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ABSTRACT

3D-integration is a promising technology to help combat the “Mem-
ory Wall” in future multi-core processors. Past work has considered
using 3D-stacked DRAM as a large last-level cache (LLC). While
significant performance benefits can be gained with such an ap-
proach, there remain additional opportunities beyond the simple in-
tegration of commodity DRAM chips. In this work, we leverage the
hardware organization typical of DRAM architectures to propose
new cache management policies that would otherwise not be prac-
tical for standard SRAM-based caches. We propose a cache where
each set is organized as multiple logical FIFO or queue structures
that simultaneously provide performance isolation between threads
as well as reduce the number of entries occupied by dead lines. Our
results show that beyond the simplistic approach of stacking DRAM
as cache, such tightly-integrated 3D architectures enable new op-
portunities for optimizing and improving system performance.

Categories and Subject Descriptors

B.3.1 [Memory Structures]: Semiconductor Memories

General Terms

Design, Performance

1. INTRODUCTION
Three-dimensional die-stacking is a promising technology for in-
creasing the integration capacity of future microprocessors and com-
puter systems. Many researchers have proposed a variety of 3D ar-
chitectures that stack multiple cores [16, 18, 30, 43], or even split
the pipeline over multiple layers [7, 31, 36, 42]. Before industry de-
cides to implement such aggressively partitioned 3D architectures,
however, the first step will likely be the stacking of additional mem-
ory on top of a commodity processor to increase its last-level cache
(LLC) capacity [3].

Additional LLC capacity can store larger working sets that can
greatly improve performance by increasing cache hit rates and re-
ducing contention for the off-chip bus and memory controller queue
entries. The reduction in off-chip traffic also translates into power
savings by reducing activity in the main memory DRAM chips as
well as related I/O drivers. In this paper, we observe that using
3D integration to augment cache capacity does of course increase
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performance for memory-intensive workloads. Stopping at this ob-
vious design point, however, leaves significant performance oppor-
tunities uncovered. In particular, we study the use of 3D-stacked
DRAM to implement a large last-level cache (LLC), and we show
how to exploit the physical organization of DRAMs to further en-
hance the performance of multi-core systems.

We propose a novel cache replacement policy that has the prop-
erties of providing performance isolation between cores and re-
duces the lifetimes of dead cache lines, while maintaining a low-
complexity implementation that is compatible with the clock-based
pseudo-LRU approximation algorithm used in real processors [40].
We organize each cache set into multiple queues or FIFO struc-
tures (one per core) that act as “filters” for different types of cache
access patterns with limited reuse. We then use a generalization
of the Set-Dueling approach to dynamically adapt the sizes of the
queues (or whether to use them at all) as well as how lines may
be advanced between different queues [14, 34]. The physical im-
plementation of this cache organization relies on the DRAM’s row-
buffer architecture which makes our approach unique to 3D-stacked
DRAM caches. The resulting cache management scheme is simple,
yet flexible, and it provides 29.1% additional performance on top
of the benefits of simplistic 3D-stacking of DRAM as a large but
conventional LLC.

2. 3D-STACKED CACHES

2.1 3D Integration and Cache Organizations
Three-dimensional integration technology has received an increas-
ing amount of attention in the computer architecture community in
recent years. 3D technology vertically stacks multiple layers of sil-
icon connected by high-density, low latency vias to provide high
interconnect bandwidth between the layers. Initial 3D micropro-
cessor products will likely only employ simple 3D structures, with
3D-stacked caches being one of the most obvious choices. In this
section, we review the most related work on using 3D caches to
increase a system’s last-level cache (LLC) capacity. A more com-
prehensive overview of 3D integration technology is not included
in this paper as it has already been well described in many earlier
3D computer architecture papers [3, 24].

Black et al. examined several different 3D cache organizations to
increase LLC capacity [3]. Figure 1 shows their 3D configurations,
along with a baseline 2D organization (a). The first 3D structure (b)
dedicates the entire second layer to an SRAM cache; assuming that
the LLC occupies 50% of the area in the baseline 2D version, this
3D-stacked SRAM configuration provides 3× the capacity. The
second 3D structure (c) uses DRAM on the second layer; Black et
al. cite an 8× advantage in DRAM density over SRAM, and so this
configuration provides 16× the capacity (since the DRAM layer is
twice as large as the footprint of the original 2D cache). At a first-
level of approximation, chip cost is directly proportional to total
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Figure 1: Different 3D-stacked cache configurations. (a) Baseline quad-core processor with 4MB SRAM LLC, (b) with +8MB additional SRAM

cache for 12MB total at twice the silicon area, (c) with +64MB DRAM cache at twice the silicon area, (d) with +32MB DRAM cache with similar area

as the baseline.

silicon area, and so a major problem with the approaches shown
in Figure 1(b) and (c) is that they both approximately double the
area, and hence the cost, of the chip. The last configuration (d)
is an approximately area-neutral configuration where the footprint
of the bottom layer is reduced by removing the SRAM cache and
replacing it with a similarly sized 3D-stacked DRAM cache that
provides 8× the capacity compared to the baseline. We believe that
comparing this 3D-cache organization to the 2D case is fairer as the
cost differential between the two should be relatively smaller.

Over time as the fabrication technology, design tools, test method-
ologies and the rest of the 3D ecosystem develop, computer archi-
tectures may move to more sophisticated 3D microarchitectures.
Before we get there, however, being able to demonstrate that even
the first generation of high-performance processors employing sim-
ple 3D-stacked memories provides a good return on investment will
be critical to start the adoption process. This will in turn motivate
the continued investment necessary to fully develop a complete 3D
manufacturing environment that must be in place for the more in-
teresting 3D computer architectures to reach eventual commercial
success.

