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Abstract—In this correspondence paper, a novel robust extended

Kalman filter (REKF) for discrete-time nonlinear systems with stochastic
uncertainties is proposed. The filter is derived to guarantee an optimized
upper bound on the state estimation error covariance despite the model
uncertainties as well as the linearization errors. Further analysis shows

that the proposed filter has robustness against process noises, measurement
noises, and model uncertainties. In addition, the new method is applied
in an X-ray pulsar positioning system. It is illustrated through numerical
simulations that the REKF is more effective than the standard extended

Kalman filter and the extended robust H∞ filter.

Index Terms—Nonlinear estimation, nonlinear uncertain system, pulsar
positioning system, robust extended Kalman filter (REKF).

I. INTRODUCTION

During the last four decades, the Kalman filter and the extended

Kalman filter (EKF) have been widely used for state estimation within

communication and aerospace applications [1]–[3]. It is well known

that the optimality of the Kalman filter holds only when the system

model is accurate [4]. In most physical systems, the model uncertain-

ties seriously degrade the filtering performance. Recently, robust H∞

techniques have been introduced to cope with the uncertainties [5]–

[7]. The design criterion of the H∞ filter is to guarantee a bounded

estimation error for bounded uncertainties. Robust Kalman filters for

linear uncertain systems are studied in [8] and [9], and a robust

H∞ filter for nonlinear uncertain systems is proposed in [10]. This

algorithm is obtained by solving a nonlinear Hamilton–Jacobi inequal-

ity. An extended robust H∞ filter based on a linearization technique is

established in [11] for nonlinear systems with an integral quadratic

constraint uncertainty. The main advantage of the extended robust H∞

filter is its simplicity, as no additional computing is required for the

implementation of the algorithm (see [12] and [13] for other related

works).

In this correspondence paper, a novel robust EKF (REKF) for non-

linear systems with stochastic uncertainties is proposed. The algorithm

is designed to guarantee the finite upper bound on the estimation error

and simultaneously minimize this upper bound. Our approach differs

from the algorithm in [11], in that the key idea of the extended robust

H∞ filter is to insert extra terms with tuning parameters in the dynamic

equation of the state estimate to compensate the model uncertainties,

while the emphasis of the proposed algorithm is on the appropriate

design of the filter gain so that the dependence of the state estimate
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on the information with the uncertainties will be mitigated. Note that

the filtering performance is inevitably dependent upon how well the

uncertainties of a practical system are reflected in the uncertainty

model. Related to this issue, we give some explanations about how

to establish the uncertainty model for the considered X-ray pulsar

positioning system.

A pulsar positioning system is an autonomous navigation system for

spacecrafts [14]–[16]. From 1999 to 2000, the U.S. Naval Research

Laboratory’s unconventional stellar aspect experiment onboard the

Advanced Research and Global Observation Satellite was performed

to demonstrate the feasibility of the pulsar-based navigation, and the

positioning accuracies are on the order of 2 km. Generally, in order

to establish the measurement model, the pulsar position should be

measured. Due to the limitation of current technology, the accuracy of

the pulsar position is rather low, and the inaccurate model parameters

may degrade the positioning performance. In our prior work [17],

the difference technique is adopted to eliminate the common error

terms in the measurement model for satellites in constellations. In

this correspondence paper, the robust filter is used to suppress the

detrimental effects of the model uncertainties for a single spacecraft.

This correspondence paper is organized as follows. In Section II,

the REKF is developed for nonlinear systems with stochastic uncer-

tainties. The robust performance of the proposed algorithm is derived

in Section III, and, in Section IV, we present an application of the

REKF to the X-ray pulsar positioning system in comparison with the

EKF and the extended robust H∞ filter. Some conclusions are drawn

in Section V.

II. DESIGN OF REKF

A. Problem Formulation

Consider the following nonlinear uncertain system:

xk = f(xk−1) + Bkηkφ(xk−1) + wk (1)

yk =h(xk) + Dkξkψ(xk) + vk (2)

where xk ∈ Rl and yk ∈ Rm denote the state and measurement

vectors at time instant k, f(·) and h(·) are nonlinear functions that

are assumed to be continuously differentiable, Bk ∈ Rl×l and Dk ∈
Rm×l are known time-varying matrices, and φ(·) and ψ(·) are known

nonlinear functions that satisfy

E
[
φ(xk)φT(xk)

]
≤ Ξk E

[
ψ(xk)ψT(xk)

