
1

Dynamic Clock Management for Low Power Applications in FPGAs

Ian Brynjolfson and Zeljko Zilic
Department of Electrical and Computer Engineering, McGill University

Montreal, Quebec, Canada

Abstract
Low power techniques employing dynamically controlled
clock rates offer potentially powerful energy saving capabili-
ties. In this paper, we consider the application of this low
power technique to FPGAs, where we reduce energy waste in
clock distributions. We show that current FPGA clock man-
agers are inadequate for use in dynamically controlled sys-
tems. We provide an architectural block, the dynamic clock
divider, that can be added either internally to clock managers
or as user logic, to allow dynamic clock management.

Introduction
Until recently, Field Programmable Gate Array (FPGA)
designs have focused on the optimization of performance and
area (1, 2). Due to their programmability, FPGAs are inher-
ently more energy-inefficient than the equivalent ASIC
implementation. The research on reducing the FPGA energy
consumption has been directed at interconnect (1), the com-
binational logic architecture, and the clock distribution net-
work (3). In commercial FPGAs, the effort was directed at
operating the FPGA core at a reduced voltage level. The out-
lined approaches lead to power reduction at the expense of
the interconnect speed.

An alternative to these circuit-level techniques is a system-
level technique involving dynamic clock management. This
technique leads to potentially powerful energy savings (4,5)
without necessarily incurring a performance hit.

Low Power Using Dynamic Clock Management
There are four areas to consider when reducing the power
consumption of systems implemented in an FPGA. Dynamic
power consumption is given by the equation:

Pd = kVDD
2CLf

whereVDD is the power supply voltage,CL is the load capac-
itance,f is the frequency of switching andk is a switching
activity factor. Low power techniques attempt to reduce the
power supply voltage, the load capacitance, or switching
activity in a circuit. One can also explore the direct propor-
tionality between the operating clock rate and power con-
sumption (6). If the system clock is slowed to the minimum
rate that will meet the computational requirements, both the
instantaneous power and the overall energy consumption will
be reduced without loss of performance.

While the reduction of power consumption happens when-
ever the switching activity is reduced, only asynchronous

design techniques (7) can use that reduction to the full. In
synchronous systems, existence of large clock distribution
networks diminishes the effects of switching activity reduc-
tion in logic gates alone.

This phenomena is especially present in FPGAs due to the
large capacitances associated with the routing switches, espe-
cially for global signals such as a clock (8). Due to high
capacitances associated with global programmable intercon-
nect, approximately 25% of the overall dissipation of energy
in an FPGA can be due to the clock signal. This ratio can rise
above 50% in highly pipelined circuits (3). Hence, the power
reduction in synchronous systems can be realized to its full
potential either by clock gating, or by controlling the clock
rate based on computational demand. While clock gating has
been used widely, demonstrations of the latter technique for
reducing power consumption have been presented only
recently(9). Studies (4, 5) show that the dynamic clock scal-
ing is an efficient power reduction technique with large
potential power savings.

Clock management circuitry capable of performing clock
synthesis include programmable frequency multipliers and
dividers. As a result, scheduling algorithms (4, 10) can be
used to control the division/multiplication of the system
clock to meet the demand, without wasting energy. As the
computational demand in separate subsystems changes, each
subsystem can operate independently at a speed that will
allow it to satisfy current individual demands, as shown in
Fig. 1.

Dynamic frequency scaling can be used in conjunction with
other methods, such as dynamic voltage scaling. When the
clock is slowed, a controlled voltage source can reduce the
system voltage level and still maintain the switching speed.
For comparison, dynamic voltage scaling does not bring any
benefit in conjunction with clock gating.

Dynamic Clock Management Implementations
We propose three scalable implementations of dynamic fre-
quency scaling needed to perform the proposed low power

� �

� � � � 	� � � � 	 � � � � 	 � � � � 	

� � � 	 �
 � � � 	 � � � � � 	 � � � � � 	 � �

 � � � �
� � � 	 �

Figure 1: Embedded Application Using Clock Synthesis

2

methods. The simplest dynamic clock management circuit is
an open-loop implementation with a clock divider inserted
into the desired paths, shown in Fig. 2.a. The maximum
desired clock rate must be input to the system, to be reduced
dynamically using the clock divider. This circuit is inexpen-
sive and simple, but may introduce excessive clock skew.

Skew can be compensated by introducing a Phase Locked
Loop (PLL) into the circuitry. The simplest dynamically
scaled structure is obtained by taking feedback from a point
that does not change frequency, as shown in Fig. 2.b. This
scheme can successfully apply dynamic clock division. For
dynamic multiplication, the signal in the feedback path must
be divided, as in Fig. 2.c.

In the case of a large change in input frequency, the output of
the PLL may take a long period to settle and regain a lock on
the input signal. During this time, the PLL will align the out-
put improperly. The circuitry dependent on the output clock
should then be stalled. To avoid an invalid output, the fre-
quency transitions of the input or feedback path must be
guaranteed to happen within the lock range (11).

