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ABSTRACT 

 

The Western Rift Valley of Africa has experienced several severe earthquakes 

with magnitude M≥6 and volcanic eruptions in recent historical times. Most of 

these earthquakes occurred in the Democratic Republic of Congo (DRC) and 

neighbouring countries such as Uganda and Tanzania. The largest earthquake on 

record, which occurred at Kasanga (Tanzania) on 13 December 1910 in the Lake 

Tanganyika area, had a magnitude of Ms7.3. The most recent significant 

earthquake occurred approximately 20 km north of Bukavu City (DRC) on 03 

February 2008 with magnitude Mw=6.0 in the Basin of Lake Kivu. The Virunga 

volcano group, located at the northern edge of Lake Kivu, consists of eight major 

volcanoes (Muhavura, Gahinga, Sabinyo, Visoke, Karisimbi, Mikeno, 

Nyiragongo and Nyamuragira). The volcanoes Nyiragongo and Nyamuragira have 

been the most active since 1882. 

 

A probabilistic approach was used to map the seismic hazard in Democratic 

Republic of Congo and surrounding areas, and assess the seismic hazard level for 

14 cities in the region. Seismic hazard maps for 2%, 5% and 10% chance of 

exceedance of the indicated ground accelerations in 50 years were prepared using 

a 90-year catalogue compiled for homogeneous magnitudes (Mw); the attenuation 

relations of Mavonga (for the Western Rift Valley of Africa), Atkinson and Boore 

(for eastern and North America) and Jonathan (for eastern and southern Africa); 

and the EZ-Frisk software package. A Poisson model of earthquake occurrence 

that assumes that events are independent was adopted. Therefore, foreshocks, 

aftershocks and earthquake swarms were removed from the initial catalogue of 

2249 events. Furthermore Mw=4 was selected as the lower magnitude bound 

(Mmin) because smaller earthquakes are considered unlikely to cause damage, 

even to houses that are poorly designed and built. Thus, any remaining events 

with Mw<4 were also excluded from the catalogue, leaving a sub-catalogue of 

821 events 
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The highest estimated levels of seismic hazard were found in the Lake 

Tanganyika Rift seismic zone, where peak ground accelerations (PGA) in excess 

of 0.32g, 0.22g and 0.16g are expected to occur with 2%, 5% and 10% chance of 

exceedence in 50 years, respectively. The seismic hazard in the Congo basin 

diminishes with distance away from the Western Rift Valley until, at a distance of 

about 450 km, the chance of exceeding 0.05 g (the threshold value of engineering 

interest) is less than 10% in 50 years.  

 

Finally, from the probabilistic seismic hazard analysis of the DR Congo and 

surrounding areas, four seismic zones were identified and rated as follows:  

 Zone A (very high hazard),  

 Zone B (high hazard),  

 Zone C ( moderate hazard), and  

 Zone D (low hazard). 

The zone A includes the Lake Tanganyika Rift zone where PGA values of 0.32g, 

0.22g and 0.16 g are expected to occur with probability 2%, 5% and 10% in 50 

years, respectively. Zone B includes the Lake Kivu Basin, Mount Ruwenzori and 

Lake Edouard region. Zone C includes Rutsuru, Masisi, Upemba area and a part 

of the Congo basin close to the Western Rift. The remainder of the Congo basin 

constitutes the zone D.  

 

To understand how volcanoes work and reduce the risk due to the Virunga 

volcanic eruptions in the Western Rift Valley of Africa, the crustal structure 

beneath the Virunga volcanic area was investigated and studies of volcanogenic 

seismicity were carried out. From these studies, it was found: 

 High velocity material (6.9 to 7.3 km/s) lies beneath the Kunene (KNN) 

and Kibumba (KBB) broadband stations at depths of 3-20 km and 3-

10 km, respectively, which is indicative of magma cumulates within the 

volcanic edifice. 

 A low velocity zone was observed below KNN and KBB at depths of 20-

30 km and 18-28 km, respectively, and with average velocity 6.1 km/s and 
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5.9 km/s. This low velocity zone may sample the magma chamber or a 

melt-rich sill. 

 The depth of the crust-mantle transition zone beneath the area sampled by 

the KNN and KBB in the Virunga area was determined to be about 39 to 

43 km and 30 to 39 km, respectively. 

 Swarm-type seismicity composed mainly of long-period volcanic 

earthquakes preceded the eruptions of Nyamuragira volcano and was 

probably enhanced by tectonic seismicity related to rifting. 

 A steady increase in seismicity at a constant rate from a deep magma 

feeder (located at about 20 to 30 km depth) was observed ten or eleven 

months before eruption. In the last stage (1 or 2 months) before the 

eruption, the hypocenters of long-period volcanic earthquakes became 

shallower.  

 

The new model of the local crustal seismic velocity for the Virunga area is useful 

to map the migration of hypocenters of earthquakes accurately and reveals trends 

that could be precursors of volcanic eruptions 

 

This pattern of seismicity prior to the volcanic eruptions, integrated with other 

available data (e.g. INSAR, GPS), may be used to characterize the volcanic 

process and forecast volcanic eruptions in the Virunga area.  
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Source:  Keiti, A. and Lee, W.H.K., 2003. Glossary of Interest to Earthquake and  
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              Engineering Seismology, Academic Press.  Part B, Vol. 81 B, p. 1793- 
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Acceleration:  The rate of change of particle velocity per unit time. 

Active fault:  A fault that has moved in historic (e.g., past 10 000 years) or recent 

             geological time (e.g., past 500 000 years). Although faults that move in 

             earthquakes today are active, not all active faults generate earthquakes as 

some faults are capable of moving aseismically. 

Active volcano: By a widely used but poor definition, one that is erupting or that  

              has erupted one or more times in recorded history 

Aftershock:  An earthquake occurring as a consequence of a larger earthquake in  

              roughly the same location. The sequence of such earthquake following 

              a larger one generally shows a regular decrease in the rate of occurrence,  

              first discovered by Omori in 1894. 

Aleatory uncertainty:  The uncertainty in seismic hazard analysis due to inherent 

               random variability of the quantity being measured. Aleatoric uncertain- 

               ties cannot be reduced by refining modelling or analytical techniques.  

              See also epistemic uncertainty 

Amplification (by recording site): A term also used for describing the increase  



 

xvii 

 

              in amplitude of seismic waves due to the recording site’s condition. Most  

              seismographs are installed at a site on or near a  surface with irregular  

              topography and lithologic structures of heterogeneous material created by 

              erosion, deposition, and other geological processes. These complex near- 

              surface structures tend to amplify the amplitude of incident seismic 

             waves. See also site effect and site response. 

Annual probability of exceedance:   The probability that a given level of seismic  

             hazard (typically some measure of ground motions, e.g., seismic magni- 

             tude, peak ground acceleration or intensity) or seismic risk (typically  

            economic loss or casualties) can be equalled or surpassed within an  

            exposure time of 1 year (see also Hazard curve, Total hazard curve).  

Area source:  See source zone 

Areal source: See source zone 

Aseismic: In seismology, an adjective for an area where few or no earthquakes  

            have been observed. In earthquake engineering, an adjective for structures 

            that are designed and built to withstand earthquakes 

Attenuation relationship:  A mathematical expression that relates a ground- 

           motion parameter, such as the peak ground acceleration, to the source and 

            propagation path parameters of an earthquake such as the magnitude,  

            source-to-site distance, or fault type. Its coefficients are usually derived 

            from statistical analysis of earthquake records.  

Attenuation equation: See also attenuation relationship  

Azimuth: In seismology, the direction from a seismic source to the seismic  

             Station recording this event. It is usually measured in degrees clockwise  
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             from the north. 

Back-azimuth: The direction from the seismic station toward a seismic source. It 

             is usually measured in degrees clockwise from the north. 

Base-shear: The horizontal shearing force at the base of the structure. The  

            maximum base-shear,  typically in the form of a fraction of the weight of  

            the structure, is an important parameter in earthquake response studies and  

            in earthquake-resistant design (see also seismic hazard zoning 

            coefficient) 

Converted wave: The conversion of P to S waves and S to P waves that occurs at 

            a discontinuity for non-normal incidence. These converted waves  

            sometimes show distinct arrivals on the seismogram between the P and S 

            arrivals and may be used to determine the location of the discontinuity. 

Deterministic scenario earthquake: A representation in terms of useful 

           descriptive parameters of an earthquake of specified size postulated to 

            occur at a specified location (typically active fault), and of its effects.  

Deterministic spectra: It shows the spectral acceleration as a function of spectral  

            period for a specified fractile of the attenuation dispersion. See also  

           deterministic earthquake scenario. 

Earthquake hazard: See seismic hazard 

Earthquake magnitude recurrence model: The recurrence rate of earthquake 

           magnitude is assumed to follow the cumulative Gutenberg-Richter 

           frequency-magnitude relationship. 

Earthquake source parameters: The parameters that are specified for an earth- 

            quake source, depending on the applied model. They are origin time,  
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            hypocenter location, magnitude, focal mechanism, and  moment tensor for  

            a point source model. They include fault geometry, rupture velocity, stress  

            drop, and slip distribution for a finite-fault model 

Earthquake swarm:  A series of earthquakes occurring in a limited area and time 

            period in which there is not a clearly identified main shock of a much 

             larger magnitude than the rest. See also swarm. 

Epistemic uncertainty: The uncertainty in seismic hazard analysis due to  

             imperfect knowledge in model parameterizations and other limitations of  

             the methods employed. Epistemic uncertainty can be reduced by  

             improvements in the modelling and analysis. See also aleatory 

            uncertainty. 

Equivalent earthquake magnitude: Magnitude of hypothetical event that would 

             yield energy equivalent to the total energy released in the area 

Exceedance probability: The probability that a specified value of a strong- 

             motion parameter is exceeded by a future occurrence within a specified  

             period of time. 

Foreshock:  A smaller earthquake preceding the largest earthquake in an  

            earthquake sequence. 

Hazard curve: It gives the probability that any of the scenario earthquakes will 

             produce a ground motion exceeding the ground motion test value ( See 

            also Total hazard curve) 

Hawaiian eruption: An eruption of highly fluid (low-viscosity) magma that 

            commonly produces lava fountains and forms thin and widespread lava  

            flows, and generally very minor pyroclastic deposits around the vents. 
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Hybrid earthquake:  In volcano seismology, an earthquake with characteristics  

            of both high-frequency and long-period earthquakes, often applied to 

            earthquakes that have an impulsive high-frequency onset with onset and  

           S-wave followed by an extended low-frequency coda. 

INSAR: Interferometric synthetic aperture radar 

IPGP: Institut de Physique du globe de Paris, France 

ISC: International Seismological Centre 

Local site effect: A qualitative or quantitative description of the topography,  

            geology, and soil profile at a site that affect ground motions during an 

            earthquake. 

Magnitude: Used to define the size of an earthquake. There are many different 

         scales that can be used to define magnitude e.g. moment magnitude (Mw), 

         local magnitude (Ml), short-period body wave magnitude (Mb), surface  

        wave magnitude (Ms). 

Maximum credible earthquake: The maximum earthquake, compatible with the 

            known tectonic framework, that appears capable of occurring in a given  

            area. 

Maximum possible earthquake magnitude: Maximum earthquake magnitude  

            that appears capable of occurring in a given area. See also Maximum 

            credible earthquake. 

Mean Hazard: See seismic hazard analysis and Total hazard  

NEIC: National Earthquake Information Center in Golden, Colorado, operated by 

            USGS. 

Paleoseismology: science to study the nature, timing and location of pre- 
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            instrumental earthquakes. 

Peak ground acceleration (PGA): The maximum acceleration amplitude  

              measured (or expected) in a  strong-motion accelerogram of an 

               earthquake. 

Poisson distribution: A probability distribution that characterizes discrete events  

             occurring independently of one another in time. 

Poisson model: see Poisson distribution  

Poisson process: A point process in which events are statistically independently 

             and uniformly distributed with respect to the independent variable (e.g. 

              time). See also Poisson distribution. 

Probability density: A function of a continuous statistical variable whose integral  

           over a given interval gives the probability that the variable will fall within 

           that interval . 

Probability of Exceedance: The probability that, in a given area or site, an earth- 

           quake ground motion will be greater than a given value during some time 

            period. 

Receiver function: The spectral ratio of the horizontal component of S waves to 

            the vertical component of P waves recorded at a single station from a  

            teleseismic event. Assuming a horizontally layered structure beneath the 

            station, it gives an estimate of the seismic velocity structure, particularly 

            the nature of discontinuities  of the crust and the uppermost mantle.  

Return period: The average time between exceedance of a specified level of  

            ground motion at a specific location, equal to the inverse of the annual  

            probability of exceedance. 
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Rift (or Rift Valley): An extended crustal feature marked by a fault-caused 

            trough that is created in a zone of divergent crustal deformation. 

Risk:  The probability of harmful consequences, or expected losses (deaths, 

            injuries, damage to property, threats to livelihoods, disruption of economic  

            activity, or damage to the environment) resulting from interactions  

            between natural or human-induced hazards and vulnerable conditions. 

            Conventionally, risk is expressed by the following notation:   

            Risk= Hazard x Vulnerability  

           (Source: www.unisdr.org/eng/library/lib-terminology-engome.html) 

SAC: Seismic Analysis Code developed by Lee Minner and Peter Goldstein in  

           1999. 

Scenario earthquake: See deterministic scenario earthquake 

SEISAN: A software package for earthquake analysis edited by Jens Havskov and 

            Lars Ottemöller. 

Seismic hazard: Any physical phenomena associated with an earthquake (e.g.  

            ground motion, ground failure, liquefaction, and tsunami ) and its effects 

            on land use, man-made structures, and socioeconomic systems that have 

            the potential to produce a loss. It is also used without regard to a loss to 

            indicate the probable level of ground shaking occurring at a given point  

            within a certain period  of time.   

Seismic hazard assessment: The calculation of the seismic hazard, expressed in  

            probabilistic terms, as contrasted with deterministic seismic hazard 

            analysis, for a site or group of sites. The result is usually displayed as a  

            seismic hazard curve or seismic hazard map.   

http://www.unisdr.org/eng/library/lib-terminology-engome.html
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Seismic hazard curve: A plot of probabilistic seismic hazard (usually) specified  

            in terms of annual probability of exceedance) or return period versus a  

            specified ground motion parameter for a given site.  

Seismic hazard map: A map showing contours of a specified ground-motion 

            parameter or response-spectrum ordinate for a given probabilistic seismic  

            hazard or return period. 

Seismic source: A localized area or volume generating coherent, usually transient  

            seismic waveforms, such as an earthquake. 

Seismic zonation: The geographic delineation of areas having different potentials 

            for hazardous effects from future earthquakes. Seismic zonation can be 

            done at any scale: national, regional, local or site. 

Seismic source zone: An area of seismicity probably sharing a common cause. 

Seismic zone coefficient: A relative intensity ratio of anticipated earthquake 

            motion taking into account earthquake motion for the entire country or 

            region. 

Seismic zoning map: A map used to portray seismic hazard or seismic design 

            variables, for example, maps used in building codes to identify areas of  

            uniform seismic design requirements. 

Seismotectonic source zone: See seismic source zone 

Seismogenetic source zone: See seismic source zone 

Site effect: The effect of local geology and topographic conditions at a recording 

            site on ground motion. See also local site effect. 

Site response: The modification of earthquake ground motion in the time or  

            frequency domain caused by local site condition. 
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Source zone: An area in which an earthquake is expected to originate; more 

            specifically, an area considered to have a uniform rate of seismicity or a 

            single probability distribution for purposes of a seismic hazard or seismic 

            risk analysis. 

Swarm: See also earthquake swarm 

Total hazard: The calculation of the mean annual frequency of exceedance as a  

           function of spectral acceleration for a particular spectral period into a 

           specific site in the study area due to multiple source zones using the  

           total probability theorem. 

Total hazard curve: It shows the curve of the mean annual frequency of  

           exceedance as a function of spectral acceleration for a particular spectral  

           period at a specific site. Seismic hazard curves are first obtained for each 

           seismic source zone and then combined to obtain the total hazard curve. 

           See also Seismic Hazard curve. 

Uniform hazard (response) spectrum: In probabilistic hazard analysis, a 

           response spectrum with ordinates having equal probability of being 

           exceeded. 

Vulnerability:  the degree of loss to a given element or set of elements at risk 

            resulting from the occurrence of a specific seismic hazard. It is expressed 

            on a scale from 0 (no damage) to 1 (total loss).  

Uniform hazard spectra: It shows the spectral acceleration as a function of 

            spectral period for a specified return period. See also Uniform hazard 

            (response) spectrum. 
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CHAPTER 1     INTRODUCTION 

1.1 General Introduction   

The Democratic Republic of Congo (DRC) is located between longitude 12°E and 

30°E, and latitude 4°N and 12°S. The geology of the DRC is complex. Its most 

prominent morphological feature is the Western Rift zone that runs along the 

DRC’s eastern border and through neighbouring countries (e.g. Uganda, Rwanda, 

Burundi, Tanzania) between 28°E to 32°E and 4°N to 12°S. The Western Rift 

Valley forms the western branch of the East African Rift System. It extends over 

1600 km in an arc-like pattern along Lakes Albert, Edouard, Kivu and 

Tanganyika, until it joins the eastern branch, after which it extends further to the 

south along Lakes Rukwa and Malawi. The rift is generally bounded by tilted 

blocks of crystalline Precambrian rocks [Morley, 1988] that are cut by tertiary 

faults that strike parallel to the rift axis. 

 

The Western Rift Valley of Africa (WRA) has experienced several severe 

earthquakes and volcanic eruptions in recent historical times. The earthquakes 

with magnitude M ≥ 6 occurred mostly in DRC and neighbouring countries (e.g. 

Uganda and Tanzania). They were located in the northern Lake Tanganyika 

region (e.g. 22 September 1960, Ml6.5), the Ruwenzori area (e.g. 20 March 1966, 

Ml7.0; 5 February 1994, Ms6.5), the region southwest of Lake Tanganyika 

(Kabalo earthquake, 11 September 1992, Ms6.7), and the Central Kivu basin 

(Kalehe earthquake, 24 October, 2002, Mw6.2). In general, seismic activity in the 

Western Rift Valley is confined to the following zones: the south, central and 
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northern part of the Lake Tanganyika, the western border of Lake Kivu and Ruzizi 

Valley, the Lake Edouard trough, and the Mount Ruwenzori area (Figure 1.1). 

