Over-provisioned di�erentiation
WWW

Traffic Distribution

D
el

ay
 R

eq
ui

re
m

en
t

Voice

Class-1

Class-2

Class-3

Bulk

(d) Well-provisioned di�erentiationFigure 9: An under-provisioned, over-provisioned, and well-provisioned link with three classesand three tra�c types.resources, as well as the allocation of these resources between classes. An important issue in theprovisioning phase is to use the minimum capacity, especially if the cost of the link increaseswith its capacity. Even when this is not strictly the case (say in optical networks), the networkmanager would still be interested to at least know the minimum link capacity required.The desired operating point is determined by the link's workload, i.e., by the tra�c typesthat the link carries. By `tra�c type', we mean an aggregation of
ows that have the sameperformance requirements. In order to perform provisioning, the network manager needs apro�le for the link workload. This workload pro�le consists of the o�ered load and the QoSrequirement for each tra�c type. Such a pro�le is often available, based on operational dataand statistics, in stable networks that are well monitored.The exact form of link provisioning that we consider here can meet an average queueing delayrequirement for each tra�c type. For example, a network provider can provision an averagedelay of 50msec for the E-mail, Network-News (NNTP), and other `Bulk' tra�c, 20msec forthe WWW tra�c, and 10 msec for the IP telephony and video conferencing tra�c.17

To illustrate the importance of class provisioning, let us consider the following simple ex-ample. Figure 9-a shows a delay requirement curve for three tra�c types (Bulk, WWW, andVoice) at a certain link. In this example, about 25% of the link's tra�c is Bulk transfers thatcan tolerate large delays, 60% is WWW
ows with moderate delay requirements, and 15% isVoice, having low delay requirements. The link, in this example, o�ers three classes of service:Class-1, Class-2, and Class-3. It is noted that the number of classes may be di�erent than thenumber of tra�c types, and in practice it is likely that the tra�c types will be more than theo�ered classes.When the link is under-provisioned, one or more tra�c types cannot meet their delay re-quirements even in the highest class of service. In Figure 9-b, Voice does not get an acceptabledelay even in Class-3. A link can be under-provisioned either because it does not have an ade-quate amount of forwarding resources (capacity), or because the di�erentiation between classes(i.e., the delay spacing in this case) is not appropriately con�gured.When the link is over-provisioned, an acceptable class exists for each tra�c type, but thelink may operate with more than the minimum required capacity. In Figure 9-c, Bulk meetsits requirement in Class-1, WWW in Class-2, and Voice in Class-3. Notice, however, that eachclass o�ers a much lower delay that what the corresponding tra�c type needs.Finally, when the link is well-provisioned, an acceptable class exists for each tra�c type,and additionally, the link operates with the minimum required capacity. In Figure 9-d, the linkis well-provisioned when Bulk uses Class-1, WWW uses Class-2, and Voice uses Class-3. Sucha nominal class allocation can be enforced by a network provider using an ingress classi�er thatoperates based on the packet port numbers. Notice that each class provides (almost) the delayrequirement of the corresponding tra�c type. Also, none of the tra�c types would be able tomeet their delay requirement in a lower class.5.1 ModelSuppose that we provision a network link L that o�ers N service classes and carries M tra�ctypes. A tra�c type j is characterized by an average queueing delay requirement �j, and anaverage input rate �j. Without loss of generality, the tra�c types are ordered based on theirdelay requirements, so that �1 > �2 > : : : > �M > 0. For simplicity, we assume that all tra�ctypes have the same packet size L, normalized as L = 1. The set f(�j ; �j); j = 1 : : : Mg is theinput of the class provisioning methodology.We assume that the network manager provisions L for lossless operation. This is a reasonableassumption, as most backbone providers today provision their links for lossless operation. Thelink capacity, which is an outcome of the class provisioning methodology, is denoted by C.The o�ered rate in class i is �i, while the aggregate o�ered rate is � = PNi �i = PMj �j. Theutilization is denoted by u = �=C. Note that � depends on the tra�c type rates, and is constantfor a given workload pro�le. The capacity, and thus the utilization, are variables, however, thatare to be computed by the provisioning methodology.The delay di�erentiation between classes in L follows the Proportional Delay Di�erentiation(PDD) model [12], as in x3. For completeness, we remind the reader that according to the PDD18