]
≤ Θk (3)

where Ξk ∈ Rl×l and Θk ∈ Rl×l are known matrices. The inputs

ηk ∈ R, ξk ∈ R, wk ∈ Rl, and vk ∈ Rm are uncorrelated noises

which have the following statistical properties:

E(ηk) = 0 E(ξk) = 0 E(wk) = 0 E(vk) = 0 (4)

E

⎧
⎪⎨
⎪⎩

⎡
⎢⎣

wk

vk

ηk

ξk

⎤
⎥⎦ [wT

j vT
j ηj ξj ]

⎫
⎪⎬
⎪⎭

=

⎡
⎢⎣

Qkδkj

Rkδkj

qkδkj

rkδkj

⎤
⎥⎦ (5)
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where

qk ≤ 1 rk ≤ 1 (6)

and δkj denotes the Kronecker delta function. The terms

Bkηkφ(xk−1) and Dkξkψ(xk) represent the stochastic

uncertainties. The matrices Bk and Dk are obtained by using

the prior information of the practical systems.

The structure of the EKF [1]–[3] described by (1) and (2) is adopted

for the design of the REKF

x̂k|k−1 = f(x̂k−1) (7)

x̂k = x̂k|k−1 + Kk

[
yk − h(x̂k|k−1)

]
(8)

where x̂k ∈ Rl is the state estimate and Kk is the gain matrix to

be determined. The estimation error and the corresponding covariance

matrix are defined as

x̃k =xk − x̂k (9)

Σk =E
(
x̃kx̃

T
k

)
. (10)

The objective of this correspondence paper is to design a filter with the

structure described by (7) and (8), such that there exists a sequence of

positive-definite matrices P k (0 ≤ k ≤ n) that satisfies

Σk ≤ P k. (11)

The bound P k is obtained by solving a Riccati difference equation

(RDE) that is generalized to account for the presence of uncertainties.

The filter parameter Kk is calculated using the RDE.

B. Error Covariance Matrix

In this section, we will give the formulation of the error covariance

matrix Σk. Define the prediction error and the corresponding covari-

ance matrix as

x̃k|k−1 =xk − x̂k|k−1 (12)

Σk|k−1 =E
(
x̃k|k−1x̃

T
k|k−1

)
. (13)

Substituting (1) and (7) into (12), we have

x̃k|k−1 = f(xk−1) − f(x̂k−1) + Bkηkφ(xk−1) + wk. (14)

Expanding f(xk−1) in a Taylor series about x̂k−1 gives

f(xk−1) = f(x̂k−1) + F kx̃k−1 + ∆f

(
x̃

2
k−1

)
(15)

where F k = ∂f(x)/∂x|x=x̂k−1
and ∆f (x̃

2
k−1) represents the high-

order terms of the Taylor series expansion. In order to facilitate the

following deduction, the high-order terms are transformed into an

equivalent formulation that is easy to handle:

∆f

(
x̃

2
k−1

)
= AkβkLx̃k−1 (16)

where Ak ∈ Rl×l is a problem-dependent scaling matrix and βk ∈
Rl×l is an unknown time-varying matrix introduced to take into

account the linearization errors of the dynamics model. It is assumed

that βk is bounded, i.e.,

βkβT
k ≤ I . (17)

The matrix L ∈ Rl×l is introduced to provide an extra degree of

freedom to tune the filter. In general, it can be set to identity matrix

I . From (15) and (16), (14) becomes

x̃k|k−1 = (F k + AkβkL)x̃k−1 + Bkηkφ(xk−1) + wk. (18)

Using (18) and (13), the covariance matrix of the prediction error is

expressed as

Σk|k−1 = (F k + AkβkL)Σk−1(F k + AkβkL)T

+ qkBkE
[
φ(xk−1)φ

T(xk−1)
]
BT

k + Qk. (19)

Similarly, the estimation error in (9) can be written as

x̃k = x̃k|k−1 − Kk

[
(Hk+CkαkL)x̃k|k−1+Dkξkψ(xk)+vk

]

(20)

where Hk = ∂h(x)/∂x|x=x̂k|k−1
, Ck ∈ Rm×l is a problem-

dependent scaling matrix, and αk ∈ Rl×l is an unknown time-varying

matrix to account for the linearization errors of the measurement

model. It is assumed that

αkαT
k ≤ I . (21)

Substituting (20) into (10), we have

Σk = [I − Kk(Hk + CkαkL)]Σk|k−1

× [I − Kk(Hk + CkαkL)]T

+ Kk

{
rkDkE

[
ψ(xk)ψT(xk)

]
DT

k + Rk

}
KT

k . (22)

So far, we have obtained the formulation of the error covariance

matrix. However, as the parameters βk, qk, αk, and rk are unknown,

it is impossible to calculate the covariance matrix Σk from (19) and

(22) directly. An alternative way is to find a set of upper bounds for Σk

and then determine the filter gain Kk according to the upper bound.