  

Furthermore, temporary seismic observations made in an area west of the Rift 

Valley near Lake Kivu show that seismic activity is not only high in the Rift 

Valley, but also outside the Rift Valley, especially in the Masisi area located 

about 50 km west of the Western Rift Valley [Zana et al., 1990]. On 29 April 

1995, an earthquake of magnitude Mb5.1 occurred in the Masisi area. 

 

Earthquakes with magnitudes greater than 5 were also observed in the Congo 

intracratonic basin, located about 450 km from the rift axis [Wafula and Zana, 

1990; Zana et al. 1992 and Atalay, 2002] and adjacent areas (northeast region of 

Republic of Congo Brazzaville). 

 

Seismic activity in the basin of Lake Kivu was moderate (Magnitude ≤ 4) until 

1997, except for the occurrence of an earthquake of magnitude Ml4.5 on 25 April 

1965 with its epicentre 10 km south of Bukavu City [Wohlenberg, 1968] and 

another on 6 January 1976 (Mb5.2) in the Ngweshe area. Since 1997, landslides 

have started to occur in Bukavu City and vicinity due mainly to seismic activity 

observed in the southern part of Lake Kivu (e.g. 11 February 1997, Mb4.7; 11 

November 1997, Mb4.7; 2 March 2000, Mb5.4; 3 March 2000, Mb4.9; 12 

September 2000, Mb4.6; Munyololo et al., [1999]). 
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Figure 1.1 Large earthquakes with magnitude M≥6 observed in the Western Rift 

Valley of Africa since 1910. The coordinates of the 1910 M7.3 were obtained by 

combining those obtained from instrument with local macro seismic record as 

published in Ambraseys and Adams [1992]  

LA= Lake Albert, R= Ruwenzori Mountain, E= Lake Edouard, K=Lake Kivu, 

TA= Lake Tanganyika, LM= Lake Moero and RV= Ruzizi Valley 

 

On 24 October 2002, an earthquake of magnitude Mw6.2 occurred in the central 

part of Lake Kivu. Aftershocks of this earthquake extended from the Kalehe area 

to Idjwi Island. Two people were killed and there was significant damage to 
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masonry buildings [Mavonga, 2007a]. Recently, on 3 February 2008, an 

earthquake of magnitude Mw6.0 occurred about 20 km north of Bukavu City. 

Nine people were killed, more than one thousand houses destroyed and more than 

400 people were injured (Figure 1.2). 

 

 

Figure 1.2 Damage to a house resulting from earthquake on 3/2/2008 at Bukavu  

City (D.R Congo). Source: I. Badriyo, Project UNOPS “Unite de gestion de 

risques volcaniques”, Goma, North-Kivu, Democratic Republic of Congo  

 

Furthermore, some earthquakes have also occurred in the neighbouring countries 

(Rwanda and Burundi). On 20 March 2003 and 24 February 2004, earthquakes of 

magnitude Mb5.2 and Mb4.8 occurred to the southeast of Lake Kivu in Kibuye 

territory in Rwanda and about 35 km from Bujumbura in Burundi, respectively. 

Two people were killed by the latter earthquake. 
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The overwhelming majority of the shocks recorded since 2002 have occurred on 

normal faults of the western Kivu border fault system. It is noteworthy that in the 

northern edge of Lake Kivu, inhabitants of Goma City and surrounding areas (e.g. 

Gisenyi in Rwanda) are also threaten by volcanic hazard due to eruptions of the 

Virunga volcanoes (Nyiragongo and Nyamuragira). 

1.2 Motivation for this study 

The seismic hazard in the Democratic Republic of Congo and areas adjacent to 

the Western Rift Valley of Africa has been previously assessed by Midzi et al. 

[1999], Twesigomwe [1997] and Zana et al. [1992a]. 

 Due to the large area of approximately 50° x 25° that was investigated, 

Midzi et al. [1999] considered only regional structures in their seismic 

source zonation and did not take the local details of observed seismicity 

and tectonic features in the Western Rift into account.  

 The Twesigomwe [1997] study was mostly based on the assessment of 

seismic hazard in Uganda. 

 The estimation of earthquake hazard in Zaire (former name of DRC) by 

Zana et al. [1992a] was based only on combining the pattern of spatial 

distribution of epicentres, the equivalent earthquake magnitude 

distribution and trends of a and b in the Gutenberg Richter formula, but 

they did not take the attenuation of ground acceleration into account.  

 

The seismic-volcanic activity in the Virunga volcanic area has been monitored 

since 1983 by the Goma Volcano Observatory (GVO). The observation network 
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of GVO is composed of stations Katale (KTL), Luboga (LBG), Kunene (KNN), 

Rusayo (RSY), Kibumba (KBB), Goma and Bulengo (BLG). The determination 

of the earthquake hypocenter is a powerful means to locate magmatic activity in 

the Virunga area. However, locations may be biased due to the lack of a P- and S-

wave velocity structure specific for the Virunga area [Chiarabba et al., 2000; 

Zhang and Thurber, 2003; Stephen, 2005]. Data on deeper structure in the 

Western Rift are extremely sparse [e.g. Prodehl and Mechie, 1991]. There are no 

deep seismic reflection or refraction data available for the Western Rift near the 

Virunga volcanic area. Thus, it is imperative to image P- and S-wave velocity 

structure beneath Virunga and adjacent areas. 

 

The social conditions in the Great Lakes region are continually changing and 

planning based on seismic and/or volcanic hazard consideration is poor to non-

existent. Population growth has led to relatively uncontrolled use of land for 

building and the development of unsuitable sites that are vulnerable to earthquake 

and/or volcanic hazard. 

 

For these reasons, a revised assessment of hazard is urgently needed everywhere 

within these areas in DRC and surrounding countries. This will provide us a 

means of minimizing the danger to life as population density continue to rise. This 

work will contribute to: 

1. The formulation of a national seismic design code for buildings that will 

assist architects and engineers to take the seismic hazard into 

consideration, and 
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2. An understanding of how volcanoes work and thereby reduce the risk 

posed by volcanic eruptions in the Virunga area by deriving a new crustal 

seismic velocity model for the Virunga area in order to map the migration 

of hypocenters of earthquakes accurately and identified trends that could 

be precursors of volcanic eruptions 

 

1.3. Aim and structure of the study 

The major output of this study is a seismic hazard map for the DRC and adjacent 

areas based on probabilistic hazard computation using the instrumental earthquake 

data for a period of about 90 years. The basis for all seismic hazard assessment is 

the analysis of seismicity or the occurrence of earthquakes in space and time. 

Accurate knowledge of seismicity is an important tool for understanding active 

tectonics. One of the basic elements in assessing seismic hazard is the 

identification of seismic source zones that could affect the particular location at 

which the hazard is being evaluated. These seismic source zones are also called 

seismogenetic or seismotectonic source zones. Defining and understanding 

seismotectonic source zones is often the major part of a seismic hazard analysis 

and requires knowledge of the regional and local geology, seismicity and 

tectonics.  

 

In this thesis, due to the lack of well documented knowledge of active faults or 

linear sources in the study area, we used seismotectonic source zones which 

appear as area sources. 
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Chapter 2 is a review of previous studies on the tectonics and seismicity of the 

study area. We divide the study area into three seismic source zones: 

1. The Western Rift Valley of Africa 

2. The Upemba and Moero Rift, and 

3. The Congo basin  

Based on local geology and seismicity, the Western Rift Valley was subdivided 

into 4 sub-zones: 

1. Southern Sudan, Ruwenzori and Lake Edouard trough 

2. Virunga volcanic complex, Rutsuru and Masisi area 

3. Basin of Lake Kivu, Ngweshe and Ruzizi plain,  and 

4. Lake Tanganyika Rift 

 

In chapter 3, the seismic characteristics of the study area are modelled as a 

Poisson process following the standard engineering seismology assumptions.  The 

parameters used to characterise each seismic source zone are:  

1. Average rate of occurrence or mean seismic activity rate λ (which is a 

parameter of the Poisson distribution),  

2. Level of completeness of the earthquake catalogue (Mmin),  

3. Maximum possible earthquake magnitude (Mmax), derived using the 

method described by Kijko [2004],  

4. Gutenberg-Richter [1954] “b-value” (which indicates the relative number 

of large and small earthquakes, β=b ln10),   

5. Focal depth, and 

6. Regional attenuation relationship for the strong ground motion.  
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These parameters were determined and used as input parameter for hazard 

computation. The EZ-Frisk package (Version 7.24) [Risk Engineering Inc, 2007] 

was used to compute the seismic hazard at sites of interest for various 

combinations of seismic source zone,  attenuation equations and two focal depths. 

Results were displayed in chart of the total hazard curve including the 

contribution of hazard by seismic source. 

 

The PGA was calculated for a specified return period or annual chance of 

exceedance, on a grid covering the study area specified by their longitude and 

latitude at a grid interval of 0.5 degree. These values were used to create a seismic 

hazard map. Maps show the PGA (in unit g) for 2%, 5% and 10% probability of 

exceedance in 50 years which corresponds to return periods of 2475, 975 and 475 

years, respectively. The highest seismic hazard was obtained in the Lake 

Tanganyika Rift where the PGA values of 0.32g, 0.22g, and 0.16g are expected to 

be exceeded with probability 2%, 5% and 10% in 50 years, respectively. 

 

We then discuss the source of uncertainties in the input parameters used for 

hazard computation and assess the sensitivity of the outputs to these uncertainties. 

We also evaluate the effect of delimitation of seismic source zones and the 

computation method (probabilistic or deterministic hazard investigation) on the 

final result of seismic hazard analysis. Finally, we compare our results with recent 

work on earthquake hazard assessment in the Western Rift Valley.    
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In chapter 4, in order to understand how the Virunga volcanoes work and reduce 

the risk due to volcanic eruptions, we attempt to improve the seismic velocity 

model beneath the Virunga area. Teleseismic P-waveform receiver function 

analysis was used to study the crustal structure beneath the area sampled by two 

broadband stations in the Virunga area. The new velocity model obtained was 

used to recalculate the hypocenters for the period 18 August 2002 to 7 May 2004 

prior to the 8 May 2004 Nyamuragira eruption and 1 July 2004 to 27 November 

2006 prior to the 27 November 2006 Nyamuragira eruption. 

 

In chapter 5, we synthesize the research findings:  

a) The seismic hazard assessment for DRC and surrounding areas was used 

to identify four hazard zones as follows: Zone A (very high hazard), Zone 

B (high hazard), Zone C (moderate hazard) and Zone D (low hazard). 

Zone A includes the Lake Tanganyika Rift. 

b) We indicate how the improved hypocenter locations in the Virunga area, 

integrated with other geophysical, geological or geochemistry data, may 

be used to characterize volcanic process and forecast volcanic eruptions. 

Some recommendations were also made for the future studies on earthquake 

hazard assessment in the study area and crustal structure beneath Virunga area. 
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       CHAPTER 2      GEOLOGY AND SEISMOTECTONICS OF THE DRC 

                    AND ADJACENT AREAS 

2.1 Introduction 

The occurrence of earthquakes in DRC and adjacent areas is mainly controlled by 

the Western Rift Valley of Africa (WRA). A concentration of epicentres follows 

the rift structures between southern Sudan and southern Malawi. The WRA is 

occupied by the Lakes Albert, Edouard, Kivu, Tanganyika, Rukwa and Malawi. 

Furthermore, the region south of the Lake Tanganyika Rift, which includes the 

Katanga province of south-eastern DRC and north-western Zambia, is of 

considerable tectonic interest since geological and geophysical studies have 

revealed seismically active areas that may be related to the WRA with a common 

NE-SW trend. Although features related to active faults are poorly exposed at the 

surface, the region is marked by a large negative Bouger anomaly [Mondeguer et 

al., 1989; Fairhead and Girdler, 1972; Fairhead and Henderson, 1977; Sebagenzi 

et al., 1993; Shudofsky, 1985]. The following young rifts have been observed in 

that region: the NE-SW trending Upemba, Luano, Lukusashi, Luangwa Karoo and 

Moero Cenozoic Rifts. Diffuse seismicity is also observed in the Congo basin 

[Atalay, 2002]. 

 

Studies of local seismicity from micro-earthquake networks and seismotectonics 

in the Western Rift Valley of Africa, Congo basin, south-eastern DRC and 

northwestern Zambia have been carried out by De Bremaecker [1955,1959], 

Wohlenberg [1968], Bram [1972], Maasha [1975], Zana [1977], Zana and 
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Hamaguchi [1978], Zana et al. [1989], Zana et al. [2004], Maasha and Molnar 

[1972], Tanaka et al. [1980], Zana and Tanaka [1981], Shudofsky [1985], Wafula 

and Zana [1990], Foster and Jackson [1998], Atalay [2002], Sebagenzi and 

Kaputo [2002] and Mavonga [2007a]. These studies, either of the focal 

mechanism of individual events or composite focal mechanism solutions of 

micro-earthquakes, have shown that the stress field is predominantly of normal 

faulting type throughout the region, with the exception of the Congo basin. 

2.2 Main seismic source zones for the study area 

The main seismic source zones currently known for the study area are shown in 

Figure 2.1 to 2.7 and summarized as follows: 

2.2.1 The Western Rift Valley of Africa (WRA) 

A hypsographic Digital Elevation Model (DEM) of the East African Rift System 

(EARS) is shown in Figure 2.1. Based on local seismicity and geological 

structure, four seismic sub-zones have been identified in the WRA. 

(i) Southern Sudan, Ruwenzori area, and Lake Edouard trough (Figure 2.2), 

(ii) Virunga volcanic complex, Rutsuru and Masisi area (Figure 2.3),  

(iii) Lake Kivu basin, Ngweshe area and Ruzizi plain (Figure 2.4), and  

(iv) Lake Tanganyika Rift (Figure 2.5).  

The main features of each sub-zone are described below. 
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Figure.2.1 Hypsographic DEM of the East African Rift system. Black lines are  

faults.   Source: Chorowicz, J. [2005].  
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2.2.1.1 Southern Sudan, Ruwenzori area, and Lake Edouard trough  

The South Sudan is dominated by relatively strong earthquakes (e.g. sequence of 

large events in 1990-91) but with poor tectonic control [Girdler and McConnell, 

1994]. The Ruwenzori mountain is an uplifted horst of Pre-Cambrian rock 

[Cahen, 1954] bounded to the north by the NNE-SSW trending Lake Albert basin 

and to the south by Lake Edouard [Ebinger, 1989b] (Figure 2.2).  

 

Figure 2.2 Generalised geology map of the Kivu Province.  

AFZ=Aswa fault; LK=Lake Kyoga; LA=Lake Albert; R=Ruwenzori Mountain; 

KB=Katonga Break; RFB=Ruwenzori Fold Belt; E=Lake Edouard; MA=Masisi 

area; V=Virunga Volcanic Field; K= Lake Kivu; SK=South Kivu Volcanic Field; 

T=Lake Tanganyika.Source: Modified from Twesigomwe [1997] and Mavonga 

[2007b]. 
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The Ruwenzori area experienced large earthquakes on 20 March 1966 (Mw=6.8) 

and 5 February 1994 (Mw=6.2) that killed 160 and 8 people, respectively 

[National Earthquake Disaster Committee, 1994; Mavonga, 2007a]. Lake Edouard 

is also an active area. Many felt earthquakes have been reported by local 

inhabitants at Butembo City (DRC) located at the northern end of Lake Edouard. 

The last important earthquake (Mb=5.2) in the Lake Edouard area occurred on 8 

May 2003. 

2.2.1.2 Virunga volcanic complex, Rutsuru and Masisi area  

The Virunga volcanic complex is the largest of the Cenozoic volcanic complexes 

in the Kivu Province and the only one that is presently active. The Virunga 

volcanics are divided into three subgroups: the Eastern (Muhavura, Gahinga, 

Sabinyo), Central (Visoke, Karisimbi, Mikeno), and Western (Nyiragongo and 

Nyamuragira). Except for a short lived eruption of Visoke in 1956, only the 

Western group has had eruptive episodes in recent historical times [Mavonga et 

al., 2006, Kavotha et al., 2003, Komorowsky et al., 2003]. The Virunga volcanoes 

are distributed along an east-west trend at right angles to the rift axis [Kampunzu 

et al., 1986]. The tectonic seismicity in the volcanic area is very low (M≤ 4) 

(Figure 2.3).  

 

The Rutsuru basin is located at the northern part of the Virunga area (Figure 2.3). 

It is bordered by fault segment. Felt earthquakes are often reported by the local 

inhabitants in the Rutsuru area.  
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Masisi is located at the northwest of Lake Kivu (Figures 2.3 and 2.4). A study of 

earthquake focal mechanisms by Tanaka et al. [1980] showed that the direction of 

the fault traces in that area is SE-NW, and the average focal mechanism is normal 

faulting with the tension axis perpendicular to the strike of the fault traces. The 

last strong earthquake occurred in the Masisi area on 29 April 1995 (Mb=5.1) 

[Mavonga, 2007a].   

 

2.2.1.3 Lake Kivu Basin, Ngweshe area and Ruzizi plain 

The Kivu basin consists of two subsiding half grabens separated by the 700 m 

high Idjwi horst structure (Figure 2.3). The basin is bordered to the west by the 

prominent (more than1500 m high) escarpment of the West Kivu border fault 

segment, and to the east by the prominent escarpment of the East Kivu border 

fault segment [Ebinger, 1989a]. A network of oblique-slip transfer faults trending 

transversely to the main rift axis accommodates differences in elevation along the 

rift axis, and has contributed to the very complex tectonic relationship. Moreover, 

the Lake Kivu basin marks the transition of the Western Rift Valley from the 

predominant NW-SE orientation of Ruzizi-Tanganyika Rift basin to the more 

SW-NE trend of the Kivu, Virunga and Rutsuru-Lake Edouard Rift basins 

[Ebinger, 1989b]. 

 

The central part of Lake Kivu experienced a large earthquake (Mw=6.2) on 24 

October 2002 in the Kalehe area, which was felt strongly at Goma, Bukavu and 

Kigali. This earthquake was the largest observed in the basin of Lake Kivu since 

1900 [Mavonga, 2007a]. On 03 February 2008 an Mw=6.0 earthquake occurred 
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20 km north of Bukavu City. This earthquake claimed 9 lives, more than 400 

people were seriously injured and about 1500 houses collapsed. 