model, if �di is the average queueing delay in class i, the ratios between class delays are �xed to:�di�dj = �i�j 1 � i; j � N (8)where �i are the Delay Di�erentiation Parameters (DDPs) (�1 = 1 > �2 > : : : > �N > 0).Notice that the PDD model consists of N � 1 ratios of N class delays.The packet scheduler in L is a work-conserving, non-preemptive, Proportional Delay Di�er-entiation scheduler that can meet the PDD model, when the speci�ed DDPs are feasible. Suchschedulers have been the subject of recent research [12, 20, 19, 21, 22, 23].The proposed class provisioning methodology consists of two parts. First, we determine thetarget average delay v̂i and the corresponding target o�ered rate ĥi for each class i = 1 : : : N .The objective in the selection of the N pairs f(v̂i; ĥi); i = 1 : : : Ng is that L meets the averagedelay requirement f�j ; j = 1; : : : ;Mg of the M tra�c types, with the minimum link capacity.Second, we compute this minimum link capacity Ĉ, and the required DDPs f�̂i; i = 2 : : : Ng.5.2 Class Operating Point (COP) selectionWe de�ne a Class Operating Point (COP) as a vector v = fv1; : : : ; vNg, such that v1 � v2 �: : : � vN > 0, where vi is the desired (target) average delay in class i. A COP v is acceptablewhen for each tra�c type j there exists at least one class i such that vi � �j. Let V be the setof acceptable COPs. If v 2 V , then for each tra�c type j there exists a class n(j) 2 f1 : : : Ngsuch that vn(j) � �j < vn(j)�1 (v0 =1).Given an acceptable COP v, each tra�c type j is assigned to class n(j), since that is theminimum class that satis�es the delay requirement of j. We say that tra�c type j is mapped toclass n(j), or that n(j) is the nominal class for tra�c type j. Note that when M > N (whichis probably the more practical case), there will be more than one tra�c types mapped to someclasses. Some classes, that are referred to as void, may not be nominal for any tra�c type. Todenote the inverse mapping, from classes to tra�c types, t(i) is the maximum tra�c type thatmaps to class i; if class i is void, then t(i)=0.The expected rate hi in class i is the aggregate rate of all tra�c types that map to classi. Since an acceptable COP v determines the nominal class for each tra�c type, the expectedrates are a function of v,h(v) = fh1(v); h2(v); : : : ; hN (v)g with hi(v) = Xj:n(j)=i �j � 0 (9)When the particular v that we consider is obvious, we write h or hi, instead of h(v) or hi(v),respectively. The total expected rate in the link ish = NXi=1 hi = MXj=1 �j (10)that is independent of v.We say that an acceptable COP is realized if the average delay in each class i becomes�di=vi, when the class rates are �k=hk for k = 1 : : : N . The link capacity that is required for19

realizing v is called the capacity requirement of v and is denoted by C(v). When v is realized,the aggregate backlog in L becomes�qag(v) = NXi=1 �di�i = NXi=1 vihi (11)Note that the average backlog �qag depends on the link utilization and the statistical character-istics of the tra�c, and not on the scheduler or the class load distribution [16].If we want to compute the capacity requirement C(v) of a COP v, we need to know howthe average backlog �qag varies with the link utilization u. We refer to this relation as theaverage backlog function �qag = �(u). �(u) is assumed to be strictly increasing and convexwhen u 2 (0; 1), and it is unbounded as u ! 1. �(u) is thus invertible, meaning that the linkutilization u can be computed from the average backlog through the inverse backlog function��1(�qag). The problem of estimating the average backlog function is discussed in x5.4. Giventhe inverse backlog function, we can determine the capacity requirement of v fromC(v) = hu(v) = h��1(�qag(v)) (12)where u(v) is the link utilization that creates an average backlog �qag(v).An important part of the class provisioning methodology is to select the optimal COP v̂among all acceptable COPs. The optimality constraint in the selection of v̂ is that it has to bethe acceptable COP with the minimum capacity requirement,v̂ = argminv2V C(v) (13)Since the average backlog function �qag = �(u) = �(�=C) is strictly increasing though, the COPwith the minimum capacity requirement is the COP with the maximum average backlog. So, theoptimal COP is the acceptable COP with the maximum average aggregate backlog,v̂ = argmaxv2V �qag(v) (14)To determine v̂ in practice, we only need to consider a �nite set of acceptable COPs. Tosee why, consider the example of Figure 10. The example refers to a link with N=2 classes andM=4 tra�c types, and it shows two acceptable COPs. In the COP of Figure 10-a, the �rsttra�c type and a large part of the second tra�c type are mapped to Class-1; the rest of thetra�c is mapped to Class-2. Notice that the four tra�c types meet their delay requirementswith this class mapping, but there is some `waste' of resources since the two classes providelower delays than what the tra�c types need.In the COP of Figure 10-b, on the other hand, the average delay in each class is equal tothe delay requirement of one of the tra�c types. Speci�cally, the �rst two tra�c types map toClass-1, which o�ers the delay requirement �2 of the second tra�c type, while the two highertra�c types map to Class-4, which o�ers the delay requirement �4 of the fourth tra�c type.Note that the shaded area in each COP represents the average backlog �qag(v) =PNi=1 vihi. Theoptimal COP has to maximize the average backlog, and thus, to maximize the shaded area inFigure 10. In the previous example, the COP of Figure 10-b can be shown to be optimal.20

