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ABSTRACT 
 
There has been a considerable amount of work devoted by transportation safety analysts to the 
development and application of new and innovative models for analyzing crash data. One 
important characteristic about crash data that has been documented in the literature is related to 
datasets that contained a large amount of zeros and a long or heavy tail (which creates highly 
dispersed data). For such datasets, the number of sites where no crash is observed is so large that 
traditional distributions and regression models, such as the Poisson and Poisson-gamma or 
negative binomial (NB) models cannot be used efficiently. To overcome this problem, the NB-
Lindley (NB-L) distribution has recently been introduced for analyzing count data that are 
characterized by excess zeros. The objective of this paper is to document the application of a NB 
generalized linear model with Lindley mixed effects (NB-L GLM) for analyzing traffic crash 
data. The study objective was accomplished using simulated and observed datasets. The 
simulated dataset was used to show the general performance of the model. The model was then 
applied to two datasets based on observed data. One of the dataset was characterized by a large 
amount of zeros. The NB-L GLM was compared with the NB and zero-inflated models. Overall, 
the research study shows that the NB-L GLM not only offers superior performance over the NB 
and zero-inflated models when datasets are characterized by a large number of zeros and a long 
tail, but also when the crash dataset is highly dispersed. 
 
Keywords: Poisson-gamma, negative binomial Lindley, generalized linear model, crash data. 
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1.0 INTRODUCTION 
 
Regression models play a significant role in highway safety. These models can be used for 
various purposes, such as establishing relationships between motor vehicle crashes and different 
covariates (i.e., understanding the system), predicting values or screening variables. As 
documented in Lord and Mannering (2010), there has been a considerable amount of work 
devoted by transportation safety analysts to the development and application of new and 
innovative models for analyzing count data. The development and application of new statistical 
methods are fostered by the unique characteristics associated with crash data. One important 
characteristic that has been documented in the literature is related to datasets that contained a 
large amount of zeros and a long or heavy tail (which creates highly dispersed data). For such 
datasets, the number of sites where no crash is observed is so large that traditional distributions 
and regression models, such as the Poisson and Poisson-gamma or negative binomial (NB) 
models, cannot be used efficiently. 
 
In order to overcome this important problem, researchers have proposed the use of the zero-
inflated model (both used for the Poisson and NB distributions) to analyze this kind of dataset 
(Shankar et al., 1997; Kumara and Chin, 2003; Shankar et al., 2003). This type of model assumes 
that the zeros are generated using a two-state data generating process: zero or safe state and non-
zero state. Although these models may offer a better statistical fit, a few researchers (Warton, 
2005; Lord et al., 2005 & 2007) have raised important methodological issues about the use of 
such models, including the fact that the safe state has a distribution with a long-term mean equal 
to zero. This latter characteristic is obviously theoretically impossible. So far, there has been no 
regression model that has been available for properly and fully analyzing crash data with an 
abundant number of zeros1. Such models are particularly needed when changing the 
characteristics of the dataset cannot be done or is difficult to accomplish (see Lord and 
Geedipally, 2011). Under this scenario, the large number of zeros could still create many 
difficulties for adequately analyzing such dataset. 
  
The objective of this paper is to document the application of a NB generalized linear model with 
Lindley mixed effects (NB-L GLM) for analyzing traffic crash data. This new model is based on 
the recently introduced NB-Lindley (NB-L) distribution for analyzing count data (Zamani and 
Ismail, 2010, Lord and Geedipally, 2011). The NB-L distribution is, as the name implies, a 
mixture of the NB and the Lindley distributions (Lindley, 1958; Ghitany et al., 2008). This two-
parameter distribution has interesting and thorough theoretical properties in which the 
distribution is characterized by a single long-term mean that is never equal to zero and a single 
variance function, similar to the traditional NB distribution.  
 
