Introduction to

Sound Processing

Davide Rocchesso?

March 20, 2003

Universita di Verona

Dipartimento di Informatica

email: D.Rocchesso@computer.org

www: http://www.scienze.univr.it/ rocchess

http://www.sci.univr.it/~{}rocchess�

Copyright © 2003 Davide Rocchesso. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the li-
cense is included in the appendix entitled “GNU Free Documentation
License”.

Contents

Contents

1

Systems, Sampling and Quantization
1.1 Continuous-Time Systems|
1.2 The Sampling Theorem|
1.3 Discrete-Time Spectral Representations|
1.4 Discrete-Time Systems| L.
1.4.1 The Impulse Response
1.4.2 The Shift Theorem!
1.4.3 Stability and Causality,
1.5 Continuous-time to discrete-time system conversion
1.5.1 Impulse Invariance
1.5.2 Bilinear Transformation
1.6 Quantization|

Digital Filters

2.1 FIR Filters
2.1.1 The Simplest FIR Filter,
2.1.2 The Phase Response|
2.1.3 Higher-Order FIR Filters
2.1.4 Realizations of FIR Filters

2.2 IIR Filtersl
2.2.1 The Simplest IIR Filter,
2.2.2 Higher-Order IIR Filters/.
2.2.3 Allpass Filters,
2.2.4 Realizations of IIR Filters

2.3 Complementary filters and filterbanks

2.4 Frequency warping|

Delays and Effects

3.1 The Circular Buffer|. 000

3.2 Fractional-Length Delay Lines|
3.2.1 FIR Interpolation Filters
3.2.2 Allpass Interpolation Filters,

3.3 The Non-Recursive Comb Filter/.

3.4 The Recursive Comb Filter
3.4.1 The Comb-Allpass Filter,

3.5 Sound Effects Based on Delay Lines

19
19
20
23
26
33
34
34
37
43
46
49
51

53
93
54
95
o7

D. Rocchesso: Sound Processing

3.6 Spatial sound processing 64
3.6.1 Spatializationo oo 64
3.6.2 Reverberation, 70

Sound Analysis s

4.1 _Short-Time Fourier Transform' 7
4.1.1 The Filterbank View 7
4.1.2 The DET Viewl 78
4.1.3 Windowing o 80
4.1.4 Representations|.o 84
4.1.5 Accurate partial estimation 85

4.2 Linear predictive coding (with Federico Fontana) 88

Sound Modelling 91

5.1 Spectral modelling oo 91
5.1.1 The sinusoidal model|. 91
5.1.2 Sines + Noise 4+ Transients 95
5.1.3 LPC Modelling 96

5.2 Time-domain models/ L. 96
5.2.1 The Digital Oscillator| 96
5.2.2 _The Wavetable Oscillator! 97
5.2.3 Wavetable sampling synthesis 99
5.2.4 Granular synthesis (with Giovanni De Poli) 100

5.3 _Nonlinear models| 101
5.3.1 Frequency and phase modulation 101
5.3.2 Nonlinear distortion 105

5.4 Physical models o 106
5.4.1 A physical oscillator, 0oL 106
5.4.2 Coupled oscillators| oL 107
5.4.3 _One-dimensional distributed resonators 109

Mathematical Fundamentals 113

A1 Classes of Numbers 113
A1l Fields 113
AT12 Rings o 114
A.1.3 Complex Numbers 114

A.2 Variables and Functions/ 115

A3 Polynomials| 118

A.4 Vectors and Matrices, 120
A.4.1 Square Matrices| L. 123

A.5 Exponentials and Logarithms 123

A.6 Trigonometric Functions 125

A.7 Derivatives and Integrals| 128
A.7.1 Derivatives of Functions 128
A.7.2 Integrals of Functions 131

A.8 Transforms 132
A.8.1 The Laplace Transform! 132
A.8.2 The Fourier Transform/ 134
A.83 TheZ Transform 134

A.9 Computer Arithmetics 135

A.9.1 Integer Numbers
A.9.2 Rational Numbers

B Tools for Sound Processing (with Nicola Bernardini)

B.1 Sounds in Matlab and Octavel
B.1.1 Digression
B.2 Languages for Sound Processing
B.2.1 Unit generator,

B.2.2 Examples in Csound, SAOL, and CLM|.

B.3 Interactive Graphical Building Environments
B.3.1 Examples in ARES/MARS and pd| .
B.4 Inline sound processing/.

B.4.1 Time-Domain Graphical Editing and Processing

B.4.2 Analysis/Resynthesis Packages . . .
B.5 Structure of a Digital Signal Processor| . .
B.5.1 Memory Management|
B.5.2 Internal Arithmetics
B.5.3 The Pipeline|

C Fundamentals of psychoacoustics

C.1 _Theear
C.2 Sound Intensity|

C.2.1 Psychophysics.
C3 Pitchl.
C.4 Critical Band
Ch5 Masking oL,
C.6 Spatial sound perception/.

D GNU Free Documentation License
D.1 _APPLICABILITY AND DEFINITIONS/ . .
D.2 VERBATIM COPYING/
D.3 COPYING IN QUANTITY|
D.4 MODIFICATIONS/
D.5 COMBINING DOCUMENTS
D.6 COLLECTIONS OF DOCUMENTS

D.7 AGGREGATION WITH INDEPENDENT WORKS

D.8 TRANSLATION
D.9 TERMINATION|
D.10 FUTURE REVISIONS OF THIS LICENSE

Bibliography

Index
*

il

135
136

139
139
141
143
145
146
149
151
153
154
155
157
158
159
160

163
163
164
167
169
171
171
173

175
175
177
177
178
179
180
180
181
181
181

183

191

v

D. Rocchesso: Sound Processing

Preface

What you have in your hands, or on your screen, is an introductory book on
sound processing. By reading this book, you may expect to acquire some knowl-
edge on the mathematical, algorithmic, and computational tools that I consider
to be important in order to become proficient sound designers or manipulators.

The book is targeted at both science- and art-oriented readers, even though
the latter may find it hard if they are not familiar with calculus. For this purpose
an appendix of mathematical fundamentals has been prepared in such a way
that the book becomes self contained. Of course, the mathematical appendix is
not intended to be a substitute of a thorough mathematical preparation, but
rather as a shortcut for those readers that are more eager to understand the
applications.

Indeed, this book was conceived in the 1997, when I was called to teach
introductory audio signal processing in the course “Specialisti in Informatica
Musicale” organized by the Centro Tempo Reale in Firenze. In that class, the
majority of the students were excellent (no kidding, really superb!) music com-
posers. Only two students had a scientific background (indeed, a really strong
scientific background!). The task of introducing this audience to filters and
trasforms was so challenging for me that I started planning the lectures and
laboratory material much earlier and in a structured form. This was the ini-
tial form of this book. The course turned out to be an exciting experience for
me and, based on the music and the research material that I heard from them
afterward, I have the impression that the students also made good use of it.

After the course in Firenze, I expanded and improved the book during four
editions of my course on sound processing for computer science students at
the University of Verona. The mathematical background of these students is
different from that of typical electrical engineering students, as it is stronger in
discrete mathematics and algebra, and with not much familiarity with advanced
and applied calculus. Therefore, the books presents the basics of signals, systems,
and transforms in a way that can be immediately used in applications and
experienced in computer laboratory sessions.

This is a free book, thus meaning that it was written using free software
tools, and it is freely downloadable, modifiable, and distributable in electronic
or printed form, provided that the enclosed license and link to its original web
location are included in any derivative distribution.

vi D. Rocchesso: Elaborazione del Suono

I encourage additions that may useful to the reader. For instance, it would be
nice to have each chapter ended by a section that collects annotations, solutions
to the problems that I proposed in footnotes, and other problems or exercises.
Feel free to exploit the open nature of this book to propose your additional
contents.

Venezia, March 20, 2003 Davide Rocchesso

SISO

linear systems
superposition principle
linear time-invariant
LTI

transfer function

Chapter 1

Systems, Sampling and
Quantization

1.1 Continuous-Time Systems

Sound is usually considered as a mono-dimensional signal (i.e., a function of
time) representing the air pressure in the ear canal. For the purpose of this
book, a Single-Input Single-Output (SISO) System is defined as any algorithm
or device that takes a signal in input and produces a signal in output. Most of
our discussion will regard linear systems, that can be defined as those systems
for which the superposition principle holds:

Superposition Principle : if y; and y; are the responses to the input se-
quences x1 and s, respectively, then the input ax; + bxs produces the
response ay; + bys.

The superposition principle allows us to study the behavior of a linear sys-
tem starting from test signals such as impulses or sinusoids, and obtaining the
responses to complicated signals by weighted sums of the basic responses.

A linear system is said to be linear time-invariant (LTI), if a time shift in
the input results in the same time shift in the output or, in other words, if it
does not change its behavior in time.

Any continuous-time LTT system can be described by a differential equation.
The Laplace transform, defined in appendix/A.8.1/is a mathematical tool that is
used to analyze continuous-time LTI systems, since it allows to transform com-
plicated differential equations into ratios of polynomials of a complex variable
s. Such ratio of polynomials is called the transfer function of the LTI system.

Example 1. Consider the LTI system having as input and output the
functions of time (i.e., the signals) z(¢) and y(t), respectively, and described by

the differential equation
dy

o TSy =1 (1)

This equation, transformed into the Laplace domain according to the rules of
appendix |A.8.1, becomes

sYL(s) —soYr(s) = Xr(s) . (2)

pole

Zero

impulse response
frequency response
convolution

2 D. Rocchesso: Sound Processing

Here, as in most of the book, we implicitly assume that the initial conditions are
zero, otherwise eq. (2)) should also contain a term in y(0). From the algebraic
equation (2) the transfer function is derived as the ratio between the output
and input transforms:

HHA

The coefficient sg, root of the denominator polynomial of (3), is called the
pole of the transfer function (or pole of the system). Any root of the numerator
would be called a zero of the system.

The inverse Laplace transform of the transfer function is an equivalent de-
scription of the system. In the case of example [1.1} it takes the form

et t>0
o={ 5" 120 - @)

and such function is called a causal exponential.

In general, the function h(t), inverse transform of the transfer function, is
called the impulse response of the system, since it is the output obtained from
the system as a response to an ideal impulsel.

The two equivalent descriptions of a linear system in the time domain (im-
pulse response) and in the Laplace domain (transfer function) correspond to
two alternative ways of expressing the operations that the system performs in
order to obtain the output signal from the input signal.

The description in the Laplace domain leads to simple multiplication between
the Laplace transform of the input and the system transfer function:

Y(s) = H(s)X(s) . (5)

This operation can be interpreted as multiplication in the frequency domain
if the complex variable s is replaced by j€), being Q the real variable of the
Fourier domain. In other words, the frequency interpretation of (5) is obtained
by restricting the variable s from the complex plane to the imaginary axis. The
transfer function, whose domain has been restricted to j€ is called frequency
response. The frequency interpretation is particularly intuitive if we imagine
the input signal as a complex sinusoid /%, which has all its energy focused
on the frequency g (in other words, we have a single spectral line at). The
complex value of the frequency response (magnitude and phase) at the point
790 corresponds to a joint magnitude scaling and phase shift of the sinusoid at
that frequency.

The description in the time domain leads to the operation of convolution,
which is defined as?

+oo
y(t) 2 (h*z)(t) = / h(t — 7)a(r)dr . (6)

— 00

1A rigorous definition of the ideal impulse, or Dirac function, is beyond the scope of this
book. The reader can think of an ideal impulse as a signal having all its energy lumped at the
time instant 0.

2The convolution will be fully justified for discrete-time systems in section [1.4. Here, for
continuous-time systems, we give only the definition.

Systems, Sampling and Quantization 3

In order to obtain the signal coming out from a linear system it is sufficient
to apply the convolution operator between the input signal and the impulse
response.

1.2 The Sampling Theorem

In order to perform any form of processing by digital computers, the signals
must be reduced to discrete samples of a discrete-time domain. The operation
that transforms a signal from the continuous time to the discrete time is called
sampling, and it is performed by picking up the values of the continuous-time
signal at time instants that are multiple of a quantity 7', called the sampling
interval. The quantity Fs = 1/T is called the sampling rate.

The presentation of a detailed theory of sampling would take too much space
and it would become easily boring for the readership of this book. For a more
extensive treatment there are many excellent books readily available, from the
more rigorous [66, [65] to the more practical [67]. Luckily, the kernel of the theory
can be summarized in a few rules that can be easily understood in terms of the
frequency-domain interpretation of signals and systems.

The first rule is related to the frequency representation of discrete-time vari-
ables by means of the Fourier transform, defined in appendix A.8.3 as a special-
ization of the Z transform:

Rule 1.1 The Fourier transform of a function of discrete variable is a function
of the continuous variable w, periodic® with period 2.

The second rule allows to treat the sampled signals as functions of discrete
variable:

Rule 1.2 Sampling a continuous-time signal x(t) with sampling interval T pro-

duces a function Z(n) 2 x(nT) of the discrete variable n.

If we call spectrum of a signal its Fourier-transformed counterpart, the fun-
damental rule of sampling is the following:

Rule 1.3 Sampling a continuous-time signal with sampling rate Fy produces a
discrete-time signal whose frequency spectrum is a periodic replication of the
spectrum of the original signal, and the replication period is Fs. The Fourier
variable w for functions of discrete variable is converted into the frequency vari-
able f (in Hz) by means of

2 f

w=2nfT = F (7)

Fig. [1l shows an example of frequency spectrum of a signal sampled with
sampling rate Fs. In the example, the continuous-time signal had all and only
the frequency components between —F}, and Fjp. The replicas of the original
spectrum are sometimes called images.