ζ1

ζ2

ζ3

h2h1

ζ4

4
χ

χ1

χ
2

χ3

v

v1

Average
Rate

A
ve

ra
ge

 D
el

ay

2 (a) An acceptable COP
ζ1

ζ2

ζ3

h2h1

ζ4

4
χ

χ1

χ
2

χ3

v2

v1

Average
Rate

A
ve

ra
ge

 D
el

ay

(b) The optimal COPFigure 10: An acceptable COP and the optimal COP for a link with N=2 classes and M=4tra�c types.Based on the graphical insight from the previous example, we can see that the optimal COPv̂ satis�es the following properties. First, each optimal class delay v̂i should be equal to the delayrequirement of a tra�c type, i.e., for each i = 1 : : : N there is a j 2 f1 : : : Mg such that v̂i = �j .Second, the optimal COP should not have void classes, because void classes always lead to anaverage backlog that is less than maximum. So, if v̂i = �j , then there should be no other classk with v̂k = �j. Third, following from the previous two properties, the target delay for thehighest class should be the most stringent tra�c type delay requirement, i.e., v̂N = �M .Putting the previous three properties together, we see that the �nite set of acceptable COPsthat should be examined in order to determine the optimal COP v̂ isfv 2 V : v1 > v2 > : : : vN ; 8i = 1 : : : N;9j 2 f1 : : : Mg such that vi = �j (vN = �M)g (15)Note that the strict inequalities between the vi's prevent the existence of void classes.A recursive algorithm for selecting the optimal COP is shown in Figure 11. The run-timecomplexity of the algorithm is O�(M �N)N�1�. For instance, in the case of N=3 classes andM � 3 tra�c types, the algorithm examines (M � N + 1)(M � N + 2)=2 COPs. Since theprovisioning methodology is performed o�-line, and the number of classes and tra�c types isexpected to be relatively small (e.g., N=8, M=16), the run-time complexity of the algorithmis not prohibitive.Example of optimal COP selection:Suppose that a certain link supports N=2 classes and M=3 tra�c types. We need to considertwo COPs, depending on whether the maximum tra�c type that maps to Class-1 is tra�c type1 or 2. Speci�cally, the two COPs are:v1 = (�1; �3) with h1 = (�1; �2 + �3) and v2 = (�2; �3) with h2 = (�1 + �2; �3)The average backlog in the two COPs is:�qag(v1) = �1�1 + �3(�2 + �3) and �qag(v2) = �2(�1 + �2) + �3�321

optimal cop (t1; t2; : : : ; tN�1; i;max q; best cop)f// ti: maximum tra�c type (2 f1 : : : Mg) that maps to class i.// max q and best cop are call-by-reference arguments.// Initially, call optimal cop (0; 0; : : : ; 0; 1; 0; ;).// The optimal COP v̂ is returned in the best cop argument.// avg backlog() computes the backlog of a COP as in (11).// Note: tN=M and t0 = 0.if (i � N � 1) ffor ti = (ti�1 + 1) to (M �N + i)optimal cop (t1; t2; : : : ; tN�1; i+ 1;max q; best cop);gelse fq = avg backlog (�t1 ; �t2 ; : : : ; �tN�1 ; �tN);if (q > max q) fmax q = q;best cop = (�t1 ; �t2 ; : : : ; �tN�1 ; �tN);ggg Figure 11: Algorithm to determine the optimal COP v̂.Which COP has the maximum average backlog depends on the relation between the tra�c typerates and average delay requirements. If �1(�1��2) > �2(�2��3), then �qag(v1) � �qag(v2) andthe optimal COP is v1; otherwise, the optimal COP is v2.5.3 Minimum link capacity and Delay Di�erentiation ParametersIn the �rst part of the class provisioning methodology, the goal was to determine the mappingfrom tra�c types to classes that leads to the minimum capacity requirement. Given this optimalCOP v̂ and the corresponding expected rate vector h(v̂), the second part of the provisioningmethodology determines the minimum capacity requirement and the required DDPs.The minimum capacity requirement Ĉ can be computed using the inverse backlog function,as Ĉ = C(v̂) = h��1 (�qag(v̂)) = h��1 �PNi=1 v̂iĥi� (16)where h is the total expected rate given by (10). The required DDPs, on the other hand, are22