Other Related Work

There has already been a significant amount of work on using 3D
to improve various aspects of a processor’s cache hierarchy. These
target more advanced generations of 3D integration involving finer
levels of 3D partitioning [31, 36, 42], massively parallel NUCA-
based designs for 16, 32 or more cores [16, 18, 28, 30, 43], or
the integration of many stacked layers [15, 20, 22, 25, 27]. Ghosh
and Lee examined some of the thermal challenges associated with
stacking DRAM on top of a processor (in particular, the higher tem-
perature requires a faster refresh rate), but this work was focused on
the energy/thermal issues rather than the performance potential of
3D-stacked DRAM [9]. These are all certainly interesting propos-
als, but the focus of this paper is on exploring the immediate oppor-
tunities of nearer-term (i.e., less aggressive) 3D organizations and
demonstrating that even such relatively simple 3D topologies offer
researchers new avenues of exploration.

2.2 Physical Organization of 3D DRAM Caches
A processor’s cache is most frequently implemented as an SRAM
array (or possibly multiple banks of arrays and/or sub-arrays). The
interface to the SRAM array is straightforward, consisting of an ad-
dress bus and a data bus (read/write signal not shown) as illustrated
in Figure 2(a). Accessing any set of the array incurs the same la-
tency as accessing any other set.

RAS

CAS

Address
Bus

(a) (b)

Data Bus

R
o
w

D
e

c
o

d
e

r

Column Select

Data Bus

Row Buffer

Addr Bus

Column Select

R
o
w

D
e

c
o

d
e

r

Figure 2: Simplified example organizations of (a) an SRAM array and

(b) a DRAM array.

DRAM arrays have more complicated interfaces than SRAMs.
Figure 2(b) shows the organization of one array. Reading a row
from the DRAM array destroys the contents of that row. As a re-
sult, the row must be buffered in a row buffer. Row sizes (and con-
sequently row-buffer sizes) are typically fairly large, from hundreds
of bytes to a few kilobytes. Before reading from a different row in
the array, the contents of the row buffer must be written back. Due
to this organization, “reading” from the DRAM actually requires a
sequence of multiple commands. In this case, a request to load a
particular row into the row buffer (i.e., the row access), a second
request to read particular bits/bytes from the row buffer (i.e., the
column access), and finally a command to write the row back into
the DRAM array (called precharge). A write to the DRAM follows
a similar sequence, except during the column access, the new data
are written into the row buffer rather than directly into the array as
is typically done for SRAMs. For a DRAM employing an open-
page policy, a sequence of accesses to the same row only requires
one row access in the beginning, and then can be followed by many
reads and writes that all operate directly on the row buffer, con-
cluded with a single precharge command. Some chipsets also sup-
port an auto-precharge operation that automatically performs the
row buffer writeback following a read/write command.

When using off-chip main memory, each DRAM chip typically
has a data bus with a restricted width due to pin limitations. With
3D integration, however, the die-to-die interconnects are dense (on
the order of a few microns [3]) and so the same pin-limitations of
off-chip DRAMs do not apply. Without the pin limitations, we can
implement a wide bus so that, for example, an entire cache line can
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Figure 3: Logical organization of the basic multi-queue cache manage-

ment scheme for (a) a single core and (b) multiple cores.

be transferred in a cycle. When using DRAM arrays as on-chip
caches, it makes sense to map a complete cache set into a physical
DRAM row. In this fashion, reading (or writing) a cache line only
involves accessing a single row of a single array. Multiple arrays
can be used to provide concurrent accesses similar to traditionally
banked caches.

3. MULTI-QUEUE CACHE MANAGEMENT

3.1 Basic Multi-Queue Algorithm
Our proposed cache management scheme organizes the ways of a
cache set into multiple FIFOs or queues as shown in Figure 3. Each
queue entry corresponds to a single cache line. The union of all of
the entries cover all of the lines in a single cache set. Each set in the
cache is organized in this fashion. In particular, Figure 3(a) shows
the organization for a single core. All cache lines are initially in-
serted into the first-level queue/FIFO (we use the terms queue and
FIFO interchangeably in this context). Each queue entry has an as-
sociated u-bit (u=used) that is set to zero on entry. Any subsequent
hit on this line sets the u-bit. For a queue of size Q, after Q more
insertions, the original line leaves the queue. If its u-bit is still zero,
then the cache immediately evicts the line. If the u-bit is one, then
the line inserts itself into a second-level queue/FIFO.

The shared second-level queue behaves in a similar fashion as
the first-level queue. Each entry also has a u-bit that is cleared on
insertion, marked on a hit, and then used to either evict a dequeued
line or to allow it to advance into the final region of the cache set.

The final region of the cache set uses a conventional clock-based
pseudo-LRU replacement policy [40]. On insertion, a line clears its
u-bit and the clock pointer advances to the next line. On an eviction,
the line pointed at by the clock is checked. If its u-bit is zero, then
the line is evicted; if the u-bit is one, then the cache clears the u-bit,
advances the clock pointer, and then repeats the same check on the
next victim candidate. This repeats until the cache finds an entry
with a zero u-bit.

Figure 3(b) illustrates one set of the multi-queue organization
for a multi-core scenario. Each core has its own dedicated (pri-
vate) first-level queue into which new lines are initially inserted. As
lines leave the first-level queues, they may be inserted into a shared
second-level queue. Finally, lines that leave the shared queue may
be inserted into a separate pseudo-LRU managed area.

Intuition

Our proposed scheme targets three different types of cache behav-
iors. The first is for some programs, there are a significant number
of cache lines that are inserted into the cache, and then never ref-
erenced again [14, 34]. This may occur when the DL1 provides
all of the hits and effectively “filters” out the cache traffic from the
LLC. The left portion of Figure 4(a) shows an example where such
a line (�) is inserted into a cache. Assuming conventional LRU
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Figure 4: Examples illustrating (a) the insertion and subsequent evic-

tion of a line with no reuse, and (b) a line with an initial burst of usage.