Given the simple rules that we have just introduced, it is easy to understand
the following Sampling Theorem, introduced by Nyquist in the twenties and
popularized by Shannon in the forties:

3This periodicity is due to the periodicity of the complex exponential of the Fourier trans-
form.

sampling

sampling interval
spectrum

images

Sampling Theorem

band-limited
reconstruction filter
Nyquist frequency
holder

sampler

sample and hold

4 D. Rocchesso: Sound Processing

X()

Fy F, 0 F,FJ/2 F, f

Figure 1: Frequency spectrum of a sampled signal

Theorem 1.1 A continuous-time signal x(t), whose spectral content is limited
to frequencies smaller than Fy (i.e., it is band-limited to F,) can be recovered
from its sampled version &(n) = x(nT) if the sampling rate Fs = 1/T is such
that

Fy > 2F, . (8)

It is also clear how such recovering might be obtained. Namely, by a linear
reconstruction filter capable to eliminate the periodic images of the base band
introduced by the sampling operation. Ideally, such filter doesn’t apply any
modification to the frequency components lower than the Nyquist frequency,
defined as Fy = F/2, and eliminates the remaining frequency components
completely.

The reconstruction filter can be defined in the continuous-time domain by
its impulse response, which is given by the function

sin (7t/T)

h(t) £ sinc(t) = T

(9)

which is depicted in fig. 2l

Impulse response of the Reconstruction Filter
1

sinc
o

-1
-5 0 5
time in sampling intervals

Figure 2: sinc function, impulse response of the ideal reconstruction filter

Ideally, the reconstruction of the continuous-time signal from the sampled
signal should be performed in two steps:

e Conversion from discrete to continuous time by holding the signal con-
stant in time intervals between two adjacent sampling instants. This is
achieved by a device called a holder. The cascade of a sampler and a
holder constitutes a sample and hold device.

Systems, Sampling and Quantization 5

e Convolution with an ideal sinc function.

The sinc function is ideal because its temporal extension is infinite on both sides,
thus implying that the reconstruction process can not be implemented exactly.
However, it is possible to give a practical realization of the reconstruction filter
by an impulse response that approximates the sinc function.

Whenever the condition (8) is violated, the periodic replicas of the spec-
trum have components that overlap with the base band. This phenomenon is
called aliasing or foldover and is avoided by forcing the continuous-time original
signal to be bandlimited to the Nyquist frequency. In other words, a filter in
the continuous-time domain cuts off the frequency components exceeding the
Nyquist frequency. If aliasing is allowed, the reconstruction filter can not give a
perfect copy of the original signal.

Usually, the word aliasing has a negative connotation because the aliasing
phenomenon can make audible some spectral components which are normally
out of the frequency range of hearing. However, some sound synthesis techniques,
such as frequency modulation, exploit aliasing to produce additional spectral
lines by folding onto the base band spectral components that are outside the
Nyquist bandwidth. In this case where the connotation is positive, the term
foldover is preferred.

1.3 Discrete-Time Spectral Representations

We have seen how the sampling operation essentially changes the nature of the
signal domain, which switches from a continuous to a discrete set of points. We
have also seen how this operation is transposed in the frequency domain as a
periodic replication. It is now time to clarify the meaning of the variables which
are commonly associated to the word “frequency” for signals defined in both the
continuous and the discrete-time domain. The various symbols are collected in
table 1.1, where the limits imposed by the Nyquist frequency are also indicated.
With the term “digital frequencies” we indicate the frequencies of discrete-time
signals.

Nyquist Domain Symbol Unit
[-Fs/2 ... 0 ... F/2]|f [Hz] = [cycles/s]
[—1/2 0 1/2] | f/Fs [cycles/sample] | digital
[—7 o0 L 7| | w=2nf/F, | [radians/sample] | frequencies
[—7Fs 0 wFs] | Q=2rnf [radians/s]

Table 1.1: Frequency variables

Appendix |A.8.3 shows how it is possible to define a Fourier transform for
functions of a discrete variable. Here we can re-express such definition, as
a function of frequency, for discrete-variable functions obtained by sampling
continuous-time signals with sampling interval 7. This transform is called the
Discrete-Time Fourier Transform (DTFT) and is expressed by

—+o0

Y(f)= Y ymT)e 72 En (10)

n=—oo

aliasing

foldover

frequency modulation
digital frequencies

Discrete-Time Fourier
Transform

DTFT

window
Uncertainty Principle
frequency resolution

6 D. Rocchesso: Sound Processing

We have already seen that the function Y'(f) is periodic* with period F.
Therefore, it is easy to realize that the DTFT can be inverted by an integral
calculated on a single period:

1 [Fe/2 ,
yT) =5 [v ()

F —Fs/2
In practice, in order to compute the Fourier transform with numeric means
we must consider a finite number of points in (10)). In other words, we have to
consider a window of N samples and compute the discrete Fourier transform on

that signal portion:
N—-1

V() =3 gln)e 2 En (12)
n=0

In (12)) we have taken a window of N samples (i.e., NT seconds) of the signal,
starting from instant 0, thus forming an N-point vector. The result is still a
function of continuos variable: the larger the window, the closer is the function
to Y(f). Therefore, the “windowing” operation introduces some loss of precision
in frequency analysis. On the other hand, it allows to localize the analysis in the
time domain. There is a tradeoff between the time domain and the frequency
domain, governed by the Uncertainty Principle which states that the product
of the window length by the frequency resolution Af is constant:

AfN=1. (13)

Example 2. This example should clarify the spectral effects induced by
sampling and windowing. Consider the causal complex exponential function in
continuous time

et >0
wo={ 6" 120 . (14)

where sy is the complex number sy = a + jb. To visualize such complex signal
we can consider its real part

R(y(t)) = R(e™el®t) = e cos (bt) , (15)

and obtain fig. 3.a from it.
The Laplace transform of function (14]) has been calculated in appendix/A.8.1.
It can be reduced to the Fourier transform by the substitution s = j{:

B 1

i —so

The magnitude of the complex function (16) is drawn in solid line in fig. 3.
The sampled signal is also Fourier-transformable in closed form, by reducing

the Z transform obtained in appendix [A.8.3 by the substitution z = e/*. The
formula, turns out to be®

Y(9) (16)

1

Y(W) - 1— es(J/Fse_jW ’

(17)

4Indeed, the expression (10) can be read as the Fourier series expansion of the periodic
signal Y (f) with coefficients y(nT") and components which are “sinusoidal” in frequency and
are multiples of the fundamental 1/F.

51f we compare this formula with (57) of the appendix [Al we see that here the variable
so in the exponent is divided by F. Indeed, the discrete-variable functions of appendix|A.8.3
correspond to signals sampled with unit sampling rate.

Systems, Sampling and Quantization 7

and its magnitude is drawn in dashed line in fig. [3 for Fy = 50Hz. We can
see that sampling induces a periodic replication in the spectrum and that the
periodicity is established by the sampling rate. The fact that the spectrum is
not identically zero for frequencies higher than the Nyquist limit determines
aliasing. This can be seen, for instance, in the heightening of the peak at the
frequency of the damped sinusoid.

If we consider only the sampled signal lying within a window of N = 7
samples, we can compute the DTFT by means of (12) and obtain the third
curve of fig. 3l Two important artifacts emerge after windowing:

e The peak is enlarged. In general, we wave a main lobe for each relevant
spectral component, and the width of the lobe might prevent from resolv-
ing two components that are close to each other. This is a loss of frequency
resolution due to the uncertainty principle.

e There are side lobes (frequency leakage) due to the discontinuity at the
edges of the rectangular window. Smaller side lobes can be obtained by
using windows that are smoother at the edges.

Unfortunately, for signals that are not known analytically, the analysis can
only be done on finite segments of sampled signal, and the artifacts due to
windowing are not eliminable. However, as we will show in sec. 4.1.3|, the tradeoff
between width of the main lobe and height of the side lobes can be explored by
choosing windows different from the rectangular one.

(a) (b)
Exponentially-decayed sinusoid Frequency response of a damped sinusoid
1 -10

-20

0 0.5 1 0 50 100
t[s] f [Hz]

Figure 3: (a): Exponentially-decayed sinusoid, obtained as the real part of the
complex exponential y(t) = e*°!, with so = —10+ 5100; (b): Frequency analysis
of the complex exponential y(t) = e*°. Transform of the continuous-time signal
(continuous line), transform of the signal sampled at Fy = 50H z (dashed line),
and transform of the sampled signal windowed with a 7-sample rectangular
window (dash-dotted line)

To conclude the example we report the Octave/Matlab code (see the ap-
pendix B) that allows to plot the curves of fig. 3. The computation of the DTFT
is particularly instructive. We have expressed the sum in (12) as a vector-matrix
multiply, thus obtaining a compact expression that is computed efficiently. We
also notice how Matlab and Octave manage vectors of complex numbers with
the proper arithmetics.

main lobe
frequency leakage
rectangular window

Discrete Fourier Transform
DFT
bins

8 D. Rocchesso: Sound Processing

% script that visualizes the effects of

% sampling and windowing

global_decl;

platform(’octave’); %put either ’octave’ or ’matlab’
a=-10.0; b = 100;

sO = a+ i * b;

t = [0:0.001:1];

y = exp(sOx*t); J complex exponential
subplot(2,2,1); plot(t,real(y));

eval (mygridon) ;

title(’Exponentially-decayed sinusoid’);
xlabel(’t [s]’); ylabel(’y’);

eval (myreplot) ;

pause;

f = [0:0.1:100];

Y=1./(1*2*pix*{f - sO*xones(size(£)));

% closed-form Fourier transform
subplot(2,2,2); plot(f, 20*loglO(abs(Y)), ’-’);
title(’Frequency response of a damped sinusoid’);
xlabel (°f [Hz]’); ylabel(’|Y| [dB]’);
hold on;

Fs = 50;
Ysamp = 1 ./ (1 - exp(s0/Fs) * exp(- i*2xpixf/Fs)) / Fs;

% closed-form Fourier transform of the sampled signal
plot(f,20*1logl0(abs(Ysamp)),’—-=’);

n = [0:6];
y = exp(s0*n/Fs);
Ysampw = y * exp(-i*2*pi/Fs*n’*f) / Fs;

% Fourier transform of the windowed signal

% obtained by vector-matrix multiply
plot(f,20*logl0(abs(Ysampw)),’~.’); hold off;
eval (myreplot) ;

#HAHH#

Finally, we define the Discrete Fourier Transform (DFT) as the collection
of N samples of the DTFT of a discrete-time signal windowed by a length-N
rectangular window. The frequency sampling points (called bins) are equally
spaced between 0 and F according to the formula

kFs
fo=—H- (18)
Therefore, the DFT is given by
N—-1
Y(k)=> ym)e ¥ k=[0...N-1]. (19)
n=0

The DFT can also be expressed in matrix form. Just consider y(n) and Y (k) as
elements of two N-component vectors y and Y related by

Y =Fy, (20)

Systems, Sampling and Quantization 9

where F is the Fourier matrix, whose generic element of indices k,n is
_i2m
Flp=e d5k, (21)

It is clear that the sequence y can be recovered by premultiplication of the
sequence Y by the matrix F~!, which is the inverse Fourier matrix. This can
be expressed as

N—

y(n) = % ;Y(k)ej%“k",nz 0...N—1], (22)

=

which is called the Inverse Discrete Fourier Transform.

The Fast Fourier Transform (FFT) [65],[67], is a fast algorithm for computing
the sum (19). Namely, the FFT has computational complexity [24] of the order
of Nlog N, while the trivial procedure for computing the sum (19) would take an
order of N? steps, thus being intractable in many practical cases. The FFT can
be found as a predefined component in most systems for digital signal processing
and sound processing languages. For instance, there is an £ft builtin function
in Octave, CSound, CLM (see the appendix [B).

1.4 Discrete-Time Systems

A discrete-time system is any processing block that takes an input sequence
of samples and produces an output sequence of samples. The actual processing
can be performed sample by sample or as a sequence of transformations of data
blocks.

The linear and time-invariant systems are particularly interesting because a
theory is available that describes them completely. Since we have already seen
in sec. 1.1l what we mean by linearity, here we restate the concept with formulas.
If y1(n) and y2(n) are the system responses to the inputs x1(n) and x2(n) then,
feeding the system with the input

z(n) = a1z1(n) + azxa(n) (23)
we get, at each discrete instant n

y(n) = a1y1(n) + azy2(n) . (24)

In words, the superposition principle does hold.

The time invariance is defined by considering an input sequence x(n), which
gives an output sequence y(n), and a version of x(n) shifted by D samples:
xz(n — D). If the system is time invariant, the response to xz(n — D) is equal to
y(n) shifted by D samples, i.e. y(n — D). In other words, the time shift can be
indifferently put before or after a time-invariant system. Cases where the time
invariance does not hold are found in systems that change their functionality
over time or that produce an output sequence at a rate different from that of
the input sequence (e.g., a decimator that undersamples the input sequence).

An important property of linear and time-invariant (LTI) systems is that,
in a cascade of LTI blocks the order of such blocks is irrelevant for the global
input-output relation.

Fourier matrix

Inverse Discrete Fourier
Transform

Fast Fourier Transform
FFT
discrete-time system

linear and time-invariant
systems

time invariance
decimator
LTI

impulse response
convolution
transfer function
shift operation

10 D. Rocchesso: Sound Processing

As we have already mentioned for continuous-time systems, there are two
important system descriptions: the impulse response and the transfer function.
LTT discrete-time systems are completely described by either one of these two
representations.

1.4.1 The Impulse Response

Any input sequence can be expressed as a weighted sum of discrete impulses
properly shifted in time. A discrete impulse is defined as

5@):{3 Z;g . (25)

If the impulse (25)) gives as output a sequence (called, indeed, the impulse re-
sponse) h(n) defined in the discrete domain, then a linear combination of shifted
impulses will produce a linear combination of shifted impulse responses. There-
fore, it is easy to be convinced that the output can be expressed by the following
general convolution®:

y(n) = (hxx)(n) = Y a(m)h(n —m) =Y h(m)z(n—m), (26)

m m

which is the discrete-time version of (6)).