The study objective was accomplished using simulated and observed datasets. The simulated 
dataset was used to show the general performance of the model. The model was then applied to 
two datasets, one of which is characterized by a large amount of zeros. For both datasets, the 
observed dispersion was very large. The NB-L GLM was compared with the NB and zero-

                                                            
1 Mayshkina and Mannering (2009) have proposed a zero-state Markov switching model, which overcomes some of 
the criticisms discussed above. 
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inflated models. The reader needs to bear in mind that regression models, such as the Poisson-
gamma, Poisson-lognormal or the NB-L model are used as an approximation tool for analyzing 
the crash process (Lord et al., 2005). This process is known as the Poisson trials with unequal 
probability of events.  
 
The next section describes the characteristics of the NB-L GLM.  
 
2.0 CHARACTERISTICS OF THE NB-L GLM 
 
This section describes the characteristics of the NB-L distribution and the GLM for modeling 
crash data.  
 
The NB-L distribution is a mixture of Negative Binomial and Lindley distributions. This mixed 
distribution has a thick tail and works well when the data contains large number of zeros or is 
highly dispersed. In other situations (e.g., less dispersed data, etc.), it works similar to that of the 
NB distribution. 
 
Before tackling the NB-L, it is important to first define the NB distribution. The NB distribution 
can be parameterized in two different manners, either as a mixture of the Poisson and gamma 
distributions or based on a sequence of independent Bernoulli trials. Using the latter 
parameterization, the probability mass function (pmf) of the NB distribution can be given as:  
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The parameter ‘p’ is defined as the probability of failure in each trial and is given as: 
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Where,  
  = mean response of the observation; and, 
  = inverse of the dispersion parameter   (i.e.  /1 ). 
 

In the context of the NB GLM, the mean response for the number of crashes is assumed to have a 
log-linear relationship with the covariates and is structured as:  
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Where,  
            X = traffic and geometric variables of a particular site; 
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s = regression coefficients to be estimated; and, 
 q = total number of covariates in the model. 
 
Then, it can be shown that the variance is equal to (Casella and Berger, 1990): 
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Using Equations (1) and (2), the pmf of the NB distribution and its GLM can be re-
parameterized this way (as a Poisson-gamma model):  
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The pmf in Equation (5) is the one normally used for analyzing crash count data. 
 
The NB-L distribution2 is defined as a mixture of NB and Lindley distributions such that: 
 

  dyyYP   );(Lindley),;(NB),,,(                     (6) 

 
Here, f(u;a,b) means that f  is the distribution of the variable  , with parameters  a  and b . The 
parameter   is similar to the one described in Equation (3) and    follows the Lindley 
distribution. 
 
The Lindley distribution is a mixture of exponential and gamma distributions (Lindley, 1958; 
Ghitany et al., 2008; Zamani and Ismail, 2010; Lord and Geedipally, 2011). The pmf of the 
Lindley distribution can be defined as follows: 
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The first moment (i.e., the mean) of the Lindley distribution is given as (Ghitany et al., 2008): 
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The second moment of the Lindley distribution is given as (Ghitany et al., 2008): 

                                                            
2  The NB-L distribution in this work has slightly been re-parameterized from the original paper by Lord and 
Geedipally (2011) in order to fully develop the GLM. 
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Thus, if the number of crashes Y is assumed to follow a NB-L ),( p  distribution, then the mean 
function can be given as: 
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with the parameters described in Equation (3).  

 
The crash variance is given by the Equation (11) below: 
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3.0 PARAMETER ESTIMATION 
 
As discussed in the previous section, the likelihood function for the NB-L model is given by 
Equation (6), where the mean response for the number of crashes ‘ ’ is assumed to have a log-
linear relationship with the covariates as given in Equation (3). 
 