A ⋆ indicates an access resulting in a cache hit.

replacement and a w-way cache, after w more insertions (inser-
tions shown in the figure by the original line � moving toward the
LRU position), the original line finally gets evicted. This line con-
sumes valuable cache capacity while not providing any additional
hits. The right portion of Figure 4(a) shows that in our multi-queue
cache organization, such a no-reuse line is initially inserted in the
first-level queue. After only Q < w insertions (for a Q-entry first-
level queue), the line leaves the first-level queue. Since the line was
not reused, its u-bit is still zero, and therefore the cache directly
evicts this line. The no-reuse line’s residency time can be greatly
reduced, thereby increasing the overall efficiency of the cache [4].

The second cache behavior targeted by our multi-queue tech-
nique is related to the phenomenon of cache bursts [21]. Figure 4(b)
shows a cache line with temporal locality as illustrated by several
hits (⋆) early in the timeline, but then after this initial burst of ref-
erences the processor never reuses the line again prior to eviction.
From the line’s last touch until eviction, w more insertions must
occur. In our multi-queue approach, the first-level queue should
be sized such that the flurry of accesses finishes before Q insertions
have been observed. In this scenario, the burst of reuses would have
set the line’s u-bit to one, and so it may advance into the second-
level queue where its new u-bit is reset to zero again. Since the
burst of accesses has ended, the line is not re-referenced before the
cache dequeues the line from the second-level queue, at which point
the line is evicted.

The last cache behavior, which works in conjunction with the
previous two, is performance isolation/protection between the dif-
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ferent cores. A core with a high access rate can quickly evict the
cache lines of another core from the shared cache. The left portion
of Figure 5 illustrates a simple two-core example with an LRU-
managed cache. The cache initially contains some useful items (the
cache lines with striped patterns in Figure 5), and Core 0 inserts a
line �. Core 1 then inserts a large number of cache lines with no
reuse in rapid succession, thereby causing Core 0’s line, along with
any other useful lines, to get evicted from the cache. Subsequent
accesses to these more useful lines all result in misses (last three
rows of the example).

Our multi-queue approach isolates traffic from the different cores
into their separate first-level queues. The right portion of Figure 5
shows how Core 0’s line � is inserted into Core 0’s own first-level
queue, and therefore is subsequently protected from the onslaught
of Core 1’s stream of requests. Furthermore, since Core 1’s lines
show no reuse, then these lines are evicted as soon as they dequeue
from Core 1’s respective first-level queue. Other cache lines with
proven reuse (those with the striped patterns in the figure) are main-
tained in the cache in the second-level queue or the pLRU region;
this also shields these lines from Core 1’s streaming behavior. By
protecting these lines, additional cache hits (⋆) are possible.

Our multi-queue organization also fits naturally with a cache hi-
erarchy that enforces the inclusion property. This is particularly
relevant as the recent Intel Core i7 implements such a policy [13].
In particular, a cache line in the LLC may appear to have few uses,
but this may simply be a result of high hit rates in the L1/L2 caches.
While the line may appear “dead” in the LLC, attempting to evict
this line before the line is dead in the L1/L2 would cause the line to
be invalidated from L1/L2, which would then immediately be fol-
lowed by re-retrieving the line from main memory (since it was just
evicted from the LLC). If the total capacity of a core’s first-level
queues (across all sets) is greater than the size of its L2 cache, then
the L2 working set should mostly stay resident in the core’s first-
level queue. Any lines that advance past the first-level queue will
also tend to experience far less contention because the most trou-
blesome streaming/no-reuse access patterns from other cores have
already been filtered out.

Related Work

Hallnor and Reinhardt’s generational replacement (GR) scheme for
large last-level caches has some similarities with our proposed tech-
nique [10]. In a fashion somewhat similar to our multiple queues,
the GR approach divides the cache into multiple pools or genera-

tions. Based on usage, cache lines can be promoted or demoted be-
tween generations. A few key differences are that the multi-queue
(MQ) approach is designed for a set-associative cache while GR
targets a fully-associative cache (although GR can potentially be
retargeted for highly-associative caches such as those considered
in this paper), MQ handles multiple cores, and MQ more aggres-
sively eliminates dead lines from the cache (e.g., a no-reuse line
can be directly evicted from MQ’s first-level queue, while GR de-
motes the line through two generations beyond the initial “fresh
pool” before eviction). Furthermore, MQ’s implementation com-
plexity is significantly lower; GR implements its generations/pools
using hardware doubly-linked lists along with timestamps both of
which require non-trivial control logic to perform updates, compar-
isons, and movement between generations.

3.2 Implementation Issues
For all of the experiments in this paper, we assume that the base-
line processor implements the clock-based pseudo-LRU replace-
ment policy, referred to as just “clock” for brevity. The overhead
for the clock policy is one u-bit per entry and a single counter that
tracks the current clock position. For a w-way set associative cache,
this adds up to only w+⌈log2 w⌉ bits per set. For our proposed
multi-queue scheme, we do not need any additional u-bits because,
whether part of a queue or part of the clock-managed region of the
cache, each entry still only needs a single u-bit. The only additional
overhead is one extra counter per queue to track the location of the
queue head. Figure 6(a) shows the logical organization of the multi-
ple queues for one cache set (in a four-core setting), and Figure 6(b)
illustrates how these components are mapped into the data and tag
arrays of the cache.

