ResearchGate

See discussions, stats, and author profiles for this publication at:

Formal Behavioral Modeling and Compliance
Analysis for Service-Oriented Systems

Conference Paper - October 2008

DOI: 10.1007/978-3-642-04167-9_2 - Source: DBLP

CITATIONS READS
18 43

2 authors, including:

3

& Centrum Wiskunde & Informatica

299 PUBLICATIONS 4,509 CITATIONS

SEE PROFILE

Available from: Farhad Arbab
Retrieved on: 18 September 2016

https://www.researchgate.net/publication/221047645_Formal_Behavioral_Modeling_and_Compliance_Analysis_for_Service-Oriented_Systems?enrichId=rgreq-224f6888f61950798d274c3c7bce8a3a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NzY0NTtBUzo5ODgyMzcxMjAxODQ0NkAxNDAwNTcyODE3NjI1&el=1_x_2
https://www.researchgate.net/publication/221047645_Formal_Behavioral_Modeling_and_Compliance_Analysis_for_Service-Oriented_Systems?enrichId=rgreq-224f6888f61950798d274c3c7bce8a3a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NzY0NTtBUzo5ODgyMzcxMjAxODQ0NkAxNDAwNTcyODE3NjI1&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-224f6888f61950798d274c3c7bce8a3a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NzY0NTtBUzo5ODgyMzcxMjAxODQ0NkAxNDAwNTcyODE3NjI1&el=1_x_1
https://www.researchgate.net/profile/Farhad_Arbab?enrichId=rgreq-224f6888f61950798d274c3c7bce8a3a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NzY0NTtBUzo5ODgyMzcxMjAxODQ0NkAxNDAwNTcyODE3NjI1&el=1_x_4
https://www.researchgate.net/profile/Farhad_Arbab?enrichId=rgreq-224f6888f61950798d274c3c7bce8a3a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NzY0NTtBUzo5ODgyMzcxMjAxODQ0NkAxNDAwNTcyODE3NjI1&el=1_x_5
https://www.researchgate.net/institution/Centrum_Wiskunde_Informatica?enrichId=rgreq-224f6888f61950798d274c3c7bce8a3a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NzY0NTtBUzo5ODgyMzcxMjAxODQ0NkAxNDAwNTcyODE3NjI1&el=1_x_6
https://www.researchgate.net/profile/Farhad_Arbab?enrichId=rgreq-224f6888f61950798d274c3c7bce8a3a-XXX&enrichSource=Y292ZXJQYWdlOzIyMTA0NzY0NTtBUzo5ODgyMzcxMjAxODQ0NkAxNDAwNTcyODE3NjI1&el=1_x_7

Formal Behavioral Modeling and Compliance
Analysis for Service-Oriented Systems

Natallia Kokash and Farhad Arbab

CWI, Science Park 123, Amsterdam, The Netherlands
firstName.lastName@cwi.nl

Abstract. In this paper, we present a framework for formal modeling
and verification of service-based business processes with focus on their
compliance to external regulations such as Segregation of Duties (SoD)
or privacy protection policies. In our framework, control/data flow is
modeled using the exogenous coordination language Reo. Reo process
models are designed from scratch or (semi-)automatically obtained from
BPMN, UML or WS-BPEL specifications. Constraint automata (CA),
a semantic model for Reo, provide state-based representations of pro-
cess workflows and enable their verification by means of model checking
technology. Various extensions of CA make it possible to analyze time-,
resource- and Quality-of-Service (QoS) process models.

1 Introduction

One if the key ideas of Service-Oriented Computing (SOC) is to enable the de-
velopment of cross-organizational software systems by composing pre-existing
services. Services are self-contained and loosely-coupled applications that ad-
vertise their interfaces and/or observable behavior specifications. Given such
specifications, one can compose appropriate services to realize a certain business
logic. This paradigm helps designers to abstract from low-level details and imple-
mentation issues, reduces time and cost of software development and increases
its reusability and adaptability to changing process requirements.

Despite this promise, implementation of business processes by composing
services remains a challenging task. The problem of ensuring that the com-
posed behavior is compliant to the process specification and related business
requirements is one of the key issues here. Formal approaches to process behav-
ior specification such as Petri-nets, automata-based models or process algebras
together with logic-based formalisms for specifying system properties provide
rigorous tools for compliance analysis. However, complexity, the absence of vi-
sual notations and difficulties to obtain these models from widely-recognized
high-level specification formats such as Unified Modeling Language (UML) or
Business Process Modeling Notation (BPMN) limit their utility in practice. An-
other problem is the absence of actually implemented software tools that use
theoretical approaches in this area to support automated process analysis and
generate executable code to run corresponding service compositions. Finally,

business requirements may affect various aspects of the corresponding process
model such as its control, data or time- flow, impose constraints on access control
or performance. All these issues entail the need for an extensible formal model
for service-based business process design suitable for reasoning about various
types of functional and non-functional properties.

In this paper, we introduce a framework to benefit compliance-aware business
process development with formal analysis and automated code generation. This
work is part of the EU project COMPAS (Compliance-driven Models, Languages,
and Architectures for Services) which aims at designing and implementing novel
models, languages, and an architectural framework to ensure dynamic and on-
going compliance of software services to business regulations and stated user-
service requirements. We understand compliance as any explicitly stated rule or
regulation that prescribes any aspect of an internal or cross-organizational busi-
ness process. Such compliance rules come from internal sources, e.g., technical
instructions, regulations aimed at improving Quality-of-Service (QoS) delivered
to end users, Service-level Agreements (SLAs), or external sources such as user
privacy protection policies, fraud prevention regulations and laws. Compliance
policy is a logical grouping of a set of coherent rules that realizes a specific goal,
e.g., fraud prevention by limiting access to vulnerable data. By context-aware
analysis and stepwise decomposition of organizational high-level goals such as
“comply to Sarbanes-Oxley Act or Basel II” to a set of relevant policies and,
finally, to concrete compliance rules, we can come up with a number of formally-
expressed constraints that must be satisfied to guarantee the compliance of a
particular process to the initial requirements. We aim at developing a unified
extensible behavioral model that is able to incorporate various types of infor-
mation relevant to automated design-time compliance analysis. Our solution
is based on Constraint Automata (CA) which offers an operational model for
specifying composite service behavior. CA are essentially a variant of a labeled
transition system where transitions are augmented with pairs of synchronization
and data constraints. The states of a CA stand for the process configurations
while transition labels can be viewed as input/output operations performed in
parallel (more precisely, sets of nodes where data flow is observed in paral-
lel and boolean conditions on the data items observed on those models). This
model is fully compositional, and can express arbitrary mixes of synchronous and
asynchronous communication. CA were developed as a semantic model for the
coordination language Reo [1] (although several other semantic models for Reo
are available) and later have been extended to express time dependent behavior,
probabilistic, and stochastic systems.