C. REKF Design

The derivation of the filter is based on the following lemmas.

Lemma 1 [18]: Give matrices A, B, C , and D with compatible

dimensions such that CCT ≤ I . Let U be a symmetric positive-

definite matrix and a be an arbitrary positive constant such that

a−1I − DUDT > 0; then, the following matrix inequality holds:

(A + BCD)U (A + BCD)T

≤ A(U−1 − aDTD)−1AT + a−1BBT. (23)

Lemma 2 [19]: For 0 ≤ k ≤ n, suppose that U = UT > 0,

ek(U ) = eT
k (U ) ∈ Rl×l, and gk(U ) = gT

k (U ) ∈ Rl×l. If there ex-

ists V = V T > U such that

ek(V ) ≥ ek(U ) (24)

gk(V ) ≥ ek(V ) (25)

then the solutions Xk and Y k to the following difference equations

Xk = ek(Xk−1) Y k = gk(Y k−1) X0 = Y 0 > 0 (26)

satisfy Xk ≤ Y k.

The main result of this correspondence paper is summarized in the

following theorem.

Theorem 1: Consider the system described by (1) and (2). Assume

that (17) and (21) are fulfilled. If there exists a positive constant γ,

such that the following RDE

P 0 =Σ0 (27)

P k|k−1 =F k

(
P −1

k−1−γ−2LTL
)−1

F T
k + γ2AkAT

k + Qk (28)

P k =(I − KkHk)
(
P −1

k|k−1 − γ−2LTL

)−1

(I − KkHk)T

+ Kk

(
γ2CkCT

k + Rk

)
KT

k (29)

where

Qk = BkΞkBT
k + Qk Rk = DkΘkDT

k + Rk (30)
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have positive-define solutions P k and

γ2I − LP kLT > 0 γ2I − LP k|k−1L
T > 0 (31)

then the estimation error of the REKF shown in (7) and (8) with gain

Kk =
(
P −1

k|k−1−γ−2LTL

)−1

HT
k

×

[
Hk

(
P −1

k|k−1−γ−2LTL

)−1

HT
k +γ2CkCT

k +Rk

]−1

(32)

will satisfy the boundedness condition

E
(
x̃kx̃

T
k

)
≤ P k, 0 ≤ k ≤ n. (33)

Moreover, the REKF minimizes the bound P k.

The proof of Theorem 1 is collected in the Appendix.

The tuning parameter γ, which has been used for the design of

the H∞ filter in [6] and [8], gives an upper bound of the energy

gain from the uncertainties to the estimation errors. It is clarified in

Theorem 1 that, if the appropriate parameter γ is found such that

P k > 0, the estimation error of the REKF will remain bounded. Note

that the parameter γ should be sufficiently large such that (31) is

satisfied. For the sake of clarity, the REKF algorithm is summarized

as follows:

Prediction. The one-step prediction and its corresponding error

covariance matrix are obtained with (7) and (28).

Update. The estimate of state and the corresponding error covari-

ance matrix are calculated with (8) and (29).

Remarks:

1) It can be seen from (7), (28), (8), and (29) that the REKF has

the structure of the EKF. If the effects of the linearization errors

and the model uncertainties are negligible, Ak, Bk, Ck, and

Dk should be set to zero. In addition, if the robust performance

is not required, L could also be set to zero, and then the REKF

will revert to the EKF.

2) There exist many free design parameters in the expression of

the REKF. The matrices Ak, Bk, Ck, and Dk are introduced

to scale the linearization errors of the dynamic model, the

uncertainties of the dynamic model, the linearization errors of

the measurement model, and the uncertainties of the measure-

ment model, respectively. This gives the possibility for taking

different kinds of disturbances into account for the design of the

filter gain Kk so that the dependence of the filter on the dynamic

or observation model with the uncertainties will be weakened.