 

 

Figure 2.3 Map showing the eight volcanoes of the Virunga Volcanic Field and  

seismicity of Lake Kivu and surrounding area for the period 1976-2002.  

(NY= Nyiragongo; NM= Nyamuragira; KA= Karisimbi; MI= Mikeno;  

VI= Visoke; SA= Sabinyo; GA= Gahinga; MU= Muhavura).  

The filled triangles and squares indicate seismographic stations and earthquake 

epicentres, respectively. The filled small circles indicate cities [Modified from 

Komorowsky et al., 2003 and Mavonga, 2007a] 
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The Ngweshe area is located to the southwest of Lake Kivu (Figure 2.4). Its 

physiography is characterized by dislocated highlands of Precambrian age without 

indication of recent volcanism. Several felt earthquakes have been reported in the 

Ngweshe area. The trend of tension axis in this area is SE-NW perpendicular to 

the fault trace [Tanaka et al., 1980]. The Ruzizi plain is located between Lake 

Kivu and north of Lake Tanganyika. Three strong earthquakes occurred in the 

Ruzizi area (M(Lwiro)=5.5 in 1954, 5.0 in 1956, 6-6.5 in 1960). 

  

Figure 2.4 Epicenter map for the period 1955 to 1962 showing the central part of 

the Western Rift Valley of Africa (Masisi, Lake Kivu, Ngweshe and Ruzizi plain). 

The tectonic lines are from Cahen [1952] and Furon and Dumain [1959].  

The filled circles, rectangles and triangles are earthquakes with M≥5, 4≤M<5 and 

3≤M<4, respectively. Source: J. Wohlenberg [1968]. 
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2.2.1.4 Lake Tanganyika Rift 

Many larger magnitude earthquakes have occurred in the Tanganyika Rift 

(Figure 2.5). The best known are:  

 The event of 13 December 1910 at the southern end of Lake Tanganyika 

(M=7.3),  

 The 22 September 1960 Uvira earthquake (Ms=6.5) [Zana and 

Hamaguchi, 1978], with epicentre at the northern end of Lake Tanganyika, 

and  

 The 5 December 2005 earthquake (Ms=6.8), which took place in the 

central part of Lake Tanganyika.  It was felt even in Nairobi (Kenya). 

The accurate history of the seismic activity of this rift is not known. However the 

topography of this area is marked by grabens and horsts that are most likely 

associated with earthquakes [Mortelmans, 1951; Zana et al., 2004]. 

 

2.2.2 Southeastern DRC and northwestern Zambia 

The most prominent seismotectonic features in this region are the Upemba and 

Moero or Mweru Rifts (Figure 2.5). The Upemba Rift is characterized by a NE-

SW striking fault extending along its eastern side [Studt et al., 1908]. The 

Upemba Rift may extend northward to the Kabalo area, which experienced an 

earthquake with magnitude Mw6.5 on 11 September 1992. The earthquake 

parameters of the main shock provided by USGS are: origin time 03:57:26.2(UT), 

latitude 06.091°S, longitude 26.680°E, depth 10 km (fixed). In the city of Kabalo, 

the poorly constructed brick buildings experienced the most severe damage. The 
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main shock claimed 11 lives and 109 people were seriously injured (4 died within 

a month of the main shock). More than 2000 families were left homeless. Detailed 

investigation has revealed that the main geological features in the Kabalo area 

trend in the NNE-SSW direction, similar to those found in the Upemba Rift [Zana 

et al., 2004].  

 

Sebagenzi and Kaputo [2002] reviewed the available gravity, heat flow and 

seismological data in the region, and found geophysical evidence of continental 

break-up in the southeastern DRC and northwestern Zambia. Continental rifts 

preferentially follow pre-existing basement weaknesses such as ancient orogenic 

belts [e.g. Dunbar and Sawyer, 1989; Vauchez et al., 1997]. In the southeast of the 

DRC and northwestern Zambia these rifts are associated with belts which 

developed during the Paleo- and Mesoproterozoic times. The following rifts are 

known: the NE-SW trending Upemba, Luano, Lukusashi and Luangwa and Moero 

rifts. The stratigraphy of the Luangwa rift basin is relatively well known, but that 

of the Moero rift is practically unknown. In the Luano rift, Late Carboniferous-

Permian strata appear to be present, but the presence of Early Jurassic strata has 

still to be demonstrated [Delvaux, 2001]. Little is known about the Upemba rift, 

which is located entirely in the DRC. At the present state of knowledge, only 

some Upper Carboniferous sedimentary rocks succeeding a basal tillite and 

Cenozoic terranes are known to have filled the Upemba rift [Mortelmans, 1953; 

Villeneuve, 1983]. The opening of the NE-SW trending Upemba and Luano-

Luangwa-Lukusashi Karoo basins was related to crustal extension during the 

breakup of the Gondwana [Daly et al., 1989], while the Moero was opened during 



 

21 

 

the Cenozoic rifting episode [Mondeguer et al., 1989] (See Figure 2.5 and Figure 

2.6).  

 

According to seismological data, both Karoo and Cenozoic Rifts, which are still 

opening, may correspond to incipient arms of the East Africa Rift System (EARS) 

[e.g. Camelbeeck and Iranga, 1996; Fairhead and Girdler, 1972; Fairhead and 

Henderson, 1977; Lombe and Mubu, 1992]. This crustal extension has a tensional 

stress axis perpendicular to the NE-SW trending axis of the regional gravity low 

parallel to the lithosphere thinning axis [e.g. Fairhead and Henderson, 1977; 

Sebagenzi et al., 1997; Sebagenzi et al., 1993] (Figure 2.6). 

 

The b-value of the Upemba and Moero Rifts seismic source zone determined from 

the seismic history of the area in this study (chapter 3) is identical, within error 

limits uncertainty, with that of the entire Western Rift Valley seismic source zone 

from south of Sudan-Ruwenzori to the Lake Tanganyika Rift. Also, Mavonga 

[2007a] showed a correlation between fault area and magnitude of earthquakes 

which occurred in the Western Rift Valley and that of the Upemba area.   

 

Therefore, the evidence suggests that Upemba and Moero Rifts are part of the 

Western Rift Valley, but additional data are needed to confirm this as the 

relationship between the surface structures and deeper features is not known 

[Sebagenzi and Kaputo, 2002]. 
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Figure 2.5 A map of Eastern African Rift System (EARS) showing the  

continental breakup in the southeast of DR Congo and northern Zambia (Modified 

from Kinabo et al., 2007)  

The small red stars indicate large earthquake with magnitude M≥6 observed in the 

Western Rift Valley of Africa since 1910. 
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Figure 2.6 Regional gravity anomaly and heat flow determination values at the  

sites reported from Zambia (solid triangles) by Chapman and Pollack[1977], 

Kenya and Tanzania (solid squares) by Nyblade et al. [1990] and from D.R. 

Congo (encircled stars symbols) by Sebagenzi et al. [1993].  

Barbed lines represent active normal faults; labeled thin lines and unlabeled 

dashed lines represent gravity anomalies with a contour interval of 5 mgal. 

[Modified from Sebagenzi and Kaputo, 2002] 
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2.2.3 The Congo basin 

Due to the scarcity of outcrops and a very dense equatorial forest coupled with a 

thin cover of recent unconsolidated sediments over most of the area, the geology 

of this basin is studied in a few localized areas (e.g. Daly et al. 1992). No surface 

fault displacements have been documented, even though some large and 

damaging shocks have occurred. Studies of four earthquakes with magnitude 

ranging from Mb5.4 to Mb5.6 that occurred in the Congo basin during the period 

1976 to 1998 (Fairhead and Stuart [1985], Diewonski et al. [1996], Atalay 

[2002]), together with previous investigations, demonstrate that the Congo basin 

is in a state of predominantly horizontal compression. The fault mechanisms of 

these earthquakes show approximately E-W oriented P-axes, which could be 

interpreted as E-W contraction of the African Plate due to ridge push forces from 

the Mid-Atlantic Ridge and the East African Rift System (EARS) (Figure 2.7) 
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(a) 

 

(b) 

Figure 2.7 (a) Map showing the regional setting of the Congo Basin 

(b) Focal mechanism plots of all studied earthquakes for source dynamics in the 

Congo Basin.  

The black circles are the reported seismicity of the area by USGS in its entire 

history of reporting period whilst the white overlapping dots are the earthquakes 

studies by Atalay (2002). The fault plane solution for the 980305 earthquake is 

done from P-wave first-motion data and the mechanism for the 980426 event is 

further constrained by P- and SH-waveform fitting. [After Atalay, 2002] 
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                CHAPTER 3     EARTHQUAKE HAZARD ASSESSMENT FOR DRC AND 

                        SURROUNDING AREAS 

3.1 Data 

All seismic data used in this study are instrumental data compiled from various 

sources covering the region 14
o 

S to 6
o 

N and 10
o 

E
 
to 32

o
 E for the period 1910 to 

2008. The area of this study includes almost all Democratic Republic of Congo 

excluding the western region, as well as parts of Uganda, Tanzania, Rwanda, 

Burundi, Sudan and Zambia. Reports of earthquakes were searched for carefully 

as far back in time as possible using all available catalogues and seismological 

bulletins published by various reporting agencies.  

 

The main sources of data for earthquakes after 1953 are the seismological 

bulletins published by the “Institut pour la recherche en Afrique Centrale 

(IRSAC)” for the period 1953 to 1977, and by its successor, the “Centre de 

Recherche en Sciences Naturelles (CRSN)” for the period 1977 to 2007. The 

seismograph network of the IRSAC in Eastern DRC has been in operation since 

May 1953 when the station at Lwiro was set up. This network operated initially 

with three stations: Lwiro (LWI), Butare (BTR) and Uvira (UVI) [Sutton and 

Berg, 1958]. It was extended later by setting up the Rumangabo (RMG) and 

Butembo (BTC) stations in the North Kivu Province.  In cooperation with the 

IRSAC, the “Union miniere du Haut Katanga (UMHK)”, now “Generale de 

carrieres et des mines (GECAMINES)” set up a seismological network for 

Katanga from 1960 to 1970. This network included the stations of Delcommune 
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(DCC), Lubudi (LBD) and Mulungwishi (MLN) (Bram, 1972). However, most of 

these seismic stations were closed during the period 1964 to 1970 due to the 

political instability in DRC. Current seismograph stations in DRC are operated by 

the “Centre de recherche en Sciences Naturelles (CRSN)” and the University of 

Lubumbashi (UNILU). At present there are 9 stations, mostly concentrated in the 

Virunga volcanic area. In July 2007, the “Musee Royal de l’Afrique Centrale 

(MRAC)“ provided a broadband seismic station at Lubumbashi, in collaboration 

with UNILU and AfricaArray.  

 

Apart the IRSAC/CRSN network, data were obtained from the catalogues of the 

following reporting agencies: 

 The International Seismological Centre (ISC, previously International 

Seismological Summary, ISS),  

 United States Geological Survey (USGS, which includes NEIS, NEIC, 

USCGS and CGS),  

 Zimbabwe Meteorological Service Seismological Bulletin, Bulawayo 

(BUL),  

 Gutenberg-Richter [1949, 1954] and 

 Ambraseys and Adams [1992]  

 



 

28 

 

3.2 Method 

3.2.1 Unification of magnitudes  

A catalogue was compiled in Seisan format, listing information on the source of 

the data, the date, origin time, coordinates and magnitude of the earthquake. For 

source parameters other than magnitude, the most reliable and likely solution was 

selected if more than one solution was reported. The choice was made in order: 

ISC, USGS, LWI and BUL. However, there are several different magnitudes 

scales in use today. Even when magnitudes are determined from the same scale, 

there often are significant differences in the magnitude determined by different 

seismological centres. The reasons for the difference lie in the definition of 

magnitude (Båth, 1981). It is therefore, necessary to homogenize the magnitude 

by choosing a reliable magnitude scale before carrying out any seismic study. We 

decided to use the moment magnitude Mw for our unified catalogue, as the 

moment magnitude Mw is a direct indicator of the seismic moment of an event 

[Boore and Joyner, 1984; Joyner, 1984]. 

For simplicity, the USGS and BUL magnitudes were converted to the ISC 

magnitude using the least squares regression relations of Hlatywayo (1992, 1995): 

Mb (ISC) = 0.90±0.14 Mb (USGS) +0.38±0.06 

Mb (ISC) = 0.59±0.08 Mb (BUL) +1.97±0.26                                               (3.1) 

Both the body wave and surface wave magnitudes have been reported by ISC. 

From this catalogue, a relationship was obtained between Ms(ISC) and Mb(ISC) 

as shown in Figure 3.1 : 

 

Ms(ISC) = 1.358 Mb(ISC) -2.311                r
2
 = 0.56                                   (3.2) 
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Figure 3.1 Regression of Ms versus Mb ISC’s magnitudes for events observed 

                   in the Western Rift Valley of  Africa 

 

The magnitudes published by Lwiro (LWI) station were determined by a 

procedure similar to that proposed by Richter [1935] using the records of standard 

torsion seismometer by Anderson and Wood [1925]. The Nordquist [1945] 

nomogram, adapted for the short period Benioff seismometer (To=1 sec, Tg=0.25 

sec, Mag=100K, [De Bremaecher, 1955]), was used to determine LWI 

magnitudes. 

 

For the period from 1953 to 1964, the Lwiro magnitude M(LWI) reported by the 

IRSAC catalogue was the only data available for the unified catalogue. For 

magnitudes less than 4, M(LWI) is more in line with Richter local magnitude. 

However, for magnitudes greater than 4, M(LWI) shows a big departure from 

Richter local magnitude. In this range, M(LWI) gives magnitudes which are 

comparable to teleseismic body wave magnitude Mb [Båth, 1975]. So, to obtain a 

reliable magnitude scale, M(LWI) was converted to an equivalent USGS Mb 
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magnitude. Using 86 selected earthquakes of magnitude ≥4 for the period from 

1965 to 1977 recorded by the short-period Benioff seismograph at Lwiro 

seismological station and those provided by USGS (Table A.1), a regression 

relationship was determined between Lwiro magnitude M(LWI) and USGS’s Mb 

magnitude using the least square method as: 

     

               Mb (USG) = 3.315+0.282 M(LWI)            r
2
 =0.521                         (3.3)                                     

   

The corresponding regression curve is shown in Figure 3.2. 

 

Figure 3.2 Regression of M(LWI) versus Mb (USGS) 

 

It is noteworthy that, statistically, the linear regression lines obtained by equations 

(3.2) and (3.3) are poor due to limited data available used for this regression 

analysis. The linear relationship gets stronger when the coefficient of 

determination r
2 

gets closer to 1. 
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The moment magnitude Mw was chosen as a unified magnitude in the compiled 

catalogue. The following relations were used to convert various magnitudes to 

Mw. For small events, local magnitude Ml is considered to give a reliable measure 

of event size [Singh et al., 1990]. Hanks and Kanamori [1979] showed that 

surface wave magnitude Ms, when converted to magnitude Mw, has a similar 

relation to Ml. The relations used to convert Ml and Ms to moment magnitude Mw 

via seismic moment Mo are: 

       Log10 Mo  =1.5Ms +(16.1±0.1) 

       Log10 Mo =1.5Ml +16.0                                                                        (3.4)                                                                                   

where, Mo  is seismic moment given in dyne-cm and moment magnitude Mw is 

given by the relation:            

 Mw = 2/3 log10 Mo -10.7                                                                             (3.5)                                       

The conversion relation is valid for the range  

3≤ Ml ≤ 7    and   5≤ Ms ≤ 7.5. 

To convert Mb to Ms a theoretical relationship was adopted, the Ms-Mb relation 

[Marshall, 1970]: 

  Ms = 2.08 Mb –5.65                                                                                      (3.6)                                              

To convert Ml to Mb, we used the relationship of Richter [1958]: 

Mb=1.7 +0.8 Ml –0.01(Ml)
2    

                                                                         (3.7) 

 

 



 

32 

 

3.2.2 Completeness of the catalogue 

The statistical distribution of a magnitude for a group of earthquakes follows the 

Gutenberg-Richter [1949] frequency-magnitude relationship: 

       Log10 N(M)= a- bM ;                                                                             (3.8)                   

where N is the number of earthquakes of magnitude M or greater, and a and b are 

constants. In this equation, a is a measure of seismicity dependent of the area and 

time involved and b is a measure of the relative abundance of large and small 

earthquakes. The b-value may vary between 0.7 to 1.1 [Frohlich and Davis, 1993; 

McGuire, 1993].  

 

The completeness of a catalogue is defined as that range over which the 

magnitude-frequency relation roughly follows the Gutenberg-Richter relation. The 

highest magnitude (at the low magnitude end) that departs from the linear range is 

called the threshold magnitude. This discrepancy at the low magnitude end is 

attributed to incompleteness of detection.  

 

The most widely used approach to determine the threshold magnitude is to apply 

the cumulative frequency distribution instead of single frequency distribution. 

This method also smoothes out error in the magnitude [Hlatywayo, 1992]. The 

magnitude-frequency distribution of the 2249 earthquakes in this catalogue is 

shown in Figure 3.3. Assuming the linearity of the magnitude relationship above 

magnitude 3.7, the plot implies that the threshold of completeness is around 

magnitude 4.0 . 
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Figure 3.3 Frequency distribution of M≥2 earthquakes in the 1910-2007  

catalogue. Magnitude increment is (a) Δm=0.5 and (b) Δm=0.25.  

The filled squares and lozenges are number of events and accumulated  

number of events, respectively. 
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3.2.3 Probabilistic seismic hazard analysis 

In this study, the probabilistic approach to seismic hazard analysis as formulated 

by Cornell [1968] and McGuire [1976, 1993] was employed. Application of the 

procedure includes several steps: 

1. Potential seismic source zones are defined, over which all available 

information may be averaged. These zones are usually associated with 

geological or tectonic features (e.g. faults).  

2. Seismicity parameters are determined for each seismic source zone. 

Assessment of the above parameters requires a seismic event catalogue 

containing origin times, size of seismic events and spatial locations. Site-

specific analysis of seismic hazard requires knowledge of the attenuation 

of the selected ground motion parameter, usually PGA, as a function of 

earthquake magnitude and distance.  

3. The final step requires the integration of individual contributions from 

each seismic source zone into a site. 