The multi-queue organization introduces an additional potential
complication that is not present in conventional cache replacement
policies for SRAM caches. The division of the cache lines into
separate queues may occasionally require moving a line from one
queue to the other. In a conventional SRAM array, physically shuf-
fling lines around is inefficient in terms of both latency and power.
Figure 7(a) shows an example where line X is moved from column 3
to column 7 and line Y is moved from column 5 to column 3. Line
X must first be read out of the cache and buffered, which requires
the latency and power of a regular SRAM access. Line X can then
be written back into the SRAM array, requiring another full SRAM
access. This process is repeated again to move line Y. Overall, four
total SRAM accesses are required in this example. For a large last-
level cache, each operation may take many cycles.

With a DRAM array, accessing any row requires loading the
row into the row buffer and eventually writing the row back. Out-
side of any activity that occurs in the row buffer, the loading of
the row buffer and the write-back/precharge operation are effec-
tively a fixed cost. The row buffer itself comes equipped with a
multiplexer for read operations and a demultiplexer for write oper-
ations, as shown in Figure 7(b). By simply providing the column
addresses of the source and destination to the mux and demux, re-
spectively, we propose to “loop back” the data bus to provide single-
cycle move/shuffle operations. The same shuffling of lines X and Y
would now only require one cycle each. Furthermore, the power re-
quired to manipulate data in the row buffer is much less than would
be required for the SRAM-based cache which needs to precharge
bitlines, power the sense amplifiers, etc. Note that this type of shuf-
fle operation is not supported in current DRAMs; this is a new op-
eration that would need to specifically be implemented for such a
3D-stacked DRAM cache.
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Overall, our proposed multi-queue cache organization is unique
to 3D-stacked DRAM-based cache structures.1 The row-buffer ar-
chitecture makes it practical to physically shuffle cache lines around
(and this is only performed when a LLC eviction causes a line to
move between queues, which does not always happen, for example
when the u-bit is not set). One could argue that a row buffer could
be added to a conventional SRAM cache. Such an approach would
slow down the SRAM’s common-case access pattern which is sim-
ply reading or writing a single cache line from a single set. With
the DRAM, we have no choice but to read the data into a row buffer
due to the fundamental physical operation of DRAM cells, but we
turn this otherwise inconvenient organization to our advantage. As
mentioned earlier, the size of typical DRAM row buffers is often a
few kilobytes. This provides the opportunity for a large cache set
with high set associativity.

4. EXPERIMENTAL EVALUATION

4.1 Simulation Methodology
For our simulations, we use the x86 version of SimpleScalar (Zesto) [1,
23]. Table 1 lists the processor and cache hierarchy configurations
used in this study. The baseline system is a quad-core processor
with a shared, inclusive 4MB, 16-way cache using the clock re-
placement policy. The DL1, DL2 and LLC all use multiple prefetch-
ers, with prefetch requests enqueued in a prefetch FIFO2 that is-
sues the prefetches when bus conditions are favorable [8]. We use
the same estimates as Black et al. where the stacked DRAM pro-

1The 3D-stacking is perhaps not strictly necessary. One could potentially apply this
approach to a non-stacked eDRAM-based LLC, but we do not evaluate eDRAM in this
paper and the results and conclusions would not likely be significantly different.
2This prefetch FIFO has nothing to do with the FIFOs in our multi-queue scheme.

Pipeline Microarchitecture

ISA x86
Fetch 16 bytes/cycle

Decode/Issue/Commit 6/6/4 µops/cycle
ROB/RS sizes 128/36 µops

LDQ/STQ sizes 36 loads/24 stores
Clock 3.2 GHz

Cache/Memory Hierarchy

DL1, IL1 32KB, 8-way, 2-cycle, 64B, private
DL2 256KB, 8-way, 5-cycle, 64B, private
LLC 4MB, 16-way, 9-cycle, 64B, shared, inclusive

next-line prefetcher IL1, DL1, DL2
stride prefetcher DL1, DL2, LLC

correlating prefetcher LLC
ITLB/DTLB 512/1024-entry, 4-way

FSB 800 MHz (1.6GHz DDR for data transfers)
Main Memory tRAS=45ns, tW R=15ns,

tRCD, tCAS , tRP =12.5ns

Table 1: Simulation parameters for the baseline processor and cache
hierarchy.

vides eight times as much storage capacity as the equivalent area
of SRAM [3]. To compute the latencies of the caches, we used
CACTI v5.3 with a 45nm technology for the SRAM structures and
70nm for DRAM [41].

We focus on the area-neutral organization illustrated earlier in
Figure 1(d) where the DRAM has the same footprint as the 4MB
SRAM cache, and therefore provides 32MB worth of capacity. We
evaluated a wide space of DRAM bank organizations (up to eight
banks), set associativities (up to 128 way), and line sizes (up to 512
bytes) while accounting for the latency difference induced by the
different physical organizations. The best configuration for a 32MB
DRAM cache uses four banks, 64-way set associativity and 128-
byte cache lines. Using CACTI’s DRAM model, we use the fol-
lowing DRAM cache timing parameters: cRAS , cRCD=19, cCAS ,
cWR=17, and cPR=14, where all of the timings are specified in
processor clock cycles. Each DRAM bank allows a separate row
to be open at the same time. We model an open-page policy which
makes sense for facilitating multiple updates to the same row (e.g.,
when shuffling between queues is required). Our multi-queue con-
figuration uses per-core first-level queues with Q=8 entries each, a
second-level shared queue with S=12 entries, and the remaining 20
entries are managed with clock replacement.