There are several reasons that motivate our choice of Reo and CA for spec-
ifying the behavioral composition of business processes and web services. First,
Reo has a simple graphical notation which makes it easy to use in practical ap-
plications by process designers without any prior experience in formal methods.
A small number of Reo modeling primitives (channels) are sufficient for repre-
senting rather complex behavioral protocols. Second, precise semantics of Reo
in terms of CA enables automated process verification. Reo process models can

be automatically translated into CA which are suitable for representing service
compositions with QoS guarantees [2], and time- and resource-aware processes |3,
4]. Moreover, there is a solid set of software tools supporting process modeling,
verification and code generation based on Reo process models.

The rest of this paper is organized as follows: Section 2 contains an overview
of domain-level compliance-aware business process design. In Section 3, we in-
troduce the coordination language Reo and illustrates its application to business
process modeling. In Section 4, we discuss several extensions of constraint au-
tomata used for automated workflow analysis. Section 5 exemplifies the applica-
tion of Reo/CA for detecting errors in process workflow. Section 6 illustrates how
our framework can be applied to deal with advanced process requirements such
as separation-of-duty and privacy constraints. Section 7 is a survey of related
work. Finally, Section 8 provides our conclusions and an outline of our future
work.

2 Business Process Modeling

In SOC, business process is defined as a collaborative service that is closely linked
to a business purpose’. A collaborative service is a service implemented through
the composition of other services. This definition poses no restrictions on the
nature of the composed services. We can distinguish functional services which
perform self-contained business operations, and coordination services, which im-
plement so called “glue code”. In our approach, we assume that observable be-
havior of functional services is described using CA, while “glue code” is modeled
by means of the Reo coordination language.

Traditional graphical notations for business process modeling such as BPMN
and UML Activity Diagrams (ADs) represent business processes in the form of
abstract tasks (activities) with a control flow over them. Additionally, BPMN
provides modeling primitives for specifying important events occurring in the
system, exception handling, compensation associations and transactional sub-
processes, which make it possible to depict most common features of real-world
business processes. However, the specification of this notation does not assume
a formal semantics. As a result, BPMN process diagrams can be misunderstood
and require preprocessing and refinement before they become suitable for rigor-
ous analysis or software implementation.

Figure 1 shows a BPMN diagram for a sample purchase order process that
appeared in [5]. It consists of three basic activities, checkCreditCard, prepare-
Products and shipltems. When a purchase request is received, the client’s credit
card is checked and the requested products are prepared simultaneously. After
that the prepared products are shipped to the customer.

UML Sequence Diagrams (SDs) present a conceptually different approach to
system modeling. The goal of UML SDs is to model dynamic system behav-
ior in terms of entities, components/services or objects that exchange messages

! http://www.nexof-ra.eu/?q=node/187

Check credit card

Is payment ok?

Prepare products

Fig. 1. BPMN diagram for the purchase order scenario [5]

or functional calls. The diagram conveys the information along the horizontal
and vertical dimensions: the vertical dimension shows the time sequence of mes-
sages/calls as they occur, and the horizontal dimension shows with the help of
lifelines, the object instances that the messages are sent to. In the context of busi-
ness process modeling UML SDs are convenient to represent scenarios involving
several interacting entities such as auctions or service contract negotiation.

WS-BPEL is a language for describing executable business processes on top of
WSDL service specifications. Due to the lack of graphical notation and the need
to deal with implementation-level details, WS-BPEL is not suitable for domain
analysis and conceptual business process modeling, although some efforts exist to
adopt WS-BPEL for this purpose. Nevertheless, modern business processes are
rarely developed from scratch. We assume they can be composed from reusable
business process fragments with existing behavioral specifications in WS-BPEL.

The aforementioned notations lack support for compliance. For example, they
provide no standard ways to express Segregation of Duties (SoD) requirements,
show link dependencies, or specify QoS constraints on sub-processes rather than
using textual annotations or additional domain-specific languages. Both indus-
try and academia have proposed numerous extensions for process compliance
support on top of these notations. For instance, in [6] BPMN processes are an-
notated with QoS information, in [7] additional textual annotations expressing
task authorization constraints are introduced, while in [8] a language for speci-
fying regulatory compliance on top of WS-BPEL is proposed. Due to the higher
level of expressiveness of Reo, we can explicitly model some of these require-
ments in a formal way. In Section 6, for instance, we demonstrate how SoD can
be enforced using our framework.

3 Process Modeling with Eclipse Coordination Tools

In this section, we summarize the main concepts of Reo. Further details about
Reo and its semantics can be found in [9, 1, 10].

Reo [1] is a channel-based exogenous coordination model wherein complex
coordinators, called connectors, are compositionally constructed from simpler
ones. Complex connectors in Reo are formed as a network of primitive con-
nectors, called channels, that serve to provide the protocol which controls and

Al Bl A3 E2 AT BS AT B? AQ E9
—* title[@itern]
A2 B2 Ad E4 AS BS AR B8 A10 B10

Fig. 2. Basic Reo channels

organizes the communication, synchronization and cooperation among the ser-
vices that they interconnect. Each channel has two channel ends which can be
of two types: source or sink. A source end accepts data into its channel, and
a sink end dispenses data out of its channel. It is possible for both ends of a
channel to be either sinks or sources. Reo places no restriction on the behavior
of a channel and thus allows an open-ended set of different channel types to be
used simultaneously together.

Figure 2 shows the graphical representation of basic channel types in Reo. A
synchronous channel SYNC(A1,B1) has a source and a sink end and no buffer.
It accepts a data item through its source end iff it can simultaneously dispense
it through its sink. A lossy synchronous channel LOSSY(A2,B2) is similar to
synchronous channel except that it always accepts all data items through its
source end. The data item is transferred if it is possible for the data item to be
dispensed through the sink end, otherwise the data item is lost. A FIFO1 channel
FIFO1(A3,B3) represents an asynchronous channel with one buffer cell which is
empty if no data item is shown in the box. If a data element d is contained in
the buffer of a FIFO1 channel, it looks like a channel FIFO1_FULL(A4, B4) in
this figure.

A synchronous drain SYNC_DRAIN(A5,B5) has two source ends and no
sink end. A synchronous drain can accept a data item through one of its ends
iff a data item is also available for it to simultaneously accept through its
other end as well, and all data accepted by this channel are lost. An asyn-
chronous drain ASYNC_DRAIN(A7,B7) accepts data items through its source
ends and loses them, but never simultaneously. Synchronous and asynchronous
spouts SYNC_SPOUT(A6,B6) and ASYNC_SPOUT(AS8,B8) are duals to the
drain channels, as they have two sink ends. For a filter channel FILTER(A9,B9),
its pattern P C Data specifies the type of data items that can be transmitted
through the channel. Any value d € P is accepted through its source end iff its
sink end can simultaneously dispense d; all data items d ¢ P are always accepted
through the source end but are immediately lost. Finally, a transformer channel
TRANSFORMER(A10, B10) accepts a data item and rewrites it according to
the transform expression of the channel (e.g., xPath expression), as the data
item passes through.