simply the ratios of the corresponding optimal average class delays, i.e.,�̂i�̂1 = v̂iv̂1 i = 2 : : : N (17)with �̂1=1.Notice that these particular DDPs provide the N � 1 delay ratios of the N class delays inthe optimal COP. Without the appropriate link capacity, however, the absolute class delays willnot be as in the optimal COP. Speci�cally, if the capacity is C > Ĉ, it is easy to see that allclass delays will be lower, i.e., �di < v̂i for all i. This would be an instance of over-provisioning.On the other hand, if the capacity is C < Ĉ, all class delays will be larger, i.e., �di > v̂i for all i.That would be an instance of under-provisioning. In practice, there is also a well-provisionedoperating region in which the capacity is C 2 (Ĉ�; Ĉ+), where Ĉ+ = Ĉ and Ĉ� = fĈ, with fbeing a tolerance factor (f < 1). Such a tolerance factor is necessary because of uncertaintiesin the workload pro�le and in the estimation of the average backlog function.Also note that, throughout the provisioning methodology, we did not have to compute ex-plicit capacity shares for each class. That would be the case if we had used a link sharingscheduler, such as WFQ [24], Class Based Queueing (CBQ) [25], or Hierarchical Packet FairQueueing (H-PFQ) [26]. Unfortunately, there is no straightforward approach to compute theN � 1 weights of such schedulers in order to meet a certain average delay in each class. Addi-tionally, a `trial-and-error' approach would require searching in an (N � 1)-dimensional space,making the approach impractical even for a small number of classes.With PDD scheduling, on the other hand, we avoid the explicit computation of a capacityallocation between classes. A PDD scheduler services backlogged packets in an appropriateorder for the given delay ratios to be met. Having �xed the N � 1 delay ratios, the absolutedelay in each of the N classes depends only on the link capacity. If the average backlog functionis known, the calculation of Ĉ is straightforward. If the average backlog function is unknown,we can adjust the link capacity until the class delays become as in the optimal COP. Such atrial-and-error approach is simpler, because there is only one `knob' to vary, and the relationbetween the link capacity and the average class delays is monotonic.Example of DDP and capacity calculations:Suppose that a certain link o�ers N=4 classes, and that we need to meet the following COP:v = (40; 20; 10; 5)msec and h = (0:5; 0:5; 2:0; 1:0)kppswhere kpps stands for `kilo-packets-per-second'. If the average packet size is 1000 bytes, thetotal expected rate is h = Pi hi=4kpps, or about 32Mbps. The problem is to determine theDDPs and the minimum link capacity required to realize this COP.From (17), the required DDPs are�2 = 2040 = 0:5 �3 = 1040 = 0:25 �4 = 540 = 0:125With this optimal COP, the average backlog is�qag =Xi vihi = 40� 0:5 + 20� 0:5 + 10� 2:0 + 5� 1:0 = 55 packets23

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Utilization

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

A
ve

ra
ge

 b
ac

kl
og

 (
M

bi
ts

)

Backlog function

(a) qag = �(u) 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Average backlog (Mbits)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

U
til

iz
at

io
n

Inverse backlog function

(b) u = ��1(qag)Figure 12: The backlog and the inverse backlog functions for Pareto tra�c with �=1.5.We can now use the inverse backlog function u = ��1(�qag) to compute the required utilizationu. In this example, suppose that the average backlog function (and its inverse) are as in Figure12 (these curves are generated from simulating Pareto interarrivals with �=1.5). For �qag=55packets we �nd that the utilization is u = ��1(55) �92.0%, and so the capacity requirement isC=h=u=4444pps, or about 35.6Mbps.Simulating the link with the previous DDPs, with u=92.0%, and with a WTP sched-uler [12], we get that the class average delays are (�d1; �d2; �d3; �d4) = (35:1; 17:5; 8:8; 4:4)msec,that are slighly less than the given maximum average delays speci�ed in the given COP.Because the backlog curve is quite steep in the heavy load range, however, slight variationsin the utilization or in the expected class rates can violate the average delay requirements.For example, if the utilization is increased to u=94.0%, the average class delays become(�d1; �d2; �d3; �d4) = (68:2; 34:1; 17:1; 8:6)msec, that violate the average delay requirements. Thelarge sensitivity of the capacity requirement in the heavy load range implies that the networkoperator should use some tolerance in the computation of C. Even if the network providerprovisions the link with a higher capacity than Ĉ, it is still useful to know Ĉ as a lower boundon the required link capacity.The class provisioning methodology can be performed over relatively long timescales (sayweeks or months), depending on how simple it is to adjust the link capacity. It is noted thoughthat it gradually becomes simpler to adjust the capacity of a link even in a few minutes orseconds, through the use of Wavelength-Division-Multiplexing (WDM). Using such technologies,an ISP can lease the capacity of an additional `wavelength' from the backbone provider thatowns the network �bers, when a larger tra�c demand is anticipated or encountered. Also, if thecharacterization of tra�c types on a certain link follows di�erent patterns through the day (e.g.,many IP-telephony sessions through the day and mostly WWW sessions in the evening), thenetwork operator can perform class provisioning for the di�erent tra�c patterns, and operatethe link with a schedule of di�erent capacities and DDPs during the day.24