A very important characteristic associated with this equation is related to the fact that the 
involved integral does not have a closed form. It can be solved elegantly using the hierarchical 
representation implicit both in the integrand and in the definition of the Lindley distribution 
itself. That is, the NB-L distribution conditional upon the unobserved site-specific frailty term , 

that explains additional heterogeneity, can be re-written as follows: 
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       (12) 
 
The above formulation can be thought of as an instance of the Generalized Linear Mixed model 
(GLMM) where the mixed effects (or the frailty terms) follow the Lindley distribution.  
However, considering that the Lindley is not a standard distribution, the hierarchical 
representation of the Lindley distribution can be further utilized. 
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Recall that the Lindley distribution is a two component mixture given by (Zamani and Ismail, 
2010): 
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Recognizing the special structure in the mixture components, the above equation can be re-
written as follows:  
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A hierarchical representation of the Lindley distribution can be represented as, 
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whose marginal distribution is the Lindley distribution. The complete multi-level hierarchical 
model can now be given as: 
 



















1

1
;Bernoulli ~ z

)z,1;Gamma( ~ 

),;(NB ) | ,,(

z

yyYP

       (16)

 

 
The above formulation has a nice Bayesian interpretation. That is, the observations follow the 
NB distribution and the site-specific frailty term follows a gamma distribution a priori. The 
shape parameter of the gamma distribution follows a Bernoulli distribution a priori. In this 
context, the above model can be seen as a hierarchical model involving a standard distribution at 
all stages. Consequentially, inference can be carried-out quite routinely using Markov chain 
Monte Carlo (MCMC) and an easy-to-use software tool, such as WinBUGS (Spiegelhalter et al., 
2003). It should be pointed out, however, that the Bayesian formulation requires elicitation of 
priors on all the unknown parameters (in this case , , and    ).  In this study, normal priors 

for  , a beta prior for 1
1

 
and a gamma prior for 

1  were used. The re-parameterization of 

the latter two parameters helps in improved convergence of the MCMC chains and hence the 
numerical accuracy of the estimates. Additional discussion about convergence issues is described 
in Section 6.0. 
 
A total of three Markov chains were used in the model estimation process with 30,000 iterations 
per chain. The first 15,000 iterations (burn-in samples) were discarded. Thus, the remaining 
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15,000 iterations were used for estimating the coefficients. The Gelman-Rubin (G-R) 
convergence statistic was used to verify that the simulation runs converged properly. In the 
analysis, the research team ensured that G-R statistic was less than 1.1. For comparison, Mitra 
and Washington (2007) suggested that convergence was achieved when the G-R statistic was 
less than 1.2. 
 
4.0 DATA DESCRIPTION 
 
This section describes the characteristics of the two datasets. The first part summarizes the 
characteristics of the Indiana data. The second part presents the summary statistics for the single-
vehicle crash data that occurred on two-lane rural highways in Michigan. Both datasets contained 
several variables, which were used to minimize the omitted bias problem that can plague the 
development of crash prediction models (Lord and Mannering, 2010). 
 
4.1 INDIANA DATA 
 
The first dataset contained crash and traffic data collected for a five-year period (1995 to 1999) 
at 338 rural interstate road sections in the state of Indiana. The data have previously been used 
for estimating a model of accident rates using a tobit regression approach (Anastasopoulus et al., 
2008; Washington et al., 2011). In this dataset, 120 out of the 338 highway segments did not 
have any reported crashes over the 5-year period (~36% are 0s). Table 1 presents the summary 
statistics of the variables used for developing the models in this study. For a complete and 
detailed list of variables, the interested reader is referred to Washington et al. (2011).  
 