III. ANALYSIS OF REKF

In this section, we will derive an important characteristic of the

proposed filter, i.e., the robust performance. An interpretation of the

robust performance is that the energy ratio between the model uncer-

tainties and the estimation error is bounded. We restrict our attention

to systems with linear dynamic models. The performance of the REKF

can be evaluated by the following theorem.

Theorem 2: Consider the following system:

xk =F kxk−1 + Bkηkφ(xk−1) + wk (34)

yk =h(xk) + Dkξkψ(xk) + vk (35)

where F k ∈ Rl×l is a known time-varying matrix, and the REKF is

stated by (7), (8), (28), and (29). If (21) and (31) are fulfilled and the

Fig. 1. Geometric relation between the position and the measurements.

following assumptions hold for every 0 ≤ k ≤ n

det [I − Kk(Hk + CkαkL)] �=0 det(F k) �=0 det(L) �=0
(36)

then

n∑
k=0

‖x̃k‖
2
LTL

‖x̃0‖2

P
−1

0

+
n∑

k=1

(
‖wk‖2

Qk

+ ‖vk‖2

Rk

) ≤ γ2 (37)

where wk = Bkηkφ(xk−1) + wk, vk = Dkξkψ(xk) + vk, and the

notation ‖x‖2
P is defined as the mean of the square of the weighted (by

P ) L2 norm of x, i.e., ‖x‖2
P = E(xTP x).

The proof of Theorem 2 is collected in the Appendix.

Equation (37) shows that the proposed filter can guarantee ro-

bustness against system model uncertainties, as well as process and

measurement noises. Equation (37) arises from the H∞ design.

Remarks:

1) Although the parameter γ is valuable to facilitate the derivation

and the interpretation of the filter, in practice, it may be difficult

to improve the filter performance by tuning γ. See [20] for more

explanations about this limitation.

2) For the system with nonlinear dynamic model and linear mea-

surement model, the performance of the REKF can be analyzed

in a similar way. The relevant derivation is omitted for the sake

of simplicity.

IV. SIMULATION

A. System Model

The model of the X-ray pulsar positioning system is adopted here to

illustrate the high performance of the proposed REKF. The state vector

is chosen as xk = [r v], where r = [rx ry rz]
T is the spacecraft

position vector and v = [vx vy vz]
T is the velocity vector. Using a

Euler discretization of step size τ , the dynamic model is as follows:

f(xk−1) = xk−1 +

⎡
⎢⎢⎢⎢⎣

vx

vy

vz

−µrx/r3

−µry/r3

−µrz/r3

⎤
⎥⎥⎥⎥⎦

τ (38)
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TABLE I
LIST OF X-RAY PULSAR POSITION AND ATTRIBUTES

where the denotation µ is the gravitational constant of the celestial

body and r = (r2
x + r2

y + r2
z)0.5. Note that the time dependence of

the variables r and v is omitted for notational convenience. The model

uncertainties in the dynamic model are considered to be negligible, i.e.,

Bk = 0.

The measurement model of the pulsar positioning system is

written as

t
(p)
obs = t

(p)
b −

1

c
n(p) · robs +

1

2cd(p)

[
r2
obs −

(
n(p) · robs

)2]

−
2µs

c3
ln
∣∣n(p) · robs + robs

∣∣+ v
(p)
k (39)

where the superscript (p) is used to distinguish different pulsars and

t
(p)
obs and t

(p)
b denote the arrival time of a pulsar signal at the spacecraft

and the arrival time of the same pulse at the solar system barycenter

(SSB). t
(p)
obs can be measured by the X-ray detector, and t

(p)
b can be

predicted precisely through a pulsar phase model. The denotation c is

the speed of light, n(p) is the unit position vector of the pth pulsar

relative to the SSB, and robs is the position vector of the spacecraft

relative to the SSB. The relation between robs and r is robs = rc +
r, where rc is the known position vector of the celestial body. d(p)

is the distance between the pth pulsar and the SSB, which cannot be

measured precisely at present. µs is the gravitational constant of the

sun, and v
(p)
k denotes the measurement noise. The relation between

the time difference t
(p)
obs − t

(p)
b and the position vector robs is shown

roughly in Fig. 1.