5.4 The average Backlog FunctionThe calculation of the capacity requirement of a COP v can be performed if we know theaverage backlog �qag as a function of the link utilization u. For simple queueing models, thefunction �(u) is analytically known. For instance, in the M jM j1 system �(u) = u21�u packets,while in the M jGj1 system �(u) = u21�u 1+c2L2 , where cL is the coe�cient of variation of thepacket size distribution [16]. In the very general GjGj1 system, the average backlog can beapproximated by the Allen-Cunneen formula �(u) � u21�u c2A+c2L2 [27], where cA is the coe�cientof variation of the distribution of interarrivals.A practical alternative, instead of relying on queueing models, is to measure the function�(u) directly on the router, by monitoring the actual backlog in the link. The network operator,in that case, would need to record the average backlog in di�erent link utilizations. If theunderlying tra�c dynamics are stationary, it would be possible to extract an empirical curvefor the average backlog function.It is noted that the backlog function may not only depend on the utilization u, but alsoon the capacity C. This can occur if the statistical properties of the tra�c (tra�c burstiness)depend on C. For instance, with the same utilization, an OC-3 link (155Mbps) may have alarger backlog than a T-1 link (1.5Mbps), because higher capacity links attract more burstytra�c in general. In a relatively narrow range of C though, it is reasonable to assume that thetra�c burstiness remains invariant, and that the backlog function depends on u, but not on C.6 Related workA brief investigation of DCS in the context of proportional delay di�erentiation appeared in [28].That work considered a class selection algorithm that routers can perform in order to providea maximum delay to each
ow. With a continuous-time model, and assuming a continuousrange of class choices, [28] showed that when the set of user requirements is feasible, each
owconverges to a class that provides the requested delay.Orda and Shimkin considered multi-class networks with users that dynamically choose aclass based on performance and pricing constraints [29]. The users select, in a distributed andsel�sh manner, the class that provides them with the maximum di�erence between utility andcost. The problem then is to compute the optimal class prices that will cause users to select thenominal service class that the network has provisioned for them. Even though there are somesimilarities between such an `incentive pricing' framework and DCS, the problem formulation,the proposed mechanisms, and the �nal results are quire di�erent. It is also likely that inpractice the class prices would depend on marketing and competition, rather than on networkprovisioning mechanisms.Chen and Park considered individual
ows with absolute performance requirements in astateless network [30]. The class selection is formulated as an optimization problem in whichthe overall resource usage cost is to be minimized, subject to the constraint that the performancerequirement of each
ow has to be met. Interestingly, there is a distributed algorithm that solvesthis problem. 25