Table 1. Summary Statistics for the Indiana Data. 
Variable Min. Max. Average (std. dev) Total 

Number of Crashes (5 years) 0 329 16.97 (36.30) 5737 
Average daily traffic over the 5 years 
(ADT) 

9442 143,422 30237.6 (28776.4) -- 

Minimum friction reading in the road 
segment over the 5-year period 
(FRICTION) 

15.9 48.2 30.51 (6.67) -- 

Pavement surface type (1 if asphalt, 0 if 
concrete) (PAVEMENT) 

0 1 0.77 (0.42) -- 

Median width (in feet) (MW) 16 194.7 66.98 (34.17) -- 
Presence of median barrier (1 if 
present, 0 if absent) (BARRIER) 

0 1 0.16 (0.37) -- 

Interior rumble strips (RUMBLE) 0 1 0.72 (0.45) -- 
Segment length (in miles) (L) 0.009 11.53 0.89 (1.48) 300.09 

 
 
4.2 MICHIGAN DATA 
 
The second dataset contained single-vehicle crashes that occurred on rural two-lane highways in 
Michigan for the year 2006. This database, which was originally collected for the Federal 
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Highway Administration’s (FHWA) Highway Safety Information System (HSIS), was used by 
Qin et al. (2004) for developing zero-inflated regression models. The database included 33,970 
segments. For this dataset, about 70% of the segments experienced no crash for the year 2006. 
The large number of zeros for this dataset can be explained by the sample that contains very 
short segments (about 87% are less than 0.3 mile). It would consequently be very difficult to 
change the spatial scale to reduce the number of zeros (see Lord and Geedipally, 2011, for 
further discussion on this topic). Table 2 presents the summary statistics for the Michigan data.  
 

Table 2. Summary Statistics for the Michigan Data (1996). 
 Min. Max. Average (std. dev) Total 
Number of Crashes (1 year) 0 61 0.68 (1.77) 23168 
Annual average daily traffic (AADT) 160 20,994 4507.5 (3280.6) -- 
Segment length (L) (miles) 0.001 54.54 0.18 (0.58) 6212 
Shoulder width (in feet) (SW) 0 24 16.94 (5.26) -- 
Lane width (in feet) (LW) 8 15 11.22 (0.78) -- 
Speed limit (SPEED) (mph) 25 55 52.47 (6.39) -- 

 
5.0 MODELING RESULTS 
 
This section presents the modeling results for the NB-L GLMs as well as for the NB and zero-
inflated models and is divided into three parts. The first part explains the modeling results for the 
simulated data. The second part provides details about the modeling results for the Indiana data. 
The last part documents the modeling results for the Michigan data. 
 
5.1 SIMULATED DATA 
 
This section presents the results of the simulation study intended to illustrate the general 
performance of the NB-L model. The simulation was performed for a large sample size in order 
to remove potential biases associated with the small sample size problem (Lord, 2006). 
Consequently, the sample used for estimating the model included 1,500 observations. The 
simulation design was carried out in several steps. In the first step, the independent variables 
were taken from an existing database (for this example, single-vehicle road departure crashes on 
rural two-lane horizontal curves in San Antonio, Texas were used. This is a subset of the data 
presented in Table 3 of Lord and Geedipally, 2011). A total of 1,909 observations were 
produced. From those, a sample of 1,500 observations was randomly selected. In the second step, 
the model coefficients were assumed in such a way that they are logical and comparable with 
existing literature for those variables. These coefficients are labeled as “true” parameters. During 
the third step, the crash mean was calculated from the independent variables and the “true” 
parameters using Equation (10). Crashes are then simulated using the NB-L distribution. Once 
the dataset was created, the parameters were re-estimated using the NB-L model and then 
compared with the “true” parameters.  
 
Table 3 presents the modeling results for the simulated dataset. This table shows that the NB-L 
model was able to reproduce the “true” parameter values. All coefficients were statistically 
significant at the 5% level. 
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Table 3. Modeling Results for the Simulated Data. 
Parameters True value Estimated Values

0 -6.0 -6.019 (0.415) 
1 0.6 0.6082 (0.059) 
2 0.2 0.2045 (0.025) 
3 -0.05 -0.038 (0.027) 
 0.6 0.6616 (0.194) 

 
 