The Z transform H(z) of the impulse response is called transfer function of
the LTI discrete-time system. By analogy to what we showed in sec. [1.1, the
input-output relationship for LTI systems can be described in the transform
domain by

Y(z)=H(2)X(z), (27)

where the input and output signals X(z) and Y (z) have been capitalized to
indicate that these are the Z transforms of the signals themselves.
The following general rule can be given:

e A linear and time-invariant system working in continuous or discrete time
can be represented by an operation of convolution in the time domain or,
equivalently, by a complex multiplication in the (respectively Laplace or
7) transform domain. The results of the two operations are related by a
(Laplace or Z) transform.

Since the transforms can be inverted the converse statement is also true:

e The convolution between two signals in the transform domain is the trans-
form of a multiplication in the time domain between the antitransforms
of the signals.

1.4.2 The Shift Theorem

We have seen how two domains related by a transform operation such as the
7 transform are characterized by the fact that the convolution in one domain
corresponds to the multiplication in the other domain. We are now interested
to know what happens in one domain if in the other domain we perform a shift
operation. This is stated in the

6The reader is invited to construct an example with an impulse response that is different
from zero only in a few points.

Systems, Sampling and Quantization 11

Theorem 1.2 (Shift Theorem) Given two domains related by a transform
operator, the shift by T in one domain corresponds, in the transform domain, to
a multiplication by the kernel of the transform raised to the power 7.

We recall that the kernel of the Laplace transform” is e~ and the kernel of
the Z transform is z~!. The shift theorem can be easily justified in the discrete
domain starting from the definition of Z transform. Let z(n) be a discrete-time
signal, and let y(n) be its version shifted by an integer number 7 of samples.
With the variable substitution N = n — 7 we can produce the following chain
of identities, which proves the theorem:

o0 o0 o0

Y(z)= Z y(n)z™" = Z x(n—1)z7" = Z e(N)z N7 =27"X(z2) .

n=-—oo n=-—oo N=—

(28)

1.4.3 Stability and Causality

The notion of causality is rather intuitive: it corresponds to the experience of
exciting a system and getting its response back only in future time instants,
i.e. in instants that follow the excitation time along the time arrow. It is easy
to realize that, for an LTI system, causality is enforced by forbidding non-zero
values to the impulse response for time instants preceding zero. Non-causal
systems, even though not realizable by sample-by-sample processing, can be
of interest for non-realtime applications or where a processing delay can be
tolerated.

The notion of stability is more delicate and can be given in different ways.
We define the so-called bounded-input bounded-output (BIBO) stability, which
requires that any input bounded in amplitude might only produce a bounded
output, even though the two bounds can be different. It can be shown that hav-
ing BIBO stability is equivalent to have an impulse response that is absolutely
summable, i.e.

S ()] < oo (29)

In particular, a necessary condition for BIBO stability is that the impulse re-
sponse converges toward zero for time instants diverging from zero.

It is easy to detect stability on the complex plane for LTI causal systems [58,
60, 65]. In the continuous-time case, the system is stable if all the poles are on
the left of the imaginary axis or, equivalently, if the strip of convergence (see
appendix [A.8.1) ranges from a negative real number to infinity. In the discrete-
time case, the system is stable if all the poles are within the unit circle or,
equivalently, the ring of convergence (see appendix [A.8.3) has the inner radius
of magnitude less than one and the outer radius extending to infinity.

Stability is a condition that is almost always necessary for practical real-
izability of linear filters in computing systems. It is interesting to note that
physical systems can be locally unstable but, in virtue of the principle of energy
conservation, these instabilities must be compensated in other points of the sys-
tems themselves or of the other systems they are interacting with. However, in

"This is the kernel of the direct transform, being e® the kernel of the inverse transform.

kernel of the transform
causality
stability

bounded-input
bounded-output

BIBO
absolutely summable

12 D. Rocchesso: Sound Processing

analog system numeric implementations, even local instabilities can be a problem, since the nu-
signal flowchart merical approximations introduced in the representations of variables can easily

m,ﬂ,pulse tvariance produce diverging signals that are difficult to control.
bilinear transformation

1.5 Continuous-time to discrete-time system con-
version

In many applications, and in particular in sound synthesis by physical modeling,
the design of a discrete-time system starts from the description of a physical
continuous-time system by means of differential equations and constraints. This
description of an analog system can itself be derived from the simplification
of the physical reality into an assembly of basic mechanical elements, such as
springs, dampers, frictions, nonlinearities, etc. . Alternatively, our continuous-
time physical template can result from measurements on a real physical system.
In any case, in order to construct a discrete-time system capable to reproduce
the behavior of the continuous-time physical system, we need to transform the
differential equations into difference equations, in such a way that the resulting
model can be expressed as a signal flowchart in discrete time.

The techniques that are most widely used in signal processing to discretize
a continuous-time LTI system are the impulse invariance and the bilinear trans-
formation.

1.5.1 Impulse Invariance

In the method of the impulse invariance, the impulse response h(n) of the
discrete-time system is a uniform sampling of the impulse response hg(t) of
the continuous-time system, rescaled by the width of the sampling interval T,
according to

h(n) = Ths(nT) . (30)

In the usual practice of digital filter design, the constant 7" is usually neglected,
since the design stems from specifications for the discrete-time filter, and the
conversion to continuous time is only an intermediate stage. Since one should
introduce 1/T when going from discrete to continuous time, and T when return-
ing to discrete time, the overall effect of the constant is canceled. Vice versa, if
we start from a description in continuous time, such as in physical modeling,
the constant 1" should be considered.

From the sampling theorem we can easily deduce that the frequency response
of the discrete-time system is the periodic replication of the frequency response
of the continuous-time system, with a repetition period equal to Fy = 1/T. In
terms of “discrete-time frequency” w (in radians per sample), we can write

21

@) = Y (i) = X Ay . 6

k=—o00 k=—o00

The equation (31) shows that the frequency components in the two domains,
discrete and continuous, can be identical in the base band only if the continuous-
time system is bandlimited. If this is not the case (and it is almost never the
case!), there will be some aliasing that introduces spurious components in the

Systems, Sampling and Quantization 13

band of interest of the discrete-time system. However, if the frequency response
of the continuous-time system is sufficiently close to zero in high frequency, the
aliasing can be neglected and the resulting discrete-time system turns out to be
a good approximation of the continuous-time template.

Often, the continuous-time impulse response is derived from a decomposition
of the transfer function of a system into simple fractions. Namely, the transfer
function of a continuous-time system can be decomposed® into a sum of terms

such as
a
Hy(s) = ; (32)

s — Sq

which are given by impulse responses such as
hy(t) = ae®*'1(t) , (33)

where 1(t) is the ideal step function, or Heaviside function, which is zero for
negative (anticausal) time instants. Sampling the (33) we produce the discrete-
time response

h(n) = Ta (e***)" 1(n), (34)
whose transfer function in z is

Ta

H(z) = T sl —1 -

(35)

By comparing (35) and (32) it is clear what is the kind of operation that we
should apply to the s-domain transfer function in order to obtain the z-domain
transfer function relative to the impulse response sampled with period T.

It is important to recognize that the impulse-response method preserves the
stability of the system, since each pole of the left s hemiplane is matched with a
pole that stays within the unit circle of the z plane, and vice versa. However, this
kind of transformation can not be considered a conformal mapping, since not
all the points of the s plane are coupled to points of the z plane by a relation®
z = €e*T. An important feature of the impulse-invariance method is that, being
based on sampling, it is a linear transformation that preserves the shape of the
frequency response of the continuous-time system, at least where aliasing can
be neglected.

It is clear that the method of the impulse invariance can be used when the
continuous-time reference model is a lowpass or a bandpass filter (see sec. 2| for
a treatment of filters). If the template is an high-pass filtering block the method
is not applicable because of aliasing.

1.5.2 Bilinear Transformation

An alternative approach to using the impulse invariance to discretize continuous
systems is given by the bilinear transformation, a conformal map that creates

8This holds for simple distinct poles. The reader might try to extend the decomposition to
the case of coincident double poles.

9T0 be convinced of that, consider a second order continuous-time transfer function with
simple poles and a zero and convert it with the method of the impulse invariance. Verify that
the zero does not follow the same transformation that the poles are subject to.

conformal mapping

dc component
trapezoid rule

14 D. Rocchesso: Sound Processing

a correspondence between the imaginary axis of the s plane and the unit cir-
cumference of the z plane. A general formulation of the bilinear transformation
is) .
—z

8—h1+271 . (36)
It is clear from (36) that the dc component jO of the continuous-time system
corresponds to the dc component 1 + j0O of the discrete-time system, and the
infinity of the imaginary axis of the s plane corresponds to the point —1 + j0,
which represents the Nyquist frequency in the z plane. The parameter h allows
to impose the correspondence in a third point of the imaginary axis of the s
plane, thus controlling the compression of the axis itself when it gets transformed
into the unit circumference.

A particular choice of the parameter h derives from the numerical integration
of differential equations by the trapezoid rule. To understand this point, consider
the transfer function (32) and its relative differential equation that couples the
input variable xs to the output variable y;

dys(t
ys(t) _ Says(t) = azs(t) . (37)
dt
If we sample the output variable with period T" we can write
nT
w(0T) =gn? =)+ [gu(ryar (3)
nT-T

where 9, = dydst(t), and integrate the (38)) with the trapezoid rule, thus obtaining
ys(nT) = ys((n — 1)T) + (9s(nT) + gs((n =)T)) T/2 . (39)

By replacing (37) into (39) and setting y(n) = ys(nT') we get a difference equa-
tion represented, in virtue of the shift theorem 1.2, by the transfer function
a(l1+274H)T/2

&) =TT sT/2) T

(40)

which can be obviously obtained from Hg(s) by bilinear transformation with
h=2/T.
It is easy to check that, with h = %, the continuos-time frequency f = ﬁ
us

maps into the discrete-time frequency w = 7, i.e. half the Nyquist limit. More

generally, half the Nyquist frequency of the discrete-time system corresponds to
h

the frequency f = 5= of the continuous-time system. The more h is high, the
more the low frequencies are compressed by the transformation.

To give a practical example, using the sampling frequency Fs; = 44100Hz and
h = % = 88200, the frequency that is mapped into half the Nyquist rate of the
discrete-time system (i.e., 11025Hz), is f = 14037.5Hz. The same transforma-
tion, with h = 100000 maps the frequency f = 15915.5Hz to half the Nyquist
rate. If we are interested in preserving the magnitude and phase response at

f = 11025Hz we need to use h = 69272.12.

1.6 Quantization

With the adjectives “numeric” and “digital” we connote systems working on
signals that are represented by numbers coded according to the conventions of

Systems, Sampling and Quantization 15

appendix[A.9. So far, in this chapter we have described discrete-time systems by
means of signals that are functions of a discrete variable and having a codomain
described by a continuous variable. Actually, the internal arithmetic of comput-
ing systems imposes a signal quantization, which can produce various kinds of
effects on the output sounds.

For the scope of this book the most interesting quantization is the linear
quantization introduced, for instance, in the process of conversion of an analog
signal into a digital signal. If the word representing numerical data is b bits long,
the range of variation of the analog signal can be divided into 2° quantization
levels. Any signal amplitude between two quantization levels can be quantized
to the closest level. The processes of sampling and quantization are illustrated
in fig. 4/ for a wordlength of 3 bits. The minimal amplitude difference that can
be represented is called the quantum interval and we indicate it with the symbol
q. We can notice from fig. 4/ that, due to two’s complement representation, the
representation levels for negative amplitude exceed by one the levels used for
positive amplitude. It is also evident from fig. |4 how quantization introduces an

y(t)

2q
0
-2q

-4q -
T 5T 10T t

Figure 4: Sampling and 3-bit quantization of a continuous-time signal

approximation in the representation of a discrete-time signal. This approxima-
tion is called quantization error and can be expressed as

n(n) = yq(n) —y(n), (41)
where the symbol y,(n) indicates the value y(n) quantized by rounding it to
the nearest discrete level. From the viewpoint of the designer, the quantization
noise can be considered as a noise superimposed to the unquantized signal. This
noise takes values in the range

<n<g, (42)

NSRS
IS

and it is spectrally colored according to the nature and form of the unquantized
signal.

What follows is a superficial analysis of quantization noises. In order to do a
rigorous analysis we should assume that the reader has a background in random
variables and processes. We rather refer to signal processing books [58,, 67, [65]
for a more accurate exposition.

In order to study the effects of quantization noise analytically, it is often
assumed that it is a white noise (i.e., a noise with a constant-magnitude spec-
trum) with values uniformly distributed in the interval (42)), and that there is
no correlation between the noise and the unquantized signal. This assumption is
false in general but, nevertheless, it leads to results which are good estimates of

signal quantization
linear quantization
analog signal
digital signal
quantization levels
quantum interval
quantization error
quantization noise
white noise

root-mean-square value
RMS value

signal-to-quantization noise
ratio

SNR
dither

16 D. Rocchesso: Sound Processing

many actual behaviors. The uniformly-distributed white noise has a zero mean
but it has a nonzero quadratic mean (i.e., a power) with value

. 1 q/2 q2
1 :7/ Ny = 7. (43)
0

In the frequency domain, the quantization noise is interpreted by means of a
spectrum such as that depicted in fig. 5, which represents the square of the
magnitude of the Fourier transform. The area of the dashed rectangle is equal

to the power n2. Usually the root-mean-square value (or RMS value) of the

-F /2 0 K2
Figure 5: Squared magnitude spectrum of an ideal quantization noise

quantization noise is given, and this is defined as

_o q
rms — - y 44
7 VI = 5 (44)

which can be directly compared with the maximal representable value in order
to get the signal-to-quantization noise ratio (or SNR)

g2t b
SNR =201 2 =901 2°\/3) ~ 4.7+ 6bdB . 45
0g19 q/\/ﬁ 0%10() ()

As a general rule, each further quantization bit increases the SNR by 6dB.
Therefore, with 16 bits we have a signal-to-quantization noise ratio of about
101.1dB. When we are given a SNR of 96.3dB with 16 bits, it means that the
ratio has been computed using the maximum value ¢/2 of the quantization
noise and not its RMS value, which is more significant for the human ear. The
definition (45)) is that proposed by Steiglitz [102].