Ren and Park considered the Di�Serv model of per-hop priority mechanisms and tra�caggregation from individual
ows to service classes in [17]. They derived an optimal classi�er(minimizing the resource usage in a mean-square sense) for mapping a
ow to a class, subject toeach
ow's performance requirements. The model and results of [17] are based on game theory.Even though the DCS problem can be formulated as a non-cooperative game, with users thatact independently and sel�shly to meet their requirements given a �nite resource, we chose inthis work to take a di�erent approach that uses basic queueing concepts. The underlying ideas,though, are common in both approaches. For instance, the DCS equilibria are called Nashequilibria in game theoretic terms, while the minimum acceptable CSV ĉ can be shown to bePareto and system optimal for the user population.[17] assumed that the underlying per-hop mechanism is GPS scheduling with periodic GPSweight adjustments. Such adjustments create a feedback loop that modi�es the GPS weightsbased on the measured class loads. Changing the GPS weights, however, a�ects the per-classdelays and losses, and in the DCS context, this leads to new class transitions and modi�ed classloads. So, there is another feedback loop in the system that modi�es the class loads based onthe GPS weights. The previous two feedback loops can interact, causing races or instabilities,if they operate in about the same timescales. For this reason, we argue that the proportionaldi�erentiation model is a more appropriate per-hop behavior for DCS, as compared to GPS-like schedulers (or other static resource partitioning schemes) that perform periodic weightadjustments.Our class provisioning model follows the framework of [29]. In that framework, a numberof tra�c types with diverse QoS requirements are mapped to a normally smaller number ofclasses, while the network provider provisions a nominal service class for each tra�c type. Asmentioned earlier though, [29] uses this framework in the problem of computing of optimalclass prices, while we focus on computing the optimal class di�erentiation parameters and theminimum link capacity.[31] considers the problem of sharing the bandwidth and bu�ers of a link between a numberof classes of service. The objective is to �nd the optimal resource partitioning between classesso that the utility of each class is maximized, given the `wealth' of that class, and the averageo�ered rate in that class. One of the utility functions considered is an upper bound on the lossrate in each class. A di�erence between that work and our class provisioning methodology isthat [31] is based on static resource partitioning mechanisms (Weighted-Round-Robin schedul-ing and Complete-Bu�er-Partitioning dropping), while we focus on proportional di�erentiationmechanisms.[32] studied the provisioning problem in the context of providing a certain loss rate to eachclass. [32] showed that the PLR(1) dropper, jointly with a FCFS scheduler, is optimal becauseit requires the minimum capacity for the given loss rates, compared to any other work-conservingdropping scheme. It is interesting to examine if a proportional delay scheduler has the sameproperty, i.e., whether it can provide a certain average delay in each class with the minimumcapacity among all work-conserving schedulers.
26

7 ConclusionsThe strongest point about relative di�erentiation is its simplicity. Its major drawback, on theother hand, is that it does not provide users with absolute QoS. This work has �rst demonstratedthat if the end-points dynamically search for an acceptable class as in DCS, then the per-hoprelative di�erentiation that the network o�ers can lead to absolute and end-to-end QoS undercertain conditions. The proportional di�erentiation model provides an appropriate per-hopbehavior for DCS for two reasons. First, it maintains a predictable class ordering even whenthe class load distribution is constantly changing due to DCS tra�c. Second, it allows thenetwork provider to adjust the class spacing based on the corresponding spacing in the QoSrequirements of the DCS workload. For a single link model, we gave an algorithm that computesthe minimum acceptable class selection for each user, when it is feasible to satisfy all users (well-provisioned case). Users converge to this minimum acceptable class when the distributed DCSequilibrium is unique. Other DCS equilibria can also exist, however, that are suboptimal foreither only the users, or for both the users and the network provider. In the under-provisionedcase, some users (with the most stringent requirements) converge to the highest class and remainunsatis�ed there. The simulation study of an end-to-end DCS algorithm provided further insightinto the dynamic behavior of DCS.A central issue in DCS is whether the network is well-provisioning for a certain user pop-ulation and tra�c mix. In the second part of this paper, we proposed a class provisioningmethodology that determines the minimum link capacity needed to support the given tra�ctypes and volume, the nominal class of service for each tra�c type, and the appropriate re-source allocation between classes. The class provisioning methodology is e�ective as long as theworkload pro�le is valid. If the tra�c types have larger arrival rates, or if the average backlogfunction is not accurately estimated, some tra�c types may not be adequately supported. Sim-ilar problems can arise due to dynamic routing changes, link or router failures, or unexpectedincreases in the tra�c demand. In those cases, the link may not operate in its well-provisionedoperating point. The PDD di�erentiation, however, will still provide a controllable and pre-dictable relative di�erentiation between classes, even though the absolute QoS of each class willnot be known.References[1] S. Blake, D.Black, M.Carlson, E.Davies, Z.Wang, and W.Weiss, An Architecture for Dif-ferentiated Services, Dec. 1998. IETF RFC 2475.[2] V. Jacobson, K. Nichols, and K.Poduri, An Expedited Forwarding PHB, June 1999. RFC2598.[3] A. Charny and J. L. Boudec, \Delay Bounds in a Network with Aggregate Scheduling," inProceedings QOFIS, Oct. 2000.[4] R. Guerin and V.Pla, \Aggregation and Conformance in Di�erentiated Service Networks:A Case Study," in Proceedings ITC Specialist Seminar on IP Tra�c Modeling, Measure-ment, and Management, Sept. 2000. 27