A Poisson model of earthquake occurrence, which assumes that events are 

independent, was adopted [Bender and Perkins, 1987]. Therefore, foreshocks, 

aftershocks, and earthquake swarms were removed from the initial catalogue of 

2249 events. Furthermore, Mw=4.0 was selected as the lower magnitude bound 

(Mmin) because smaller earthquakes are considered unlikely to cause damage, 

even to houses that are poorly designed and built (as is typical for the DRC and 

adjacent areas). Thus any remaining events with M<4 were also excluded from 

the catalogue, leaving a sub-catalogue of 821 events. Scientists wishing to use the 

data should direct a request to CRSN/Goma Volcanic Observatory. 
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3.2.4 Seismic source zones  

Although most earthquakes are caused by faulting, it is not possible to identify 

individual seismically-active faults owing to the lack of good coverage of 

seismographic stations in the region and/or detailed Quaternary fault maps at a 

suitable scale showing the active faults. The characteristic elements, such as fault 

geometry, slip rate of faulting during recent geologic period, and fault 

segmentation length are not available. However, our current knowledge of the 

tectonics and seismicity of the study area (chapter 2) is good enough to designate 

source area models within which earthquake characteristics may be assumed to be 

uniform. These previous seismotectonic studies suggest that three main seismic 

source zones are responsible for the damaging earthquakes in DRC and 

surrounding areas, namely:  

1. Upemba-Moero Rifts (an area encompassing the south-eastern part of DRC 

     and north-western Zambia), 

2. Congo Basin, and 

3.  Western Rift Valley of Africa, which was subdivided into 4 sub-zones on basis 

     of the local seismicity and geological structure 

      (i)   Southern Sudan, Ruwenzori area and Lake Edouard trough, 

     (ii)   Virunga volcanic complex, Rutsuru and Masisi area, 

     (iii)  Lake Kivu Basin, Ngweshe and Ruzizi plain, and 

      (iv)  Lake Tanganyika Rift.  

See Figure 3.4. 
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(a) 

 

(b) 

Figure 3.4 (a) Epicentres in the D. R. Congo and surrounding areas for the time  

period 1910-2007 used in the seismic hazard analysis. The filled large stars, 

rectangles, lozenges and small stars indicate earthquakes of magnitude range 

between 4.4 to 7.3, 4.3 to 4.4, 4.2 to 4.3 and 4.0 to 4.2, respectively.  (b) The 

seismic source areas are marked as polygons (1=Upemba-Moero Rift; 2=Congo 

Basin; 3=Western Rift Valley). The Western Rift Valley seismic source zone is 

divided into four sub-zones (3a=Ruwenzori-Lake Edouard trough; 3b=Virunga 

 volcanic complex-Rutsuru-Masisi; 3c= Lake Kivu Basin-Ngweshe-Ruzizi; 

3d=Lake Tanganyika Rift).  
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All these sub-zones are assumed to be governed by the same tectonic setting, 

although the southern Sudan may not be actually part of the Rift, but it seems 

similar to others in the sub-zone (i) in terms of seismicity. The geographic 

boundaries of these seismic source zones and sub-zones are shown in Figure 3.4, 

superimposed on seismicity.  

 

3.2.5 Seismic parameters of seismic source zone 

Following typical assumptions made in engineering seismology, the seismic 

characteristics of each seismic source zone were modelled as a Poisson process. 

The most widely used model of magnitude distribution has its source in the 

classical Gutenberg-Richter relation. In order to ensure a finite seismic energy 

release [Knopoff and Kagan, 1977], the Gutenberg-Richter relation is often 

combined with an assumption on the existence of a physical upper limit of the 

magnitude Mmax.. The respective probability density function (PDF) of earth- 

quake magnitude for the exponential distribution is given as [Page, 1968]:     

      fM (m) = k β exp (-β (m-Mmin))      for   Mmin ≤ m≤ Mmax                 (3.9a) 

          where  

                  k= [1-exp (-β (Mmax-Mmin))]
-1

     

             fM(m) = 0                                    for   m < Mmin  and  m > Mmax   (3.9b) 

 

The characteristic parameters defined for each seismic source zone are:  

 Average rate of occurrence or mean seismic activity rate λ (which is the 

parameter of the Poisson distribution),  

 Level of completeness of the earthquake catalogue Mmin,  
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 Maximum possible earthquake magnitude Mmax,  

  Gutenberg-Richter parameter b (which indicates the relative number of 

large and small earthquakes,  β= b ln10) , 

 Focal depth,  and  

 Regional attenuation relationship for the strong ground motion.  

3.2.5.1 b-value and activity rate λ 

The b-value is expected to be regionally stable with variations less than the 

uncertainty limits, while the activity rate λ is liable to vary substantially from one 

seismic source zone to another. These parameters were obtained using the Seisan 

8.1 software BVALUE program [Havskov and Ottemöller, 2006] using a Nordic 

input file with magnitude increments Δm= 1.0, 0.5, 0.25 and 0.1, on the data 

selected from the earthquake catalogue corresponding to each seismic source 

zone. The program gives the number of events selected between magnitude Mmin 

and Mmax, cumulative number of events and duration of the catalogue in years.  

 

An example of earthquake magnitude recurrence relations for the source zone 1, 2 

and 3, using magnitude increment equal 0.25, are shown in fig.3.5a-b-c. The total 

number of events of magnitude greater or equal to 4 used to calculate the b-value 

for each seismic source zone was 99 for Congo Basin, 99 for Upemba and Moero 

Rifts, and 624 for the Western Rift zone. The maximum standard deviation in the 

calculation of b-value in these three seismic source zones was ±0.1 
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Figure 3.5- Cumulative magnitude-frequency plot for a magnitude increment 

Δm= 0.25 for the three main seismic source zones used in seismic hazard analysis: 

(a) Upemba–Moero Rift, (b) Congo basin, and (c) Western Rift Valley. 
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3.2.5.2 Maximum magnitudes 

At present, there is no generally accepted method for estimating the value of 

Mmax. Mmax is sometimes inferred through other available information, such as 

geology, paleoseismicity or subjective judgement of the scientist. If the above 

information is not available, it is usually set to half a magnitude unit higher than 

the maximum observed magnitude. More physically-based estimates are made 

using functions that relate magnitude to rupture length (for faults), or to the length 

of tectonic features (for area sources). Also analogies with regions with similar 

tectonic history can give insight on the maximum magnitude [McGuire, 1993, 

Wang and Tim Law, 1994, Havskov and Ottemöller, 2006]. 

 

As we don’t have well-documented information about faults or the slip and 

displacement of paleoseismic events, we used a procedure for the evaluation of 

Mmax developed by Kijko and Sellevoll [1989] and Kijko [2004] in this study. 

This procedure is free from subjective assumptions and is dependent only on 

seismic data. The procedure can be applied in the extreme case when no 

information about the nature of the earthquake magnitude distribution is available.  

In this procedure, it is assumed that: the value of the magnitude Mmin is known, 

the magnitudes of all the main shocks that occurred in the area within a specified 

time period T are independent and identically and randomly distributed with 

cumulative distribution function (CDF), FM(m). The maximum earthquake 

magnitude Mmax (an unknown parameter) is the upper limit of the range of 

magnitude. If Mmax
obs

 is the largest observed magnitude, the maximum regional 

magnitude Mmax can be approximated by the formula [Kijko and Graham, 1998] 
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                                                     (3.10) 

For the Gutenberg-Richter frequency-magnitude relation, the respective CDF of 

magnitudes bounded above by Mmax is [Page, 1968]: 

 

   0)(mFM                                                     for   m< Mmin 

  
min)]max(exp[1

min)](exp[1
)(

MM

Mm
mFM         for Mmin ≤ m ≤  Mmax         (3.11) 

   1)(mFM                                                       for   m> Mmax 

 

where β= b ln(10), and b is the  b-parameter of the Gutenberg-Richter relation. 

 

Following (3.10) and using the approximation of Cramer [1961], the estimator of 

Mmax for the frequency-magnitude distribution is obtained as a solution of the 

equation: 

 

  )exp(min
)exp(

)(1)(1
maxmax

2

12 nM
n

nEnE
MM obs                               (3.12)                                     

where      
min)]}max(exp[{ MM1

nn1  

                 
min)]max(exp[ MM

n
n 1

2   and  

                E1 (.) denotes an exponential integral equation. 

The function E1 (.) is defined as  

z

dzE /)exp()(1 , and can be approximated as 
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Where a1= 2.334733, a2= 0.250621, b1=1.681534 and b2= 1.681534 [Abramowitz 

and Stegun, 1970]. 

 

It must be noted that in its current form, equation (3.12) does not constitute an 

estimator for Mmax since expressions n1 and n2, which appear on the right-hand 

side of the equation, contain also Mmax. The assessment of Mmax can be 

obtained by the iterative solution of equation (3.12). 

From equations (3.10) and (3.12), the approximate variance of the maximum 

regional magnitude Mmax is 

    

2122
)]exp(min

)exp(

)(1)(1
[max)( nM

n

nEnE
MVar M                (3.14) 

where σM
2
 is the variance in the determination of the largest observed magnitude 

Mmax
obs

. 

 

Equation (3.12) has been used to estimate the maximum possible earthquake 

magnitude in several seismically active areas such as China [Yurui and 

Tianzhong, 1997].  

 

We developed a program using the iterative solution method and calculated 

Mmax by taking a starting value of Mmax as Mmax=Mmax
obs

+0.5. The maximal 

standard deviation in the calculated Mmax using formula (3.14) was  ± 0.5. 
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3.2.5.3 Focal depths 

Due to the poor coverage of seismographic stations in the region, the 

determination of focal depth is generally poor for events that occurred outside our 

seismographic network. However, micro-seismic studies indicate that, in general, 

the depth of earthquakes foci in the Western Rift Valley of Africa ranges between 

10 and 20 km (Zana [1977], Zana and Hamaguchi [1978], De Bremaecker [1959] 

and Wohlenberg [1967, 1968]. In this study, an average value of 15 km with 5 km 

uncertainty was considered.  

3.2.5.4 Attenuation relations 

As no strong ground motion database is available to use in a regression analysis to 

estimate ground motion parameters as a function of magnitude and distance, it 

was necessary to resort to other, less direct, data sources. Jonathan [1996] and 

Twesigomwe [1997] attempted to establish an average attenuation relation for the 

region. Jonathan’s relation is based on random vibration theory using some 

earthquakes recorded by the digital stations in the region. Twesigomwe’s relation 

is a modification of the previously established relation by Krinitzky et al. [1988] 

using regional shear-wave velocity and Q values determined by other workers like 

Gumper and Pomeroy [1970] in the Uganda Craton.  

The two relations are given below: 

ln a =3.024 + 1.030 Mw -1.351 ln R – 0.0008 R ± ɛ [Johathan, 1996]          (3.15)        

ln a= 2.832 + 0.866 Ms – ln R – 0.0025R ± ɛ         [Twesigomwe, 1997] ;    (3.16)        

where  

 a is the ground acceleration  (cm/sec
2
),   
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R is the hypocentral distance (km), and  

ɛ is the error term. The standard deviation of both these relations is ɛ=0.6. Both 

relations were developed for hard rock conditions.  

 

Stochastic methods has been widely used to predict site-specific time histories of 

strong motion for future large earthquakes (e.g. Boore [1983]; Hlatywayo [1995]),  

but they generally do not incorporate the response that is observed for a specific 

site, or the change in frequency content with time in seismograms caused by the 

late arrival of surface waves and attenuated shear waves.  

 

Mavonga [2007b] derived an attenuation relationship based on the simulation of 

the strong motion of large earthquakes using recordings of small earthquakes 

[Frankel, 1995; Irikura, 1983, 1986]. Recordings of small earthquakes adjacent to 

the expected large earthquakes have been treated as an empirical Green's function 

(EGF) between the source and that site [Hartzell, 1978]. These recordings contain 

the site response, scattered waves, surface waves and other path effects, and can 

be summed to produce realistic time histories at that site for a large earthquake. 

 

On the basis of the assumption of identical seismic response at three hard rock 

sites (Lwiro, Katale and Kunene) located within the Western Rift Valley of Africa 

and the relationship between the fault area and moment magnitude of the 

earthquakes derived from aftershock studies of major earthquakes that occurred in 

the Kivu Province from 1994 to 2002 [Mavonga, 2007a], an attenuation 

relationship was calculated based on simulating strong motions of large 
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earthquakes using recordings of small earthquakes (aftershocks). Results showed 

that the attenuation of mean peak ground acceleration (Y) was related to the 

moment magnitude (Mw) and the epicentral distance (R), according to the 

following power laws: 

            Mw=5.0              Y= 1.42 exp (1.43 Mw) R
-1.1

  

            Mw=5.5-6.5       Y= 1.42 exp (1.43 Mw) R
-1.2

                            (3.17) 

            Mw=7.0             Y= 1.42 exp (1.43 Mw) R
-1.3

  

            Mw=7.5              Y= 1.42 exp (1.43 Mw) R
-1.4 

The peak ground acceleration (Y) and epicentral distance (R) are expressed in gal 

and kilometre (km), respectively. In this study, we considered the relations (3.17) 

under the following form: 

 

     ln Y = c1 + c2 Mw + c3 ln (R + C4 ) +  C5 R + ɛ      ɛ≈ N(0, σ )               (3.18)           

 

R is the epicentral distance (in km) and the random error ɛ has a normal 

distribution with mean 0 and variance σ
2
. The parameters of the model are:     

c1= -6.53857, c2 =1.43, c3= -1.5, c4=0, c5=0 and σ =0.70. In equation (3.18), Y is 

expressed in unit of g. Note that σ is the uncertainty in the estimated maximum 

value of PGA. It includes the value of σln(PGA) due to the random scatter of the 

logarithm of acceleration, uncertainty arising from the erroneous determination of  

earthquake magnitude (σM
2
) and distance (σR

2
). It was determined by means of 

equation [Tinti and Mulargia, 1985]: 

 

                   σ = (σln(PGA)
2
 + c2

2 
 σM

2
 + σR

2
 ( c5 + c3/R)

2
 )

1/2
                              (3.19)                                    
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We used two epicentral distances (R=25 km and R=100 km) and assumed the 

maximum uncertainty values in the determination of magnitude and distance to be 

σM=0.4 and σR =10 km, respectively. The maximum value of σln(PGA) was 0.38. 

 

To select ground-motion estimation equations for input in the seismic hazard 

calculation, we considered five attenuation relations for hard rock conditions, of 

which three were derived from data for central and southern Africa:  

1. Mavonga [2007b] from data recorded in the Western Rift Valley,  

2. Twesigomwe [1997] for Uganda,   

3. Jonathan [1996] for eastern and southern Africa, 

4. Atkinson and Boore [2006] for eastern North America, and  

5. Somerville [2001] for central North America. 

The North American attenuation equations are the best known and most 

frequently used attenuation formulas for stable continental regions (e.g. Kijko et 

al., 2002). Our choice in adopting these equations was motivated by the following 

considerations: 

 Sub-Saharan Africa is mostly a stable intra-plate region characterized by a 

relatively low level of seismic activity, with earthquakes randomly 

distributed in space and time. The only parts of Sub-Saharan Africa that do 

not display the characteristics of an intra-plate region are the East African 

Rift System and the Cameroon volcanic line, where earthquakes are 

associated with active fault zones and volcanic activity (Kubanza et al., 

2006). The Democratic Republic of Congo and surrounding areas 

encompass both cratonic regions and the rift zone. Based on our 
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knowledge of the investigated area, it is not yet possible to delimit exactly 

the boundary between the craton and rift zone due to the sparse 

distribution of seismographic stations in the region and poor knowledge of 

the deep earth structure of the study area.  

 The dependence of ground motions on geographical region is an important 

consideration when selecting an attenuation model. However, these 

questions can be particularly difficult to tackle in regions of the world 

where little observed strong-motion data is available, since there are few 

records to validate the choice of the model. Thus it is often preferable to 

use well-constrained models, based on data from a other similar regions, 

than to predict motions using local models that are poorly-constrained 

(Douglas, 2007). 

 It is recommended that hazard be represented by several curves with the 

median or mean curve rather than a single curve. In this way both the 

uncertainty and the central value of the hazard are represented and may be 

considered for mitigation decision (Risk Engineering, Inc., 2008). 

The five attenuation curves are shown in Figure 3.6. The figure shows a close 

agreement between the relations of Jonathan [1996], Mavonga [2007b] and 

Atkinson-Boore [2006]. The relation of Twesigomwe [1997] is close to that of 

Somerville [2001], but both present a large departure from the first three. 

Therefore, in the computation of seismic hazard, we used the Jonathan [1996], 

Mavonga [2007b] and Atkinson-Boore [2006] attenuation relationships. The 

Mavonga [2007b] attenuation equation, obtained from the Western Rift Valley 

data, attenuates more strongly than those derived from cratonic or stable region 
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data. This is attributed to the presence of heterogeneous material generated either 

by the volcanism or rifting in the shallow part of the crust. 

 

 
Figure 3.6  Attenuation curves obtained for Central and Southern Africa data, 

together with the relations for Eastern North America [Atkinson and Boore, 2006] 

and Central USA [Somerville et al., 2001]. These curves are for magnitude 

Mw7.5. The PGA in the Atkinson and Boore [2006] and Somerville et al. [2001] 

relations was obtained at a fixed frequency of 50 Hz in the spectral acceleration 

spectra curve. 
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3.2.6 Input parameters for hazard computation 

The calculated parameters used in the seismic hazard computation are listed in 

Table 3.1. 

 

Table 3.1:   Seismicity parameters for the area source zones 

SOURCE  ZONES Mmin Mmax Beta(β) Lambda(λ) 

1.Upemba –Moero Rift 4 6.99 2.07 1.95 

2. Congo Basin 4 6.09 2.39 1.81 

3.Western  Rift 4 7.79 1.84 6.46 

3a. Ruwenzori area-Lake. Edouard trough 4 7.29 1.84 2 

     3b. Virunga volcanic complex-Rutsuru-Masisi 4 5.99 1.84 1.13 

3c. Lake Kivu basin –Ngweshe-Ruzizi  4 6.67 1.84 0.74 

      3d. Tanganyika  Rift 4 7.79  1.84  3.17 

 
Mmin: lower bound magnitude;  

Mmax: maximum expected upper bound magnitude;  

b-value: slope of magnitude-frequency relation;  

Beta (β): ln(10)x b-value,   

Lambda (λ): annual number of earthquakes above the lower bound magnitude  
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3.2.7 Computation of seismic hazard  

3.2.7.1 Theoretical background 

The seismic hazard calculation at a given site due to multiple earthquake source 

zones can be represented by the following equation [Reuter, 1990] which uses the 

total probability theorem to calculate the probability of a ground motion (e.g. Peak 

ground acceleration, velocity or displacement) being exceeded at a given site. 

            
n

i
iRMi dmdrmrMfmfrmaAPaH

ii

1

),(|)(],|[)(                    (3.20) 

where  

H (a) is the annual frequency of earthquake that produces ground motion with 

amplitude A greater than a.  

 is the annual rate of earthquakes (with magnitude greater than Mmin) in the i-th 

source area. 