Clearly, the difference between the predicted and measured pulse

arrival times represents the position of the spacecraft relative to the

SSB. However, the inaccurate model parameter d(p) may introduce

a bias in the estimate. In the design of the REKF, the system errors

caused by d(p) are treated as model uncertainties. The distance d(p) is

assumed to be in the scope [d̂(p) − ∆d(p) d̂(p) + ∆d(p)], where d̂(p)

denotes the measured distance and ∆d(p) is the bound of the parameter

uncertainty. Based on this formulation, the observation model for the

pth pulsar can be rewritten in the form of (2)

h(p)(xk)= t
(p)
b −

1

c
n(p) · robs+

1

2cd̂(p)

[
r2
obs−
(
n(p) · robs

)2]

−
2µs

c3
ln
∣∣n(p) · robs+robs

∣∣ (40)

D
(p)
k =κ

(
1

d̂(p)−∆d(p)
−

1

d̂(p)+∆d(p)

)
, κ > 1 (41)

ψ(p)(xk)=
1

2c

[
r2
obs−
(
n(p) · robs

)2]
. (42)

The role of the matrix D(p) is to scale the magnitude of the model

uncertainty. Intuitively, when the parameter κ is chosen to be large

enough, the assumption in (5) (E(ξ2
k) = rk, rk ≤ 1) will be fulfilled.

In this correspondence paper, κ is set to 50.

Fig. 2. Normalized estimation error of the EKF.

B. Simulation Results

The following three filtering algorithms are used for comparison: the

standard EKF, the extended robust H∞ filter proposed in [11], and the

REKF described by (7), (8), (28), and (29). For the implementation

of the REKF, the free parameters, i.e., γ, L, Ak, Ck, Qk, and Rk,

should be chosen properly. To ensure that the conditions in (31) are

fulfilled, the parameter γ is designed as

γ = 10max
(

eig(LP 0L
T)
)0.5

(43)

where max(eig(P )) indicates the maximum eigenvalue of the matrix

P . The parameter matrix L is simply set as L = I . The matrices

Ak and Ck are introduced to scale the magnitude of the linearization

errors. As the nonlinear terms in (38) and (40) are relatively small,

the matrices are set to zero. The matrices Qk and Rk are used to

account for the model uncertainties. As Bk = 0, we choose Qk =

Qk. According to (30) and (3), the matrix R
(p)

k is designed as

R
(p)

k = D
(p)
k

[
ψ(p)(x̂k)

]2
D

(p)
k + R

(p)
k . (44)

It is assumed that the spacecraft rotates around a satellite of Jupiter

with the initial orbital elements: semimajor axis a = 2700 km, ec-

centricity e = 0.0018, inclination i = 65◦, right ascending node Ω =
30◦, argument of perigee ω = 30◦, and mean anomaly M = 0◦. The

measurement noise covariance matrix is determined using the method

in [15, eq. (4.100), pp. 4–7] according to the attributes of the pulsars

shown in Table I

Rk = diag
((

σ(1)
)2 (

σ(2)
)2 (

σ(3)
)2)

(45)
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Fig. 3. Normalized estimation error of the extended robust H∞ filter.

where cσ(1) = 25.1 m, cσ(2) = 277.8 m, and cσ(3) = 313.3 m.

The normalized estimation errors, which can be calculated by

Jx =

√
x̃

2
k,1P k(1, 1)−1 Jy =

√
x̃

2
k,2P k(2, 2)−1

Jz =

√
x̃

2
k,3P k(3, 3)−1

where x̃k,i is the ith element in the state vector x̃k and P k(i, i) is

the ith diagonal element of the matrix P k, are adopted to check the

performance of the filters. The normalized estimation errors of the

EKF are plotted versus k in Fig. 2. Clearly, the normalized estimation

error is always larger than one (represented by broken lines). It

indicates that the performance of the EKF for the considered system

is rather poor. Model uncertainties lead to biased estimates and an

overoptimistic error covariance matrix. Certainly, the performance of

the EKF can be improved by artificially tuning the matrices Qk and

Rk of the algorithm. However, tuning is not an acceptable part of the

Kalman theoretical framework.

The normalized estimation errors of the extended robust H∞ filter

are shown in Fig. 3. As expected, the effect of the uncertainties

in the measurement model is partly eliminated by tuning a certain

parameter in the algorithm. However, evident deviations still remain

in the estimation results. Moreover, the error covariance matrix of the

algorithm is still overoptimistic. As the model uncertainties caused

by inaccurate d̂(p) are different for the observations from different

pulsars, it is difficult to fully compensate them by tuning the filtering

parameters manually in this scenario.