[5] D. D. Clark and W. Fang, \Explicit Allocation of Best E�ort Packet Delivery Service,"IEEE/ACM Transactions on Networking, vol. 6, pp. 362{373, Aug. 1998.[6] I. Stoika and H.Zhang, \LIRA: An Approach for Service Di�erentiation in the Internet,"in Proceedings NOSSDAV, 1998.[7] S. Sahu, P.Nain, D.Towsley, C.Diot, and V.Firoiu, \On Achievable Service Di�erentiationwith Token Bucket Marking for TCP," in Proceedings of ACM SIGMETRICS, June 2000.[8] I. Stoika and H.Zhang, \Providing Guaranteed Services Without Per Flow Management,"in Proceedings of ACM SIGCOMM, Sept. 1999.[9] C. Cetinkaya and E.W.Knightly, \Egress Admission Control," in Proceedings of IEEEINFOCOM, Mar. 2000.[10] J. L. Boudec, M. Hamdi, L. Blazevic, and P.Thiran, \Asymmetric Best E�ort Service forPacket Networks," in Proceedings Global Internet Symposium, Dec. 1999.[11] C. Dovrolis and P.Ramanathan, \A Case for Relative Di�erentiated Services and the Pro-portional Di�erentiation Model," IEEE Network, Oct. 1999.[12] C. Dovrolis, D.Stiliadis, and P.Ramanathan, \Proportional Di�erentiated Services: DelayDi�erentiation and Packet Scheduling," in Proceedings of ACM SIGCOMM, Sept. 1999.[13] H. Schulzrinne, S.Casner, R.Frederick, and V.Jacobson, RTP: A Transport Protocol forReal-Time Applications, Jan. 1996. RFC 1889.[14] C. Dovrolis and P.Ramanathan, \Proportional Di�erentiated Services, Part II: Loss RateDi�erentiation and Packet Dropping," in IEEE/IFIP International Workshop on Qualityof Service (IWQoS), June 2000.[15] C. Dovrolis and P.Ramanathan, \Class Provisioning in Proportional Di�erentiated ServicesNetworks," in Scalability and Tra�c Control in IP Networks (SPIE ITCOM304), Aug.2001.[16] G. Bolch, S.Greiner, H.Meer, and K.S.Trivedi, Queueing Networks and Markov Chains.John Wiley and Sons, 1999.[17] H. Ren and K. Park, \Toward a Theory of Di�erentiated Services," in Proceedings IWQoS,June 2000.[18] C. Dovrolis, Proportional Di�erentiated Services for the Internet. PhD thesis, Universityof Wisconsin-Madison, Dec. 2000.[19] M. K. H. Leung, J. Lui, and D. Yau, \Characterization and Performance Evaluation forProportional Delay Di�erentiated Services," in Proceedings International Conference onNetwork Protocols (ICNP), Oct. 2000.[20] C. C. Li, S.-L. Tsao, M. C. Chen, Y. Sun, and Y.-M. Huang, \Proportional Delay Di�er-entiation Service Based on Weighted Fair Queueing," in Proceedings IEEE InternationalConference on Computer Communications and Networks (ICCCN), Oct. 2000.28

[21] Y. Moret and S.Fdida, \A Proportional Queue Control Mechanism to Provide Di�er-entiated Services," in International Symposium on Computer and Information Systems(ISCIS), Oct. 1998.[22] J. Liebeherr and N.Christin, \JoBS: Joint Bu�er Management and Scheduling for Di�er-entiated Services," in Proceedings IWQoS, June 2001.[23] C. Dovrolis, D. Stiliadis, and P. Ramanathan, \Proportional Di�erentiated Services: DelayDi�erentiation and Packet Scheduling," tech. rep., University of Delaware, Apr. 2001.Conditionally accepted for publication to the IEEE/ACM Transactions on Networking.[24] A. Demers, S.Keshav, and S.Shenker, \Analysis and Simulation of a Fair Queueing Algo-rithm," in Internetworking: Research and Experience, pp. 3{26, 1990.[25] S. Floyd and V. Jacobson, \Link-Sharing and Resource Management Models for PacketNetworks," IEEE/ACM Transactions on Networking, vol. 3, pp. 365{386, Aug. 1995.[26] J. Bennett and H.Zhang, \Hierarchical Packet Fair Queueing Algorithms," IEEE/ACMTransactions on Networking, vol. 5, pp. 675{689, Oct. 1997.[27] O. Allen, Probability, Statistics, and Queueing Theory with Computer Science Applications.Academic Press, 2nd edition, 1990.[28] T. Nandagopal, N.Venkitaraman, R.Sivakumar, and V.Bharghavan, \Delay Di�erentiationand Adaptation in Core Stateless Networks," in Proceedings of IEEE INFOCOM, Mar.2000.[29] A. Orda and N. Shimkin, \Incentive Pricing in Multi-Class Communication Networks," inProceedings of IEEE INFOCOM, 1997.[30] S. Chen and K. Park, \An Architecture for Noncooperative QoS Provision in Many-SwitchSystems," in Proceedings of IEEE INFOCOM, 1999.[31] J. Sairamesh, D. F. Ferguson, and Y. Yemini, \An Approach to Pricing, Optimal Allocationand Quality of Service Provisioning in High-Speed Packet Networks," in Proceedings ofIEEE INFOCOM, pp. 1111{1119, 1995.[32] T. Yang and J.Pan, \A Measurement-Based Loss Scheduling Scheme," in Proceedings ofIEEE INFOCOM, 1996.AppendixProof of Proposition 1:Since cj � c0j for all j (and c 6= c0), there exists a class k 2 f1; : : : N � 1g such that Pki=1 �i <Pki=1 �0i = Pki=1 �i + � with � > 0, and PNi=k+1 �i > PNi=k+1 �0i = PNi=k+1 �i � �. Since�1 = 1 > �2 > : : : > �N > 0, we have that PNi=1 �i�0i >PNi=1 �i�i + �(�k � �k+1) >PNi=1 �i�i. Itfollows that the average delay in each class with the CSV c0 is lower5 than with c, because�di(c0) = �i �qagPNn=1 �n�0n � �i �qagPNn=1 �n�n = �di(c) (18)5Lower or equal, because it may be that �qag=0. 29