The aforementioned channels are supported by Eclipse Coordination Tools
(ECTs), a tool suite consisting of Eclipse plug-ins for designing, testing and
verification of connectors, as well as runtime engines for executing coordination

protocols on multiple platforms [11]. This set can be extended with new channels.
For example, timer channels, namely, t-timer, t-timer with off- and reset-option
and t-timer with early expiration have been introduced to deal with time-aware
service coordination [3]. Essentially, these channels accept data items at their
input ports and dispose them at their output ports after ¢ units of time, thus,
enabling modeling of process timeouts and delays. Additionally, (a)synchronous
drains with filter conditions appear to be useful for business process modeling
when conditional synchronization of two flows is required.

Complex connectors are constructed by composing simpler ones via the join
and hiding operations. Join plugs two channel-ends together creating a node at
the point of connection. To this node one can connect more channels via join
afterwards. If more than one accepting channel end is connected to a node every
incoming message is simultaneously written to all outgoing channels whenever
all outgoing channels at the node are ready to accept data. Whenever more than
one channel-end offers data at a node a non-deterministic choice decides which
data item is taken and written to all outgoing channels. The hiding operation
hides away one node which means that the data-flow occurring at this node
cannot be observed from outside and no new channel-end can be connected to
this node.

Figure 3 shows a Reo connector that simulates the purchase order scenario
introduced in Figure 1. We represent BPMN activities as simple FIFO1 channels
meaning that data flow in the source end of each channel corresponds to the
start of the activity, data flow in the sink end of the channel corresponds to the
end of the activity, while the data token residing in the channel buffer implies
that the activity is being executed. Special components, Writer and Reader, are
used to introduce and consume data flow at the beginning and the end of the
process. Nodes obtained by joining both source and sink ends of Reo channels
are called mized and considered to be internal for the connector. In contrast,
nodes where only source or only sink channel ends are merged are considered
to be external and can be attached to writers or readers, respectively. The Reo
editor in the ECT environment automatically highlights the internal nodes with
grey color. Two parallel flows are initiated by joining a sink end of a Reo channel
with start ends of two other channels (see, e.g., node start), and synchronized
using a synchronous drain (see, e.g., SYNC_DRAIN(paymentIsOk, paymentAck)
which requires tokens on both sides to fire). As explained in [12], data-driven
conditional choice can be realized using Reo filter channels. However, in this
model, for simplicity, we abstract from data issues and use a non-deterministic
exclusive router connector to direct a token from the node isPaymentOFk either
to the node paymentIsNotOk or to the node paymentlsOk, thus, obtaining a
process model with two possible execution paths.

Preliminary business process analysis and simulation can be accomplished us-
ing a tool that generates flash animated simulations of Reo connectors. The plug-
in depicts the connector shown in the editor in the animation view and generates
a list of possible execution scenarios. The parts of the connector highlighted blue
represent synchronous data flow. Tokens move along these synchronous regions.

S Purchase order
| Reader
o requests=1

)

\;Daymentqsr"' paymentlshotCk

-

ordgfCompleted. stop

.

checkCreditCardin S
checkCreditCardOut S
|1 wiriter

0O

= requests=1
;t&

paymentlsok

prepareProductsin prepareProductsCut

paymentadk shiplternin shipltemout

Fig. 3. Reo circuit for the purchase order scenario

Two simulation modes are supported: a plain mode, which demonstrates all pos-
sible execution alternatives for the whole process, and a guided or stepwise mode,
which shows each execution step separately, including all possible alternatives
for a current step.

Reo process models can be automatically obtained from BPMN diagrams us-
ing the BPMN2Reo converter available as part of ECT. In our previous work [12],
we defined rules for mapping all major BPMN modeling primitives to Reo. In
this way, we can also refine ambiguous BPMN diagrams by giving them precise
semantics. The mapping of UML ADs to Reo is similar to the mapping of a
subset of BPMN to Reo and will be integrated into ECT as well. The theoretical
basis for the converter from UML SDs to Reo is given in [13]. Such conversion is
automatically performed by the UMLSDs2Reo mapping tool which is currently
being integrated into ECT. Finally, BPEL2Reo converter is a tool provided by
the University of Tehran for converting BPEL process specifications to Reo [14].

4 Formal Behavioral Model for Service Composition:
Extended Constrained Automata

There are several extensions of CA that can be useful for automated analysis of
time-, resource- and QoS-aware Reo process models.

Let AV be a finite set of nodes, Data a fixed, non-empty set of data that can be
sent and received via Reo channels, and define a function § : N — Data, N € N
as a data assignment. CA use a symbolic representation of data assignments by
data constraints which are propositional formulas built from the atoms d4 € P,
ds = dp, and dy = d with standard boolean connectors, where A, B € N, d4
is a symbol for the observed data item at node A and d € Data, P € Data.
We write DA(N) to refer to the set of all data assignments for the node-set N,
DC(N) to denote the set of data constraints that at most refer to the observed
data items d4 at node A € N, and DC for DC(N).

Definition 1 (Constraint Automaton (CA) [10]). A CA is a tuple A =
(S, S, N, E) where

% {p3} O B3=fsy Dt

kﬂ<—> o te A2 Ty 98y
S oS0 Qe

0 B2=22

Fig. 4. Constraint automata for basic Reo channels

— S is a finite set of control states,

— Sy is is a set of initial states,

— N is a finite set of node names (e.g., I/0 ports of components/services),

— E is a finite subset of S x 2V x DC x S called the transition relation of A,
— DC is a data constraint that plays the role of the quard for a transition.

Figure 4 shows the CA for the basic Reo channels. The behavior of any Reo
process model can be obtained by computing the product of these automata.

Definition 2 (Product of CA [10]). The product for two constraint automata
A1 = (51,501, M, E1) and Ay = (Sa,S0.2,Na, E) is defined as a constraint
automaton Ay > Ay with the components (S1 x Sa,S0.1 X So,2,N1 U N2, E)
where E is the set of transitions e given by the following rules, where e; € E;
and ey € Ey:

— If er = (51,N1,01,51), e2 = (52, N2, 92,85), Ni N N2 = NoN Ny = 0 and
g1 N\ go 1s satisfable, then e = ({s1, $2), N1 U Na, g1 A go, (s}, 85)).

— Ife; = (s1,N,g,s]) where NN Ny =), then e = ({s1,s2), N, g, (s, 52))-

— Ifes = (s2,N,g,85) where NN Ny =0, then e = ({s1,52), N, g, (s1,55)).