FPGA Clock Management
Dynamic clock management can have a strong impact on the
reduction of power consumption in FPGAs. Most modern,
FPGAs have dedicated clock managers for solving high
speed clock distribution problems in high density designs.
They include PLLs and/or Delay Locked Loops (DLL)
together with clock dividers and interface circuits. The flexi-
bility and programmability they provide is critical to the
scope of applications they can support (12). Several clock
managers have been introduced in FPGAs. The three charac-
teristic examples are by Xilinx (13), Altera(14) and
Lucent(15). The FPGA clock managers can perform clock
buffering, drive the distribution networks, and simulta-
neously eliminate clock skew. They can also produce phase

shifts, and duty cycle adjustment. In addition, clock manag-
ers can be used to synchronize several components in a sys-
tem.

Although they perform their intended function well, current
FPGA clock managers are incapable of performing dynamic
clock management because their dividers cannot perform
dynamic division or multiplication. The Xilinx and Altera
clock managers can only be programmed during initial con-
figuration. The Lucent Programmable Clock Manager can be
programmed during its operation, but this can lead to dan-
gerous clock outputs, as explained next.

Dynamic Programmable Clock Divider
Changing the settings of existing clock dividers during their
operation can lead to metastability and latching errors due to
glitches, distortions, asymmetry, transient frequencies and
additional clock edges of the output clock signal, as shown
in Fig. 3. Even shutting off the system during the change to
the new frequency does not help in that case, as the inconsis-
tent duty cycle clocks may be non-transient.

If dynamic clock dividers are added to the existing FPGA
clock managers, they can be used for dynamic clock man-
agement. As a result, clean frequency changes can take effect
within a clock cycle. The Dynamic Programmable Clock
Divider (DPCD), of Fig. 5, is capable of performing
dynamic frequency division without undesired effects at the
output. Division of the input clock is performed by creating a
loop of D-flip-flops {A-D} driven by the input clock, and
feeding the signal back into the loop through an inverter {D}
to create the necessary clock level inversion. To expand the
length of the output clock period, the number of D-flip-flops
in the loop is increased by multiplexer {L}. In order to per-
form odd division, flip-flops {E, F} extend the loop, by half
a period, with an asynchronous clear of flip-flop {A} on the
falling edge of the input clock. For the divider output, multi-
plexer {N} chooses between the original input clock, for a
division value of one, and the output of {A}.

To prevent output glitching, D-flip-flops {G,H,J,K} latch
the new program value on the rising edge of the output from
{ A}. Combinational logic {Q,R,S} also help to prevent
glitching, but also prevent transient patterns from being cap-

� � � � 	

� � � � 	

� � �

� � � � 	

� � � � 	

� � � � 	

� � � � � � 	 �

Figure 2: Dynamic Clock Management Implementations

a.

b.

� � �

� � � � 	

� � � � 	c.

� � � � � � � � � � ! "! �

Figure 3: Standard Clock Divider

3

tured and fed back, thus causing irregular oscillations in the
circuit (such as in Fig. 3, division by 8).

Another method of dynamic frequency synthesis is per-
formed with a chain of dividers capable of only even divi-
sions, as in (6). Each divider would statically divide the
clock to each successive frequency, and a multiplexer would
be used to choose the desired frequency. However, the
DPCD, being smaller and more power efficient, is a single
circuit capable of performing divisions from 1 to 9. The
DPCD design in Fig. 5 is expandable to greater division
capabilities by simply adding more D-flip-flops in series.

Case study
An embedded system coprocessor has been designed to
speed up digital signal processing functions. It takes advan-
tage of dynamic clocking for reducing its power consump-
tion. The system comprises of a Universal Serial Bus (USB)
client communication front-end, and a reconfigurable signal
processing unit. Currently, we consider a matrix multiplica-
tion circuit. Power to the coprocessor is delivered by the
USB cable from the host. Depending on the frame rate and

data stream format, the bandwidth requirements of the multi-
plier will change. Therefore, its required clock rate is based
on the bandwidth demand. Also, the standard protocol for
USB includes two operating speeds.

Control logic receives information from the system sub-
components and updates the control registers of the clock
managers. Other speed-setting control algorithms (10) may
be performed locally within the coprocessor. When a transfer
from the USB host is preceded by a low speed preamble
packet, the USB interface signals the control logic to reduce
its clocking speed. The USB host will use the low speed to
poll the client and receive information regarding the quantity
of data to be transferred. The host then determines the com-
munication speed. Most of the USB circuit is shut off after
the final end-of-packet signal, for that transfer, is received.
Full speed operation is resumed when communication
recommences. Communication between the USB interface
and the matrix multiplier may be performed using periodic
synchronization methods or FIFOs.

Table 2 shows power consumption of system components
running at different clock rates for Altera and Lucent imple-
mentations. Fig. 7 and Fig. 8 show power consumption vs.

Figure 4: DPCD Operation

�! " " # $ % & � ! #� � � � � � � �

� ' � � (� 	 � � � 	 �

) * �

 � � � � + � 	 �

) * � � � ((� � � 	 � � � � �
� � � � � � , � - � * ' - � � (

� � � 	 �

� ' � � (� 	 * ' - � � (
� � � � � . � � � � � � � � � � � � � 	 � � �

� � � � � � �

Figure 6: USB/Matrix Multiplier System

� ' � � (� 	 � � � 	 �

Figure 5: Dynamic Programmable Clock Divider

A B DC

E

G

F

H

K

J

L

M

N

P

Q
R S

T

U

4

operating frequency based on manufactuer estimates. The
total power consumed for typical scenarios of system use is
outlined.