For our quad-core system, our performance evaluations make
use of multi-programmed workloads consisting of various memory-
intensive programs from SPEC2006. The cache sensitivity results
for each of the programs used are shown in Figure 8, providing both
LLC MPKI (misses per thousand instructions) and IPC curves. The
individual workloads are also listed in the figure along with thumb-
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Workload Applications Cache Sensitivity Curves

MIX01 soplex.p, astar.b,
mcf, omnetpp
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libquantum, omnetpp
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 0
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Workload Applications Cache Sensitivity Curves
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Figure 8: SPEC2006 integer and floating point benchmarks used in our workloads. Plots show LLC MPKI and IPC rates for each program running
on a single core for different LLC cache sizes. The individual workloads list the constituent applications (FP programs in italics) with thumbnails of
the LLC MPKI cache sensitivity curves reproduced for convenience.

nails of the MPKI curves to make it easier to see the composition
of memory patterns in each workload. For the multi-core perfor-
mance simulations, we fast-forward each program by 500 million
instructions while warming the caches, and then perform detailed
simulation until every individual program within the workload has
committed 250 million instructions. Simulation points were chosen
with the SimPoint 3.2 toolset [11]. For each core, we only collect
statistics up to this simulation limit, but the core continues execut-
ing so that it contends with the other cores for shared resources;
this approach is consistent with other previous works on evaluating
resource contention in multi-core processors [14, 34].

For most of our results, we simply report IPC throughput which
is equal to

Pn
i=1 IPC(i), where IPC(i) is the IPC rate observed

for Corei and there are n=4 four cores in total. After we have pre-
sented the final version of our multi-queue cache management tech-
nique, we also report the weighted speedup (also known as SMT

speedup)
Pn

i=1
IPC(i)

IPCsolo(i)
[37], where IPCsolo(i) is the IPC of

Corei when it runs by itself without any contention from the other

three cores, and the “fair speedup” metric n
P

n
i=1

IPCsolo(i)/IPC(i)

which is often used as a fairness metric because the harmonic mean
tends to emphasize/amplify its smallest inputs (i.e., those corre-
sponding to slowdowns) [26].

4.2 Performance Results
Figure 9 shows baseline IPC throughput results for various 3D cache
organizations (those shown in Figure 1), with the speedups nor-
malized to the non-3D baseline 4MB SRAM cache. All configura-
tions use clock replacement. All variants of the 3D-stacked caches
demonstrate substantial performance gains over the baseline 4MB
non-stacked cache. This in of itself is not too surprising since our
workloads are memory intensive and stacking additional cache en-
ables the cores to keep a larger fraction of their working sets on
chip. This simply shows that when memory is tight, 3D caches in-
crease capacity thereby leading to more performance, as has been
shown in previous studies [3]. For the remainder of this paper, we
will only focus on 32MB stacked-DRAM configurations.
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Figure 9: Baseline IPC throughput results for the configurations cor-

responding to Figure 1. Results are normalized to the non-3D 4MB

SRAM case.

For the 32MB 3D-stacked DRAM configuration, we evaluate
four different policies: the baseline clock replacement, the thread-
aware dynamic insertion policy (TADIP) [14], utility-based cache
partitioning (UCP) [34], and our multi-queue cache management.
UCP uses 32 sets for dynamic set sampling and repartitions the
cache every one million cycles. TADIP uses 32 leader sets per core
with dynamic feedback (i.e., TADIP-F) and 9-bit PSEL counters.
While there has been a considerable amount of past work on man-
aging shared caches in multi-core processors [5, 6, 12, 17, 19, 33,
34, 35, 38, 39], we focused on UCP and TADIP as they are both di-
rectly compatible with clock-based replacement policy implemen-
tations.3

Figure 10 shows the IPC throughput results for different schemes
to manage a 32MB 3D-stacked DRAM cache. All results are nor-
malized to the clock configuration. The results for a somewhat
idealized 64MB 3D-stacked DRAM cache configuration are also
shown for comparison; the area and latency costs of the larger 64MB
cache are optimistically ignored. For the different quad-core work-
loads, each core has different (and time-varying) cache capacity re-
quirements. The UCP technique attempts to dynamically partition
the cache by ways among the cores to minimize overall misses.
For our workloads, UCP closes about half of the performance gap
(+18.9% over clock) between the conventional clock-managed 32MB
DRAM cache and the 64MB configuration (+38.4%). Our multi-
queue (MQ) approach is able to provide slightly more performance
than UCP (+23.6%). There are several workloads where UCP is
still able to perform better than our MQ technique because UCP
is able to more effectively adapt to dynamic changes in per-core
memory requirements. We will introduce some adaptivity into our
MQ scheme in Section 5.

In these results, TADIP does not perform as well as has been
previously reported [14]. A significant contributor to this is the fact
that our LLC enforces the inclusion property. As discussed ear-
lier, the LLC only observes traffic that has been filtered through the
L1/L2. So while a line may be heavily referenced in the L1/L2, it
may still appear as a no-reuse line in the LLC. DIP-based policies
tend to aggressively remove these lines leading to premature inval-
idation of the L1/L2 copies.4 Also discussed earlier, so long as the
aggregate capacity of a core’s first-level queues is greater than the
size of its DL2, then the problem of inclusion-induced invalidations
is largely not a problem. For the 32MB DRAM LLC and a 256KB
DL2 used in our simulated processor, dedicating 256KB

32MB
= 1

128
of

3UCP simply needs one clock pointer per partition, and TADIP requires a simple
change to the clock logic so that an “LRU” inserted line does not update the clock
pointer so that it is immediately the next candidate for eviction.
4It might be possible to modify TADIP to account for inclusion effects, but such an
extension to TADIP is outside the scope of this paper. We also verified that when
inclusion is not enforced, TADIP does indeed perform better than UCP.
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Figure 10: Normalized IPC throughput for various cache management

schemes on a 32MB 3D-stacked DRAM cache, and a 64MB 3D-stacked

DRAM cache for comparison. MQ stands for “multi-queue.”
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Figure 11: Distributions for where hits occur in the multi-queue man-

aged LLC. Each core’s distribution is normalized to its total number of

LLC hits. The cores for each workload are not listed in any particular

order.

the LLC to a core’s first-level queue should be sufficient to avoid the
inclusion problem. Since our set-associativity is 64-way and Q=8,
we more than exceed this requirement. The reason that the queues
are not made smaller is that lines cannot be evicted so quickly that
the cache does not even have an opportunity to observe any reuses
(which are required to set the line’s u-bit to keep it resident).