Figure 5(a) shows the CA for one instance of the purchase order scenario,
that is, only states that are reachable from the initial state after a single reading
operation. Such CA are automatically obtained from Reo process models. Intu-
itively, each state of a CA without hiding corresponds to a unique combination of
empty /full buffers of the corresponding Reo circuit. We reflect this dependency
in state names by writing 1 for a full FIFO1 channel and 0 for an empty FIFO1
channel assuming their top-down left-to-right order in Fig. 3. CA transition la-
bels correspond to the names of Reo nodes where data flow is simultaneously
observed during the transition. After hiding internal ports, CA control states
represent process states observable by an external user. In this example, three
logical states have been identified: the initial state s;, state so corresponding
to the started process execution, and state s3 that implies the presence of the
deadlock in the process model due to the payment failure.

Reo timer channels can be exploited for time-aware analysis of business pro-
cess models with ECT. In our case study, one may be interested to know how
much time is required to process a single purchase order. The operational model
for time-aware Reo connector circuits is given with the help of Timed Constraint
Automata (TCA), which can be defined as follows. Additionally to the notation
introduced for CA, let C be a finite set of clocks. A clock assignment means a

i {SHIPITEMIN, PAYMENTACK, PAYMENTISOK, ISPAYMENTOK CHECK (REDITCARDOIT}

2 {SHIPITEMOUT,STOR}

ulu/n}

L {ISPAYMENTOK, PAYMENTISNOTOK, CHECK CREDT TCARDOUT,STORY

. {PREPAREPRODUCTSOLTY

MENTOK,PAYMEN’}VISNOTOKJCHECKCREDFFC&RI:OJTJSTCP}

o
= }éAREpRODUCTS&m
o

5 {ISPAYMENTOK, PAYMENTISNOTOK, CHECKCREDI TCARDOUT,STCR}

= {PREPAREPROCICTSIN, 5TART, CHECKCREDITC

(a) Without hiding

o {SHIPITEMOLTY @
U TP AYMENTISNOTOKY

(b) With hiding

& {[START}

Fig. 5. Constraint automata for the purchase order scenario

function v : C — Rx>¢. If £ € R>(then v 4t denotes the clock assignment that
assigns the value v(z) + ¢ to every clock x € C. If C' € C then v[C := 0] stands
for the clock assignment that returns the value 0 for every clock € C and the
value v(x) for every clock z € C\ C. A clock constraint (denoted cc) for C' is a
conjunction of atoms of the form z > n where x € C,N € {<,<,>,>,=} and
n € N. CS(C) (or CS) denotes the set of all clock assignments and CC(C) (or
CC) the set of all clock constraints.

Definition 3 (Timed Constraint Automaton (TCA) [3]). A TCA is an
extended CA A = (S, Sy, N, E,C,ic) where the transition relation E is a finite
subset of S x 2V x DO x CC x 2% x S such that de € DC(N) for any transition
e = (s,N,dc,cc,C,s") € E, C is a finite set of clocks, and ic : S — CC is a
function that assigns to any state s an invariance condition ic(s).

The time required to perform certain actions in the process may depend on
the availability of resources. For example, the time to deliver products in our
case study may depend on the capacity of a purchase delivery service. Moreover,
most of the systems have to change their states if an interaction has not occurred
or an operation has not been completed within a certain timeout. For modeling
such requirements in business processes, we extend Reo with time and resource-
awareness information. The formal model for this extension relies on the notion
of Resource-aware Timed Constraint Automata (RSTCA) [4].

It is possible to enable QoS analysis of Reo process models by assigning cer-
tain properties to Reo basic channels such as the ezecution time required to
transmit a data item, the cost of a single data transmission, the bandwidth that
limits simultaneous data transmission, or reliability which represents the proba-
bility of a successful data transmission. Operations over these parameters can be
formally specified using a notion of Q-algebra [15]. A Q-algebra is an algebraic
structure R = (C, @, ®,||,0,1) where C is the domain of R and represents a set
of QoS values. The operation @ induces a partial order on the domain of R and
is used to define a preferred value of QoS dimension, ® is an operator for sequen-
tial channel composition, while || is an operator for parallel channel composition.
For example, the Q-algebras corresponding to the above QoS dimensions are as
follows:

— Ezecution time: (R> U {oo}, min, +, mazx, 00, 0),
— Cost: (R> U {oc}, min, +, +, 00, 0),

— Bandwidth: (NU {oo}, max, min,+, 0, 00),

— Reliability: ([0, 1], max, x, x,0,1).

Taking into account this definition, Quantitative Constraint Automata (QCA) [2]
is as an extended CA A = (S, Sy, N, E, R) where the transition relation E is
a finite subset of UyenS X {N} x DC(N) x C x S and R = (C,$,®,],0,1)
is a labeled Q-algebra with domain C'. However, this model is not sufficient for
practical applications as certain QoS (e.g., execution time) may change the in-
tended behavior of Reo circuits. For example, consider a circuit consisting of two
channels, SYNC(A, B) and ASYNC_DRAIN(A, B), whose execution times are
t1 and ts, respectively. Assuming that the asynchronous drain accepts data at
port A at time ¢y only if there is no data flow on port B within the time interval
[to, to + t1], while the synchronous channel accepts data at port A only if it can
dispose it at time t = tg + to, the overall connector will accept data if to > t1,
and get blocked, otherwise. Therefore, QoS-aware Reo models require more ex-
pressive formalisms to represent their behavior. Indeed, depending on whether
delays are attributed to input/output operations on source/sink ends or to data
transmission across the channel, the computation of a delay of data transmis-
sion across a composite connector may differ. Another type of automata, namely,
Quantitative Intentional Automata (QIA), have been introduced to specify the
semantics of stochastic Reo: a version of Reo where one or more delays can be
assigned to input/output operations on channel ends and transmission delays.
QIA can be converted to Continuous-Time Markov Chains (CTMC) and used
for process performance analysis using PRISM model checker 2. More details
about this work can be found in [16].

5 Verifying Business Process Specification

The main purpose of the formal models presented above is to enable automated
verification of compliance-aware business processes and web service composi-
tions. This can be accomplished with the help of the Vereofy model checking

2 http://www.prismmodelchecker.org/

tool [17] developed at the University of Dresden. Vereofy is integrated into ECT,
but also can be executed from a command shell. It uses two input languages,
namely, Reo Scripting Language (RSL), and a guarded command language called
Constraint Automata Reactive Module Language (CARML) which are textual
versions of Reo and CA, respectively. Scripts in these languages are automati-
cally generated from graphical Reo/CA models, however, they can be written
manually as well, e.g., to specify connectors composed of a huge number of chan-
nels with repeating patterns.