Fig. 4 shows the estimation results of the REKF. As we expected,

the estimate of the REKF is more accurate than that of the EKF, and the

filter is consistent at most times. The algorithm is less sensitive to the

model uncertainties in that the effect of the uncertainties to the state

estimate is suppressed and the information without uncertainties or

with minor uncertainties is utilized adequately. In addition, it is worth

mentioning that the free parameters of the REKF have an explicit

physical explanation.

Furthermore, the root-mean-square (rms) errors of the three algo-

rithms are calculated from ten independent trials and shown together

in Fig. 5, where the abbreviation ERHF denotes the extended robust

H∞ filter. The Cramer–Rao lower bound (CRLB), which provides a

theoretical lower bound on the rms error of a state estimate, is calcu-

lated according to the method in [21]. As the CRLB is derived with

Fig. 4. Normalized estimation error of the REKF.

Fig. 5. RMS errors of the EKF, the extended robust H∞ filter, and the REKF.

the assumption that the process noise is zero-mean white Gaussian

noise, the CRLB values shown in Fig. 5 are heuristic. The means of

the rms errors for k = 1 : 10 000 and the norm of the means are listed

in Table II. From Fig. 5 and Table II, it is fair to say that the proposed

method outperforms the standard EKF and the extended robust H∞

filter for the considered system. As the difference of the time expense

between the REKF and the EKF is negligible, we indicate that the

computation loads of the two algorithms are roughly the same.

V. CONCLUSION

An REKF is designed for nonlinear uncertain systems, which

guarantees an upper bound on the estimation error. Further analysis

shows that the proposed filter guarantees a bounded energy gain from

the model uncertainties to the estimation errors. The REKF is easy

to implement in practice, as few parameters have to be tuned for

the design of the filter and no additional computation is required.

The simulation results show that the unfavorable effects of the model

uncertainties are reduced efficiently by using the REKF for the X-ray

pulsar positioning system.
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TABLE II
ESTIMATION ERRORS OF THE THREE ALGORITHMS

APPENDIX

A. Proof of Theorem 1

Proof: From (19) and (22), it is easy to see that, if the covariance

matrix Σ
(2)
k−1 ≥ Σ

(1)
k−1 (the superscript is used to distinguish different

covariance matrices), then the following inequalities fulfill:

Σk|k−1

(
Σ

(2)
k−1

)
≥Σk|k−1

(
Σ

(1)
k−1

)
(A1)

Σk

(
Σk|k−1

(
Σ

(2)
k−1

))
≥Σk

(
Σk|k−1

(
Σ

(1)
k−1

))
. (A2)

In (A1) and (A2), Σk|k−1 and Σk are written as the functions of Σk−1

and Σk|k−1, respectively. Substituting (32) into (29) and applying the

matrix inversion lemma (see, e.g., [22, Appendix A2, p. 347]) yield

P k(P k|k−1) =
[
P −1

k|k−1 − γ−2LTL

+ HT
k

(
γ2CkCT

k + DkΘkDT
k + Rk

)
Hk

]−1
. (A3)

It is easy to see from (A3) that, if P
(2)

k|k−1 ≥ P
(1)

k|k−1, then

P k

(
P

(2)

k|k−1

)
≥ P k

(
P

(1)

k|k−1

)
. (A4)

According to Lemma 1 and (3), (6), (17), and (31), we have

P k|k−1(P k−1) ≥ Σk|k−1(P k−1). (A5)

From (A4), we obtain

P k

(
P k|k−1(P k−1)

)
≥ P k

(
Σk|k−1(P k−1)

)
. (A6)

According to Lemma 1 and (3), (6), (21), and (31), we have

P k

(
Σk|k−1(P k−1)

)
≥ Σk

(
Σk|k−1(P k−1)

)
. (A7)

From (A6) and (A7), the following inequality is obtained:

P k

(
P k|k−1(P k−1)

)
≥ Σk

(
Σk|k−1(P k−1)

)
. (A8)

Considering (A2) and (A8) and applying Lemma 2, we can draw a

conclusion that

Σk ≤ P k, 0 ≤ k ≤ N. (A9)

Then, take the partial derivatives of P k with respect to Kk as

follows:

∂P k

∂Kk

= 2(I − KkHk)
(
P −1

k|k−1 − γ−2LTL

)(
−HT

k

)

+ 2Kk

(
γ2CkCT

k + DkΘkDT
k + Rk

)
. (A10)