The assumptions on the statistical properties of the quantization noise are
better verified if the signal is large in amplitude and wide in its frequency
extension. For quasi-sinusoidal signals the quantization noise is heavily colored
and correlated with the unquantized signal, in such an extent that some additive
noise called dither is sometimes introduced in order to whiten and decorrelate
the quantization noise. In this way, the perceptual effects of quantization turn
out to be less severe.

By considering the quantization noise as an additive signal we can easily
study its effects within linear systems. The operations performed by a discrete-
time linear system, especially when done in fixed-point arithmetics, can indeed
modify the spectral content of noise signals, and different realizations of the
same transfer functions can behave very differently as far as their immunity
to quantization noise is concerned. Several quantizations can occur within the
realization of a linear system. For instance, the multiplication of two fixed-point

Systems, Sampling and Quantization 17

numbers represented with b bits requires 2b — 1 bits to represent the result
without any precision loss. If successive operations use operands represented
with b bits it is clear that the least-significant bits must be eliminated, thus
introducing a quantization. The effects of these quantizations can be studied
resorting to the additive white noise model, where the points of injection of
noises are the points where the quantization actually occurs.

The fixed-point implementations of linear systems are subject to disappoint-
ing phenomena related to quantization: limit cycles and overflow oscillations.
Both phenomena can be expressed as nonzero signals that are maintained even
when the system has stopped to produce usuful signals. The limit cycles are
usually small oscillations due to the fact that, because of rounding, the sources
of quantization noise determine a local amplification or attenuation of the sig-
nal (see fig. [4). If the signals within the system have a physical meaning (e.g.,
they are propagating waves), the limit cycles can be avoided by forcing a lossy
quantization, which truncates the numbers always toward zero. This operation
corresponds to introducing a small numerical dissipation. The overflow oscilla-
tions are more serious because they produce signals as large as the maximum
amplitude that can be represented. They can be produced by operations whose
results exceed the largest representable number, so that the result is slapped
back into the legal range of two’s complement numbers. Such a distructive os-
cillation can be avoided by using overflow-protected operations, which are op-
erations that saturate the result to the largest representable number (or to the
most negative representable number).

The quantizations introduce nonlinear elements within otherwise linear struc-
tures. Indeed, limit cycles and overflow oscillations can persist only because there
are nonlinearities, since any linear and stable system can not give a persistent
nonzero output with a zero input.

Quantization in floating point implementations is usually less of a concern for
the designer. In this case, quantization occurs only in the mantissa. Therefore,

the relative error

is more meaningful for the analysis. We refer to [65] for a discussion on the
effects of quantization with floating point implementations.

Some digital audio formats, such as the p-law and A-law encodings, use
a fixed-point representation where the quantization levels are distributed non
linearly in the amplitude range. The idea, resemblant of the quasi logarithmic
sensitivity of the ear, is to have many more levels where signals are small and
a coarser quantization for large amplitudes. This is justified if the signals being
quantized do not have a statistical uniform distribution but tend to assume small
amplitudes more often than large amplitudes. Usually the distribution of levels
is exponential, in such a way that the intervals between points increase exponen-
tially with magnitude. This kind of quantization is called logarithmic because,
in practical realizations, a logarithmic compressor precedes a linear quantization
stage [69]. Floating-point quantization can be considered as a piecewise-linear
logarithmic quantization, where each linear piece corresponds to a value of the
exponent.

limit cycles
overflow oscillations
lossy quantization

overflow-protected
operations

18

D. Rocchesso: Sound Processing

digital filter
non-recursive filters
Finite Impulse Response
FIR

Infinite Impulse Response
IIR

Chapter 2

Digital Filters

For the purpose of this book we call digital filter any linear, time-invariant
system operating on discrete-time signals. As we saw in chapter 1, such a system
is completely described by its impulse response or by its (rational) transfer
function. Even though the adjective digital refers to the fact that parameters
and signals are quantized, we will not be too concerned about the effects of
quantization, that have been briefly introduced in sec. [1.6. In this chapter, we
will face the problem of designing impulse responses or transfer functions that
satisfy some specifications in the time or frequency domain.

Traditionally, digital filters have been classified into two large families: those
whose transfer function doesn’t have the denominator, and those whose transfer
function have the denominator. Since the filters of the first family admit a
realization where the output is a linear combination of a finite number of input
samples, they are sometimes called non-recursive filterst. For these systems, it is
more customary and correct to refer to the impulse response, which has a finite
number of non-null samples, thus calling them Finite Impulse Response (FIR)
filters. On the other hand, the filters of the second family admit only recursive
realizations, thus meaning that the output signal is always computed by using
previous samples of itself. The impulse response of these filters is infinitely long,
thus justifying their name as Infinite Impulse Response (ITR) filters.

2.1 FIR Filters

An FIR filter is nothing more than a linear combination of a finite number of
samples of the input signal. In our examples we will treat causal filters, therefore
we will not process input samples coming later than the time instant of the
output sample that we are producing.

The mathematical expression of an FIR filter is

y(n) =Y h(m)z(n —m). (1)

In eq. [Il the reader can easily recognize the convolution (26)), here specialized to

IStrictly speaking, this definition is not correct because the same transfer functions can be
realized in recursive form

19

averaging filter
magnitude response
phase response

20 D. Rocchesso: Sound Processing

finite-length impulse responses. Since the time extension of the impulse response
is N + 1 samples, we say that the FIR filter has length N + 1.

The transfer function is obtained as the Z transform of the impulse response
and it is a polynomial in the powers of 2z~

N
H(z) =Y h(m)z"™ = h(0) + h(1)z"" + ...+ h(N)z"" . (2)

m=0

Since such polynomial has order N, we also say that the FIR filter has order N.

2.1.1 The Simplest FIR Filter

Let us now consider the simplest nontrivial FIR filter that one can imagine, the
averaging filter

y(n) = ga(n) + za(n—1) 3)
In appendix B.1 it is illustrated how such filter can be implemented in Oc-
tave/Matlab in two different ways: block processing or sample-by-sample pro-
cessing. The simplest way to analyze the behavior of the filter [97] is probably
the injection of a complex sinusoid having amplitude A and initial phase ¢, i.e.
the signal z(n) = Ae/(“0"+%) Since the system is linear we do not loose any
generality by considering unit-amplitude signals (A = 1). Since the system is
time invariant we do not loose any generality by considering signals with initial
zero phase (¢ = 0). Since the complex sinusoid can be expressed as the sum of
a cosinusoidal real part and a sinusoidal imaginary part, we can imagine that
feeding the system with such a complex signal corresponds to feeding two copies
of the filter, the one with a cosinusoidal real signal, the other with a sinusoidal
real signal. The output of the filter fed with the complex sinusoid is obtained,
thanks to linearity, as the sum of the outputs of the two copies.

If we replace the complex sinusoidal input in eq. (3) we readily get
- 1 Jwon 1 Jwo(n—1) _ 1 1 —jwo)piwon _ 1 1 —jwo

y(n) = GEIn 4 SeBnnD) = (D Cemin)edan = (24 ZeTia(n) . (4)
We see that the output is a copy of the input multiplied by the complex number
(% + %e*jWO), wich is the value taken by the transfer function at the point
z = e?¥0. In fact, the transfer function (2)) can be rewritten, for the case under
analysis, as

1 1
H(z)=-+-2"" 5
()=5+357" 5)
and its evaluation on the unit circle (z = e/) gives the frequency response
1 1 .
Hw) ==+ —e7¥. 6
(@) =5+ (6)

For an input complex sinusoid having frequency wy, the frequency response takes
value

1 1 _. 1 . 1 _. , .
H(wp) = 54—56_]“’0 = (563“"’/24—56_3“0/2)6_3“0/2 = cos (w0/2)e_7w°/2 , (1)
and we see that the magnitude response and the phase response are, respectively

|H (wo)| = cos (wo/2) (8)

Digital Filters 21

and lowpass filter
ZH((UO) = —w0/2 . (9)

These are respectively the magnitude and argument of the complex number
that is multiplied by the input function in (4). Therefore, we have verified a
general property of linear and time-invariant systems, i.e., sinusoidal inputs give
sinusoidal outputs, possibly with an amplitude rescaling and a phase shift2.

If the frequency of the input sine is thought of as a real variable w in the
interval [0, 7), the magnitude and phase responses become a function of such
variable and can be plotted as in fig. [I. At this point, the interpretation of such
curves as amplification and phase shift of sinusoidal inputs should be obvious.

(a) (b)

0
0.8
[0) = -0.5
506 g
5 %
g 0.4 g -1
0.2
0 -1.5 J
0 1 2 3 0 1 2 3
frequency [rad/sample] frequency [rad/sample]

Figure 1: Frequency response (magnitude and phase) of an averaging filter

In order to plot curves such as those of fig. [1it is not necessary to calculate
closed forms of the functions representing the magnitude (8) and the phase
response (9). Since with Octave/Matlab we can directly operate on arrays of
complex numbers, the following simple script will do the job:

global_decl; platform(’octave’);

w = [0:0.01:pi]; % frequency points
H=0.5+ 0.5%exp(- i * w); % complex frequency response
subplot(2,2,1); plot(w, abs(H)); % plot the magnitude
xlabel (’frequency [rad/sample]’);

ylabel(’magnitude’);

eval (myreplot) ;

subplot(2,2,2); plot(w, angle(H)); % plot the phase
xlabel (’frequency [rad/sample]’);

ylabel(’phase [rad]’);

eval (myreplot) ;

The averaging filter is the simplest form of lowpass filter. In a lowpass filter
the high frequencies are more attenuated than the low frequencies. Another
way to approach the analysis of a filter is to reason directly in the plane of the
complex variable z. In this plane (fig. [2) two families of points are marked: the

2The reader can easily verify that this is true not only for complex sinusoids, but also for
real sinusoids. The real sinusoid can be expressed as a combination of complex sinusoids and
linearity can be applied.

zeros of the filter
poles of the filter

22 D. Rocchesso: Sound Processing

points where the transfer function vanishes, and the points where it diverges to
infinity. Let us rewrite the transfer function as the ratio of two polynomials in
z

1z— 2z
H(z) == 10
() =32, (10)
where zg = —1 is the root of the numerator. The roots of the numerator of a

transfer function are called zeros of the filter, and the roots of the denominator
are called poles of the filter. Usually, for reasons that will emerge in the fol-
lowing, only the nonzero roots are counted as poles or zeros. Therefore, in the
example (10) we have only one zero and no pole.

In order to evaluate the frequency response of the filter it is sufficient to
replace the variable z with e/“ and to consider e/“ as a geometric vector whose
head moves along the unit circle. The difference between this vector and the
vector 2o gives the cord drawn in fig. 2. The cord length doubles® the magnitude
response of the filter. Such a chord, interpreted as a vector with the head in e/*,
has an angle that can be subtracted from the vector angle of the pole at the
origin, thus giving the phase response of the filter at the frequency w.

Figure 2: Single zero (o) and pole in the origin (x)

The following general rules can be given, for any number of poles and zeros:

e Considered a point e/“ on the unit circle, the magnitude of the frequency
response (regardless of constant factors) at the frequency w is obtained by
multiplication of the magnitudes of the vectors linking the zeros with the
point e/¥, divided by the magnitudes of the vectors linking the poles with
the point e/*.

e The phase response is obtained by addition of the phases of the vectors
linking the zeros with the point e’“, and by subtraction of the phases of
the vectors linking the poles with the point e7“.

It is readily seen that poles or zeros in the origin do only contribute to the phase
of the frequency response, and this is the reason for their exclusion from the
total count of poles and zeros.

The graphic method, based on pole and zero placement on the complex plane
is very useful to have a rough idea of the frequency response. For instance, the
reader is invited to reconstruct fig. 1 qualitatively using the graphic method..

3Do not forget the scaling factor % in (10).

Digital Filters 23

The frequency response gives a clear picture of the behavior of a filter
when its inputs are stationary signals, which can be decomposed as constant-
amplitude sinusoids. Therefore, the frequency response represents the steady-
state response of the system. In practice, even signals composed by sinusoids
have to be turned on at a certain instant, thus producing a transient response
that comes before the steady-state. However, the knowledge of the Z transform
of a causal complex sinusoid and the knowledge of the filter transfer function al-
low us to study the overall response analytically. As we show in appendix [A.8.3]
the Z transform of causal exponential sequence is

X()= — (11)

1 — edwoy—l
If we multiply, in the z domain, X (z) by the transfer function H(z) we get

1 1 1 1 1 271
Y(z) = H(z)X(2) = 5(1 +27) 1—eiwoz1 21— eiwozg1 ' 21— eiwog 1’
(12)
The second term of the last member of (12)) is, by the shift theorem, the trans-
form of a causal complex sinusoidal sequence delayed by one sample. Therefore,
the overall response can be thought of as a sum of two identical sinusoids shifted
by one sample and this turns out to be another sinusoid, but only after the first
sampling instant. The first instant has a different behavior since it is part of
the transient of the response (see fig. [3)). It is easy to realize that, for an FIR
filter, the transient lasts for a number of samples that doesn’t exceed the order
(memory) of the filter itself. Since an order-N FIR filter has a memory of N
samples, the transient is at most N samples long.