Vereofy supports linear and branching-time model checking. Properties of the
Reo circuits are specified either in Linear Temporal Logic (LTL) or Alternating-
time Stream Logic (ASL). LTL allows designers to encode formulae about the
future of execution paths such as that some condition will eventually be true
or will be true until another condition remains true. Computation Tree Logic
(CTL) is a branching-time logic which models time as a tree-like structure and
allows designers to encode formulae about the future of possible execution paths.
Branching Time Stream Logic (BTSL) is a logic specifically designed for Reo [18].
It extends CTL with the ability to express conditions on data flow in channel
nodes using regular expressions. A standard Alternating-time temporal Logic
(ATL) aims at reasoning about existence or absence of a coalition’s strategy to
achieve or avoid a specific temporal goal given the behavioral specification of each
component. ASL is a CTL-like branching-time logic which combines features of
BTSL and ATL.

For model checking, a constraint automaton needs to be associated with
an arbitrary finite data domain (Data), which collects all possible data items
transmitting through the corresponding Reo circuit or stored within the local
variables of components. Data is a global data type, which can be Bool, int, or
enum, depending on the user settings. The default data domain is int(0,1) and
in our case it is used for control flow analysis.

There exist a number of studies on how system properties can be expressed
using logical formalisms. COMPAS deliverable D2.2 [19] examines the suitabil-
ity of Deontic logic, LTL, and XML-based approaches for formal specification
of regulatory compliance requirements. It demonstrates that basic compliance
requirements can be successfully expressed in all these languages, but advocates
the use of LTL as the most comprehensible notation by end users. In our case
study, the following LTL formula

G(PrepareProductsOut — F ShipItemsIn)

states that whenever the data flow is observed in PrepareProductsOut port mean-
ing that the activity PrepareProducts is finished, a data flow must be eventually
observed in ShipltemsIn port corresponding to the invocation of the Shipltems
activity. An ASL formula AG[EX[true]] which literally means “for all paths, it
1s globally true that there exists a next state” can be used for deadlock detection.
Both these formulae fail for the Reo process model presented in Figure 3. Indeed,
in this scenario, if customer payment fails, the products remain prepared (e.g.,
packed), but will never be shipped. A proper model for this scenario is shown in
Figure 6.

Check Credit Card

3
™
(]
|5 payment successiul?
Yes /
\'4h{ Frepare Praducts H Shiptems };/
(a) BPMN model
S2d PurchaseOrde..,
=] Reader
Ea = reguests=1
sPaymentle" paymentIsMotCk orderCompleted
e stop
[E) writer ol
© requests=1)

checkCreditCardin

start checkCreditCardCut

payrnentIsCk

prepareProductsin prepareProductsOut
shipltemIn shipItemnCut

(b) Reo process model

Fig. 6. Refined purchase order scenario

Once the process model is refined to satisfy all necessary conditions, it can
be turned into an executable process. Figure 7 shows our scenario with Reo
primitives called components attached to in/out ports of the FIFO1 channels
which simulate activity invocations and replies. The observable behavior of real
world services expressed by means of extended CA can be associated with these
components. An executable code that realizes such a service composition is au-
tomatically generated by code generation tools of ECT.

Certain compliance requirements can be seen as informal descriptions of ideal
business process fragments. Such process fragments in their turn can be modeled
using Reo and/or CA. In this case, the compliance of software systems actually
used in organizations with the ideal processes can be established by checking
bisimulation equivalence of their corresponding CA models. Beforehand, one
can abstract from unimportant details of an existing process by hiding data
flow of the automata ports that are not relevant to a particular compliance
policy. Algorithms for finding bisimilar states, and, thus, checking behavioral
equivalence of CA or Reo circuits are presented in [20].

6 Compliance-aware Process Modeling by Examples

One of the popular resource-aware constraints is a dual control or so-called four
eyes principle. It is applied, for example, in investment banking, to segregate the

= checkCreditCand

JedPurchase orde. ..

= Reader
= regquests=1

paymentIshotCk orderCompleted

stop
=) Writer

= requests=1

checkCreditCardIn .
start checkCreditCardOut ey

payrnentIsCk

prepareProduct: prepareProductsCut|

=l prepareProducts = shipltem

Fig. 7. Reo model of a service composition for the purchase order scenario

duties of a trader from the duties of an internal auditor. In the corresponding
process model, it is important to ensure that generally each bank clerk can play
both roles, but he/she cannot play both roles in a single instance of the process.
Later, the term SoD was introduced for referring to a principle of information
protection and fraud prevention by limiting user access to vulnerable data and/or
operations. This category of compliance requirements is extensively discussed
in [21,22].

Figure 8 shows a Reo process model which consists of sequential invocation of
two activities, T'1 (investment) and T2 (authorization), simulated using FIFO1
channels in separate Reo connectors. In this model, the activity T'1 can be exe-
cuted by three authorized clerks, Alice, Bob and Clara, while the activity T2 can
be executed by Alice, Bob and Frank. These access control rights are modeled
by means of filter channels FILTER(T1in, Tlstart) and FILTER(T2in, T2start)
with conditions

#Tlin.clerkName € D1 = {Alice, Bob, Clara}

and
#T2in.clerkName € D2 = {Alice, Bob, Frank},

respectively. Here we use “#X” to refer to data observed at port X. Parts of the
Coordinator circuit emphasized with dashed rectangles impose the dual control
constraint in this scenario. The two Writer components connected to ports U1
and U2 correspond to two users, trader and internal auditor, who login to the
system and perform the investment and authorization operations, respectively.
The synchronous drain channel with filter FILTER_SYNC_DRAIN(U2, A5) uses
a condition #U2 # # A5.trador to ensure that the internal auditor differs from
the trader who performed the investment operation in this process instance. This

ST 1(Ivest) S8 T2(Authorize i,

— ¥A3.(requestData, trador)-> #T1in.(requestData ™, cler
—] Writer
= pagquests=1

—» #47. (requestData, trador, intemalduiitar) - > #72in (requbstData*, cleiktame)
------------ . e || Reader

1 i v = paquessts=1
!]
Al /J? A3 :A'-l s A6 a7 a8 stop
' 12 #U21=# A5 tradr
I
i
i)
I
i
i
i
i
i
i
I

'

1
i

i
!

'
i

1
|
!

'
i

1
|
: '
! |
! :
i temalAuditcf
i

|
|

|

'

|
requestpata| St
|

121 Writer =1 Writer
'

|
I
1
I
1
1
|
1
i
|
|
1
1
|
\ = reguests=1 I b = reguests=1
] .

Fig. 8. Modeling a process with segregation of duties in Reo

circuit uses two special join nodes A2 and A6 which merge the data items from
the incoming channels. Transformer channels TRANSFORMER(A2, T1lin) and
TRANSFORMER(A6, T2in) are employed to transform data objects from the
Coordinator circuit to the format used in circuits representing operations 7'1
and T2.