Let ∂P k/∂Kk = 0; through straightforward algebraic manipulation,

we obtain the optimal filter gain, as shown in (32), and this completes

the proof of Theorem 1. �

B. Proof of Theorem 2

Proof: Substituting (18) into (20) and considering that, for the

system described by (34) and (35), Ak = 0, we have

x̃k = [I − Kk(Hk + CkαkL)]F kx̃k−1

+ [I − Kk(Hk + CkαkL)]wk − Kkvk. (A11)

Hence, the following equation is obtained:

‖x̃k‖
2

P
−1

k

=E
(
x̃

T
k P −1

k x̃k

)

=E
{

x̃
T
k−1F

T
k [I − Kk(Hk + CkαkL)]T P −1

k

× [I − Kk(Hk + CkαkL)]F kx̃k−1

+ wT
k [I − Kk(Hk + CkαkL)]T P −1

k

× [I − Kk(Hk + CkαkL)]wk

+ vT
k KT

k P −1
k Kkvk

}
. (A12)

From (21), (31), and (29), applying Lemma 1, we get the following

inequality:

P k ≥ [I − Kk(Hk + CkαkL)]P k|k−1

× [I − Kk(Hk + CkαkL)]T . (A13)

Using (A13), the second term in (A12) becomes

wT
k [I− Kk(Hk+ CkαkL)]TP −1

k [I− Kk(Hk+ CkαkL)]wk

≤ wT
k P −1

k|k−1wk. (A14)

Substituting (28) into (A14) yields

wT
k [I− Kk(Hk+ CkαkL)]TP −1

k [I− Kk(Hk+ CkαkL)]wk

≤ wT
k Q

−1

k wk. (A15)

From (29) and (32), it is easy to verify that

Kk = P kHT
k

(
γ2CkCT

k + Rk

)−1
. (A16)

Using (A16), the third term in (A12) becomes

vT
k KT

k P −1
k Kkvk = vT

k

(
γ2CkCT

k + Rk

)−1
HkP kHT

k

×
(
γ2CkCT

k + Rk

)−1
vk. (A17)
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In addition, it can be verified that

(
γ2CkCT

k + Rk

)−1
−
(
γ2CkCT

k + Rk

)−1

× HkP kHT
k

(
γ2CkCT

k + Rk

)−1

=
[
Hk(P −1

k | k−1 − γ−2LT L)−1HT
k

+ γ2CkCT
k + Rk

]−1

≥ 0. (A18)

Hence, the following inequality can be obtained:

vT
k KT

k P −1
k Kkvk ≤ vT

k R
−1

k vk. (A19)

From (A13), the first term in (A12) can be written as

x̃
T

k−1F
T
k [I − Kk(Hk + CkαkL)]T P −1

k [I − Kk(Hk

+CkαkL)]F kx̃k−1≤ x̃
T

k−1F
T
k P −1

k | k−1F kx̃k−1.

(A20)

Substituting (28) into (A20) yields

x̃
T

k−1F
T
k [I − Kk(Hk + CkαkL)]T P −1

k

× [I − Kk(Hk + CkαkL)]F kx̃k−1

≤ x̃
T

k−1P
−1
k−1x̃k−1 − γ−2x̃

T

k−1L
T Lx̃k−1. (A21)

Considering (A15), (A19), and (A21), (A12) is modified as

‖x̃k‖
2

P
−1

k

≤‖x̃k−1‖
2

P
−1

k−1

−γ−2‖x̃k−1‖
2
LTL

+‖wk‖
2

Q
−1

k

+‖vk‖
2

R
−1

k

.

(A22)

By adding up both sides of (A22), we establish that

‖x̃n‖
2

P
−1

n

≤ ‖x̃0‖
2

P
−1

0

− γ−2

n−1∑

k=0

‖x̃k‖
2
LT L

+

n∑

k=1

(
‖wk‖

2

Q
−1

k

+ ‖vk‖
2

R
−1

k

)
. (A23)

According to (31), we have

P −1
n > γ−2LTL. (A24)

Finally, from (A23) and (A24), the robust performance of the proposed

filter is expressed as

n∑

k=0

‖x̃k‖
2
LTL

≤γ2

[
‖x̃0‖

2

P
−1

0

+

n∑

k=1

(
‖wk‖

2

Q
−1

k

+‖vk‖
2

R
−1

k

)]
.

(A25)

This completes the proof of Theorem 2. �
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