P [A>a | m, r] is the probability that an earthquake of magnitude m at distance r 

produces a ground motion amplitude A at the site that is greater than a. It is 

obtained from the cumulative lognormal distribution with specified standard 

deviation σ as: 

 

               duyurmaAP
a

]
2

1
)(exp[

1

2

1
1],|[

2

ln
2                      (3.21)                    

Where 

y = C1 + C2 M + C3 ln (R + C5) + C4 R +ɛ    ɛ≈ N (0, σ)     for area sources. C1 , C2. 

C3, C4 and C5 are empirical constants 

M is the magnitude of earthquakes 
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Ɛ is a random error which has a normal distribution with mean 0 and variance σ
2
.  

)(mf
iM  is the probability density function of earthquake magnitude. It depends 

upon the earthquake magnitude recurrence model. Often  (m) is assumed to 

be an exponential truncated at lower and upper limits by Mmin and Mmax as 

expressed in equation (3.9). 

),(| mrMf iRi
 is the probability density function of earthquake-site distance. It 

depend upon the geometry of earthquake source, which usually takes the form 

of a point, line or bounded surface. 

 

The occurrence of earthquake is assumed to follow the Poisson probability density 

function. Therefore, the probability of exceedance r(a) of the ground motion a is 

often expressed by the following equation: 

           ))(exp(1)( aTHar                                                                   (3.22) 

Where  

T is the time period (number of year) for which we want to know the probability; 

H(a) is the annual rate of exceedance of ground motion a, and 

1/H(a) is the return period. 

 

3.2.7.2 Seismic hazard analysis 

The probabilistic seismic hazard for DRC and surrounding areas was computed 

using the software EZ-Frisk package (Version 7.24) [Risk Engineering Inc, 2007]. 

The inputs to probability hazard assessment are generally uncertain because they 

are based on the interpretation of limited data. This study on the DRC and 
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surrounding areas is no exception. To account for some of these uncertainties, 

modern seismic hazard analysis techniques regard input parameters as random 

variables. Their uncertainties are accounted for using a logic tree approach, which 

accommodates alternative input parameter values for a range of hypotheses, 

which are individually weighted and whose contributions to seismic hazard are 

separately evaluated and statistically combined (Mc Guire, 1993).  

 

However, EZ-Frisk does not use a logic tree directly. To treat epistemic 

uncertainty in the input to the analysis, it allows the use of multiple earthquake 

magnitude recurrence models (see glossary) after defining multiple identical area 

sources with probability of activity less than one in each seismic source zone. The 

EZ-Frisk program can also calculate seismic hazard using multiple attenuation 

equations and depths. EZ-Frisk presents results as a total hazard curve, uniform 

hazard spectra, contribution of hazard by seismic source and deterministic spectra. 

The total hazard curve shows the annual frequency of exceedance as a function of 

spectral acceleration for each attenuation equation for a particular spectral period. 

The uniform hazard spectra show the spectral acceleration as a function of 

spectral period for a specified return period. The deterministic spectra show 

spectral acceleration as a function of spectral period for a specified fractile of the 

attenuation dispersion. 

 

In this study, EZ-Frisk was used to compute the mean peak ground acceleration 

for two combinations of seismic source zones, three attenuation equations and two 

alternative focal depths at the site of interest 
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3.3 Results 

3.3.1 Seismic hazard map 

The input parameters used for seismic hazard computation are listed in Table 3.1. 

The output is a statistical estimate of the annual chance of exceedance as a 

function of PGA. A 0.5 degree grid was used to determine the PGA at various 

sites for a specific return period. The values obtained were used to create the maps 

shown in Figures 3.7 (a), (b) and (c). These figures show the mean PGA value (in 

unit of g) for a 2%, 5% and 10% probability of exceedance in 50 years which 

correspond to return period of 2475, 975 and 475 years, respectively.  

 

The highest PGA values are found in the Lake Tanganyika Rift zone where the 

PGA values of 0.32g, 0.22g and 0.16 g are expected to be exceeded with 

probability 2%, 5% and 10% in 50 years, respectively. The regions with the next 

high level of hazard are the other sub-zones in the Western Rift Valley, with the 

exception of the Virunga volcanic complex-Rutsuru-Masisi sub-zone where the 

seismic hazard (due mainly to the volcanic activity) is only moderate. The seismic 

hazard in the Congo basin diminishes with distance from the Western Rift Valley 

until, at a distance of about 450 km, the chance of exceeding a PGA of 0.05g (the 

threshold value of engineering interest) is less than 10% in 50 years.   



 

54 

 

 

 

Figure 3.7 (a): Distribution of mean PGA values (in unit g) in the DR Congo and 

surrounding areas computed for 2 % chance of exceedance in 50 years.  

The filled circles and triangles indicate the site PGA values and main cities, 

respectively. KIS=Kisangani, BNA=Bunia, BTC=Butembo, GOM=Goma, 

BUK=Bukavu, KAL=Kalemi, LUB=Lubumbashi, MBJ=Mbuji-Mayi, 

KND=Kindu, and KNG=Kananga. The geographic coordinates of the cities are 

listed in Table 3.2. 



 

55 

 

 
 

Figure 3.7 (b): Distribution of mean PGA values (in unit g) in the DR Congo and 

surrounding areas computed for 5 % chance of exceedance in 50 years.  
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Figure 3.7(c): Distribution of mean PGA values (in unit g) in the DR Congo and 

surrounding areas computed for 10 % chance of exceedance in 50 years.  
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3.3.2 Total hazard curve at the sites of the cities 

Figures 3.8 (a)-(n) show the three total hazard curves (one for each attenuation 

equation) and the mean total hazard curve at each of the following sites (in the 

DRC unless specified otherwise): Bujumbura (Burundi), Bukavu, Bunia, 

Butembo, Goma, Kalemi, Kananga, Kigali (Rwanda), Kigoma (Tanzania), Kindu, 

Kisangani, Lubumbashi, Mbuji-Mayi and Uvira. These sites are shown in Figure 

3.7 by filled triangles. The PGA exceeding indicated values with probability of 

2%, 5% and 10% in 50 years was estimated for these sites using both a 

probabilistic and a deterministic approach. These values are listed in Table 3.2. 

The probabilistic approach is dependent on the location of the site relative to all 

seismic source zones, while a deterministic approach considers only the largest 

possible magnitude event that is expected to occur in the seismic source zones 

closest to the site location. The following levels of hazard were found: 

 Very high in the Tanganyika Rift region, where the cities of Bujumbura 

(Burundi), Uvira, Kalemi and Kigoma (Tanzania) are located. The PGA, 

averaged for the four cities, to be exceeded with probability of 2%, 5% 

and 10% is 0.32g, 0.20g and 0.15g, respectively.  

 High in the Lake Kivu Basin and Ruwenzori areas, where the cities of 

Bukavu, Goma, Butembo, Bunia and Kigali are located. An average PGA 

in excess of 0.27g, 0.18g and 0.13 g with probability of 2%, 5% and 10%, 

respectively, was determined in these areas.  

 Moderate in the Upemba and Lake Moero area and in the part of Congo 

basin close to the Western Rift. This area includes the cities of 
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Lubumbashi, Mbuji-Mayi and Kindu, An average PGA in excess of 0.13 

g, 0.08g and 0.05 g with probability of 2%, 5% and 10%, respectively, was 

determined in these areas. 

 Low at Kananga and Kisangani. An average PGA in excess of 0.07g, 

0.05g and 0.03 g with probability of 2%, 5% and 10%, respectively, was 

determined in these areas.  

 

Table 3.2: Peak ground acceleration at selected cities determined using 

                  probabilistic and deterministic approaches for two seismic source  

                  zone models (S1 and S2) of the Western Rift Valley 

CITY LATITUDE LONGITUDE

2% 5% 10%

S2 S1 S2 S1 S2 S1 S2 S1

BUJUMBURA -3.378 29.363 0.3155 0.319 0.1947 0.1989 0.1311 0.135 2.416 2.416

BUKAVU -2.53 28.85 0.274 0.3185 0.1777 0.198 0.1239 0.1337 0.771 2,416

BUNIA 1.528 30.255 0.2728 0.3189 0.1708 0.1989 0.1169 0.1349 1.435 2.416

BUTEMBO 0.138 29.288 0.2724 0.3187 0.1699 0.1983 0.1157 0.1342 1.435 2.416

GOMA -1.683 29.231 0.2709 0.319 0.1782 0.1988 0.1266 0.1347 0.771 2.416

KALEMI -5.93 29.176 0.3196 0.3187 0.199 0.1984 0.1346 0.1342 2.416 2.416

KANANGA -4.083 21.7 0.07567 0.09048 0.0455 0.0522 0.02993 0.03342 0.4315 0.4315

KIGALI -1.953 30.059 0.2705 0.3191 0.1744 0.1991 0.1215 0.1352 0.771 2.416

KIGOMA -4.796 30.402 0.3197 0.319 0.1994 0.199 0.1353 0.1351 2.416 2.416

KINDU -2.921 25.915 0.07719 0.09239 0.04815 0.05579 0.03322 0.03793 0.4315 0.4315

KISANGANI 0.425 24.029 0.0757 0.09059 0.04566 0.05259 0.03025 0.03424 0.4315 0.4315

LUBUMBASHI -11.669 27.485 0.1259 0.1259 0.07776 0.07777 0.05227 0.05229 1.06 1.06

MBUJI MAYI -6.16 22.885 0.1186 0.1201 0.0712 0.07217 0.04607 0.0468 1.06 1.06

                            PROBABILISTIC   APPROACH

DETERMINISTIC  

APPROACH

PGA(g)PGA(g)

T1=2475 YEARS T2=975 YEARS T3=475 YEARS
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                                                   (a) 

 

                                                   (b) 

Figure 3.8 Total hazard curve at the site (a) Bujumbura   (b) Bukavu 
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                                                 (c) 

 

                                                 (d) 

Figure 3.8 Total hazard curve at the site (c) Bunia (d) Butembo 
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                                                (e) 

 

                                                  (f) 

Figure 3.8 Total hazard curve at the site (e) Goma (f) Kalemi 
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                                                                  (g) 

 

                                                 (h) 

Figure 3.8 Total hazard curve at the site (g) Kananga (h) Kigali 
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                                                  (i) 

 

Figure 3.8 Total hazard curve at the site (i) Kigoma (j) Kindu 

                                                 (j) 
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                                               (k) 

 

                                                  (l) 

Figure 3.8 Total hazard curve at the site (k) Kisangani (l) Lubumbashi 

 



 

65 

 

 

                                               (m) 

 

                                                 (n) 

Figure 3.8 Total hazard curve at the site (m) Mbuji Mayi (n) Uvira 
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Figure 3.9 shows the contribution of each seismic source zone in the study area to 

the total hazard at Bukavu site. The total hazard at this city is mostly dominated 

by the hazard due to seismic source zone 3c (Lake Kivu Basin-Ngweshe-Ruzizi) 

because Bukavu city lies within this seismic source zone. By using eq. (3.22), this 

chart shows the PGA of 0.05 g (the threshold value of engineering interest), 

corresponding to an annual frequency of exceedance of 0.01, is expected to be 

exceeded with probability of 10%, 39% and 63% in 10 years, 50 years and 100 

years, respectively.  

 

Figure 3.9 Contribution of hazard by seismic source at Bukavu site  
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3.4   Discussion  

3.4.1 General overview 

The main steps and parameters of the probabilistic seismic hazard assessment 

conducted in this study can be summarized as follows: 

1. Build a catalogue from instrumental seismic data with a unified magnitude 

that provides information on the location and frequency of earthquake 

occurrence during the past years. 

2. Delineate seismic source zones based on geological and seismological 

evidence. These source zones describe the potential locations of future 

earthquakes within the study area. 

3. Evaluate, for each seismic source zone, earthquake seismic parameters 

such as maximum expected magnitude, activity rate and b-value of the 

Gutenberg-Richter relation. 

4. Predict future ground motion using an appropriate regional attenuation 

relationship for the strong motion for the study area between magnitude, 

distance and site conditions. 

5. Compute seismic hazard (the probability that a specified ground motion 

level at a site will be exceeded during a particular time period), using the 

above parameters as input, to characterise each seismic source zone.  
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3.4.2 Source of uncertainties  

The input parameters used in seismic hazard computation are subject to several 

uncertainties: 

1. The results obtained in this study are based on a period of about 90 years 

duration, and assumed to be complete for events of magnitude Mw>4. 

However, African plate boundaries are generally characterized by slow 

relative motions (≈2mm/yr to ≈15mm/yr). Hence, large earthquakes have 

extremely long recurrence times [Hartnady and Benouar, 2007; DeMets et 

al., 1990; Walpersdorf et al., 1999; Lowrie, 1997; Asfaw et al., 1992, 

Jestin et al., 1994, Chu and Gordon, 1999, Bilham et al., 1999]. As the 

maximum credible magnitude was estimated on the basis of the observed 

maximum magnitude, this important parameter could be underestimated.  

2. The regression relations used to homogenise magnitude introduces errors 

that are later incorporated in the calculation of the b-value and the activity 

rate.  

3. Observations of regional strong ground motion are lacking. The 

attenuation relations used in the analysis are based on numerical 

simulations.  

4. The delimitation of seismic source zones also requires significant 

interpretation on the part of the analyst as the seismic  stations are sparsely 

distributed and the geology is poorly documented.  



 

69 

 

3.4.3 Assessment of the sensitivity of the outputs to input data 

To assess the sensitivity of the outputs to these uncertainties, we considered two 

alternative source delimitations, three attenuations equations and two different 

source depth estimates (10 km and 20 km). To determine the effect of delimitation 

of seismic source zones on estimates of the PGA at selected sites, both 

probabilistic and deterministic approaches were used, considering two 

delimitations of the Western Rift Valley (WRA) seismic source zone. In the first 

scenario (denoted S1), the Western Rift Valley seismic source zone was 

considered to be one structure with a single rate of activity, b-value and Mmax. In 

this model, every point in the Western Rift Valley is a candidate for the largest 

magnitude event. In the second scenario (denoted S2), the Western Rift Valley 

seismic source zone is considered to be segmented into 4 sub-zones. The rate of 

activity λ and the maximum magnitude Mmax may differ from one sub-zone to 

another, but the b-value is considered to be the same for all these sub-zones as 

they are all governed by the same tectonic setting. The results are listed in Table 

3.2 

 

Using the probabilistic approach, the PGAs calculated using the S1 model were 

slightly greater (by about 0.01g) than those produced by the S2 model. This is not 

significant from the engineering point of view. Therefore, in this study, we 

adopted the S2 model in the final computation of seismic hazard because, on the 

basis of the seismicity and the geology of the region, we believe that the S2 model 

is more realistic. The probability of observing an earthquake with magnitude 

greater than 7 in some sub-zones (e.g. the Virunga volcanic complex and vicinity) 
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is small due to the high heat in the crust generated by volcanic activity. It may be 

impossible to accumulate sufficient strain to generate this maximum magnitude. 

In the case of deterministic approach, the maximum difference in the strong 

ground motions predicted by the two scenarios was more than 1g (Compare 

Bukavu, Goma and Kigali, Table 3.2). Using S2 model and deterministic 

approach, the maximum credible PGA to be exceeded determined for the site 

Bukavu, Kalemi, Butembo and Lubumbashi are 0.771g, 2.416g, 1.435g, 1.06g, 

respectively. However, the probabilistic hazard curves of the respective sites 

(Figures 3.8(b), (f), (d) and (l)) show that the annual probability of such events 

occurring close enough to Bukavu, Kalemi, Butembo and Lubumbashi are 

0.00002, 0.000004, 0.000004 and 0.000002, respectively. These equate to events 

with 50 000, 250 000, 250 000, 500 000 year return period, respectively. Thus, the 

probabilities that such “scenario earthquakes” will occur are extremely small, but 

not null. 

 

The comparison of PGA values obtained using these two approaches show large 

differences. The deterministic approach is essentially based on a worst case 

scenario where the event occurs close to the site. However, the approach does not 

provide any indication of how likely this event is to occur during the lifetime of 

the structure. The deterministic approach is usually used for significant structures 

like power plants, large dams, large bridges, etc. In developing such scenario 

earthquakes, considerations should be given to the potential fault locations which 

can generate these earthquakes. These two methods can complement one another 

to provide additional insights to the seismic hazard or risk problem. One method 
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will have priority over the other, depending on the seismic environment, the scope 

of the project and how quantitative are the decisions to be made.  

 

As the locations of faults that may potentially cause the scenario earthquake are 

not well documented, we opted to produce a hazard map based only on the 

probabilistic approach. This quantification of the seismic hazard is based mainly 

on the seismic and geological history available in the area. Incorporation of any 

new specific information may yield a different result. Source zonations based on 

new paleoseismic information may improve the detailed hazard map. Also, site 

response studies will provide improved local hazard curves.  

3.4.4 Comparison with previous work in the Western Rift Valley 

The results obtained in this study were compared with previous work in the 

Western Rift Valley of Africa.  

 Midzi et al. [1999] presented a seismic hazard map for the Eastern and 

Southern Africa. Their study covered a large area of approximately 50° x 

50°. At such a large scale, only regional structures were considered when 

delimiting source zones. They reported a high PGA in excess of 0.22 g 

(240 gals) in Southern Sudan, Western Rift and Northern Tanzania with 

probability of 10% in 100 years.  

 Twesigomwe [1997] presented a probabilistic seismic hazard map of 

Uganda. He reported a PGA in excess of 200 gals (0.20g) with probability 

of 5% in 50 years in or close to the Western Rift south of latitude 0.5°N.  
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 Ferdinand [2007] analyzed the probabilistic seismic hazard in the city of 

Arusha in Tanzania, located about 200 km from the Lake Tanganyika area. 