The compliance of this process model to the dual control principle can be
checked using the ASL formula

A[#T1start.clerkName # #T2.start.clerkName]true,

which requires clerk names executing the involved operations to be different.

Suppose now an organization providing a composite service needs to ensure
compliance to a privacy policy stating that user personal data can be transferred
to a third party only if the user explicitly authorized such a transfer. For example,
in the above investment process, the trader may invest on behalf of a bank
client who entrusts his/her personal data (name, passport number, organization,
address, etc.) to the bank, but does not want them to be shared with other
partners/services (e.g., trading organization). On the other hand, some of these
data can be vital for involved services, and to complete the process the bank
needs to get the client’s permission to transfer particular data to particular
services. Such permissions can be formalized by means of privacy rules and
stored in the following format:

r; = (ruleID, clientID, dataltem, recipientID, action, permission),

where rulelD is a rule identifier, clientID is a client identifier, dataltem is a data
item that requires authorization, recipientID is a partner (service) to whom the
data item will be transferred, action is an action on data item performed by the

recipient (e.g., use, retain, share, etc.) permission is a boolean value that permits
or prohibits the transfer of the specified data item to the specified partner for the
particular purpose defined by the action. For example, Alice can authorize the
transfer of her passport number to the T1 (Investment) service if it is needed for
processing her request (use), but prohibit to retain this data after her request
has been processed.

Although the majority of the publicly available service policies are published
in plain natural languages, they usually provide sufficient information about
the intended use of personal data. XML-based specifications such as WP-Policy
and XARML allow designers to express privacy policies in a more structured
manner. Recent approaches to privacy management suggest the transfer from
static policies to customizable solutions which allow parties to negotiate the use
of personalized data. This assumes a formalization of possible actions performed
by each partner on these data. In our case, providers of composite services may
store privacy policies of individual services in the form

pj = (ruleID, servicelD, dataltem, action, purpose, necessity, disclosure),

where rulelD is a rule identifier, servicelD is a service used in the composition,
dataltem is a private information concern, action is an action on data item
performed by the service, purpose explains the intended use of this data item,
necessity indicates whether this data item is vital for a service or optional, while
disclosure specifies whether it can be shared with other partners.

The selection of permitted actions on protected data items regarding the
invocation of a particular service by a particular client can be modeled using
Reo transformer channels. Assuming that R : 7;,4 = 1,n is a table of client
permissions, an SQL request

SELECT action FROM R
WHERE clientID = Y%currentClientName
AND dataltem = ‘passport number’
AND recipientID = ‘T1’
AND permission = ‘true’

can be realized by a channel TRANSFORMER(A2, T1in) to select a set P of
actions permitted for the service T'1 over a client’s passport number. Here the
variable %currentClientName refers to a client name from the current investment
request (Alice). Similarly, assuming that P : p;,j =1,m is a table of rules
formalizing service privacy policies, a set R of requested actions can be obtained
using the following SQL request

SELECT action FROM P
WHERE serviceID = ‘T1’
AND dataltem = ‘passport number’
AND necessity = ‘vital’.

A constraint R C P for the FILTER(T1in, T1start) channel will ensure that
the data transition through this channel is possible only if the set of requested

f24 Reminder
|=] Writer |=] Reader

= requests=1 O"'—:—P.—PO = requests=1

Bl A5
start Y stop in

|| Reader

> () = requests=1

| Writer uz

© requests=1

(a) Auditor notification

{B2,B3}, x=t
ZB2=“timeout™
%0

{B2}, x:=0

{B2}, #B2="off”
Xt

{B3}, x=t {B2}, #B2=“reset”
ZB3=*timeout” x:=0

(b) TCA for a t-timer with off and reset options

Fig. 9. Modeling time-aware business processes

actions is included in the set of permitted actions. Checking an appropriate
formula over the domain Act = enum {‘use’, ‘retain’, ‘share’,...} we can auto-
matically establish whether privacy policies match (state T'1start is reachable)
or mismatch (state Tlstart is unreachable). Potentially, more complex match-
ing functions, e.g., ones that take into account action implication (e.g., ‘retain’
implies ‘use’, etc.) can be implemented.

In the above model of the investment banking process the system waits until
a trader and an auditor perform their activities. Using timer channels we can
model a system that notifies the trader about pending requests and the auditor
about the need to authorize the performed investment operations if they do not
execute their activities in a required time period. Figure 9(a) shows an example
of a Reo circuit that uses a t-timer with off- and reset-option TIMER(B2,B3)
to achieve this goal. A TCA for this channel is shown in Figure 9(b). A t-timer
channel accepts any input data and returns on its sink end a timeout signal after
a delay of ¢ time units. In our case, we use a t-timer to measure how long the
investment request waits for authorization. The off-option allows the timer to be
stopped before the expiration of its delay when a special “off” value is consumed
through its source end. This option is used to switch off the timer when the
authorization message is received from the auditor. The reset-option allows the
timer to be reset to 0 after it has been activated, when a special “reset” value is
consumed through its source end. We reset the timer after sending a notification
message to the auditor.

Additionally, timer channels can be exploited to initiate the rollback of an
investment activity that was not authorized in a certain time period after au-
ditor notification. Modeling of long-running business transactions with Reo is
discussed in [23].

7 Related Work

The problem of formal business process modeling and high-level property specifi-
cation has received plenty of attention in the research community. Formal struc-
tures such as Petri-nets, transition systems, process algebras and logic-based
approaches have been widely employed to formalize the semantics of BPMN [5,
24], UML ADs [25] and WS-BPEL [26-28]. A comparative analysis of Petri-nets,
transactional logics and temporal logics can be found in [29]. At a first glance,
Reo is somewhat reminiscent of Petri-nets. However, Petri-nets normally offer
synchronization at each transition of a net, whereas in Reo synchronization is
defined by the types of channels connected together. This enables more con-
cise representation of complex workflow patterns. Synchronous drain channels
in Reo are convenient for modeling processes where token cleaning is required,
while Petri-nets are usually extended with inhibitor and reset arcs for this pur-
pose, which significantly reduces the number of software tools able to analyze
such models [30]. Due to the compositional nature of Reo, designers can eas-
ily model various sub-processes separately, assemble them for verification and
testing purposes and later on deploy and execute coordination code on separate
machines without any changes in the system behavior. Process algebras have
been used for formal modeling and analysis of business processes. Like other
traditional models of concurrency, process algebras offer an action based model
of concurrency, where more complex actions (i.e., processes) are composed out of
simpler ones. In these models, action is the first class concept making the inter-
action protocols implicit in the static structures of the compound processes that
manifest themselves as the sequences of the matching actions of process pairs
only as they unravel their behavior in the temporal domain. In contrast, Reo
offers a model of concurrency where interaction constitutes the only first class
concept. The distinction between Reo and traditional models of concurrency is
analogous to the distinction between constraint programming and imperative
programming. Every channel in Reo explicitly represents a primitive interac-
tion, as a binary relation that imposes a constraint on the actions at its ends.
More complex interaction protocols are constructed by composing such binary
constraints into Reo circuits. Having interaction protocols as explicit constraints
makes it easier to associate other properties and constraints, such as QoS or
compliance, to them. Moreover, Reo/CA-based models are easier than process
algebras, which make them a promising technique for practical applications for
designers without a strong formal background.