Figure 3: Response of an FIR averaging filter to a causal cosine: input and
delayed input (o), actual response (x)

2.1.2 The Phase Response

If we filter a sound with a nonlinear-phase filter we alter its time-domain wave
shape. This happens because the different frequency components are subject to
a different delay while being transferred from the input to the output of the
filter. Therefore, a compact wavefront is dispersed during its traversal of the

steady-state response
transient response

precursors
phase delay
group delay

24 D. Rocchesso: Sound Processing

filter. Before defining this concept more precisely we illustrate what happens
to the wave shape that is impressed by a hammer to the string in the piano.
The string behaves like a nonlinear-phase filter, and the dispersion of the fre-
quency components becomes increasingly more evident while the wave shape
propagates away from the hammer along the string. Fig. |4 illustrates the string
displacement signal as it is produced by a physical model (see chapter 5 for
details) of the hammer-string system. The initial wave shape progressively loses
its initial form. In particular, the fact that high frequencies are subject to a
smaller propagation delay than low frequencies is visible in the form of little
precursors, i.e., small high-frequency oscillations that precede the return of the
main components of the wave shape. Such an effect can be experienced with
an aerial ropeway like those that are found in isolated mountain houses. If we
shake the rope energetically and keep our hand on it, after a few seconds we
perceive small oscillations preceding a strong echo.

1.0

T
0.02 time 11

Figure 4: Struck string: string displacement at the bridge termination

The effects of the phase response of a filter can be better formalized by
introducing two mathematical definitions: the phase delay and the group delay.
The phase delay is defined as

Ton 2 — Ui(“)) , (13)

i.e., at any frequency, it is given by the phase response divided by the frequency
itself. In practice, given the phase-response curve, the phase delay at one point
is obtained as the slope of the straight line that connects that point with the
origin. The group delay is defined in differential terms as

s d/H(w)

TQT dw (14)

Therefore, the group delay at one point of the phase-response curve, is equal
to the slope of the curve. The fig. |5 illustrates the difference between phase
delay and group delay. It is clear that, if the phase is linear, the two delays are
equal and coincident with the slope of the straight line that represents the phase
response.

Digital Filters 25

/HW

Figure 5: Phase delay and group delay

The difference between local slope and slope to the origin is crucial to un-
derstand the physical meaning of the two delays. The phase delay at a certain
frequency point is the delay that a single frequency component is subject to
when it passes through the filter, and the quantity (13) is, indeed, a delay in
samples. Vice versa, in order to interpret the group delay let us consider a local
approximation of the phase response by the tangent line at one point. Locally,
propagation can be considered linear and, therefore, a signal having frequency
components focused around that point has a time-domain envelope that is de-
layed by an amount proportional to the slope of the tangent. For instance, two
sinusoids at slightly different frequencies are subject to beats and the beat fre-
quency is the difference of the frequency components (see fig. [6). Therefore,
beats are a frequency local phenomenon, only dependent on the relative dis-
tance between the components rather than on their absolute positions. If we
are interested in knowing how the beat pattern is delayed by a filter, we should
consider local variations in the phase curve. In other words, we should consider
the group delay.

beats

2

1

O L
_1 L|
_2 L A A

0 0.1 0.2 0.3
S

Figure 6: Beats between a sine wave at 100 Hz and a sine wave at 110 Hz

In telecommunications the group delay is often the most significant between
the two delays, since messages are sent via wave packets localized in a narrow
frequency band, and preservation of the shape of such packets is important.
Vice versa, in sound processing it is more meaningful to consider the set of
frequency components in the audio range as a whole, and the phase delay is

envelope
wave packets

phase unwrapping
filter coefficients

26 D. Rocchesso: Sound Processing

more significant. In both cases, we have to be careful of a problem that often
arises when dealing with phases: the phase unwrapping. So far we have defined
the phase response as the angle of the frequency response, without bothering
about the fact that such an angle is defined univocally only between 0 and 27.
There is no way to distinguish an angle 6 from those angles obtained by addition
of # with multiples of 27. However, in order to give continuity to the phase and
group delays, we have to unwrap the phase into a continuous function. For
instance, the Matlab Signal Processing Toolbox provides the function unwrap
that unwraps the phase in such a way that discontinuities larger than a given
threshold are offset by 2. In Octave we can use the function unwrap found in
the web repository of this book.

Example 1. Fig. [7l shows the phase response of the FIR filter H(z) =
0.5 — 0.2271 — 0.3272 + 0.8272 before and after unwrapping. The following

Phase response

N
2 RS
I T~
? I
= =2 I
©
g -4
s
-6
-8
-10

0 1 2 3
frequency [rad/sample]

Figure 7: Wrapped (dashed line) and unwrapped (solid line) phase response of
a third order FIR filter having impulse response: 0.5 -0.2 -0.3 0.8

Octave/Matlab script allows to plot the curve in fig. [7. It is illustrative of the
usage of the function unwrap with the default unwrapping threshold set to .

w = [0:0.01:pi];

H = 0.5 - 0.2%xexp(~i*w) - 0.3%exp(-2*i*w) + 0.8%exp(-3*i*w) ;
plot(w, unwrap(angle(H)), ’-’); hold on;

plot(w, angle(H), ’--’); hold off;

xlabel (’frequency [rad/sample]’);

ylabel(’phase [rad]’);

title(’Phase response’);

% replot; % Octave only

H#HAHH#

2.1.3 Higher-Order FIR Filters

An FIR filter is nothing more than the realization of the operation of convolu-
tion (1). The filter coefficients are the samples of the impulse response.

The FIR filters having an impulse response that is symmetric are particularly
important, since the phase of their frequency response is linear. More precisely,

http://www.sci.univr.it/~rocchess/htmls/..../unwrap.m�

Digital Filters 27

a symmetric impulse response is such that

h(n) = h(N —n), n=10,...,N], (15)
and an antisymmetric impulse response is such that
h(n) = =h(N —n), n=10,...,N]. (16)

It is possible to show that the symmetry (or antisymmetry) of the impulse
response is a sufficient condition to ensure the linearity of phase. This property
is important to ensure the invariance of the shape of signals going through the
filter. For instance, if a sawtooth signal is the input of a linear-phase lowpass
filter, the output is still a sawtooth signal with rounded corners.

In order to prove that symmetry is a sufficient condition for phase linearity
for an N-th order FIR filter (with N odd integer), we write the transfer function
as

N -1 N-1 N -1

H(z) = h(0)+...+h(=5=)""7 +h(—)2~ L+ h(0)2N
N—1
2
= h(n) (27" + 2z~ N*t") | (17)
n=0
The frequency response can be expressed as
N-—1
Hw) = h(n) (e_j‘”" + ej‘”(_N+")>
n=0
N-—1
= Z h(n)e‘j“’% (e‘jw(n_%) + ej“("_%)) (18)

S
o

N —
2

o
B L))

3 N

h(n) cos (w(n —
n=0

) -

In the latter term we have isolated the phase contribution from a (real) weighted
sum of sinusoidal functions. The phase contribution is a straight line having slope
—N/2, as we have already seen in the special case of the first-order averaging
filter (5). Where the real term changes sign there are indeed 180° phase shifts, so
that we should more precisely say that the phase is piecewise linear. However,
phase discontinuities at isolated points do not alter the overall constancy of
group delay, and they are nevertheless irrelevant because at those points the
magnitude is zero.

The same property of piecewise phase linearity holds for antisymmetric im-
pulse responses and for even values of V.

At this point, we are going to introduce a very useful FIR filter. It is linear
phase and it has order 2 (i.e., length 3). The averaging filter (5) was also a linear
phase filter, but it is not possible to change the shape of its frequency response
without giving up the phase linearity. In fact, filters having form H(z) = h(0) +
h(1)z=1 can have linear phase only if h(0) = +h(1), and this force them to
have a magnitude response such as that of fig. [1/ or like its high-pass mirrored

symmetric impulse response

antisymmetric impulse
response

28 D. Rocchesso: Sound Processing

version?. The filter that we are going to analyze has transfer function
H(z)=ap+arz ' +apz"?. (19)

The impulse response is symmetric and, therefore, its phase response is linear.
The frequency response can be calculated as

Hw) = ap+ aje % 4+ qge” v
= e (ape! + a1 + age)

= e 7% (a; + 2agcosw) . (20)

As we have anticipated, the phase is linear and we have a phase delay of one sam-
ple. The magnitude of the frequency response is a function of the two parameters
ag and a;. Therefore, the designer has two degrees of freedom to control, for
instance, the magnitude of the frequency response at two distinct frequencies.

A first property that one might want to impose is a lowpass shape to the
frequency response. The reader, starting from (20), can easily verify that a
sufficient condition to ensure that the magnitude of the frequency response is a
decreasing monotonic function is that

a; >2ag > 0. (21)

If we want to set the magnitude A; at the frequency w; and the magnitude A,
at the frequency ws we have to solve the linear system of equations

a1 +2apcosw; = Al
a1 +2agcoswy, = A2,

that can be expressed in matrix form as
1 2cosw; ar | | A
[1 2coswy] [ao } - [Ay | (22)

For instance, if w; = 0.01, wy = 2.0, A; = 1.0 and Ay = 0.5, in Octave/Matlab
a system such as this can be written and solved with the script

wl =0.01; w2 = 2.0;

Al = 1.0; A2 = 0.5;

A= [1 2%cos(wl) ; 1 2%cos(w2)];

b [A1 ; A2];

a=A\ b; % solution of the system b = A a

and the solutions returned for the variables a; and aq are, respectively,

a:
0.64693
0.17654

The frequency response of this filter is shown in fig. 8. If we design the
second-order filter by specification of the frequency response at two arbitrary

4The reader can analyze the filter H(z) = 0.5 — 0.5z~ ! and verify that it is a highpass
filter.

Digital Filters 29

0

0.8 -0.5

© T -1
S 0.6 g

g @ -15

E 0.4 % —

0.2 -2.5

0 -3 J
0 1 2 3 0 1 2 3
frequency [rad/sample] frequency [rad/sample]

Figure 8: Frequency response (magnitude (a) and phase (b)) of the length-3
linear phase FIR filter with coefficients ag = 0.17654 and a; = 0.64693

frequencies, we can easily get a magnitude response larger than one at zero
frequency (also called dc frequency). Especially in signal processing flowgraphs
having loops it is often desirable to normalize the maximum value of the magni-
tude response to one, in such a way that amplifications generating instabilities
can be avoided. Of course, it is always possible to rescale the filter input or
output by a scalar that is reciprocal to H(0) = a; + 2ag so that the response
is forced to be unitary at dc”. Instead of drawing the pole-zero diagram of the
filter, let us represent the contours of the logarithm of the magnitude of the
transfer function, evaluated on the complex plane in a square centered on the
origin (see fig. [9)). The effects of the double pole in the origin and of the zeros
z = —0.29695 and z = —3.36754 are clearly visible. A filter such as (8)) has been
proposed as part of an algorithm for synthesis of plucked string sounds [104].

Magnitude of the Transfer Function
4

Figure 9: Magnitude of the transfer function [in dB] of an order-2 FIR filter on
the complex z plane

5The reader is invited to reformulate the system (22) with w1 = 0 and ws = 7. This
corresponds to setting the magnitude at dc and Nyquist rate.

dc frequency

30 D. Rocchesso: Sound Processing

We have seen that an FIR filter is the realization of a convolution between
the input signal and the sequence of coefficients. The computation of this con-
volution can be made explicit in a language such as Octave and, indeed, this
is what we have done in the appendix [B.1l for the simple filter of length 2. For
high-order filters it is more convenient to use algorithms that increase the ef-
ficiency of convolution. In Octave, there is the function fftfilt that, given a
vector b of coefficients and an input signal x, returns the output of the FIR
filter®. In order to perform this computation, the fftfilt computes an FFT
of the coefficients and an FFT of the input signal, it multiplies the two trans-
forms point by point (convolution in the time domain is multiplication in the
transform domain), and it applies an inverse FFT to the result. Since the FFT
of a length-N sequence has complexity of the order of Nlog N and the point-
by-point multiply has complexity of the order of N, the convolution computed
in this way has complexity of the order of N log N. For sequences longer than a
few samples, such a procedure is much faster than direct convolution. For even
longer sequences, it is convenient to decompose the sequences into blocks and
repeat the operations block by block. The partial results are then recomposed
by partial addition of neighboring blocks of results. The detailed explanation of
this technique is reported in several signal processing books, such as [67].

Most sound processing languages and real-time sound processing environ-
ments have primitive functions to compute the output of FIR filters. For in-
stance, in SAOL (see appendix B.2) there is the function fir(input, hO, hi,
h2, ...) that takes the input signal and the filter coefficients as arguments.

Example 2. In order to strengthen our understanding of FIR filters, we
approach the design of a 10-th order linear phase filter having unit response at
dc and an attenuation of 20dB at F/6. The impulse response of a 10-th order (or
length 11) filter can be considered as the convolution of the responses of 5 2-nd
order filters. Therefore, it is sufficient to design a length-3 filter with a slighter
attenuation at F/6 and to convolve five copies of this filter. The reader is invited
to design the filter and to experience its effect using a sound processing language
or real-time environment. A related task is the design of a highpass filter of the
same length having a magnitude response that is symmetric to the response of
the lowpass filter. Is there any law of symmetry that relates the coefficients of
the two filters? How are the zeros distributed in the complex plane in the two
cases? A further interesting exercise is the analysis and experimentation of the
frequency response of the parallel connection of the two filters.