Conclusion
Current low-power methods for FPGAs use circuit-based
techniques at the penalty of performance. We have intro-
duced a system-level technique that takes advantage of the
clock managers present in most modern FPGAs. Dynamic
frequency scaling is used to reduce the average power con-
sumption. A dynamic programmable clock divider was pre-

sented that enables dynamic operation by eliminating
glitches, transient and non-transient divider output errors that
are very harmful when introduced in clock signals. The
divider can be either included as a part of the FPGA clock
managers, or as a user circuit. The results show that this
technique can be used efficiently in two FPGA families.

Acknowledgments
Thanks to Stuart McCracken and David Peppy. This work
was financially supported by MICRONET.

References
(1) E. Kusse and J. Rabaey, “Low-energy embedded FPGA structures,”

1998 International Symposium on Low Power Electronics and Design,
Aug. 1996, pp155-160.

(2) V. Betz and J. Rose, “Circuit design, transistor sizing and wire lay-
out of FPGA interconnect,” IEEE 1999 Custom Integrated Circuits
Conference, May 1999, pp. 171-174.

(3) V. George, H. Zhang, and J. Rabaey, “The design of a low energy
FPGA,” 1999 International Symposium on Low Power Electronics and
Design. Proceedings, Aug. 1999, pp188-193.

(4) V. Krishna, N. Ranganathan and N. Vijaykrishnan, “Energy Effi-
cient Datapath Synthesis Using Dynamic Frequency Clocking and
Multiple Voltages”,Proc. of 12th International Conference on VLSI
Design, pp. 440-445, Jan. 1999.

(5) T. Pering, T. Burd and R. Brodersen, “The Simulation and Evalua-
tion of Dynamic Voltage Scaling Algorithms”,Proc. of International
Symposium on Low-Power Electronics and Devices, pp. 76-81,
Monterey, Aug. 1998.

(6) N. Ranganathan, N. Vijaykrishnan, and N. Bhavanishankar, “A lin-
ear array processor with dynamic frequency clocking for image pro-
cessing applications”,IEEE Transactions on Circuits and Systems for
Video Technology, Vol. 8. No. 4, Aug. 1998, pp. 435 -445.

(7) S. Hauck, “Asynchronous Design Methodologies: An Overview”,
Proceedings of IEEE, Vol. 83, No. 1, Jan. 1995, pp. 69-93.

(8) J. Cong, L. Hei, C. Koh, and Z. Pan, “Global interconnect sizing
and spacing with consideration of coupling capacitance,” IEEE/ACM
International Conference on Computer Aided Design, Nov. 97, pp628-
633.

(9) M. Olivieri, A. Trifiletti, and A. De Gloria, “A low-power micro-
controller with on-ship self-tuning digital clock-generator for variable-
load applications,” IEEE International Conference on Computer
Design, Oct. 1999, pp233-240.

(10) K. Govil, E. Chan, H. Wasserman, “Comparing Algorithms for
Dynamic Speed-Setting of a Low-Power CPU”, Proceedings of 1st
ACM International Conference on Mobile Computing and Network-
ing, 1995.

(11) Best, Roland E.,Phase-Locked Loops - Design, Simulation, &
Applications, Mcgraw-Hill, New York, 1997.

(12) P. Sasaki, Y. Bobra, W. Cory, A. Ghia, S. Menon, M. Kola, M. Tho-
mas, P. Rau, A. Zaliznyak, “A Fast Predictable FPGA with PLLs, Dual
Port SRAMs and Active Repeaters,” 1999 IEEE Custom Integrated
Circuits Conference, May 1999, pp179-182.

(13) Xilinx Inc., Using the Virtex Delay-Locked Loop (XAPP132 Version
1.31), Advanced Application Note, October 21, 1998.

(14) Altera Corporation,Using the ClockLock & ClockBoost Features in
APEX Devices, Application Note 115 (ver. 1.0), May 1999.

(15) Lucent Technologies,ORCA Series 3C and 3T FPGAs, Data Sheet,
June 1999.

Table 1: Implementation Details and Power Consumption*

ORCA 3T55-6

fMAX size PfMAX P12MHZ P1.5MHz

USB 21.69
MHz

115
 PFUs

228.4
 mW

126.3
 mW

15.8
mW

Multiplier 28.48
 MHz

136
 PFUs

326.5
 mW

114.7
 mW

22.9
 mW

Altera EPF10K20-3

fMAX size PfMAX P10MHz P2MHz

USB 30.48
 MHz

703
 LCs

1241
 mW

519
mW

108.6
mW

Multiplier 17.12
 MHz

563
 LCs

584.14
 mW

363
mW

112.6
 mW

*Based on results and formulae provided by manufacturers

Figure 7: ORCA Implementation

Figure 8: Altera Implementation