In the area of SOC, the aforementioned formalisms have been applied for
web service compatibility checking [31,32] and composition verification [33, 34].
Extended CA are suitable for time-, resource- and QoS-aware behavioral com-

patibility analysis as well. An interesting property of CA as a formal model for
web service compositions is their ability to deal with interaction transactions.
For example, if a user has to provide his name, birth date, passport number and
home address to a system, it is often not important in what order he/she in-
troduces these data. CA allow us to abstract from such details by modeling the
whole interaction as a single transition.

Various types of logic-based languages (First-Order Logic [35,36], LTL [8],
CTL [37,38], deontic logic [39,40], temporal deontic assignments [41], concur-
rent transaction logic [37], etc.) have been applied for high-level process prop-
erty specification. Existing approaches provide means for formal specification,
verification and enforcement of compliance requirements, but their integration
appears to be very problematic. Each model is specifically designed to deal with
a certain set of requirements representing a single compliance category, e.g.,
temporal constraints on control flow [42,43], security requirements [44], privacy
policies [45, 32], task based entailment constraints [46], segregation of duties [47,
48], or performance evaluation [49]. The advantage of our approach is that it
allows designers to check various types of compliance requirements represented
as constraints on transitions in a single CA model. LTL/ASL property specifica-
tion formats provide powerful means for formalizing and model checking these
requirements.

8 Conclusions and Future Work

In this paper, we discussed how Reo/CA can be used for compliance-aware busi-
ness process modeling and web service composition verification. We aligned vari-
ous extensions of CA and illustrated their applications using simple but realistic
examples. We showed how structural errors in workflow models can be detected,
and formalized the problem of process compliance verification to segregation of
duties and privacy policies as reachability problems in CA. All steps of business
process development, including control/data flow modeling, property specifica-
tion, process verification and code generation are accomplished with the ECT.

We plan to extend the presented work in several ways. First, additional tools
for property specification and verification will be introduced. For example, by
integrating appropriate real-time model checking tools with TCA, we can sup-
port more powerful time-aware business process analysis. Second, by integrating
syntactic/semantic interface matching algorithms with CA bisimulation check-
ing we can enable (semi-)automated service discovery and composition given
Reo process models and CA-based specifications of required service operations.
Another line of work is related to the generation of graphical Reo circuits from
RSL which will provide the basis for efficient process model reconfiguration using
RSL-like scripts. Moreover, there is ongoing work on enabling Reo/CA to ex-
press priority of certain alternatives and transitions. Such models can be useful
for implementing exception and compensation handling in Reo process models.

9

Acknowledgements

This work is part of the IST COMPAS project, funded by the European Com-
mission, FP7-ICT-2007-1 contract number 215175, http://www.compas-ict.eu/.

References

10.

11.

12.

13.

14.

Arbab, F.: Reo: A channel-based coordination model for component composition.
Mathematical Structures in Computer Science 14(3) (2004) 329-366

. Arbab, F., Chothia, T., Sun, M., Moon, Y.J.: Component connectors with QoS

guarantees. In: Proc. of the Int. Conf. on Coordination Languages (Coordina-
tion’07). Volume 4467 of LNCS., Springer (2007) 286—-304

Arbab, F., Baier, C., Boer, F., Rutten, J.: Models and temporal logical specifica-
tions for timed component connectors. Software and Systems Modeling 6(1) (2007)
59-82

Sun, M., F.Arbab: On resource-sensitive timed component connectors. In: Proc.
of the Int. Conf. on Formal Methods for Open Object-Based Distributed Systems
(FMOODS’07). Volume 4468 of LNCS., Springer (2007) 301-316

Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process
models in BPMN. In: Information and Software Technology (IST). Volume 50 of
12., ACM Press (2008) 1281-1294

Awad, A., Decker, G., Weske, M.: Efficient compliance checking using BPMN-
Q and temporal logic. In: Proc. of the Int. Conf. on Business Process Modeling
(BPM’08). (2008, to appear)

Wolter, C., Schaad, A.: Modeling of task-based authorization constraints in BPMN.
In: Proc. of the Int. Conf. on Business Process Modeling (BPM). Volume 4714 of
LNCS., Springer (2007) 6479

Liu, Y., Miller, S., Xu, K.: A static compliance-checking framework for business
process models. IBM Systems Journal 46(2) (2007) 335-361

Arbab, F., Baier, C., de Boer, F.S., Rutten, J.J.M.M.: Models and temporal logics
for timed component connectors. Int. Journal on Software and Systems Modeling
6(1) (2007) 59-82

Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Science of Computer Programming 61 (2006) 75-113
Arbab, F., Koehler, C., Maraikar, Z., Moon, Y.J., Proenca, J.: Modeling, testing
and executing Reo connectors with the Eclipse coordination tools. In: Proc. of the
Int. Workshop on Formal Aspects in Component Software, Elsevier (2008)
Arbab, F., , Kokash, N.; Sun, M.: Towards using Reo for compliance-aware business
process modelling. In: Proc. of the Int. Symposium on Leveraging Applications
of Formal Methods, Verification and Validation. Volume 17 of LNCS., Springer
(2008)

Arbab, F., Sun, M.: Synthesis of connectors from scenario-based interaction spec-
ifications. In: Proc. of the Int. Symposium on Component Based Software Engi-
neering (CBSE’08). Volume 5282 of LNCS. (2008)

Tasharofi, S., Vakilian, M., Moghaddam, R.Z., Sirjani, M.: Modeling web service
interactions using the coordination language Reo. In: Proc. of the Int. Workshop
on Web Services and Formal Methods. Volume 4937 of LNCS., Springer (2008)
108-123

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Chothia, T., Kleijn, J.: Q-automata: Modelling the resource usage of concurrent
components. Electronic Notes in Theoretical Computer Science: Proc. of the Int.
Workshop on the Foundations of Coordination Languages and Software Architec-
tures (FOCLASA 2006) 175(2) (2007) 79-94

Arbab, F., Chothia, T., van der Mei, R., Sun, M., Moon, Y., Verhoef, C.: From
coordination to stochastic models of QoS. In: Proc. of the 11th International
Conference (COORDINATION). Volume 5521 of LNCS., Springer (2009) 268-287
Baier, C., Blechmann, T., Klein, J., Kliippelholz, S.: A uniform framework for
modeling and verifying components and connectors. In: Proc. of the 11th Inter-
national Conference (COORDINATION). Volume 5521 of LNCS., Springer (2009)
268-287