5.2 INDIANA DATA 
 
Table 4 summarizes the results for the Indiana data. The segment length variable is considered as 
an offset which means that the crashes increase linearly with the increase in segment length. To 
compare the NB-L GLM with zero-inflated models, zero-inflated Poisson (ZIP) and zero-inflated 
NB (ZINB) models were also estimated (although the dataset did not contain as many zeros as 
for the other dataset). However, the ZINB model provided a better fit for this dataset. This table 
shows that the coefficients for the flow parameters are below one for the NB-L and NB, which 
indicates that the crash risk increases at a decreasing rate as traffic flow increases. The ZINB 
model shows that crashes increase almost linearly with the increase in flow. It should be pointed 
out that the 95% marginal posterior credible intervals for each of the coefficients did not include 
the origin. Except for the Pearson’s chi-square, all other GOF statistics in Table 4 shows that 
NB-L provides superior fit to the NB and ZINB models. The estimated coefficients between the 
models all have the same sign, but their values are not always very close. The standard errors for 
the estimated coefficients are slightly larger for the NB-L when compared to that of NB. It 
should be noted that the NB-L is a multi-level hierarchical model and the effective number of 
parameters could be larger than that in a simple parametric model alternative, such as the NB 
model. As a result, the effective degrees of freedom could be smaller, leading to increased 
standard errors. However, due to the frailty terms that explain additional heterogeneity, it 
compensates for the increased model complexity by improving the predictive modeling ability, 
which is reflected in the MSPE that considers both bias and variance.  
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Table 4. Modeling Results for the Indiana Data. 

Variable 
NB NB-L ZINB† 

Value Std. dev Value Std. dev Value Std. dev 

INTERCEPT (0) -4.779  0.979 -3.739 1.115 -8.3381 1.126 

Ln(ADT) (1) 0.7219  0.091 0.630 0.106 1.0845 0.105 

FRICTION (2) -0.02774 0.008 -0.02746 0.0111 -0.0205 0.008 

PAVEMENT (3) 0.4613 0.135 0.4327 0.217 0.2306 0.151 

MW (4) -0.00497 0.001 -0.00616 0.002 -0.0023 0.002 

BARRIER (5) -3.195 0.234 -3.238 0.326 -1.5095 0.389 

RUMBLE (6) -0.4047 0.131 -0.3976 0.213 -0.511 0.151 

 0.934 0.118 0.238 0.083 0.375 0.056 
DIC1 1900 1701 1850‡ 

MAD2 6.91 6.89 8.04 
MSPE3 206.76 195.54 268.01 

Pearson 2  1174 978 851 

MCPD4 454 261 778 
1 Deviance Information Criterion; 2 Mean Absolute Deviance (Oh et al, 2003); 3 Mean Squared Predictive Error (Oh 
et al, 2003); 4 Maximum Cumulative Residual Plot Deviation (Geedipally et al, 2010). 
†Estimated using the MLE and the inflated parameters are not presented here; ‡AIC 
 
A cumulative residual (CURE) plot presents how the model fits the data with respect to each 
covariate by plotting the cumulative residuals in the increasing order for each key covariate 
(Hauer and Bamfo, 1997). A better fit occurs when the cumulative residuals oscillate more 
closely around the value of zero for a given covariate. The figure can also be used to identify 
potential biases within the range of the variable investigated (i.e., when the predicted values 
almost always over- or under-estimate the observed values for the entire or a large portion of the 
range for the variable investigated). 
 
Figure 1 shows the CURE plot for the ADT variable. The plots were adjusted for the final 
cumulative value to be equal to zero. The figure clearly shows that the NB-L fits the data better 
even when the curves are adjusted. Although not shown here, it should be pointed out that the 
final values for the unadjusted NB, ZINB and NB-L curves are equal to 398, 292, and 155 
respectively. Finally, as shown in last row in Table 4, the maximum deviation, calculated from 
the unadjusted curves, for the NB-L model is much smaller than that one calculated for the NB 
and ZINB models. 
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Figure 1. Cumulative Residual Plot for Indiana data (ADT Variable). 

Note: Dotted lines represent   2 Std. Dev. 
 