Development. The Octave/Matlab script that follows answers most of the
questions. The remaining questions are left to the reader.

global_decl;

plat = platform(’octave’);

w0=0; AO=1; % Response at dc

wl=pi/3; A1=0.1"(1/5); % Response at Fs/6 (1/5 of 20 dB)
%% coefficients of the length-3 FIR filter

A = [1 2%cos(w0); 1 2*cos(wl)]; b = [AO; Al];

6In Matlab, the same function is available in the Signal Processing Toolbox. In any case,
the Octave version [fftfilt| avaliable in the web repository of this book, can also be used in
Matlab.

http://www.sci.univr.it/~rocchess/htmls/..../fftfilt.m�

Digital Filters 31

a = A\b;
al = a(1)
a0 = a(2)

w = [0:0.01:pi];

%% frequency response of the length-3 FIR filter
H = a0 + alxexp(-i*w) + aOxexp(-i*2%*w);

%% frequency response of the length-11 FIR filter
%% (cascade of 5 length-3 filters)

H11 = H."5;

subplot(2,2,1); plot(w, 20*loglO(abs(H11)));
xlabel(’frequency [rad/sample]’);
ylabel(’magnitude [dB]’);
axis([0,pi,-90,0]1); grid;

eval (myreplot) ;

pause;

%% pole-zero plot

%% In Matlab, it can be done with

%% the single line:

%% zplane(roots([a0,al,a0]),0);

w_all = [0:0.05:2xpi];

subplot(2,2,2); plot(exp(i*w_all), ’.’); hold on;
zeri = roots([a0, al, a0]);

plot(real(zeri) ,imag(zeri), ’o0’);

plot (0,0, ’x’); hold off;

xlabel(’Re’);

ylabel(’Im’);

axis ([-1.2, 1.2, -1.2, 1.2]);

if (plat=="matlab’) axis (’square’); end;
eval (myreplot) ;

pause;

k = [0:10]’; kernelw = exp(-i¥k*w);

aa = H11 / kernelw

subplot(2,2,3); plot([0:10],real(aa),’+’);
xlabel(’samples’);

ylabel(’h’);

grid;

axis;

eval (myreplot) ;

aa2 = conv([a0 al a0],[a0 al a0]);

aa3 = conv(aa2,[a0 al a0]);

aa4d = conv(aa3,[a0 al al]);

conv(aa4,[a0 al a0])

%% verify that aab = aa: by composition of convolutions we get
%% the same length-11 filter

aab

In the first couple of lines the script converts the specifications for a length-3
FIR filter. Then, this elementary filter is designed using the technique previously
presented in this section. The frequency response H1; of the length-11 filter is ob-
tained by exponentiation of the length-3 filter to the fifth power. The magnitude

32 D. Rocchesso: Sound Processing

of the frequency response is depicted in fig. [10. We see that the specifications are

| | |
(o)) B N
o o o

magnitude [dB]

|
(o]
o

0 1 2 3
frequency [rad/sample]

Figure 10: Magnitude of the frequency response of the length-11 filter

met. However, the response is not monotonically decreasing. This is due to the
fact that the specifications are quite demanding, thus impeding the satisfaction
of (21)). In fact, the coefficients turn out to be ag = 0.369 and a; = 0.262, and
the zeros are not real but complex conjugate, as shown in the pole-zero plot of
fig. 11l The impulse response of the 10-th order FIR filter is obtained from its

1 o
0.5
E 0 X i
-0.5
-1 R
-1 0 1

Figure 11: Pole-zero plot for the length-3 FIR filter

frequency response by solving in [aga; . .. ajg] the matrix equation

1
e~ Iw

[aoas - .. aio) . = Hyi(w), (23)

e:jl(Jw
which is all contained in the lines

k = [0:10]°; kernelw = exp(-ixk*w);
aa = H11 / kernelw;

Digital Filters 33

Finally, the ending lines of the script aim at verifying that the same impulse multiply-and-accumulate
response can be obtained by iterated convolution of the 2-nd order impulse
response. The length-11 impulse response is shown in fig. [12.

0.2 e
+ +
+ +
<0.1
+ +
+ +
o
0 5 10
samples

Figure 12: Impulse response of the length-11 FIR filter

HH

2.1.4 Realizations of FIR Filters

The digital filters, especially FIR filters, are implementable as a sequence of
operations “multiply-and-accumulate”, often called MAC. In order to run an
N-th order FIR filter we need to have, at any instant, the current input sample
together with the sequence of the NV preceding samples. These N samples con-
stitute the memory of the filter. In practical implementations, it is customary
to allocate the memory in contiguous cells of the data memory or, in any case,
in locations that can be easily accessed sequentially. At every sampling instant,
the state must be updated in such a way that x(k) becomes z(k — 1), and this
seems to imply a shift of N data words in the filter memory. Indeed, instead of
moving data, it is convenient to move the indexes that access the data. Consider
the scheme depicted in fig. 13, which represents the realization of an FIR filter
of order 3.

Figure 13: Circular buffer that implements a 3-rd order FIR filter

circular buffer
signal flowgraphs
taps

tapped delay line

Auto-Regressive Moving
Average

filter order

34 D. Rocchesso: Sound Processing

The three memory words are put in an area organized as a circular buffer.
The input is written to the word pointed by the index and the three preceding
values of the input are read with the three preceding values of the index. At
every sample instant, the four indexes are incremented by one, with the trick of
beginning from location 0 whenever we exceed the length M of the buffer (this
ensures the circularity of the buffer). The counterclockwise arrow indicates the
direction taken by the indexes, while the clockwise arrow indicates the movement
that should be done by the data if the indexes would stay in a fixed position.
In fig. 13| we use small triangles to indicate the multiplications by the filter
coefficients. This is a notation commonly used for multiplications within the
signal flowgraphs that represent digital filters. As a matter of fact, an FIR filter
contains a delay line since it stores N consecutive samples of the input sequence
and uses each of them with a delay of N samples at most. The points where the
circular buffer is read are called taps and the whole structure is called a tapped
delay line.

2.2 IIR Filters

In general, a causal IIR filter is represented by a difference equation where
the output signal at a given instant is obtained as a linear combination of
samples of the input and output signals at previous time instants. Moreover,
an instantaneous dependency of the output on the input is also usually included
in the IIR filter. The difference equation that represents an IIR filter is

N M
y(n) = — Z amy(n —m) + Z bmx(n —m) . (24)
m=1 m=0

Eq. (24) is also called Auto-Regressive Moving Average (ARMA) representation.
While the impulse response of FIR filters has a finite time extension, the impulse
response of IIR filters has, in general, an infinite extension. The transfer function
is obtained by application of the Z transform to the sequence (24). In virtue
of the shift theorem, the Z transform is a mere operatorial substitution of each
translation by m samples with a multiplication by z~"*. The result is the rational
function H(z) that relates the Z transform of the output to the Z transform of
the input:

bo + blz_l + ...+ b]V[Z_M
Y(z) = e r——— X(z)=H(2)X(2) . (25)

The filter order is defined as the degree of the polynomial in z~! that is the
denominator of (25).

2.2.1 The Simplest IIR Filter

In this section we analyze the properties of the simplest nontrivial IIR filter that

can be conceived: the one-pole filter having coeflicients a; = —% and by = %:

y(n) = Sy(n = 1) + Ja(n) (26)

Digital Filters 35

The transfer function of this filter is

H(z) = 1/2

= 27
1— 3271 27)

If the filter (26)) is fed with a unit impulse at instant 0, the response will be:
y =0.5,0.25,0.125,0.0625, (28)

It is clear that the impulse response is nonzero over an infinitely extended sup-
port, and every sample is obtained by halving the preceding one. Similarly to
what we did for the first-order FIR filter, we analyze the behavior of this fil-
ter using a complex sinusoid having magnitude A and initial phase ¢, i.e. the
signal Aef(@on+®) Since the system is linear, we do not loose any generality by
considering unit-magnitude signals (A = 1). Moreover, since the system is time
invariant, we do not loose generality by considering signals having the initial
phase set to zero (¢ = 0). In a linear and time-invariant system, the steady-
state response to a complex sinusoidal input is a complex sinusoidal output. To
have a confirmation of that, we can consider the reversed form of (26)

z(n) =2y(n) —y(n—1), (29)
and replace the output y(n) with a complex sinusoid, thus obtaining
z(n) = 2e790n — Jwo(n=1) — (9 _ eIw0 Yy (p) (30)

Eq. (30) shows that a sinusoidal output gives a sinusoidal input, and vice versa.
The input sinusoid gets rescaled in magnitude and shifted in phase. Namely,
the output y is a copy of the input multiplied by the complex quantity H%jwo,
which is the value taken by the transfer function (27) at the point 2z = e/“°. The
frequency response is

1/2

— T
N Jw
1 5€

H(w) = ; (31)

and there are no simple formulas to express its magnitude and phase, so that we
have to resort to the graphical representation, depicted in fig. [14. This simple

() | M)

08 0.2
So6 E 0
c 0 -0.2
§0'4 é—o.4
0.2 0.6
O0 1 2 3 0 1 2 3
frequency [rad/sample] frequency [rad/sample]

Figure 14: Frequency response (magnitude (a) and phase (b)) of a one-pole IIR
filter

36 D. Rocchesso: Sound Processing

filter still has a lowpass shape. As compared to the first-order FIR filter, the
one-pole filter gives a steeper magnitude response curve. The fact that, for a
given filter order, the IIR filters give a steeper (or, in general, a more complex)
frequency response is a general property that can be seen as an advantage in
preferring IIR over FIR filters. The other side of the coin is that IIR filters can
not have a perfectly-linear phase. Furthermore, IIR filters can produce numerical
artifacts, especially in fixed-point implementations.

The one-pole filter can also be analyzed by watching its pole-zero distribution
on the complex plane. To this end, we rewrite the transfer function as a ratio of
polynomials in z and give a name to the root of the denominator: py = % The
transfer function has the form

(32)

We can apply the graphic method presented in sec. 2.1.1] to have a qualitative
idea of the magnitude and phase responses. In order to do that, we consider the
point e/ on the unit circle as the head of the vectors that connect it to the pole
po and to the zero in the origin. Fig. [15/is illustrative of the procedure. While
we move along the unit circumference from dc to the Nyquist frequency, we
go progressively away from the pole, and this is reflected by the monotonically
decreasing shape of the magnitude response.

Figure 15: Single pole (x) and zero in the origin (o)

To have a complete picture of the filter behavior we need to analyze the
transient response to the causal complex exponential. The Z transform of the
input has the well-known form

X(z)=— (33)

T 1 —edwoy—l

A multiplication of X (z) by H(z) in the Z domain gives

1 1 1
Y(2) = H(2)X(z) = 21 1311wyt
1/2 1 1/2 1

- - - 34
1—2eiw0] — 1,71 + 1—1/2e7wo 1 — eiwoz—1 " (34)

Digital Filters 37

where we have done a partial fraction expansion of Y(z). The second addendum
of the last member of (34) represents the steady-state response, and it is the
product of the Z transform of the causal complex exponential sequence by the
filter frequency response evaluated at the same frequency of the input signal.
The first addendum of the last member of (34) represents the transient response
and it can be represented as a causal exponential sequence:

ye(n) = Apo™ (35)
where A = 1_12/3%. Since |pg| < 1 (i.e., the pole is within the unit circle), the
transient response is doomed to die out for increasing values of n. In general, for
causal systems, the stability condition (29) of chapter(1/is shown to be equivalent
to having all the poles within the unit circle. If the condition is not satisfied,
even if the steady-state response is bounded, the transient will diverge. In terms
of Z transform, a system is stable if the region of convergence is a geometric
ring containing the unit circumference; the system is causal if such ring extends
to infinity out of the circle, and it is anticausal if it extends down to the origin.

It is useful to evaluate the time needed to exhaust the initial transient. We
define the time constant 7,, (in samples) of the filter as the time taken by the
exponential sequence po” to reduce its amplitude to 1% of the initial value. We
have

po™ = 0.01, (36)
and, therefore,
In 0.01
n = 37
i In pg (37)

where the logarithm can be evaluated in any base. In our example, where pg =
1/2, we obtain 7, ~ 6.64 samples. The time constant in seconds 7 is obtained
by multiplication of 7,, by the sampling rate. This way of evaluating the time
constant corresponds to evaluating the time needed to attenuate the transient
response by 40dB. When we refer to systems for artificial reverberation such
lower threshold of attenuation is moved to 60dB, thus corresponding to 0.1% of
the initial amplitude of the impulse response.

In the case of higher-order IIR filters, we can always do a partial fraction
expansion of the response to a causal exponential sequence, in a way similar to
what has been done in (34), where each addendum but the last one corresponds
to a single complex pole of the transfer function. The transient response of
these systems is, therefore, the superposition of causal complex exponentials,
each corresponding to a complex pole of the transfer function. If the goal is to
estimate the duration of the transient response, the pole that is closest to the
unit circumference is the dominant pole, since its time constant is the longest.
It is customary to define the time constant of the whole system as the constant
associated with the dominant pole.

2.2.2 Higher-Order IIR Filters

The two-pole IIR filter is a very important component of any sound processing
environment. Such filter, which is capable of selecting the frequency components
in a narrow range, can find practical applications as an elementary resonator.

partial fraction expansion
steady-state response
transient response

region of convergence
time constant

dominant pole
elementary resonator

second-order filter

38 D. Rocchesso: Sound Processing

Instead of starting from the transfer function or from the difference equation,
in this case we begin by positioning the two poles in the complex plane at the
point

po = el (38)

and at its conjugate point po* = re~7«0. In fact, if pg is not real, the two poles
must be complex conjugate if we want to have a real-coefficient transfer function.
In order to make sure that the filter is stable, we impose |r| < 1. The transfer
function of the second-order filter can be written as

G
H(z) = (1 —reiwoz=1)(1 — re—jwoz—1)
B G B G
1 —r(edwo 4 e=dwo)z=1 49222 1 — 27 coswpz—! 4 1222

G
= 39
14+a1271 +agz2 (39)

where G is a parameter that allows us to control the total gain of the filter.
As usual, we obtain the frequency response by substitution of z with /¥ in
(31)):
G

1 — 2rcoswpe™I« + r2e=2jw °

H(w) (40)
If the input is a complex sinusoid at the (resonance) frequency wp, the output
is, from the first of (39)):

G G
H(wo) = (1 —7)(1 — re—2iwo) - (1 —7)(1 — rcos2wq + jrsin2wg) (41)

In order to have a unit-magnitude response at the frequency wy we have to
impose
|H(wo)| =1 (42)

and, therefore,

G =(1—r)y/1—2rcos2uwy+12. (43)

The frequency response of this normalized filter is reported in fig. 16 for » = 0.95
and wy = 7/6. It is interesting to notice the large step experienced by the phase
response around the resonance frequency. This step approaches 7 as the poles
get closer to the unit circumference.