The multi-level structure does play an important role in the be-
havior of our MQ organization. We simulated a reduced configura-
tion where the first-level queues still have Q=8 entries each, but the
second-level queue has been removed (S=0) so that lines with reuse
are moved directly into the clock-managed region of the cache set.
In this configuration, the speedup over the clock baseline is reduced
to 15.4% which is below that of UCP.

For each workload, the constituent applications make use of the
different levels of queues in different ways. Figure 11 shows the
distribution of hits for each program in each quad-core workload.
For example in MIX01, Core 0 (the leftmost of the four bars in
the group) derives 58.6% of its LLC hits from lines in its first-level
queue, 35.8% of its hits from the shared second-level queue, and the
remaining 5.6% of its hits from the clock-managed region. Core 1
on the other hand, derives almost all of its hits from the first-level
queue. Note that these hits advance to the second-level queue where
they are not used again (otherwise the chart would report hits in this
queue) and are evicted early instead of advancing to the main clock-
managed region of the cache. In turn, this decreases the pressure on
the clock-region allowing Cores 2 and 3 to make more efficient use
of the remaining cache resources. The multi-queue organization
naturally sorts the cache lines into different regions of the cache
based on proven utility thereby improving the overall efficiency of
the cache utilization.

5. ADAPTIVE MULTI-QUEUE (AMQ)
The results from the previous section showed that there are some
workloads where UCP is able to achieve higher IPC throughput than
our multi-queue approach. This is not entirely unexpected because
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Figure 12: Different cache policy mechanisms: (a) multi-core, two-policy-per-core selection, and (b) multi-set dueling for multi-core, multiple-policy

selection. Shading indicates fixed policies, and the partial shading represents partial followers.

we have thus far simply made use of statically-sized queues that in
some cases may be over-provisioned for some cores causing dead
lines to stay resident longer than they should, and in other cases
under-provisioned, leading to the early eviction of lines when they
will be re-referenced in the near future.

We propose an extension of our multi-queue scheme that dy-
namically adjusts queue sizes based on the needs of each core.
While UCP uses sophisticated cache partitioning, implementing such
optimization algorithms directly in hardware may be somewhat chal-
lenging for increasing numbers of cores and set associativities. Ex-
ploiting the large DRAM row buffer structure to implement highly-
associative caches amplifies the difficulty of the partitioning prob-
lem. Instead of allowing arbitrary queue sizes, we take a simpler
approach and restrict the queues to only a few choices, but we still
need some mechanism to choose among the remaining options.

5.1 Multi-Set Dueling
Given |Q| possible selections for the size of each of the first-level
queues and |S| selections for the second-level queue, there are |Q|n×
|S| possible unique configurations for an n-core system. Finding
the best parameters among such a potentially large configuration
space may be daunting. To tackle this problem, we propose a sim-
ple generalization of the set-dueling principal. Set dueling was pro-
posed for the Dynamic Insertion Policy (DIP) to adaptively choose
between the better of two different policies [34]. The idea is to
dedicate a small, but statistically significant, number of cache sets
where the sets follow fixed policies. A few such “leader sets” al-

ways manage their lines using a fixed policy P0, and a few other
leader sets always use policy P1. Misses in leader sets follow-
ing P0 cause a policy selection (PSEL) counter to be decremented,
and misses in leader sets following P1 increment the PSEL counter.
The PSEL counter effectively estimates which policy causes more
misses based on the observed behaviors of these sampled leader
sets. The remaining “follower” sets simply use the policy that should
result in fewer misses as indicated by the PSEL counter.

In a multi-core context, each individual core may wish to follow
a different policy. The TADIP multi-core extension of DIP intro-
duced the use of per-core leader sets with per-core PSEL counters,
as shown in Figure 12(a). In this example, each set is annotated with
a policy vector 〈ρc0 , ρc1 , ρc2 , ρc3〉, where ci represents Core i, and
ρci

indicates the policy followed by Core i for this set. In each

group of leader sets (each gray portion of the cache indicates one
group), there is one leader set per policy, per core. For example, the
first leader set in Figure 12(a) always applies policy P0 to Core 0,
while the second leader set always uses P1 for Core 0. Note that
the remaining cores (Core 1 through Core 3) do not use a fixed pol-
icy and simply follow the policy specified by their respective PSEL
counters; i.e., the policy specified by fi (f stands for follower). If
a miss occurs in a set where Core 0 is forced to always follow P0,
then its counter PSEL0 is decremented. Similarly, misses in sets
where it is forced to always follow P1 increment PSEL0. For all re-
maining sets, including leader sets for other cores, cache decisions
involving Core 0 will use the policy f0 chosen by PSEL0. The
leader set structure is symmetric for all remaining cores. Each core
can choose the policy that works the best for it, but the determina-
tion of what is “best” accounts for the policy selections of the other
cores.