At this point, it is important to discuss the issue related to the use of GOF statistics for 
comparing different models. As discussed in Miaou and Lord (2003) and Lord et al. (2005; 
2007), the primary goal for analyzing regression models should not be solely based on finding 
the absolute best statistical fit. It is also very important to look at the data generating process, the 
relationship between the variables and whether the distribution or model is logically or 
theoretically sound. Miaou and Lord (2003) referred to the latter characteristic as “goodness-of-
logic” (GOL). Consequently, the transportation safety analyst needs to consider both the GOF 
and GOL when assessing competitive models. 
 
5.3 MICHIGAN DATA 
 
Table 5 summarizes the results for the Michigan data. To be consistent with the functional form 
used by Qin et al. (2004) for this dataset, the segment length was used as a covariate rather than 
as an offset. However, the parameter for segment length is almost equal to one which suggests 
that the crashes increase linearly with the increase in segment length. Similar to the first dataset, 
the 95% marginal posterior credible intervals for each of the coefficients did not include the 
origin. For this dataset, Qin et al. (2004) only estimated a ZIP model. Since it was found that 
ZINB model fitted the data much better than the ZIP model, only the former model is presented 
in Table 5.  
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Table 5. Modeling Results for the Michigan Data. 

Variable 
NB NB-L ZINB† 

Value Std. dev Value Std. dev Value Std. dev 
INTERCEPT (0) -3.412 0.239 -3.2607 0.193 -3.1503 0.225 
Ln(AADT) (1) 0.4267 0.014 0.4243 0.015 0.4205 0.013 

L (2) 0.9571 0.009 0.9615 0.009 0.9579 0.008 
SW (3) -0.00009 0.002 -0.0003 0.002 0.0002 0.002 
LW (4) 0.0589 0.013 0.0508 0.011 0.0516 0.012 

SPEED (5) 0.0098 0.002 0.0091 0.002 0.0077 0.002 
 0.5727 0.019 0.1024 0.002 0.5588 0.024 

DIC 59354 56046 59341‡ 
MAD 0.651 0.648 0.651 
MSPE 2.831 2.884 2.863 

Pearson 2  49911 44774 60614 

MCPD 701 657 702 
†Estimated using the MLE and the inflated parameters are not presented here; ‡AIC 
 
The results show that the NB-L model also performed better than the NB and ZINB models. 
Table 5 shows that the NB and ZINB are very close, but it can be demonstrated that the ZINB 
actually provides a slightly better fit (although the MLE result for NB is not presented here, the 
difference in AIC values between ZINB and NB is greater than 10). The magnitude of the 
difference between these two, the NB and ZINB models, is actually very similar to what has 
been documented in previous work on this topic (see, e.g., Kumara and Chin, 2003; Yau et al., 
2003). With the exception of one highly insignificant variable for the ZINB model, all the 
variables have the same sign.  
 
Figure 2 shows the (adjusted) CURE plots for the AADT variable. This figure seems to show 
that the NB and ZINB offers a better fit, but when the unadjusted NB, ZINB and NB-L curves 
are examined, the final values for the cumulative curves are equal to -322.1, -281.1 and -3.9, 
respectively. In other words, the NB-L curve almost arrives at zero naturally. Furthermore, based 
on the unadjusted curves, the NB and ZINB seem to show a biased estimate since the difference 
between the predicted and observed values is almost always negative over the entire range of the 
flow variable. Similar to the previous dataset, the maximum deviation for the NB-L model is 
smaller than that of the NB and ZINB models.  
 



Geedipally, Lord and Dhavala     

 

14 

 

-800

-600

-400

-200

0

200

400

600

800

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

NB

NB-L

ZINB

 

Figure 2. Cumulative Residual Plot for Michigan data (AADT Variable). 
Note: Dotted lines represent   2 Std. Dev. 