This city is subject to threats from both the Western and Eastern Rift. He 

found exceedance of the PGA values of 0.15, 0.20 and 0.27g for return 

periods of 475, 975 and 2475 years, respectively.  

 Using the parametric-historic procedure of Kijko and Graham [1998, 

1999], Kijko et al. [2003] compiled a probabilistic seismic hazard map for 

Sub-Saharan Africa. Their map depicts a 10% probability of exceeding the 

calculated PGA at least once in 50 years. They found high hazard regions 

(areas that have a 10% probability of experiencing a PGA of 0.15 g and 

greater) in the south-western Cape region (South Africa), north-western tip 

of the Namibia-Angola border, parts of Mozambique, the Zimbabwe-

Zambia border, and much of the East Africa Rift Valley.  

Our results are in general accord with all these earlier studies. 
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CHAPTER 4    VOLCANOGENIC SEISMICITY IN THE VIRUNGA AREA 

4.1 Introduction 

The Virunga volcano group (Figure 4.1), which is located at the northern edge of 

Lake Kivu, consists of eight major volcanoes divided into three subgroups: the 

Eastern, the Central and the Western subgroups (Table 4.1). The volcanoes in the 

Western subgroup (Nyiragongo and Nyamuragira) have been the most active 

since 1882 (Demant et al., 1994, Clay and Cassandra, 1995). 

 

The Nyamuragira volcano (1.42°S, 29.2°E) is located 15 km northwest of 

Nyiragongo. It has exhibited two types of eruptive activity during the last century: 

lava lake activity in the summit caldera from 1921 to 1938; and flank eruptions 

that issued lava through new fissures, which usually began as lava fountains that 

gradually converged to form cinder cones. Since the Tsambene eruption (from 

1938 to 1940), all eruptions until November 2006 have been flank eruptions. The 

lava lake has disappeared completely. 

 

The Nyiragongo stratovolcano (1.52°S, 29.2°E), about 20 km north of Lake Kivu, 

has been active since 1884 (Clay and Cassandra, 1995). Its eruptive activity is 

characterized by the appearance of a lava lake in the summit crater due to 

intermittent short pulses. It had a lava lake in the summit crater from 1928 to 

1977. On January 10, 1977, approximately 22x10
6
 m

3
 of extremely fluid lava 

erupted from flank fissures and flowed down slope at up to 60 km/hour, killing 

about 70 people and reaching within 600 m of the Goma airport. 
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Figure 4.1 Map showing the eight volcanoes of the Virunga volcanic zone. 

NY=Nyiragongo; NM=Nyamuragira; KA=Karisimbi; MI=Mikeno; VI=Visoke; 

SA=Sabinyo; GA=Gahinga; MU=Muhavura.  

The filled small circles and triangles indicates cities and seismographic stations, 

respectively 
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Table 4.1: Eight major volcanoes of the Virunga area 

 

Location Name of the volcano Altitude (m  a. s. l) 

Eastern  

Group 

Muhavura 4127 

 Gahinga 3474 

 Sabinyo 3647 

Central 

Group 

Visoke 3911 

 Karisimbi 4506 

 Mikeno 4437 

Western 

Group 

Nyamuragira 3056 

 Nyiragongo 3470 

 

 

On 17 January 2002, the Nyiragongo volcano erupted again, extruding about 

20x10
6
 m

3
 of lava. Lava flows originated out of the central crater as well as 

several locations along a huge system of fractures that rapidly developed along the 

entire southern flank of the volcano towards the city of Goma. Two main flows 

entered the town producing major devastation, and forced the rapid exodus of 

300,000 to 400,000 people. About 15 % of the surface of the town was affected, 

including parts of the airport, most of the business centre, and the dwellings of 
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about 120,000 people. It was estimated that 150 people died as a consequence of 

eruption. This eruption was exceptional. It lasted only two days but it was 

accompanied by a swarm of more than 100 felt earthquakes during about 5 days. 

Several of these earthquakes were recorded regionally and teleseismically. The 

largest earthquake magnitude in this swarm was Mb5.2 [Sadaka et al., 2003]. 

 

Earthquake hypocenter determination is a powerful tool that may be used to assess 

magmatic activity and issue early warnings in the case of a prominent eruption. 

However, the problems of earthquake location and of velocity structure 

determination are interdependent [Chiarabba et al., 2000; Zhang and Thurber, 

2003; Stephen, 2005]. In the computation of earthquake hypocenters in the 

Virunga area, it is desirable to use a P- and S-wave velocity structure specific for 

the Virunga area.  However, knowledge of the structure of the crust and upper 

mantle in the Virunga area is poor compared with many other active volcanic 

regions of the world, particularly in Europe, Japan, North and South America. 

Apart from seismic reflection studies of the shallow structure (0-10 km) carried 

out in the Lakes Tanganyika, Malawi and Rukwa by the PROBE project 

[Rosendahl et al., 1992], data on deeper structure in the Western Rift are 

extremely sparse [e.g. Prodehl and Mechie, 1991]. No deep seismic reflection or 

refraction data is available for the Western Rift near the Virunga volcanic area. 

 

Nolet and Mueller [1982] used teleseismic data to derive a regional model of the 

Western Rift lithosphere. Their model has to be considered as a representative of a 
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broad area (1°S to 10°N latitudes) and contains a 35 km thick crust and relatively 

low upper mantle velocities to a depth of 140 km. 

In this study, receiver function analysis of teleseismic events recorded by two 

broadband stations were used to study the crustal structure beneath the Virunga 

area. The new velocity model was then used to determine the hypocenters of 

earthquakes that occurred in the period 18 August 2002 to 7 May 2004 prior to 8 

May 2004 eruption of Nyamuragira, and 1 July 2004 to 27 November 2006 prior 

to the 27 November 2006 Nyamuragira eruption.  

4.2 Data acquisition 

The seismograms used in this study were provided by the seismological network 

of Goma Volcano Observatory (GVO). The observation network is composed of 

seven stations: Katale (KTL), Luboga (LBG), Kunene (KNN), Rusayo (RSY), 

Kibumba (KBB), Goma and Bulengo (BLG). These stations are each equipped 

with a short-period Kinemetrics vertical-component SS-1 ranger seismometer 

(To=1 sec) connected to a PS-2 portable seismic recorder instrument. Signals 

from the seismometer are amplified and filtered in the amplifier module. The 

overall maximum of the PS-2 is 1 mm deflection for 1µV of input voltage. The 

amplifier panel has controls for amplifier gain and filter setting. The low-pass 

filter has -12 dB/ Oct roll-off and can be set to 2.5, 5.0, 12.5, 25.0 and 50.0 or out 

(70 Hz). The high-pass filter with +12 dB/ Oct roll-off can be set at 0.1 Hz or 5 

Hz. At our stations, the low-pass and high-pass filter were set to 12.5 and 0.1 Hz, 

respectively, and the amplifier gain varied from 36 to 66 dB according to the 

response of the site. 
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On November 2003, GVO began the deployment of three-component short-period 

Lennartz (LE-3D/5sec) seismometers at these stations. On May 2004, the 

Lennartz short-period seismometer at KNN and KBB was replaced with 

Nanometrics Trillium 40 broadband seismometers.  Signals from these stations 

are locally digitized from a modular acquisition system (GAIA), specifically 

developed by the “Istituto Nazionale di Geofisica e Vulcanologia” (INGV), with a 

sampling frequency of 50 Hz and an A/D resolution of 24 bits, and are 

telemetered to the Goma base station where they are recorded in triggered and 

continuous files. 

 

4.3 Crustal structure beneath two seismic broadband stations in the Virunga 

Volcanic area 

4.3.1 Method  

4.3.1.1 Receiver function 

 

By inverting receiver functions, it is possible to constrain the Moho depth and 

average shear wave velocity beneath a recording station [Owens et al., 1987; 

Langston, 1989; Ammon, 1991; Ammon and Zandt, 1993; Mangino et al., 1993; 

Gurrola et al., 1994; Kaspar and Ritter, 1998; Sandvol et al., 1988; Midzi and 

Ottemöller, 2001]. 
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In the receiver function technique, the teleseismic body waveforms are used to 

image the crustal structure underneath isolated seismic stations. These waveforms 

contain information related to the source time-function, propagation effect 

through the mantle, and local structure underneath the recording site. The 

resulting receiver function is obtained by removing the effects of the source and 

mantle path. 

 

The receiver function method relies on the conversion of the P-wave signals from 

distant events incident to a discontinuity in the crust or upper mantle to an S-

wave, which arrives at the station within the P-wave coda directly after the direct 

P-wave. As the S-waves travel more slow than the P-waves, a direct measure of 

the depth of the discontinuity is calculated using the difference in the arrival times 

of the direct P-wave and the converted phase (Ps), provided the velocity model is 

known.  

 

The phase obtained by Ps conversions, which is sensitive to the shear velocity 

contrast, has much stronger amplitude on the horizontal component than on the 

vertical component. In addition to the direct Ps converted phase, the multiple 

reflection phases resulting from the reverberation between the discontinuity and 

free surface are also seen on the receiver function traces. This method was 

presented in earlier studies by Langston [1979], Ammon et al. [1990] and Cassidy 

[1992]. 
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In this study, we used the source equalization procedure developed by Langston 

[1979] to remove the effects of near-source structure and source time-function. In 

the frequency-domain deconvolution, we used a water-level stabilization method 

and a low-pass Gaussian filter to remove any high frequency noise not filtered by 

the water-level method. The radial component of the receiver function H (ω) is 

obtained by deconvolving the vertical component Z(ω) of an earthquake recording 

from the radial component R (ω), i.e. 
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H                                                                                  (4.1) 

Where 

         Φ( ω ) = max {  Z ( ω ) Z* (ω ), c max [ Z ( ω ) Z* (ω ) ] }                    (4.2) 

Z* (ω) is the complex conjugate and c is the water-level constant. The water-level 

constant is the limit value of the denominator in Equ. (4.1) to avoid dividing by 0 

[Clayton and Wiggins, 1976; Mangino et al., 1993]. Typical values used are 

0.0001, 0.001, 0.01 and 0.1. The water-level constant is chosen by examining the 

results of several trials and choosing the lowest water-level that produces 

acceptable noise levels in the corresponding receiver function. In this study, we 

used the value of 0.1.  

 

G(ω) is the low-pass Gaussian filter commonly used to reduce high frequency 

noise in the receiver function. It is expressed by: 

 }
4
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G                                                                                         (4.3) 

Where a is the Gaussian width factor. In this study, we used a=5.0  
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The tangential component for the receiver function is reproduced by the same 

procedure. For a laterally homogeneous structure, it should theoretically be zero. 

This provides a way to judge the degree of lateral variation in earth structure 

beneath a station (e.g. the presence of a dipping velocity interface). 

 

In receiver function studies with epicentral distances greater than 30°, it is 

acceptable to assume that the incoming P-wave is a plane wave.  Assuming that 

the ray parameter p for the direct P-wave and Ps conversions is the same and H 

the thickness of the crust, the delay time of the Ps converted wave can be 

calculated [Kind and Vinnik, 1988] as follows: 

        ))()(( 2
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pVpVHTT pppPs                                          (4.4) 

Similarly, the travel time delay for crustal reverberations such as PpPs (two P legs 

and one S leg) can be given as: 
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The receiver functions are traditionally inverted to produce a model of the S-wave 

velocity structure under a given seismic station. The method used in this study 

was developed by Owens [1984]. It incorporates minimum roughness constraints 

to remove the non-uniqueness problem from each individual inversion. A 

singular-value decomposition method was used to compute the matrix inverse and 

solve the inversion problem. There is no guarantee that a unique inversion result 

will be obtained, as the method seeks to minimize the differences between 

observed and synthetic receiver functions. Therefore, using a priori information 

available for the area under investigation is helpful in constraining the solutions.  
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An important assumption of the time domain inversion technique is that the initial 

model must be close to the true earth velocity structure [Ammon et al., 1990]. The 

inversion procedure consists of preparing the observations, constructing an initial 

model, choosing a smoothness weight parameter, inverting the waveforms and 

assessing the significance of features in the results. The inversion is a search for 

models fitting the observations using a gradient-based algorithm. The accepted 

solution is that which corresponds to the best fit between observed and synthetic 

receiver functions. In this study, we used three initial velocity models:  

i. Nolet and Mueller [1982] model,  

ii. the average model of Bram [1975], Bonjer et al. [1970], and  

      Nolet and Mueller [1982] models, and  

iii. a combination of (i) and (ii). 

The maximum number of iterations was set to 4, the maximum cubic perturbation 

to 0.75, the stopping perturbing velocity at 7.8 km/s, the maximum random 

perturbation equal 20% of cubic perturbation,  the smoothness trade-off parameter 

to 0.1, the singular value truncation fraction to 0.01, the average horizontal 

slowness to 0.06 s/km and the Gaussian width factor to 5. The number of iteration 

required and the smoothest model were determined using the pre-processing 

computer programs “snglinv” and “smthinv”, respectively, provided in the 

package of computer programs “RftnCodes” by Ammon [1997].  

4.3.1.2. Data Processing 

More than 100 teleseismic events were recorded at broadband station KNN and 

KBB for the period from May 2004 to December 2007. We chose 46 earthquakes 

with magnitude greater than 5.5 that have a good signal-to-noise ratio and located 
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between 30° to 92° from the stations KNN and KBB. The locations of hypocenter 

(latitude, longitude and depth) and magnitudes of these teleseisms were obtained 

from the USGS (Table A2). The located earthquakes and the stations KNN and 

KBB are shown in Figure 4.2. 

 

Figure 4.2 Epicenter distribution of earthquakes used to determine P receiver 

functions. The events have magnitude larger than 5.5 (mb) with epicentral 

distances between 30° to 92°. The broadband stations KNN and KBB are marked 

by the filled triangle. The filled lozenges, circles, squares and stars indicate 

earthquakes of magnitude range 5.5 to 6.0, 6.0 to 6.4, 6.4 to 6.6 and 6.6 to 8.6, 

respectively. 

 

Data was processed using the package of computer programs “RftnCodes” 

provided by Ammon [1997]. As our data was originally sampled at 50 Hz, before 

deconvolution, we decimated it from 50 Hz to 12.5 Hz using the SAC command 

“decimate with anti aliasing filter on“. We computed receiver functions using 

software “pwaveqn” based on the source equalization procedure developed by 

Langston [1979]. Receiver functions for events with similar shape, ray parameter 
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and back azimuth were grouped at back azimuthal intervals of ±15° at each station 

[Midzi and Ottemöller, 2001]. The events were mainly clustered in the northeast 

(NE) and southeast (SE) quadrants with a few in the southwest and northwest. In 

the NE quadrant, important clusters were observed between 30° and 45° and 75° 

and 90°. In the SE quadrant, a cluster was observed in the interval between 90° 

and 105°. A small cluster was observed between 270° and 285° in the NW 

quadrant. Some isolated events were also observed in the NE (interval 0-15°, 15-

30° and 60-75°), SE (interval 135-150°), SW (intervals 195-210°, 210-225°, 225-

240° and 240-255°) and NW quadrant (intervals 285-300°).   

 

Fig.4.3A-B (Left) illustrates stacked receiver functions of waveforms in the NE 

quadrant in the back azimuthal interval from 0-45° and 60-90° at the KNN and 

KBB stations. No events were observed between 45-60°. At KNN, in the 

azimuthal interval from 0-45°, two weak phases were observed at 2.75 sec and 

5.25 sec after the direct P phase. At KBB, two weak phases were observed at 3.5 

and 5.6 sec after the direct P phase. These two weak phases observed between 45-

60° may correspond to the P to S converted phases at a mid-crustal boundary 

(Conrad discontinuity) and the crust mantle-boundary (Moho). However, only one 

sharp phase was observed for the back azimuthal interval 60-90°, at 4.75 sec and 

3.70 sec for KNN and KBB, respectively. The difference between the 0-45° and 

60-90° receiver functions imply a significant variation in crustal structure with 

back azimuth. 
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As we are interested, at this first stage, on the first-order approximation of the 

seismic velocity structure in the Virunga area; we ignored back azimuthal 

variation and stacked all the receiver functions in the back azimuthal interval 0-

90° and obtained average receiver functions for the NE quadrant at KNN and 

KBB, which are shown in Figure 4.3A-B (Right), respectively.  

 

In the SE quadrant, at back azimuthal interval of 90° to 105°, two receiver 

functions provided by two deep earthquakes which occurred in Indonesia (Day 

25/07/2004, O.T=14:35:19.0, Lat. =2.427 S, Long. =103.981, Mw=7.3, h=582 km 

and Day 08/08/2007, O.T=17:05:04.9, Lat. =5.859 S, Long. = 107.419 E, 

Mw=7.5, h=280 km) were analysed. Although their source depths differ 

significantly from other earthquakes in the group, these earthquakes are within the 

azimuth criteria of 15° and similar horizontal slowness (p is about 0.05 s/km). 

Comparison of their receiver functions with those of shallow events in the group 

does not show a large difference (Figure 4.4A-B). Amplitudes differ at KBB, 

though timing is similar. All the receiver functions in the SE quadrant, from back 

azimuthal interval between 90-105°, along with the isolated at interval 135-150°, 

were stacked to get an average receiver function at KNN and KBB representative 

of the SE quadrant. 

 

In the SW quadrant, only isolated events were observed at back azimuthal 

intervals 195-210°, 210-225°, 225-240° and 240-255°. These receiver functions 

were stacked. In the NW quadrant, a small cluster was observed in the back 
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azimuthal interval 270-285° and isolated events in the interval 285-300°. All these 

receiver functions were stacked.  

 

These average receiver functions representative of NE, SE, SW and NW 

quadrants at KNN and KBB are shown in Fig.4.5A and Fig.4.5B, respectively. 
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Figure 4.3 Stacked receiver functions of waveforms obtained at (A) KNN and (B) 

KBB stations in the NE quadrant at back azimuthal interval between 0° to 45°, 

60° to 90°  (Left) and 0° to 90° (Right) 
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Figure 4.4 Comparison of receiver functions of deep earthquakes and shallow 

events at back azimuthal interval 90° to 105° in the SE quadrant at (A) KNN and 

(B) KBB stations 
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Figure 4.5(A) Stacked receiver functions representative of NE, SE, SW and NW 

quadrants along with the average receiver function (AVG) for all quadrants 

computed at KNN station 
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Figure 4.5 (B) Stacked receiver functions representative of NE, SE, SW and NW 

quadrants along with the average receiver function (AVG) for all quadrants 

computed at KBB station 
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4.3.2. Results  

4.3.2.1 Ps converted phases and Moho depth 

Based on results of previous crustal structure studies in the region (e.g. Prodehl et 

al., 1994; Dugda et al., 2005), we assume an average velocity of the crust in our 

study area to be =6.2 km/s and =3.6 km/s. Using the approximation of Kind 

and Vinnik [1988], we estimated the depth equivalent to the delay time between 

the direct P phase and converted phase Ps at KNN and KBB. The Ps-P delay time 

and the corresponding Moho depth are listed in Table 4.2. 