Proof of Proposition 2:The proof of this result follows directly from the following property of the proportional delaydi�erentiation model. Suppose that the class load distribution changes from f�ng to f�0ng, with�0i = �i � �, �0j = �j + �, and �0k = �k for all k 6= i; j (0 < � � �i). Let �d0k be the average delayin class k when the class load distribution is f�0ng. If i > j then �d0j � �di. Similarly, if i < jthen �d0j � �di. In the following, we show this property.Say that S =PNn=1 �n�n and S0 =PNn=1 �n�0n. Then, S0 = S + �(�j � �i). In the case i > j,we have that �j > �i. It is then easy to see that �jS � �iS0, because S � ��i. Consequently,�d0j = �j �qag=S0 � �i�qag=S = �di. Similarly, when i < j, it follows that �d0j � �di. Note thatboth load distributions cause the same average aggregate backlog �qag. The equality holds if� = �i = �.Proof of Proposition 3:Suppose that c is such that ci > cj for two users i and j with i < j (and thus �j � �i). Let usconstruct the CSV c0 = cicji , which results if user i moves to the same class cj as user j. Sincec � c0, from Proposition 1 we have that �dc0i(c0) = �dcj (c0) � �dcj (c) � �j � �i, which means thatuser i is satis�ed with c0. The rest of the users are also satis�ed with c0 because the averagedelay in each class is lower with c0 than with c. So, c0 is also acceptable.Applying the above procedure iteratively, we can construct an acceptable CSV c0 that isordered. The order of applying the above iteration does not a�ect the resulting CSV. From theway c0 is constructed, we have that c0j = mink=j;:::;Ufckg; j = 1; : : : ; U .Proof of Proposition 4:From the de�nition of cm, we have that c1 � c2. If these two CSVs are equal, the proofis complete. Otherwise, from Proposition 1, we have that �di(cm) � �di(c1) for each class i.Similarly, �di(cm) � �di(c2). For each user j 2 U , however, �dc1j (c1) � �j and �dc2j (c2) � �j . So,�dcmj (cm) � �j. Since this is true for all users, cm is an acceptable CSV.Proof of Proposition 5:Based on the DCS algorithm, all unsatis�ed users move to the N 'th class, while the rest of theusers are satis�ed in a class, which may also be class N . Let ~c be the corresponding distributedequilibrium CSV. We prove that any satis�ed user must have a larger average delay requirementthan any unsatis�ed user.For any unsatis�ed user, say j, we have that ~cj = N and that �d~cj (~c) > �j. If there are nosatis�ed users, there is nothing to prove. Let i be a satis�ed user in a class ~ci � N . Supposethat user i has a lower or equal average delay requirement than user j, i.e., �i � �j. Useri is satis�ed, and so �d~ci(~c) � �i � �j . So, �d~ci(~c) < �d~cj (~c). Since ~ci � ~cj , however, thePDD model requires that �d~ci(~c) � �d~cj (~c) which leads to a contradiction. So, it must be that�i > �j for any satis�ed user i and unsatis�ed user j. Since the satis�ed users have larger delayrequirements than the unsatis�ed users, the resulting DCS equilibrium must be of the form~c = (c1; : : : ; cS ; N; : : : ; N) where S is the number of satis�ed users (0 � S < U).
30