 
6.0 DISCUSSION 
 
Since this is a brand new GLM that has never been applied before, there are several interesting 
findings that need to be discussed.  First, the modeling results showed that the NB-L model 
performs much better than the traditionally used NB model for modeling traffic crashes, at least 
for these two datasets. As shown by various the GOF measures and CURE plots, the NB-L 
model always provided a superior fit compared to the NB model, while still maintaining sound 
theoretical properties (Miaou and Lord, 2003). The modeling results show that not only did the 
NB-L offers superior performance when datasets are characterized by a large number of zeros 
and a long tail, but also was better when the crash dataset is highly dispersed even for high 
sample mean values. When the dispersion becomes smaller, the NB-L model actually resorts 
back to a NB model (Lord and Geedipally, 2011). Thus, at worse, the NB-L model performs as 
well as the NB, which means that one could theoretically only need to use the NB-L model when 
data are over-dispersed. Obviously, more work needs to be done in this regards. 
 
Second, the original purpose for developing and using the NB-L distribution was to handle 
datasets that contain a large number of zeros (Zamani and Ismail, 2010, Lord and Geedipally, 
2011). The distribution did indeed work much better than the NB distribution for datasets 
characterized as such. The next step consisted in examining whether the model performed better 
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than previous models that have been proposed in the past (e.g. zero-inflated models). To 
accomplish this objective, the authors developed zero-inflated models using both datasets, even 
though the Indiana data are not characterized by excess zeros. The results clearly showed that the 
NB-L GLM was much better than the ZINB estimated in this work. Although not shown here, 
the authors compared the NB-L model with the ZIP and ZINB models with two other flow-only 
datasets and the results were consistent with those shown above. Although the NB-L model 
provided a better fit and is a more theoretically sound, further work needs to be done on this 
topic. For instance, when the data are truly generated by a multi-state process, zero-inflated and 
finite mixture models may still be the model of choice even if the NB-L fits the data better (see 
Kadane et al., 2006; Park and Lord, 2009).  

Third, as discussed in Section 2.0, the parameterization of the NB-L used in this work is slightly 
different than the parameterization described in Lord and Geedipally (2011) and Zamani and 
Ismail (2010). When a GLM is considered with the original formulation of the NB-L likelihood, 
the mean response is a non-linear, non-invertible function of the covariates and the parameters. 
This can be understood by considering the following GLM modeling framework: 
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The advantage with this characterization is that the likelihood is available in closed form after 
integrating   in the above equation. However, the mean response, as given by Equation (7) in 
Lord and Geedipally (2011), is nonlinear in  , which makes it difficult to characterize the 
predicted response. On the contrary, the parameterization based on Equation (5) is easily 
interpretable. For example, as given in Equation (10), the predicted mean response is scaled by a 
certain factor. This is even more evident by looking at the hierarchical representation shown in 
Equation (16): each site-specific mean response is multiplied by its own frailty term. This is 
equivalent to adding site-specific offset terms in the log-transformed domain of the mean 
response, similar to an additional random covariate at each site. 

Despite the nice interpretability offered by this characterization, MCMC chains still suffer from 
poor mixing. This often results from two scenarios: some parameters are not identifiable or they 
are strongly correlated. This problem can be mitigated by some kind of regularization or re-
parameterization of the parameters or a combination of both.  One way to solve the problem is to 
model the dispersion parameter ( ) instead of the inverse dispersion parameter ( ). However, 
some strong correlation still exists between 0  and  , as can be seen by absorbing all constant 
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terms into the intercept: 
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 . To solve this problem, the underlying 

hierarchical representation of the Lindley distribution can be resorted to offer some insight. The 
scale parameter of the Gamma distributions in the mixture is   , whereas the mixing probability 

is 1

1 
 . Clearly, the latter parameter is restricted to lie in the unit interval, since it can be 

interpreted as the probability of choosing one of the Gamma distributions for each site. A Beta 
distribution can be elicited and the hyper-priors are chosen such that, a priori, 

( ) ( )E Y E     . This re-parameterization also helps in regularization, since eliciting 

informative priors is now possible. That is, suppose a Beta distribution is elicited for 1

1 
, then 

its conditional posterior distribution is also Beta. To further illustrate this point, suppose a 
Beta(1/3,1/2) is chosen, it still ensures that, a priori, ( ) 1E   . However, in the presence of the 
likelihood, this becomes completely irrelevant. Thus, a reasonable choice for the prior 
distribution is Beta(n/3, n/2), where n is the total number of observations.