 

Table 4.2:  Ps-P delay time and Moho depth 

Stations Back azimuthal 

interval 

P and Ps delay time 

(sec) 

Moho depth 

(km) 

KNN NE 4.95 40.7 

SE 4.75 39.1 

SW 4.95 40.7 

NW 4.75 39.1 

KBB NE 3.88 30.4 

SE 3.85 31.7 

SW 5.20 42.3 

NW 4.70 38.7 
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4.3.2.2. Inversion results of average receiver function at KNN and KBB  

The receiver functions were inverted using software “manyinv” based on the time 

domain waveform inversion scheme of Owens [1984]. We computed the final 

inversion models for the average receiver function obtained from NE, SE, SW and 

NW quadrants around KNN and KBB. Due to the non-uniqueness in the inversion 

of receiver functions, eight inversions were performed for each run with three 

different initial models. The thickness of layers in the initial model varied from 

1.5 km between 0 to 1.5 km depth, 2.5 km between 1.5 to 11.5 km depth, 3.0 km 

between 11.5 km to 32 km depth and 4 km between 32 km to 47 km depth. We 

sorted out the acceptable solutions in each inversion and selected those which fit 

about 70% or more of the signal power. Each model produces one or more 

synthetic waveforms that compare well with the observed average receiver 

function at KNN and KBB (Fig.4.6A and B). The velocity model at each station is 

obtained by averaging all these solutions for the three initial models. Results are 

shown in Fig.4.7A and B. By assuming a Poisson’s ratio equal to 0.25, the S-

velocity model can be calculated using the relation 73.1
s

p

V
V

 

 

To estimate the crustal structure in the entire Virunga area, an average velocity 

structure was calculated using velocity structures obtained at KNN and KBB by 

taking the arithmetic mean of the velocity at each layer (Figure 4.7). The gross 

solution is shown in Figure 4.8A.  
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In order to use the velocity model in the popular hypocenter determination 

program Hypocenter 3.2, we simplified this model by further combining layers 

with small scale high velocity with those embedded in alternating layers of high 

and low velocities and showed only the average velocity taking account of layers 

thickness. The average velocity model is shown in Figure 4.8B and listed in Table 

4.3 

 

Table 4.3: Average local velocity model in the Virunga area 

Vp (km/sec) Top of the layer (km) 

5.30 0.0 

6.50 4.0 

6.96 32.0 

7.67 39.0 

7.92 43.0 

8.03 47.0 
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Figure 4.6 Synthetic waveforms produced by the three initial models which 

compare well to the observed average receiver function at (A) KNN and (B) KBB 
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Figure 4.7 Acceptable velocity models obtained from the three initial models 

(Left) and average velocity model (Right) at (A) KNN and (B) KBB stations. 

Each model produces a synthetic waveform that compares well with the average 

receiver function. The average velocity model was obtained by averaging all the 

acceptable solutions for the three initial models shown at left. 
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Figure 4.8 (A) Estimate of the crustal structure for the Virunga area. It was 

obtained by averaging the two velocity structure obtained at KNN and KBB 

stations. (B) Simplified crustal structure in the Virunga area. It was obtained by 

combining layers with small scale high velocity with those embedded in 

alternating layers of high and low velocities and considering only the average 

velocity taking account of layers thickness. 
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4.3.3. Discussion  

4.3.3.1 Lateral variation in receiver function with back azimuth 

At first glance at Figure 4.5A-B and Table 4.2, comparison of receiver functions 

(RF) along different quadrants indicates that the crust-mantle boundary beneath 

KNN is sharper (39-41 km) than that of KBB (30-42 km). However, the crust-

mantle boundary for the SW and NW quadrant of KBB is similar to those 

obtained at NE and SE quadrant at KNN station.  

 

Figure 4.8C shows the Moho piercing points of rays at a depth of 36 km. The 

Moho piercing points were computed using IASP91 model in the taup_pierce 

software programme (Crotwell et al., 2001). 

The receiver function in the NE and the SE quadrant obtained at KBB station may 

also sample the Lake Kivu area and vicinity in the Western Rift. The value of 

30 km for crustal thickness observed in these two quadrants is quite similar to that 

observed from the lithospheric cross section of the Northern Kenya rift (Achauer 

et al., 1992), (see also Figure 4.9). Figure 4.9 shows the gravity data obtained 

from the western part of the Virunga volcanic complex. It shows that the negative 

Bouguer gravity anomalies decrease from east to west. The two-dimensional 

model of these anomalies indicates that a surface layer of low-density material 

fills a V-shaped trough structure beneath the Lake Kivu area. KNN station is 

located on the western edge of the V-shaped trough. The calculated average 

crustal thickness beneath KNN station is 40 km. The crustal thickness values 

observed beneath stations KNN and KBB are in agreement with this density 

model shown in Figure 4.9. 
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Figure 4.8C A satellite image of the Virunga volcano group and Lake Kivu. The filed 

triangles and circles  indicate seismographic stations and Moho piercing points of rays at 

36 km depth of teleseismic events used for receiver function analysis. 
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Figure 4.9: (a) Map of Bouguer gravity anomalies (5 mgal) contour interval. 

Arrows= eastern limit of Precambrian basement, Triangles= location of volcanic 

cones. (b) Two dimensional model (dashed line) of Bouguer anomalies observed 

along D-D’ (circles) shown above density model and topographic profile.   

Source: Zana et al. (1992b) 
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4.3.3.2 Crust-mantle boundary beneath KNN and KBB 

As stated before, these two stations are only 29 km apart, but the crustal structure 

beneath these stations is quite different. It is noteworthy that KNN station is close 

to volcano Nyamuragira. In contrast, the KBB station is near volcano Nyiragongo 

(See Figure 4.1 and 4.8C).  

  

However, a glance at their structures (Figure 4.7A-B.) shows that they present 

some similarity. A zone of high velocity anomaly is observed in both cases. It is 

observed at KNN from 3-20 km with an average velocity of 6.9 km/s and from 3-

10 km with an average velocity of 7.3 km/s at KBB.  A low velocity zone is 

observed at KNN and KBB from 20-30 km and 18-28 km, respectively, with 

average velocities of 6.1 and 5.9 km/s. At KNN, beneath 30 km, the velocity 

increases gradually with depth at a constant rate of 0.46 km/s. This rate suddenly 

jumps to 0.60 km/s from 39-43 km. At greater depths the velocity increases again 

with a small rate of 0.18 km/sec and then remains constant with a value of about 

7.9 km/s. At KBB, a jump in the rate of increase in velocity from 0.19 km/s to 

0.46 km/s is observed from 28-30 km. At greater depths the rate decreases from 

0.33 km/s to 0.05 km/sec, and then jumps again from 0.05 to 0.59 km/sec from 

35-39 km. These zones between 39-43 km and 30-39 km may likely represent the 

crust-mantle boundary beneath KNN and KBB, respectively. From P and Ps delay 

times (Table 4.2), we obtained a crust-mantle transition zone with a depth of 

about 39-41 km and 30 km at KNN and KBB, respectively  



 

101 

 

4.3.3.3 High and low velocity zone 

A high-velocity anomaly (6.9 to 7.3 km/s) is observed beneath stations KNN and 

KBB at depth about 3-20 km and 3-10 km, respectively. High-velocity regions 

around active volcanoes are typically interpreted to indicate intrusive complexes 

of basaltic dikes and ultramafic rocks [Thurber, 1984; Okubo et al., 1997; Hill and 

Zucca; Park et al., 2007]. The average value of the high-velocity material at these 

stations is different because receiver functions at these stations sample quite two 

different structures that are influenced by the proximity to the volcano and by the 

material produced by each volcano. In fact, the isotopic and geochemical study of 

the Nyiragongo and Nyamuragira volcanics by Ramananda et al. [2007] proved 

that the Nyiragongo and Nyamuragira volcanics are compositionally distinct 

although spatially they are only 15 km apart. The Nyiragongo rocks are silica 

undersaturated and unusually enriched in alkalis with composition similar to 

foidites. In contrast, the Nyamuragira volcanics range from basalts and basanites 

to tephrites, similar to other volcanics around the Tanzanian Craton.  To account 

for the major trace element as well as isotopic composition of the Nyiragongo and 

Nyamuragira rocks, Ramanda et al. [2007] presented a model where the 

Nyiragongo lavas were derived from comparatively greater depth by very low 

degree partial melting of a carbonate-metasomatized and phlogopite-bearing 

garnet peridotite source assemblage. The Nyamuragira lavas are the products of a 

larger degree of partial melting of the same source, but from comparatively 

shallow depths. This model is consistent with the different values of 6.9 km/s and 

7.3 km/s of body material found around KNN and KBB, respectively. However, 
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to confirm this result, the exact information on rock velocity of volcanoes 

Nyiragongo and Nyamuragira is needed. These data are not available. 

The low velocity zone found beneath KNN and KBB at depths from 20-30 km 

and 18-28 km, respectively, may probably related to a magma chamber or a melt-

rich sill. This interpretation is supported by the deep long-period volcanic 

earthquakes observed 10 or 11 months prior to the next Nyamuragira eruptions 

from a deep source located at about 20-30 km (Mavonga et al., 2006). 

4.3.3.4 Application of the new velocity model to the hypocenter determination 

The new average velocity model (Figure 4.8B) was applied to the hypocenter 

determination of hybrid (low- and high-frequency) volcanic earthquake swarms 

with clear P-wave onset prior to the 27 November 2006 eruption of volcano 

Nyamuragira. We used the Hypocenter 3.2 location program by Lienert and 

Havskov [1995] and considered only hypocenters with a standard root mean 

square of travel time residual (rms) less than 0.3 sec, standard error in latitude and 

longitude less than 5 km and maximum standard error on focal depth equal to 7 

km. Hypocenter maps were obtained using both the new model and the model 

used at Goma Volcano Observatory GVO [Mavonga et al., 2006], see Figure 

4.10A-B 

 

The hypocenter maps were compared with each other, together with InSAR data 

provided by National Museum of Natural History, Luxembourg. The results of the 

emergency InSAR acquisition and processing data [D'Oreye et al., 2007] showed 

that there was inflation along the axis of a fracture linking the two volcanoes and 

a subsidence pattern on the East of Nyamuragira. This deformation extended up to 
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the south-western flank of Nyiragongo. The epicentres determined using the new 

velocity model show better agreement with the InSAR data and the eruption site 

than the epicentres provided by the GVO model.   

 

 

Figure 4.10 Hypocenters map of volcanic earthquakes for the period from 26 

November 2006 to 27 November 2006 computed using (A) GVO velocity model 

and (B) the new velocity model .The open circles and lozenge mark the 

earthquake epicentres and eruptive site, respectively. The coordinates of the 

eruptive site were determined by GPS 
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In fact, the eruptive site is situated at the intersection of the fracture linking the 

two volcanoes and a fracture trending to the southwest flank of Nyiragongo. 

Furthermore, these epicentres are distributed along a linear trend, which may be 

associated with the opening of fissures before eruption. 

 

4.4 Seismic activity prior to the recent eruptions of volcano Nyamuragira 

4.4.1   Method  

In this study, only analogue records were used to locate events because KTL and 

LBG stations (the stations nearest to the central crater of Nyamuragira volcano) 

were not yet relayed to Goma base station due to transmission problems. The 

digital records were, however, used to estimate the predominant frequency content 

of the waveforms used in this study from November 2003 to November 2006 

(Figure 4.11).  

 

On the basis of the waveform pattern, the volcanic events were tentatively 

classified as follows [Fehler and Chouet, 1982; Tanaka, 1983, McNutt, 1992 and 

Lukaya et al., 1992]: 

 Short-period (SP) earthquakes: Earthquakes having P- and S-phases 

discernible as tectonic earthquakes and predominant high-frequency 

component content greater than 5 Hz. Their S-P times are less than 5 sec 

and are located in the Virunga volcanic area.   
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 Long-period (LP) earthquakes: Transient signals having weak P- and 

emergent or no S-phases with a predominant low frequency content 

component between 1 and 3 Hz.  

 Volcanic tremor: A sustained occurrence of long-period events appearing 

on a seismogram as an irregular sinusoid of long duration compared with a 

tectonic earthquake of the same amplitude.  

 

We used the Hypocenter 3.2 location program by Lienert and Havskov [1995] to 

locate events. The periods of observation were 18 August 2002 to 7 May 2004 and 

1 July 2004 to 27 November 2006. The accuracy of the phase reading in the 

analogue records was about ±0.1 sec and ±0.5 sec for short and long-period events, 

respectively. 

 

In this study, we considered a combination of the crust model obtained from a 

simple two-layer model that is the average of the Bonjer et al., [1970], Bram 

[1975] and Nolet and Mueller [1982] models for the Western Rift Valley of 

Africa, and that obtained from teleseismic P-wave receiver function analysis 

beneath two seismic broadband stations in the Virunga area [this study]. The P-

wave velocity is 4 km/s in the uppermost 3 km of our model. From 3-4 km and 4-

20 km, we adopt a velocity of 4.49 km/sec and 6.35 km/sec, respectively. From 20 

km to the Moho (~ 30 km), we specify a P-wave velocity of 6.65 km/sec. For the 

upper mantle (> ~30 km), a P-wave velocity of 6.9 km/sec and 6.96 km/sec are 

given from 30-32 km and 32-39 km, respectively. The S-wave velocities are 

calculated using the Vp/Vs ratio of 1.73 (Figure 4.12). 
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                         (a) 

 

                                                                               (b) 

Figure 4.11 Velocity spectra of typical (a) LP events (18 March 2004) and (b) 

hybrid (LP + short) events (27 November 2006) 
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Figure 4.12: Velocity models used in this study.  

ABBN-MOD.vp = Average model of Bonjer et al. (1970), Bram (1975) and Nolet 

and Mueller (1982) for the Western Rift Valley of Africa; RF-MOD.vp= velocity  

model obtained in this study from teleseismic P-wave receiver function analysis;  

combinmod.vp= combination model of both these models.  
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To reduce bias due to uncertainty in the phase reading and velocity model, we 

considered only epicentres with standard error in latitude and longitude less than 

3.8 km and a standard root mean square (rms) error on the travel-time residual less 

than 0.15 sec. As our source region is located inside the network, the epicentre 

determinations were generally good. The focal depths are less accurate, especially 

for deeper earthquakes (in the range of 10-30 km). We adopted an optimal 

maximum standard error in the focal depth erz=7 km (see Mavonga et al. 2006).  

4.4.2. Temporal and spatial variations in seismicity 

Figure 4.13A-B shows the monthly count of locatable (i.e. registered by 3 or more 

stations) and located volcanic earthquakes in the eleven months prior to the 8 May 

2004 and 27 November 2006 eruptions of Nyamuragira. These figures show that 

these eruptions were preceded by a progressive increase in the number of long-

period earthquakes over an eleven month period. Figures 4.14 to 4.16 show the 

three stages of seismicity activity leading up to 2004 and 2006 eruptions.  

1. The activity at stage 1 (Figure 4.14) is probably related to the post-eruptive 

activity associated with the previous eruption of Nyamuragira. Seismicity was 

dominated by the occurrence of shallow (0-5 km) long-period (LP) events. 

2. During the second stage (Figure 4.15), which commenced 10 or 11 months 

prior to the next eruption, swarms composed mainly of LP events were 

observed. Some local tectonic earthquakes were also felt by inhabitants in the 

Rutsuru and Virunga areas.  Seismicity was dominated by the presence of 

shallow (0-5 km) and deep (20-30 km) LP events. An aseismic zone was 

observed between the shallow and deep cluster at depths of 4-8 km. This 

aseismic zone is probably a region of low rigidity occupied partly by magma, 
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similar to that detected by Hamaguchi et al. [1983]. The deep LP volcanic 

earthquakes observed at this stage can be attributed to a fairly steady flow of 

magma into the Nyamuragira shallow reservoir from a deep source located at 

about 20-30 km. This deep zone coincides with the low-velocity zone 

observed beneath KNN station [This study].   

3. In the final stage (Figure 4.16), 1 or 2 months before the next eruption, most 

LP events clustered at a shallow depth. These events are probably associated 

with the filling of the shallow reservoir with magma to its threshold volume. 

4. 4.3 Summary of Observations 

 Eleven months before the 8 May 2004 and 27 November 2006 eruptions of 

Nyamuragira, an increase in seismicity related to the number of long period 

was observed. This increase was due to swarm-type seismicity composed 

mainly of long–period events observed during this period. 

 Shallow long-period earthquakes, typifying repose-period seismicity 

(2002-2003 and 2004-2005), were gradually augmented by deep long-

period events ten or eleven months prior to the eruption. The number of 

deep long-period events declined in the final month prior to the eruption, 

while the number of shallow long-period events increased. 

 These two aspects of seismicity of long-period events (i.e. changes in the 

frequency of occurrence and in the depth), integrated with other available 

data (e.g. INSAR, GPS, geochemical, geological) can be used to 

characterize volcanic processes and forecast volcanic eruption in the 

Virunga area.  
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Figure.4.13: Monthly count of locatable (series 1) and located (series 2) long- 

period volcanic earthquakes 11 months before the 8 May 2004 eruption of 

Nyamuragira (Top) and the 27 November 2006 eruption  of Nyamuragira 

(Bottom)  . 
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Figure 4.14: Long and short-period earthquake hypocenters observed in the 

Virunga area during the period (A) 24 November 2002 to 24 December  2002 and 

(B) 01 July 2004 to 01 August 2004.  

The circle defines the area used for the depth section within which epicentres are 

selected. Epicentres within the circle are projected normal onto the cross-section. 