It is useful to draw the pole-zero diagram in order to gain intuition about
the frequency response. The magnitude of the frequency response is found by
taking the ratio of the product of the magnitudes of the vectors that go from
the zeros to the unit circumference with the product of the magnitudes of the
vectors that go from the poles to the unit circumference. The phase response
is found by taking the difference of the sum of the angles of the vectors start-
ing from the zeros with the sum of the angles of the vectors starting from the
poles. If we move along the unit circumference from dc to the Nyquist rate,
we see that, as we approach the pole, the magnitude of the frequency response
increases, and it decreases as we move away from the pole. Reasoning on the
complex plane it is also easier to figure out why there is a step in the phase
response and why the width of this step converges to m as we move the pole
toward the unit circumference. In the computation of the frequency response it

Digital Filters

(a) (b)
0.8 0
é 06 E
0.2 P
% 1 2 0 1 2

frequency [rad/sample]

frequency [rad/sample]

Figure 16: Frequency response (magnitude (a) and phase (b)) of a two-pole IIR
filter

1} ST T
// ~
/ \
0.5t , \
/ \
o ! \
\ !
\ /
-0.5¢ \
N\ 7/
\\ //
_17 S - -
-1 0 1

Figure 17: Couple of poles on the complex plane

is clear that, in the neighborhood of a pole close to the unit circumference, the
vector that comes from that pole is dominant over the others. This means that,
accepting some approximation, we can neglect the longer vectors and consider
only the shortest vector while evaluating the frequency response in that region.
This approximation is useful to calculate the bandwidth Aw of the resonant fil-
ter, which is defined as the difference between the two frequencies corresponding
to a magnitude attenuation by 3dB, i.e., a ratio 1/v/2. Under the simplifying
assumption that only the local pole is exerting some influence in the neighbor-
ing area, we can use the geometric construction of fig. 18 in order to find an
expression for the bandwidth [67]. The segment PyA is V2 times larger than
the segment Py P. Therefore, the triangle formed by the points PyAP has two,
orthogonal, equal edges and AB = 2PyP = 2(1 — r). If AB is small enough, its
length can be approximated with that of the arc subtended by it, which is the
bandwidth that we are looking for. Summarizing, for poles that are close to the
unit circumference, the bandwidth is given by

Aw=2(1-1). (44)

The formula (44)) can be used during a filter design stage in order to guide the
pole placement on the complex plane.

bandwidth

damped oscillator

40 D. Rocchesso: Sound Processing

Figure 18: Graphic construction of the bandwidth. P, is the pole. PpP ~ 1 —r.

The transfer function (39) can be expanded in partial fractions as

G
(1 —reiwoz=1)(1 — re—dwoz—1)
G/(1 — e 72%0) Ge 72w /(1 — ¢~ I2w0)
1—reiwoz—1 1—reiwoz—1

H(z) =

; (45)

and each addendum is the Z transform of a causal complex exponential se-
quence. By manipulating the two sequences algebraically and expressing the
sine function as the difference of complex exponentials we can obtain the ana-
lytic expression of the impulse response”

Gr™ .
h(n) = S sin (won + wo) - (46)

The impulse response is depicted in fig.[19, which shows that a resonant filter can
be interpreted in the time domain as a damped oscillator with a characteristic
frequency that corresponds to the phase of the poles in the complex plane.

0.1

-0.1
0 50 100
time [samples]

Figure 19: Impulse response of a second-order resonant filter

"The reader is invited to work out the expression (46).

Digital Filters 41

As we have anticipated in sec. 2.2.1, the time constant is determined by
evaluating the distance of one of the poles from the unit circumference. In the
specific case that we are examining, such a time constant is

~ In0.01 In0.01
" lnr In0.95

~ 90 samples , (47)

and we can verify from fig. [19/ that this value makes sense.

Example 3. With the example that follows we face the problem of doing a
practical implementation of a filter. The platform that we adopt is the CSound
language (see appendix B.2) and our prototypical implementation is the second-
order all-pole IIR filter. This simple example can be extended to higher-order
filters.

We design an “orchestra” of two instruments: an excitation instrument and
a filtering block. The excitation block generates white noise. The filtering block
extracts from the noise the components in a band around a center frequency,
passed as a parameter, that corresponds to the phase of the pole®. Another
parameter is the decay time of the response of the resonant filter, which is
related to the resonance bandwidth. The Csound orchestra that implements our
two blocks is:

; res.orc: authored by Francesco Scagliola and Davide Rocchesso
sr=44100
kr=44100
ksmps=1
nchnls=1
gal init O
gamp init 30000

instr 1

; white noise generator

al rand gamp

gal = al ; sound to be passed to the filter
endin
instr 2

; p4 central frequency

; pb decay time

ipi = 3.141592654

ithres = 0.01
; the duration of the frequency response is measured in seconds
; until the response goes below the threshold 20*logl0O(ithres)

8Indeed, the central frequency of the passing frequency band is not coincident with the
phase of the complex pole, since the conjugate pole can exert some influence and slightly
modify the frequency response in the neighborood of the other pole. However, for our purposes
it is not dangerous to mix the two concepts, provided that the resulting spectrum corresponds
to our needs.

42 D. Rocchesso: Sound Processing

sonogram ; [—40 dB]
state variables iw0 = 2xipi*p4/sr ; frequency correspondent to the phase of the pole
ir = exp((1/(sr*p5))*log(ithres)) ; radius of the pole
ial = -2xir*xcos(iw0) ; coefficient al of the filter denominator
ia2 = irxir ; coeff. a2 of the filter denominator
ig = (1-ir)*sqrt(1-2xirxcos(2*iw0)+ir*ir)*10*sqrt (p5)

; coefficient to have unit gain at the center of the band

izero =0
asli init izero ; initialize the filter status
as?2 init izero
afilt = -ial*asl-ia2+*as2+ig*gal ; difference equation
out afilt
as2 = asl ; filter status update
asli = afilt
endin

The orchestra can be experimented with the score

;instr. time durat. freq. decay
il 0 30.0

i2 0 5 700 0.1
i2 5 5 700 1.0
i2 10 5 1700 0.2
i2 15 5 2900 2.0
i2 20 5 700 1.0
i2 20 5 1700 1.5
i2 20 5 2900 2.0

The sounds resulting from the score performance are represented in the
sonogram of fig. 20, where larger magnitudes are represented by darker points.
In the filtering instrument, the filter coefficients are computed according to
the formulas (47) and (39), starting from the given decay time and central
frequency. Moreover, the signal is rescaled by a gain such that the magnitude
of the frequency response is one at the central frequency. Empirically, we have
found that, in order to keep some homogeneity in the output energy level even
for very narrow frequency responses, it is useful to insert a further factor equal
to ten times the square root of the decay time. Another observation concerns
the difference equation. This equation uses two state variables asl and as2,
used to store the previous values of the output. The state variables are updated
in the final two lines of the instrument.

It is interesting to reduce the control rate in the orchestra, for instance by
a factor ten. The resulting sounds will have fundamental frequencies lowered
by the same factor and the spectrum will be repeated at multiples of sr/10.
This kind of artifacts is often found when writing explicit filtering structures
in CSound and using a sample rate different from the control rate. The reason
for such a strange behavior is found in the special block processing used by

Digital Filters 43

the CSound interpreter, which uses sr/kr variables for each signal variable
indicated in the orchestra, and updates all these variables in the same cycle.
This means that, as a matter of fact, we get sr/kr filters, each working at a
reduced sample rate on a signal undersampled by a factor sr/kr. The samples
of the partial results are then interleaved to give the signal at the sampling rate
sr. The output of each of the undersampled filters is subject to an upsampling
that produces the sr/kr periodic replicas of the spectrum.

300

0.0 ‘ T LI — ™
0.0 time 30.0

Figure 20: Sonogram of a musical phrase produced by filtering white noise

#HH

Positioning the zeros

We have seen how the poles can be positioned within the unit circle in order
to give resonances at the desired frequency and with the desired bandwidth.
The ratio between the central frequency and the width of a band is often called
quality factor and indicated with the symbol Q.

In many cases, it is necessary to design a filter having a flat frequency re-
sponse (in magnitude) except for a narrow zone around a frequency wy where it
amplifies or attenuates. The resonant filter that we have just introduced can be
modified for this purpose by introducing a couple of zeros positioned near the
poles. In particular, the numerator of the transfer function will be the polyno-
mial in 27! having roots at zy = rpe’“° and at zp* = rge 7“°. By means of a
qualitative analysis of the pole-zero diagram we can realize that, if rg < r we
have a boost of the frequency response, and if ry > r we have an attenuation
(a notch) of the response around wg. The reader is invited to do this qualita-
tive analysis on her own and to write the Octave/Matlab script that produces
fig. 21, which is obtained using the values rg = 0.9 and o = 1.0. We notice that
the phase jumps down by 27 radians when we cross a zero laying on the unit
circumference.

2.2.3 Allpass Filters

Imagine that we are designing a filter by positioning its poles within the unit
circle in the complex plane. For each complex pole p;, let us introduce a zero

quality factor
boost
notch

pole-zero couple
allpass filter

44 D. Rocchesso: Sound Processing

(b)

2
o~
\
o k=))
S £-2 I
£ 9 |
@ S _4 |
£ s |
\
-6 N~ -
|
0 -8
0 1 2 3 4 0 1 2 3 4

frequency [rad/sample] frequency [rad/sample]
Figure 21: Frequency response (magnitude and phase) of an IIR filter with two
poles (r = 0.95) and two zeros. The notch filter (dashed line) has the zeros with
magnitude 1.0. The boost filter (solid line) has the zeros with magnitude 0.9.

z; = 1/p;* in the transfer function. In other words, we form the pole-zero couple

-1 *
Z "D

H;(2) (48)

T1- piz1’
which places the pole and the zero on reciprocal points about the unit circum-
ference and along tha same radius that links them to the origin. Moving along
the circumference we can realize that the vectors drawn from the pole and the
zero have lengths that keep a constant ratio. A more accurate analysis can be
done using the frequency response of this pole-zero couple, which is written as
e —p* L 1-pite

H?,(w) - 1— pie_j“’ - 1— pie_-j“’ . (49)
It is clear that numerator and denominator of the fraction in the last member
of (49)) are complex conjugate one to each other, thus meaning that the rational
function has unit magnitude at any frequency. Therefore, the couple (49) is
the fundamental block for the construction of an allpass filter, whose frequency
response is obtained by multiplication of blocks such as (49).

The allpass filters are systems that leave all frequency component magni-
tudes unaltered. Stationary sinusoidal input signals can only be subject to phase
delays, with no modification in magnitude. The phase response and phase delay
of the fundamental pole-zero couple are depicted in fig. 22 for values of pole set
to p1 = 0.9 and p; = —0.9. A second-order allpass filter with real coefficients is
obtained by multiplication of two allpass pole-zero couples, where the poles are
the conjugate of each other. Fig. 23 shows the phase response and the phase de-
lay of a second order allpass filter with poles in p; = 0.9+40.2 and ps = 0.9—40.2
(solid line) and in p; = —0.9 +i0.2 and ps = —0.9 — 0.2 (dashed line). It can
be shown that the phase response of any allpass filter is always negative and
monotonically decreasing [65]. The group and phase delays are always functions
that take positive values. This fact allows us to think about allpass filters as
media where signals propagate with a frequency-dependent delay, without being
subject to any absorption or amplification.

Digital Filters 45

0 B e ——— 20
-0.5 BN &3
\\ 2.15
T -1
E]
—_ \
v 1.5 \ c_>u”10
2 | 3
o | % 5
-2.5 " «
o
_3 0 ,,,,,,,,,,, - — — =~
0 1 2 3 0 1 2 3
frequency [rad/sample] frequency [rad/sample]

Figure 22: Phase of the frequency response (a) and phase delay (b) for a first-
order allpass filter. Pole in p; = 0.9 (solid line) and pole in p; = —0.9 (dashed
line)

(b)

15
0
Q
g-10
8 g,
g
< g5
o ©
(2]
I
< s
o ~
ob - =
0 1 2 3 0 1 2 3
frequency [rad/sample] frequency [rad/sample]

Figure 23: Phase of the frequency response (a) and phase delay (b) for a second-
order allpass filter. Poles in pq 2 = 0.9 £40.2 (solid line) and p; 2 = —0.9 £ 0.2
(dashed line)

The reader might think that the allpass filters are like open doors for audio
signals, since the phase shifts are barely distinguishable by the human hearing
system. Actually, this is true only for stationary signals, i.e., signals formed
by stable sinusoidal components. Real-world sounds are made of transients at
least as much as they are made of stationary components, and the transient
response of allpass filters can be characterized according to what we showed
in sec. 2.2. During transients, the phase response plays an important role for
perception, and in this sense the allpass filters can modify the sound signals
appreciably. For instance, very-high-order allpass filters are used to construct
artificial reverberators. These filters usually have a long time constant, so that
the effects of their phase response are mainly perceived in the time domain in
the form of a reverberation tail.

The importance of allpass filters becomes readily evident when they are
inserted into complex computational structures, typically to construct filters
whose properties should be easy to control. We will see an example of this use

signal flowgraph
Direct Form 1
Direct Form II

transposition of a signal
flowgraph

46 D. Rocchesso: Sound Processing

of allpass filters in sec. 2.3l

2.2.4 Realizations of IIR Filters

So far, we have studied the IIR filters by analysis of transfer functions or im-
pulse responses. In this section we want to face the problem of implementing
these filters as computational structures that can be directly coded using sound
processing languages or real-time sound processing environments.

Consider a second-order filter with two poles and two zeros, which is rep-
resented by the transfer function (25) with NV = M = 2. This can be realized
by the signal flowgraph of fig. 24, where the nodes having converging edges
are considered as points of addition, and the nodes having diverging edges are
considered as branching points. Such a realization is called Direct Form I.