Klippelholz, S., Baier, C.: Symbolic model checking for channel-based component
connectors. Electronic Notes in Theoretical Computer Science 175(2) (2007) 19-37
Concortium, C.: Initial specification of compliance language constructs and oper-
ators. COMPAS Deliverable (2008)

Blechmann, T., Baier, C.: Checking equivalence for Reo networks. In: Proc. of the
Int. Workshop on Formal Aspects of Component Software (FACS). (2007)

Gligor, V.D., Gavrila, S.I., Ferraiolo, D.: On the formal definition of separation-
of-duty policies and their composition. In: Proc. of IEEE Symposium on Research
in Security and Privacy. (1998)

Schaad, A., Lotz, V., Sohr, K.: A model-checking approach to analysing organ-
isational controls in a loan origination process. In: Proc. of the eleventh ACM
symposium on Access Control Models and Technologies (SACMAT). (2006)
Kokash, N., Arbab, F.: Applying Reo to service coordination in long-running busi-
ness transactions. In: Proceedings of the ACM Symposium on Applied Computing
(SAC’09), ACM Press (2009) 318-319

Wong, P., Gibbons, J.: A process semantics for BPMN. In: Proc. of the Int. Conf.
on Formal Engineering Methods. Volume 5256 of LNCS., Springer (2008)

Storrle, H., Hausmann, J.H.: Towards a formal semantics of UML 2.0 activities.
Software Engineering (2005) 117-128

Lucchia, R., Mazzara, M.: A pi-calculus based semantics for WS-BPEL. Journal
of Logic and Algebraic Programming 70(1) (2007) 96-118

Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL 2.0. In: Proc.
of the Int. Workshop on Web Services and Formal Methods. Volume 4937 of LNCS.,
Springer (2008) 77-91

Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter
Hofstede, A.H.M.: Formal semantics and analysis of control flow in WS-BPEL.
Science of Computer Programming 67(2-3) (2007) 162-198

Oren, E., Haller, A.: Formal frameworks for workflow modelling. Technical Report
2005-04-07, DERI - Digital Enterprise Research Institute (2005)

Raedts, 1., Petkovi¢, M., Usenko, Y.S., van der Werf, J.M., Groote, J.F., Somers,
L.. Transformation of BPMN models for behaviour analysis. In: Proceedings of
the International Workshop on Modelling, Simulation, Verification and Validation
of Enterprise Information Systems (MSVVEIS). (2007) 126-137

Guermouche, N., Perrin, O., Ringeissen, C.: Timed specification for web ser-
vices compatibility analysis. Electronic Notes in Theoretical Computer Science
(ENTCS) 200(3) (2008) 155-170

Mokhtari, K., Benbernou, S., Said, M., Coquery, E., Hacid, M., Leymann, F.:
Verification of privacy timed properties in web service protocols. In: Proc. of the
Int. Conf. on Services Computing, IEEE Computer Society (2008) 593-594

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Hamadji, R., Benatallah, B.: A petri net-based model for web service composition.
In: Proc. of the Australasian Database Conf. (ADC’03), ACM Press (2003)

Yang, Y., Tan, Q., Xiao, Y.: Verifying web services composition based on hier-
archical colored Petri nets. In: Proc. of the Int. Workshop on Interoperability of
Heterogeneous Information Systems, ACM Press (2005) 47-54

Dingwall-Smith, A., Finkelstein, A.: Checking complex compositions of web ser-
vices against policy constraints. In: Proc. of the Int. Workshop on Modelling, Simu-
lation, Verification and Validation of Enterprise Information Systems (MSVVEIS).
(2007)

Halpern, J.Y., Weissman, V.: Using first-order logic to reason about policies. In:
Proc. of the Computer Security Foundations Workshop (CSFW). (2003)
Mukherjee, S., Davulcu, H., Kifer, M., Senkul, P., Yang, G.: Logic based approaches
to workflow modeling and verification. In: Logics for Emerging Applications of
Databases. (2003)

Koehler, J., Tirenni, G., Kumaran, S.: From business process model to consis-
tent implementation: A case for formal verification methods. In: Proc. of the Int.
Enterprise Distributed Object Computing Conf., IEEE Computer Society (2002)
96-107

Sadiq, S., Governatori, G., Naimiri, K.: Modeling control objectives for business
process compliance. In: Proc. of the Int. Conf. on Business Process Management
(BPM’07). Volume 4714 of LNCS., Springer (2007) 149-164

Cederquist, J., Corin, R., Dekker, M., Etalle, S., den Hartog, J., Lenzini, G.: Audit-
based compliance control. Int. Journal of Information Security 6(2) (2007) 133-151
Goedertier, S., Vanthienen, J.: Designing compliant business processes with obliga-
tions and permissions. In: Proc. of the Int. Workshop on Business Process Design
(BPD’06). Volume 4103 of LNCS. (2006) 5-14

Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business
processes and business contracts. In: Proc. of the Int. Enterprize Distributed Object
Computing Conf., IEEE Computer Society (2006) 221232

Ghose, A., Koliadis, G.: Auditing business process compliance. In: Proc. of the
Int. Conf. on Service-Oriented Architectures (ICSOC’07). Volume 4749 of LNCS.,
Springer (2007) 169-180

Brunel, J., Cuppens, F., Cuppens, N., Sans, T., Bodeveix, J.P.: Security policy
compliance with violation management. In: Proc. of the Workshop on Formal
Methods in Security Engineering (FMSE’07), ACM Press (2007) 31-40

Hamadi, R., Benatallah, B., Paik, H.: Conceptual modeling of privacy-aware web
service protocols. In: Proc. of the Int. Conf. on Advanced Information Systems
Engineering. Volume 4495 of LNCS., Springer (2007) 233-248

Wolter, C., Schaad, A., Meinel, C.: Task-based entailment constraints for basic
workflow patterns. In: Proc. of the ACM Symposium on Access Control Models
and Technologies. LNCS, ACM Press (2008) 51-60

Li, N., Wang, Q.: Beyond separation of duty: An algebra for specifying high-level
security policies. In: Proc. of the ACM Conf. on Computer and Communications
Security, ACM Press (2006) 356-369

Knorr, K., Stormer, H.: Modeling and analyzing separation of duties in work-
flow environments. In: Proc. of the Int. Conf. on Information Security: Trusted
Information: the New Decade Challenge. (2001) 199-212

Koizumi, S., Koyama, K.: Workload-aware business process simulation with sta-
tistical service analysis and timed Petri net. In: Proc. of the Int. Conf. on Web
Services (ICWS), IEEE Computer Society (2007) 70-77