 
Fourth, since the NB-L model involved additional parameters when compared to NB model, the 
computational time for MCMC runs was increased. However, the difference in computational 
times between the two models was not very large. Hence, there is nothing that prevents a 
transportation safety analyst to use the NB-L GLM for analyzing crash data. 

There are several avenues for further work. First, given the fact that crash data are often 
subjected to low sample mean values and small sample size, the stability of the NB-L GLM 
should be investigated. Second, since the EB method is now used frequently in highway safety 
analyses, an EB modeling framework should be developed for the NB-L model. Third, the 
difference for identifying hazardous sites between the NB-L and NB models should be 
investigated. Fourth, although the analysis carried out in this research was conducted by 
assuming a fixed dispersion parameter   (independent of the covariates), further research 
should be done to examine the effects of a covariate-dependent dispersion parameter on NB-L 
GLMs. Fifth, the parameterization of the NB-L model used in this study is slightly different than 
the one documented in Lord and Geedipally (2011) and Zamani and Ismail (2010). Thus, a well-
defined likelihood function and the related moments for the NB-L model should be built. This 
way, the maximum likelihood estimation (MLE) method could be used for estimating NB-L 
GLMs. Sixth, a time-dependent NB-L model should be developed and compared with the zero-
state Markov switching models proposed by Mayshkina and Mannering (2009). 

Finally, the recently introduced random-parameters count model (Anastasopoulos and 
Mannering, 2009) has been shown to significantly improve the statistical fit compared to that of 
the NB model. Because of this property, this model has become quite popular since its 
introduction (e.g., El-Basyouny and Sayed, 2009; Dinu and Veeraragavan, 2011). Interestingly, 
the proposed NB-L GLM is also a random-parameters model, albeit with a notable difference. In 
the model proposed by these authors, the coefficients are random and are allowed to vary from 
site to site. In addition, the coefficients for each site could follow any distribution and are 
independent of each other. In the model proposed in this study, the intercept and the coefficients 
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are also random (because of the Bayesian framework), but only the intercept varies from site to 
site. It should be noted that it would be possible to allow the coefficients to vary from site to site 
for the NB-L. Given the characteristics of both models, it would therefore be of a great interest to 
compare their performance, especially when datasets are characterized by a large amount of 
zeros.  

7.0 SUMMARY AND CONCLUSIONS 
 
This paper has described the application of the NB-L GLM for analyzing crash data. The model 
was evaluated using simulated and observed crash datasets. For the two crash datasets, both were 
characterized by very high dispersion and one was also characterized by a large number of zeros. 
Traditional statistical methods (i.e., zero inflated models) that have been proposed for analyzing 
the datasets characterized by a large number of zeros have been found to suffer from important 
numerical and methodological problems. The newly introduced NB-L distribution offers the 
advantage of being able to handle datasets with a large number of zeros and/or high dispersion, 
while still maintaining similar characteristics as the traditional NB distribution. That is, the NB-L 
distribution is a two-parameter distribution and the long-term mean is never equal to zero. The 
results for the simulated data showed that the NB-L model was able to reproduce the “true” 
parameter values. The results have also shown that the NB-L always provided a better statistical 
fit relative to the NB and ZINB models for the two observed crash datasets. In conclusion, it is 
believed that the NB-L distribution and its GLM may offer a viable alternative to the 
traditionally used NB model for analyzing over-dispersed datasets.    
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