The set-dueling approaches for both DIP and TADIP assume
that each core has only one of two policies to choose from. The
selection of a queue size for our MQ approach is effectively a “pol-
icy” decision. For |Q| > 2 we use a multi-set dueling approach
that is similar to tournament branch predictors [29]. Consider the
case for Q = {Qa, Qb, Qc, Qd} shown in Figure 12(b). For the
first leader set, Core 0 always uses a first-level queue of size Qa.
For the next set, Core 0 always uses size Qb. Misses in the former
cause the counter PSELab

0 to be decremented, and misses in latter
increment the counter. The third set follows the policy φab

0 , which
sets Core 0’s queue size (in this set) to Qa or Qb based on PSELab

0 .
The symbol φ is used to indicate a partial follower; it is partial be-
cause the sizes Qc and Qd are not considered. Any miss in the set
following φab

0 causes a “meta-policy” counter MPSEL0 to be decre-
mented. The next three sets are similar to the first three, except that
one always sets Core 0’s first-level queue size to Qc, the next to Qd,
and the third to the best of these two (φcd

0 ). A miss in the set fol-
lowing policy φcd

0 causes MPSEL0 to be incremented. This policy
selection process can be viewed as a single-elimination tournament,
where the PSEL counters correspond to the “semi-final” rounds and
the MPSEL counter represents the championship. Finally, all other
follower sets set Core 0’s first-level queue size according to pol-
icy f0, which is determined by the tournament results of PSELab

0 ,
PSELcd

0 and MPSEL0. Figure 12(b) shows how the next six sets
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Figure 13: IPC throughput normalized to the quad-core configuration with 32MB 3D-stacked clock-managed DRAM cache. AMQ stands for

“adaptive multi-queue”, “+stb” is AMQ with the additional stability mechanisms, and “+par” also includes the dynamic pardon probability selection.

effectively repeat the process to determine the size of Core 1’s first-
level queues. This repeats again for Core 2 (not fully shown) and
Core 3 (not shown at all). Likewise, another six leader sets (also
not shown) determine the size of the shared second-level queue.

For our adaptive multi-queue (AMQ) approach, the first-level
queues use one of four policies Q = {0s, 0m, 4, 8}, and the second-
level queue selects from one of four sizes S = {0, 4, 8, 12}. For the
first-level queues, there are actually two different choices for zero-
sized queues. The policy 0s means that the queue has no entries,
and incoming cache lines should be inserted into the second-level
queue. The policy 0m is similar except that lines are inserted di-
rectly into the main clock-based region of the set.

Stability Issues

With so many policy and meta-policy decisions, there is some dan-
ger that the overall system can become unstable and rapidly switch
through many different configurations and not actually converge on
a good one. To combat this problem, we introduce two simple throt-
tling mechanisms to slow down the rate of policy change. The first
is a simple time delay where independent of the actual PSEL values,
once a policy change has been made, no other changes may occur
until at least δ cycles have elapsed, although the PSEL counters are
still updated. The second mechanism adds hysteresis to the PSEL
counters. When a PSEL counter goes negative, it must actually
be decremented below −h before the change in policy is invoked.
Similarly, one must increment the counter above +h to switch the
policy back.

Occasional Lines with Long Reuse Distances

Due to the filtering mechanism used in the first and second-level
queues, the queue size must match up reasonably well with the ac-
tual reuse distances for each core. The multi-set dueling approach
will tend to select the queue size that most closely covers the ma-

jority of a core’s cache line reuse patterns, but it is possible that
there are still a significant number of lines that simply have reuse
distances longer than the queue size, resulting in a situation where
they will always be evicted early. We include a pardon probabil-

ity which is similar in spirit to the Bimodal Insertion Policy from
DIP [34], as well as statistical trace cache filtering [2]. If a line’s u-
bit is set, then it is always advanced to the next region of the cache.

If the u-bit is zero, then with some probability ppardon, the line is
advanced anyway. We consider four possible pardon probabilities
P = {0, 1

32
, 1

8
, 1} and use multi-set dueling to select ppardon on a

per-core basis.

5.2 Results
Figure 13 shows the IPC throughput results for our adaptive multi-
queue (AMQ) cache management scheme. All of these results are
normalized to the conventional 32MB 3D-stacked LLC with clock
replacement. The figure shows the additional performance gains be-

yond the simple stacking of DRAM as a cache. Overall, UCP pro-
vides a 18.9% benefit over clock, and MQ-static provides 23.6%.
The basic AMQ scheme delivers a 25.7% improvement, but the
gains are not consistent across the workloads. For example, MIX01,
MIX02 and MIX04 all exhibit significant performance reductions
when adaptivity is introduced (although still always better than the
baseline clock), and other workloads like MIX06 and MIX07 expe-
rience substantial improvements.

For most of the workloads where adaptivity hurts, the stabil-
ity mechanisms (δ=32,768, h=32) provide some relief. In the cases
where adaptivity is useful, the stability mechanisms sometimes helps,
sometimes hurts, but neither by much in most situations. Overall,
the stability mechanisms provide a small net benefit, increasing the
geometric mean improvement to 27.6% over the baseline 32MB
cache. Finally, the inclusion of the dynamic pardon probability
selection provides another small boost, bringing the performance
gain to 29.1%. It is important to note that the stability modifica-
tions and the pardoning mechanism are all simple to implement
with low overhead. In return, the adaptivity is far more robust, pro-
viding higher performance than the static MQ in all but three of our
workloads. Overall, the AMQ technique achieves 75.6% of the per-
formance difference between the 32MB and 64MB clock-managed
DRAM caches (recall that the 64MB configuration optimistically
assumes the same timing parameters as the 32MB case).

For each workload, we performed additional tracing to illustrate
AMQ’s adaptations over time; for this experiment only, we col-
lected trace information for only 250 million cycles, not includ-
ing cache warming, and we collect one sample every one million
cycles. Figure 14 shows for each benchmark of each workload,
how much time each first-level queue spends configured at differ-
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Figure 14: For abbreviated 250 million cycle traces, the percentage of time (samples) each queue was observed at a given size.
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Figure 15: Performance of AMQ as measured by the (a) weighted/SMT

speedup and (b) the fair speedup metrics.

ent sizes, as well as the amount of time that the shared second-level
cache spends in its different sizes. The first four columns (dark
shading on top) of each workload correspond to the per-core queues
from Core 0 to Core 3. The 0s and 0m policies correspond to a
zero-sized first-level queue with direct insertion into the second-
level queue and main region, respectively. The fifth column (light
shading on top) is for the shared queue. While a few individual pro-
grams find a queue size and then stick with it throughout the traced
execution, there are others that clearly vary (i.e., adapt) over time.