The continuous blue line crossing the epicentres is the line of cross-section of 

earthquake hypocenters. It is defined by a centre marked by a large star (set at the 

summit of the Nyamuragira crater) and an azimuth (set to 160°).This direction 

coincides  with that of the main fissure connecting the volcanoes Nyiragongo  and 

Nyamuragira. The large filled triangles indicate seismic stations. The small filled 

red circles and green squares mark long and short- period events, respectively. 

eismicity was dominated by shallow (0-5km) LP events. This activity is observed 

immediately after the previous eruption. 



 

112 

 

 

Figure 4.15: Long and short-period earthquake hypocentres observed in the 

Virunga area during the period (A) 07 January 2004 to 07 February 2004 and  

(B) 25 July 2006 to 25  August 2006. Seismicity was dominated by shallow and 

deep LP events (0-5 km and 20-30 km). This activity is observed about 10 months 

before the next eruption. 

 

 

 



 

113 

 

 

Figure 4.16: Long and short-period earthquake hypocentres observed in the 

Virunga area during the period (A) 07 April 2004 to 07 May 2004 and  

(B) 28 October 2006 to 27 November 2006. A large increase in shallow LP events 

and a reduction in deep LP events were observed. This activity is observed about 

1 month before the next eruption 
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CHAPTER 5     CONCLUSIONS AND RECOMMENDATIONS 

5.1. Conclusions 

From the probabilistic seismic hazard analysis in DR Congo and surrounding 

areas, four seismic hazard source zones have been identified and rated as follows:  

1.  Zone A (very high hazard), largely the Lake Tanganyika Rift zone where the  

     PGA values of 0.32g, 0.22g and 0.16g are expected to occur with probability  

     2%, 5%, and 10 % in 50 years, respectively.  

2. Zone B (high hazard), which includes the Lake Kivu basin, Ruwenzori and 

     Lake Edouard region. 

3. Zone C (moderate hazard), which includes Rutsuru, Masisi, Upemba and a part 

    of the Congo basin close to Western Rift . 

4. Zone D (low hazard), which includes the remainder of the Congo basin.. 

This division is based on assessment of the seismicity and the expected intensity 

of ground motion. Each seismic hazard zone can be defined by a seismic hazard 

zoning coefficient. Usually the strongest earthquake zone coefficient is assumed 

to be 1.0.   

 

Two studies were conducted to understand how volcanoes work and reduce the 

risk posed by the Virunga volcanic eruptions in the Western Rift Valley of Africa: 

1.  Firstly, we estimated the crustal structure beneath KNN and KBB broadband 

     stations located in the Virunga volcanic area by inverting stacks of teleseismic  

    receiver functions.  From this study, it was revealed: 
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 A lateral variation in receiver function with back azimuth, implying lateral 

heterogeneities or dipping of layers, was observed. 

 The crust-mantle transition zone beneath the Virunga area is estimated at a 

depth from 30 to 43 km. 

 A low-velocity zone was observed around KNN and KBB at depth from 

20 to 30 km and 18 to 28 km, respectively. This zone may probably relate 

to a magma chamber or a melt-rich sill in the field of Nyamuragira and 

Nyiragongo volcanoes. 

 A high-velocity zone with an average velocity of 6.9 km/sec was found at 

a depth of 3 to 20 km beneath KNN station. A similar high-velocity zone 

with an average velocity of 7.3 km/sec at a depth of 3 to 10 km was also 

found at KBB. These zones are indicative of magma cumulate within the 

volcanic edifice.  

 

2.    Using the new average velocity model in the Virunga area, the spatial and  

        temporal variations in the seismicity in the Nyamuragira area were  

       examined for the periods 18 August 2002 to 7 May 2004 and 1 July 2004 to  

       27 November 2006, prior to the 8 May 2004 and 27 November 2006  

       eruptions of Nyamuragira, respectively. It was found that the seismicity  

       exhibits similar tendencies during both periods:  

 Swarm-type seismicity, composed mainly of long period earthquakes, 

preceded both eruptions of Nyamuragira and was probably enhanced by 

tectonic seismicity related to rifting.  
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 Ten or eleven months before eruption, a steady increase in seismicity at a 

constant rate from a deep magma feeder was observed.  

 In the last stage (1 or 2 months) before the eruption, the hypocenters of 

long-period earthquakes became shallower. 

 

5.2. Recommendations 

 The source zonation can be improved by supplementing the area sources 

used in this study with fault sources. An effective earthquake disaster 

mitigation strategy requires that base maps of known faults be compiled, 

and efforts to detect possible unknown faults be made using 

paleoseismology. Paleoseismology is the science to study the nature, 

timing and location of pre-instrumental earthquakes. If paleoseismic 

events are well documented, we can evaluate earthquake potential of 

specific faults. We need information on paleo-earthquakes for a 

sufficiently long period of time because active faults on land have long 

recurrence cycles. Evidence of paleo-earthquakes can be found by 

investigating geologic sequences (depositional sediments) through direct 

excavation survey across active faults.  

 The PGA exceeding indicated values determined in this study are only 

controlled by magnitude, distance and regional variation of attenuation of 

strong motion. The local geology (soil type) was not taken account. As we 

know, the near-surface geological condition can control the amplification 

of ground motion at a particular site (Jongmans, 1989; Jennings, 1971; 
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Poccski, 1969; Sozen, 1968; Celebi, 1987). Damage patterns in past 

earthquakes show that soil conditions at a site may have a major effect on 

the level of ground shaking. The characteristics of ground surface motion 

(i.e PGA) are strongly dependent on the local soil conditions. Therefore, a 

local site effect analysis should be conducted to evaluate the amplification 

of seismic wave ground motion by soft near-surface deposit to the 

underlying bedrock, or firm soil considered as rock. Mapping of seismic 

hazard at local scales to incorporate the effects of local soil conditions is 

called microzonation for seismic hazard. 

 The next step will be the development of a frequency-dependent 

attenuation relationship. The result of seismic hazard analysis should be 

convolved with a seismic fragility function, which quantifies the 

probability of various level of damage to a facility as a function of ground 

motion. This will give a seismic risk analysis which indicate probabilities 

per unit time of different levels of failure or loss 

 The average velocity structure beneath Virunga volcanic area obtained in 

this study can be improved by setting up two supplementary broadband 

stations at RSY and KTL and using a long study period. It can be used as a 

first approximation for high resolution tomography in the Virunga area. 
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APPENDIX A 

      Table A.1: List of earthquakes used in this study for the regression analysis of 

Mb(USGS) versus M (LWI) 

Date Origin time Latitude Longitude Depth(km) M(LWI) Mb(USGS) 

1965/04/25 10:01:07 2.55S 28.85E 5 4.5 5.05 

1965/06/21 11:12:02 4.10S 35.10E 21 6.3 5.05 

1966/03/20 01:42:50 0.70N 29.80E 24 7 6.2 

1966/03/20 02:39:40 1.10N 30.00E 16 5.4 5.4 

1966/03/20 08:55:35 0.80N 29.80E 5 5.6 5.3 

1966/03/21 01:30:38 0.80N 29.80E 5 5.3 5.4 

1966/03/21 09:23:49 0.80N 29.90E 6 5 5.1 

1966/04/01 07:59:41 0.60N 29.50E 17 4.5 4.5 

1966/04/06 01:17:54 0.80N 29.90E 41 4.6 4.4 

1966/04/07 00:09:11 0.60N 29.90E 33 4.4 4.4 

1966/04/14 13:16:19 0.90N 30.00E 33 5 4.8 

1966/04/15 03:08:15 0.80N 30.10E 26 5.6 5.2 

1966/04/16 14:43:18 0.80N 29.90E 11 5.1 5.3 

1966/04/30 20:38:47 0.70N 29.80E 33 4.8 4.9 

1966/05/17 07:03:33 0.70N 29.90E 35 5.5 5.3 

1966/05/18 01:46:34 0.70N 29.90E 34 4 4.5 

1966/05/29 02:26:11 0.70N 30.00E 33 5.2 4.8 

1966/06/03 07:14:42 0.60N 29.90E 33 5 5 

1966/06/17 18:31:55 0.80N 29.90E 33 5.3 5 

1967/08/24 23:14:45 10.50S 27.30E 21 4.8 5 

1967/10/30 19:55:38 2.00N 31.30E 33 4.2 5.3 

1967/10/30 22:22:39 2.10N 31.20E 33 4.2 4.8 

1967/10/31 13:51:04 2.00N 31.20E 33 5.2 5.3 

1967/11/11 02:28:46 2.00N 31.50E 33 5.3 5.1 

1967/11/13 20:29:05 1.90N 31.70E 33 5.1 5.3 

1969/04/22 21:59:11 1.90N 31.50E 28 5 6 

1969/04/29 19:54:45 0.80S 30.70E 33 5 5 

1969/06/08 15:40:06 6.10S 30.60E 33 4.5 3.8 

1969/06/08 16:52:40 6.10S 30.80E 33 5.2 4.7 

1969/09/09 16:46:44 2.60S 24.70E 33 5.3 5.2 

1970/01/15 08:50:39 11.20S        34.50E 33 5.7 4.9 
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Table A1 (Continued) 

Date Origin time Latitude Longitude Depth(km) M(LWI) Mb(USGS) 

1970/01/19 20:10:20 7.70S 25.90E 37 4.6 4.6 

1970/01/27 20:44:45 3.30S 25.80E 55 5.3 4.2 

1970/05/10 23:45:22 10.90S 32.70E 33 5.2 3.9 

1970/05/23 23:13:59 8.00S 30.80E 33 4.6 4 

1970/08/09 00:26:55 6.00S 34.80E 33 5.3 4.8 

1971/01/04 15:14:35 3.60N 32.40E 33 4.1 4.4 

1971/01/06 04:26:26 1.00S 25.10E 33 4.3 4.4 

1971/01/14 20:47:52 11.20S        34.30E 33 4.1 4.4 

1971/01/16 09:00:20 1.40S 28.60E 18 5 5 

1971/01/27 22:26:16 8.50S 32.20E 33 4.5 3.6 

1971/04/18 00:34:34 0.20N 30.10E   4.9 4.6 

1971/04/21 18:40:54 0.20N 29.90E   4.5 4.3 

1971/11/13 15:47:41 11.00N 39.70E 24 5.6 5.3 

1971/11/16 04:27:34 2.00S 26.90E   4.8 4.5 

1971/12/31 17:43:11 13.20S 26.40E   4.7 4.6 

1972/01/08 17:27:51 0.58N 30.08E   5.2 4.8 

1972/02/13 10:02:42 4.50S 34.14E   6.8 5 

1972/04/18 15:08:13 0.67N 29.82E   5.2 5 

1972/04/25 00:59:51 9.20S 33.30E   6.25 4.7 

1972/09/08 04:22:19 9.09S 29.90E   5 4.7 

1972/12/12 03:18:45 16.82S 28.06E   6.2 4.7 

1972/12/12 03:18:45 16.82S 28.06E   6.2 4.7 

1972/12/18 01:18:53 16.71S 28.07E   6.6 5.2 

1972/12/27 15:29:38 16.71S 28.05E   5.4 4.6 

1973/04/15 13:13:33 7.18S 30.22E   5.9 4.8 

1973/04/22 22:03:41 4.10N 31.30E   5.9 4.6 

1973/05/03 02:27:15 8.40S 32.60E   5.7 4.5 

1973/05/14 20:16:27 6.19S 29.86E   4.6 4.2 

1973/05/27 09:26:03 10.53S 34.30E   5.5 4.4 

1973/07/07 16:04:11 3.05S 35.60E   5.5 3.8 

1973/07/16 18:08:22 10.51S 34.04E   5.4 4.4 

1973/08/28 23:43:55 8.76S 31.30E   4.8 4 

1973/09/01 11:23:55 13.24S 24.14E   6 4.7 

1973/09/21 00:50:30 3.60N 28.00E   4.8 5.1 

1973/12/01 16:51:15 0.72N 29.62E   5.4 4.5 

1973/12/14 15:04:10 4.71S 28.30E   4.5 4.5 

1974/02/10 16:29:26 2.90S 23.30E   4.8 4.7 

1974/02/18 09:59:46 3.20S 29.50E   3.9 4.6 

1974/04/08 06:12:49 5.50S 35.80E   5.5 4.3 

1974/04/24 18:59:53 13.70S 26.60E   5.2 4.4 
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Table A1 (Continued) 

Date Origin time Latitude Longitude Depth(km) M(LWI) Mb(USGS) 

1974/04/25 00:03:49 1.00N 30.10E   5.2 5 

1974/08/01 09:36:27 16.70S 28.00E   6.6 5.1 

1974/09/23 19:28:17 0.30S 12.90E   7.2 5.9 

1974/10/04 17:04:53 11.60S 34.20E   5.3 4.9 

1974/10/17 20:04:27 9.50S 32.20E   5.9 4.3 

1975/03/26 03:40:48 5.40S 30.20E   5.6 5.1 

1975/04/06 04:52:08 5.10S 27.70E   5 4.7 

1975/08/06 07:37:30 4.37S 35.90E   6.5 5.1 

1976/01/09 08:05:48 5.46S 28.74E   5.3 5.2 

1976/02/05 07:46:28 2.97S 36.97E   5.5 4.2 

1976/05/15 08:09:57 4.46N 19.35E   7 5.6 

1976/07/20 22:56:50 9.00S 28.62E   4.8 4.1 

1976/08/23 00:30:11 7.39S 30.87E   4.5 5.2 

1977/01/04 20:44:39 7.44S 38.52E   5.7 5.2 

1977/01/14 02:52:35 1.71S 28.95E   4 4.8 
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      Table A2: List of hypocenters and magnitudes of earthquakes used to determine P 

receiver functions  

Date 
Origin 
time Latitude Longitude Depth(km) Magnitude Region 

2004/07/25 14:35:19 2.427S 103.981E 582 Mb6.8 Sumatra, Indonesia 

2004/09/06 12:42:59 55.372S 28.976W 6.9 Mw6.9 
South Sandwich 

island 

2004/11/21 11:41:08 15.679N 61.706W 14 Mb6.3 Leeward Islands 

2005/01/01 06:25:45 5.099N 92.304E 13 Mw6.7 Sumatra, Indonesia 

2005/01/12 08:40:04 0.878S 21.194W 10 Mb5.7 Mid-Atlantic Ridge  

2005/01/23 20:10:12 1.198S 119.933E 11 Mb5.8 Sulawesi, Indonesia 

2005/02/14 23:38:09 41.728N 79.440E 22 Mw6.1 Xinjiang, China 

2005/02/16 20:27:52 36.320S 16.558W 10 Mb6.0 Mid-Atlantic Ridge  

2005/02/22 02:25:23 30.754N 56.816E 14 Mb6.0 Central Iran 

2005/02/26 12:56:53 2.908N 95.592E 36 Mb6.0 Simeulue, Indonesia 

2005/03/14 01:55:56 39.354N 40.890E 5 Mb5.5 Eastern Turkey 

2005/03/28 16:09:37 2.085N 97.108E 30 Mw8.6 Sumatra, Indonesia 

2005/04/10 10:29:11 1.644S 99.607E 19 Mb6.4 
Kepulauan 
Mentawai 

2005/05/14 05:05:18 0.587N 98.459E 34 Mb6.4 Nias, Indonesia 

2005/05/19 01:54:52 1.989N 97.041E 30 Mw6.9 Nias, Indonesia 

2005/07/05 01:52:03 1.819N 97.082E 21 Mw6.7 Nias, Indonesia 

2005/07/24 15:42:06 7.920N 92.190E 16 Mw7.2 
Nicobar Islands, 

India 

2005/10/08 03:50:41 34.539N 73.588E 26 Mb6.9 Pakistan 

2005/10/29 04:05:56 45.214S 96.898E 8 Mb6.1 SE India Ridge 

2005/11/19 14:10:13 2.164N 96.786E 21 Mw6.5 Simeulue, Indonesia 

2005/11/27 10:22:19 26.774N 55.858E 10 Mb6.1 Southern Iran 

2006/01/02 06:10:50 60.957S 21.606W 13 Mb6.4 
South Sandwich 

island 

2006/01/08 11:34:56 36.311N 23.212E 66 Mb6.5 Southern Greece 

2006/02/28 07:31:03 28.120N 56.865E 18 Mb5.8 Southern Iran 

2006/03/25 07:28:58 27.574N 55.685E 18 Mb5.7 Southern Iran 

2006/03/31 01:17:01 33.500N 48.780E 7 Mb5.7 Western Iran 

2006/05/16 15:28:26 0.093N 97.050E 12 Mb6.6 Nias, Indonesia 

2006/05/26 22:53:59 7.961S 110.446E 13 Mb6.0 Java, Indonesia 

2006/06/28 21:02:10 26.925N 55.866E 11 Mb5.8 Southern Iran 

2006/07/17 08:19:27 9.284S 107.419E 20 Mb6.1 Java, Indonesia 

2006/07/29 00:11:51 37.255N 68.828E 34 Mw5.6 Tajikistan 

2006/09/29 13:08:26 10.876N 61.756W 53 Mb5.9 
Trinidad and 

Tobago 

2006/11/13 01:26:36 26.052S 63.283W 572 Mb6.3 Santiago, Argentina 
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Date 

Origin 

time Latitude Longitude Depth(km) Magnitude Region 

2006/12/26 12:26:21 21.799N 120.547E 10 Mb6.4 Taiwan 

2007/03/06 05:49:25 0.488S 100.530E 11 Mb5.9 Sumatra, Indonesia 

2007/06/02 21:34:58 23.028N 101.052E 5 Mb5.7 Yunnan, China 

2007/06/24 00:25:18 55.645S 2.626W 10 Mb5.7 Mid-Atlantic Ridge  

2007/08/08 17:05:05 5.859S 107.419E 280 Mb6.5 Java, Indonesia 

2007/08/20 22:42:28 8.037N 39.251W 6 Mb6.3 Mid-Atlantic Ridge  

2007/09/12 11:10:27 4.438S 101.367E 34 Mb6.9 Sumatra, Indonesia 

2007/09/20 08:31:14 1.999S 100.141E 30 Mb6.3 Sumatra, Indonesia 

2007/10/24 21:02:51 3.899S 101.020E 21 Mb6.1 Sumatra, Indonesia 

2007/11/25 16:02:17 8.277S 118.339E 35 Mb6.2 Sumatra, Indonesia 

2007/11/25 19:53:08 8.225S 118.453E 35 Mb6.2 
Sumbawa, 
Indonesia 

2007/11/29 19:00:20 14.973N 61.263W 148 Mb6.9 Martinique 
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