In additional to overall IPC throughput, we also evaluated the
weighted speedup and fair speedupmetrics. These results are shown
in Figure 15(a) and (b), respectively. Note that these metrics are
only well-defined when IPCsolo is derived from the same baseline
configuration, and so results not involving the 32MB DRAM cache
configuration are not included. Overall, AMQ performs well on
these metrics. In particular for the fair speedup metric, AMQ (with
stability and pardoning) performs better than UCP on all but one
workload (MIX03), and always better than clock, indicating that
there are no significant concerns over fairness.

5.3 Implementation of AMQ
For the static version of the multi-queue cache, the physical map-
ping of the logical queues into the ways of the physical cache set
is straightforward, as was illustrated in Figure 6. With resizing,
however, a naive implementation may incur an excessive amount of
data movement; even if all shuffling occurs in the row buffer, this
still increases the latency of evicting a line and consumes unneces-
sary power.

For our implementation, we make use of a simple interleaved
layout so that lines never need to be shuffled due to resizing (they
still move when advancing between queues). Figure 16(a) shows
a logical configuration with first-level queue sizes of 4, 8, 0, and
8, and a second level queue size of 12, and the main clock region
occupies the remaining 32 ways (assuming a 64-way cache). Fig-
ure 16(b) shows the physical mapping of logical queue entries to
physical ways. Core 0’s first-level queue occupies ways 0, 4, 8, 12.
Core 1 occupies ways 1, 5, 9, 13, 17, 21, 25 and 29. This map-
ping works for any power-of-two number of cores; Core i simply
uses ways where the index modulo the number of cores is equal to
i. Maintenance of the per-queue head pointers is also trivial. The
interleaved view of Figure 16(b) makes it easy to see how increas-
ing any individual first-level queue simply involves taking entries
from the clock region, but this does not interfere with any of the
other first-level queues. Likewise, shrinking a queue just causes the
queue to return lines to the clock-based area of the cache. The bot-
tom figure shows how all of these lines map sequentially into the
sets of the cache.

The second-level queue can also change its size, and it is impor-
tant to avoid having this queue collide with any of the ways used
by the first-level queues (otherwise additional shuffling would be
needed again). This is easily handled by physically locating the
queue at the end of the set. The worst-case/maximum sizes of the
queues are selected such that the queues can never grow into each
other, and so shuffling due to queue resizing is guaranteed to be
avoided. The remaining entries belonging to the clock-based re-
gion may end up residing in disjoint ways littered throughout the
set. When choosing a victim from the clock region, any way be-
longing to one of the queues simply always asserts its u-bit and the
clock algorithm will never select it for eviction.

There is also a question about what to do with valid cache lines
that are effectively ejected from a queue when the queue size is re-
duced, as well as the reverse case where a line physically located in
the main region suddenly becomes assimilated into a queue because
the queue’s size has increased. Instead of attempting to explicitly
deal with such “illegal immigration,” we simply ignore it. If a line
is logically moved from one queue to another due to queue resiz-
ing, then so be it. This just means that on occasion a line here or
there may move through the queue organization in a non-sequential
order, but to explicitly handle this would require significantly more
control logic complexity and likely a series of additional shuffle
operations. Overall, our adaptive multi-queue policy maps cleanly
into the physical cache set and the logic to implement the cache
management policies are all straightforward.
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Figure 16: (a) A logical view of a MQ-cache with first-level queue sizes of 4, 8, 0 and 8, and a second-level queue of size 12, and (b) the mapping to

physical ways in a cache set where the adjacent physical cache lines are sequentially numbered.

5.4 Sensitivity Analysis
Due to space concerns, the full results of our various sensitivity
studies are not included here, but we instead summarize the results.
One of the most important factors is the configuration for the under-
lying 3D-stacked DRAM cache. We evaluated many organizations,
and UCP and our multi-queue approach perform better as the set
associativity increases (at least until the DRAM cache latency be-
comes too large). In the case of UCP, the mechanism can provide
finer provisioning of cache resources to the cores. For MQ, a cer-
tain minimum associativity is needed to at least support reasonably
sized first-level queues.

We have already discussed the importance of having multiple
layers of queues back in Section 4. We also evaluated the impor-
tance of adapting the sizes of the first and second-level queues as
well as the pardon probability (i.e., those parameters controlled by
set dueling). Not adapting the first-level queues results in an av-
erage of 1-2% performance reduction, depending on what size the
queue is fixed at. Similarly, a fixed second-level queue results in
a 1-3% drop, and not adjusting the pardon probability can result
in a 2% drop. While the average performance impact may not be
that large, removing adaptivity tends to increase the variance in
the performance gains, and so the adaptivity is still desirable. We
also tested different numbers of leader sets, but providing 32 leader
set groups (where each group provides one leader set per core, per
policy) as suggested in earlier work on dynamic set sampling was
consistently the best choice [32].

6. CONCLUSIONS
In this paper, we have revisited the simple application of using 3D
integration to stack a DRAM layer as a large last-level cache. This
seemingly obvious approach delivers significant performance, and
at first glance there is nothing particularly obvious for what else
one can do with a large, stacked cache. We have shown that the
physical architecture of the DRAM and its peripheral logic, which
traditionally increases the complexity of the memory interface, ac-
tually provides us with an opportunity to derive benefit from these
otherwise inconvenient structures. We believe that for many other
potential applications of 3D integration, there will be several “ob-
vious” solutions, but based on our experience with the 3D-stacked
DRAM cache, we encourage researchers to continue digging to find
additional ways that 3D can deliver more value beyond the obvious.
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