X >b0 Yy
7'y b, a,
S T

Figure 24: Second-order filter, Direct Form I

Signal flowgraphs can be manipulated in several ways, thus leading to al-
ternative realizations having different numerical properties and, possibly, more
computationally efficient. For instance, if we want to implement a filter as a
cascade of second-order cells such as that of fig. 24, we can share, between two
contiguous cells, the unit delays that are on the output stage of the first cell,
with the unit delays that are on the input stage of the second cell, thus saving
a number of memory accesses.

We are going to show some other kind of manipulation of signal flowgraphs,
in the special case of the realization of the second-order allpass filter, which has
the property

bi=a2_i, i:O,l,Z. (50)

A first transformation comes from the observation that the structure of fig. 24
is formed by the cascade of two blocks, each being linear and time invariant.
Therefore, the two blocks can be commuted without altering the input-output
behavior. Moreover, from the block exchange we get a flowgraph with two side-
to-side stages of pure delays, and these stages can be combined in one only. The
realization of these transformations is shown in fig. 25/ and it is called Direct
Form II.

Another transformation that can be done on a signal flowgraph without
altering its input-output behavior is the transposition [65]. The transposition of
a signal flowgraph is done with the following operations:

e Inversion of the direction of all the edges

e Transformation of the nodes of addition into branching nodes, and vice
versa

Digital Filters 47

3
X) N
-a, 7'V
4P
1
a, Z Y

Figure 25: Second-order allpass filter, Direct Form II

e Exchange of the roles of the input and output edges

The transposition of a realization in Direct Form II leads to the Transposed
Form II, which is shown in fig. [26. Similarly, the Transposed Form I is obtained
by transposition of the Direct Form I.

X

Figure 26: Second-order allpass filter, Transposed Form II

By direct manipulation of the graph, we can also take advantage of the
properties of special filters. For instance, in an allpass filter, the coefficients of
the numerator are the same of the denominator, in inverted order (see (50)).
With simple transformations of the graph of the Direct Form II it is possible
to obtain the realization of fig. 27, which is interesting because it only has two
multiplies. In fact, the multiplications by —1 can be avoided by replacing two
additions with subtractions.

X

Figure 27: Second-order allpass filter, realization with two multipliers and four
state variables

A special structure that plays a very important role in signal processing is
the lattice structure, which can be used to implement FIR and IIR filters [65].

Transposed Form I
Transposed Form I
lattice structure

reflection coefficient

48 D. Rocchesso: Sound Processing

In particular, the IIR lattice filters are interesting because they have physical
analogues that can be considered as physical sound processing systems. The
lattice structure can be defined in a recursive fashion as indicated in fig. 28|
where H, ;1 is an order M — 1 allpass filter, kjs is called reflection coefficient
and it is a real number not exceeding one. Between the signals x and y there is

X y

Ya v

<
71

Figure 28: Lattice filter

an all-pole transfer function 1/A(z), while between the points « and y, there is
an allpass transfer function H,,,(z) having the same denominator A(z). More
precisely, it can be shown that, if H,,_; is an allpass stable transfer function
and |kpr| < 1, then H,y, is an allpass stable transfer function. Proceeding with
the recursion, the allpass filter H,;_; can be realized as a lattice structure, and
so on. The recursion termination is obtained by replacing H,; with a short cir-
cuit. The lattice section having coefficient kj; can be interpreted as the junction
between two cylindrical lossless tubes, where ks is the ratio between the two
cross-sectional areas. This number is also the scaling factor that an incoming
wave is subject to when it hits the junction, so that the name reflection coef-
ficient is justified. To have a physical understanding of lattice filters, think of
modeling the human vocal tract. The lattice realization of the transfer function
that relates the signals produced by the vocal folds to the pressure waves in the
mouth can be interpreted as a piecewise cylindrical approximation of the vocal
tract. In this book, we do not show how to derive the reflection coefficients from
a given transfer function [65]. We just give the result that, for a second-order

filter, a denominator such as A(z) = 1+ a1z~ ! + az2=2 gives the reflection
coefficients”
ki = al/(l + 0,2) (51)
kg = az.

9Verify that the filter is stable if and only if |k1]| < 1 and |ko| < 1.

Digital Filters 49

2.3 Complementary filters and filterbanks

In sec. 2.2.4] we have presented several different realizations of allpass filters
because they find many applications in signal processing [76]. In particular, a
couple of allpass filters is often combined in a parallel structure in such a way
that the overall response is not allpass. If H,; and H,o are two different allpass
filters, their parallel connection, having transfer function H;(z) = Ha1(z) +
H,2(2) is not allpass. To figure this out, just think about frequencies where the
two phase responses are equal. At these points the signal will be doubled at
the output of H(z). On the other hand, at points where the phase response are
different by 7 (i.e., they are in phase opposition), the outputs of the two branches
cancel out at the output. In order to design a lowpass filter it is sufficient to
connect in parallel two allpass filters having a phase response similar to that of
fig. 29 The same parallel connection, with a subtraction instead of the addition
at the output, gives rise to a highpass filter Hj(z), and it is possible to show
that the highpass and the lowpass transfer functions are complementary, in the
sense that |H;(w)|? + |Hp(w)|? is constant in frequency. Therefore, we have the

w

/M,

Figure 29: Phase responses of two allpass filters that, if connected in parallel,
give a lowpass filter

compact realization of a crossover filter, as depicted in fig. 30, which is a device
with one input and two outputs that conveys the low frequencies to one outlet,
and the high frequencies to the other outlet. Devices such as this are found not
only in loudspeakers, but also in musical instrument models. For instance, the
bell of woodwinds transmits to the air the high frequencies and reflects the low
frequencies back to the bore.

1/2
X —p H_(2)

H (2) > Y2

Figure 30: Crossover implemented as a parallel of allpass filters and a lattice
junction

The idea of connecting two allpass filters in parallel can be applied to the
realization of resonant complementary filters. In particular, it is interesting to

phase opposition
crossover filter
complementary filters

parametric filters

50 D. Rocchesso: Sound Processing

be able to tune the bandwidth and the center frequency independently. To
construct such a filter, one of the two allpass filters is replaced by the identity
(i.e., a short circuit) while the other one is a second order allpass filter (see
fig. [31). Recall that, close to the frequency wqg that corresponds to the pole of
the filter, the phase response takes values that are very close to —m (see fig. 23).
Therefore, the frequency wg corresponds to a minimum in the overall frequency
response. In other words, it is the notch frequency. The closer is the pole to
the unit circumference, the narrower is the notch. The lattice implementation
of this allpass filter allows to tune the notch position and width independently,
since the two reflection coefficients have the form [76]

ki = —coswp (52)
1—tanB/2

ky = —M—7,
1+ tan B/2

where B is the bandwidth for 3dB of attenuation.

1/2
X >

H.(2)

Figure 31: Notch filter implemented by means of a second-order allpass filter

A structure that allows to convert a notch into a boost with a continuous
control is obtained by a weighted combination of the complementary outputs
and it is shown in fig 32l For values of k such that 0 < k < 1 the filter is a
notch, while for k£ > 1 the filter is a boost.

1/2
X

k> y

H,@)

KA 4

Figure 32: Notch/boost filter implemented by means of a second-order allpass
filter and a lattice section

Filters such as those of figures 31 and |32, whose properties can be controlled
by a few parameters decoupled with each other, are called parametric filters.
For thorough surveys on structures for parametric filtering, with analyses of
numerical properties in fixed-point implmentations, we refer the reader to a
book by Zélzer [109] and an article by Dattorro [29].

Digital Filters 51

2.4 Frequency warping

Section (1.5.2)) has shown how the bilinear transformation distorts the frequency
axis while maintaining the “shape” of the frequency response. Such transforma-
tion is a so-called conformal transformation [62] of the complex plane onto itself.
In this section we are interested in conformal transformations that map the unit
circumference (instead of the imaginary axis) onto itself, in such a way that, if
applied to a discrete-time filter, they give a new discrete-time filter having the
same stability properties.

Indeed, the simplest non-trivial transformation of this kind is a bilinear
transformation

-1
ot (53)
1+aft
The transformation (53)) is allpass and, therefore, it maps the unit circumference
onto itself. Moreover, if the transformation (53)) is applied to a discrete-time filter
described by a transfer function in z, it preserves the filter order in the variable
0.

The reason for using conformal maps in digital filter design is that it might
be easier to design a filter using a warped frequency axis. For instance, to design
a presence filter it is convenient to start from a second-order resonant filter pro-
totype having center frequency at 7/2 and tunable bandwidth and boost. Then,
it is possible to compute the coefficient of the conformal transformation (53)
in such a way that the resonant peak gets moved to the desired position [62].
Conformal transformations of order higher than the first are often used to de-
sign multiband filters starting from the design of a lowpass filter, or to satisfy
demanding specifications on the slope of the transition band that connects the
pass band from the attenuated band.

When designing digital filters to be used in models of acoustic systems,
the transformation (53) can be useful, especially if it is specialized in order to
optimize some psychoacoustic-based quality measure. Namely, the warping of
the frequency axis can be tuned in such a way that it resembles the frequency
distribution of critical bands in the basilar membrane of the ear [99]. Similarly
to what we saw in section [1.5.2! for the bilinear transformation, it can be shown
that a first-order conformal map is determined by setting the correspondence
in three points, two of them being w = 0 and w = w. The mapping of the third
point is determined by the coefficient a to be used in (53)). Surprisingly enough, a
simple first-order transformation is capable to follow the distribution of critical
bands quite accurately. Smith and Abel [99], using a technique that minimizes
the squared equation error, have estimated the value that has to be assigned
to a for sampling frequencies ranging from 1Hz to 50KHz, in order to have a
ear-based frequency distribution. An approximate expression to calculate such
coefficient is

9 1/2
a(F,) ~ 1.0211 | = arctan (76 - 10"°F}) —0.19877 . (54)
™

As an exercise, the reader can set a value of the sampling rate Fy, and compute
the value of a by means of (54). Then the curve that maps the frequencies in
the 6 plane to the frequencies in the z plane can be drawn and compared to

conformal transformation
presence filter
transition band

frequency warping
unwarping

52 D. Rocchesso: Sound Processing

the curve obtained by uniform distribution of the center frequencies of the Bark
scale!V [99] [111] that are below the Nyquist rate.

A psychoacoustics-driven frequency warping is also useful to design digital
filters in such a way that the approximation error gets distributed on the fre-
quency axis in a way that is most tolerable by our ears. The procedure consists
in transforming the desired frequency response according to (53)), and designing
a digital filter that approximates it using some filter design method [65]. Then
the inverse conformal mapping (unwarping) is applied on the resulting digital
filter. Some filter design techniques, beyond giving a better approximation in a
psychoacoustic sense, take advantage of the expansion of low frequencies induced
by the warping map, because low-frequency sharp transitions get smoother and
the design algorithms become less sensitive to numerical errors.

10The center frequencies (in Hz) of the Bark scale are: 50, 150, 250, 350, 450, 570, 700, 840,
1000, 1170, 1370, 1600, 1850, 2150, 2500, 2900, 3400, 4000, 4800, 5800, 7000, 8500, 10500,
13500, 20500, 27000

Chapter 3

Delays and Effects

Most acoustic systems have some component where waves can propagate, such
as a membrane, a string, or the air in an enclosure. If propagation in these media
is ideal, i.e., free of losses, dispersion, and nonlinearities, it can be simulated by
delay lines.

A delay line is a linear time-invariant, single-input single-output system,
whose output signal is a copy of the input signal delayed by 7 seconds. In
continuous time, the frequency response of such system is

Hp, (j) =797 . (1)

Equation (1)) tells us that the magnitude response is unitary, and that the phase
is linear with slope .

3.1 The Circular Buffer

A discrete-time realization of the system (1)) is given by a system that imple-
ments the transfer function

Hp(z) =2 27m 2)

where m is the number of samples of delay. When the delay 7 is an integral
multiple of the sampling quantum, m is an integer number and it is straight-
forward to implement the system (2) by means of a memory buffer. In fact, an
m-samples delay line can be implemented by means of a circular buffer, that is
a set of M contiguous memory cells accessed by a write pointer IN and a read
pointer OUT, such that

IN = (OUT +m)%M , (3)

where the symbol % is used for the quotient modulo M. At each sampling
instant, the input is written in the location pointed by IN, the output is taken
from the location pointed by OUT, and the two pointers are updated with

IN = (IN+D%M A
OUT = (OUT +1)%M - (4)

In words, the pointers are incremented respecting the circularity of the buffer.

just noticeable difference

54 D. Rocchesso: Sound Processing

In some architectures dedicated to sound processing, memory organization
is optimized for wavetable synthesis, where a stored waveform is read with vari-
able increments of the reading pointer. In these architectures, a quantity of 2"
memory locations is available, and from these M = 2° locations (with s < 7)
are uniformly chosen among the 2" available cells. In this case the locations of
the circular buffer are not contiguous, and the update of the pointers is done
with the operations

IN
ouT

(IN 4 27=5)%2")
(OUT 4 27=5)%2" .

In practice, since the addresses are r-bit long, there is no need to compute the
modulo explicitly. It is sufficient to do the sum neglecting any possible overflow.
Of course, the (3) is also replaced by

IN = (OUT + m2"~*)%2" . (6)

3.2 Fractional-Length Delay Lines

It might be thought that, choosing a sufficiently high sampling rate, it is always
possible to use delay lines having an integer number of samples. Actually, there
are some good reasons that lead us to state that this is not the case in sound
synthesis and processing.

In sound synthesis, the models have to be carefully tuned without resorting
to very high sample rates. In particular, it is easy to verify that using integer-
length delays in physical models we get errors in fundamental frequencies that
go well beyond the just noticeable difference in pitch! (see the appendix [C).
For instance, for a pressure wave propagating in air at normal temperature
conditions, the spatial discretization given by the sampling rate Fs = 44100H z
gives intervals of 0.0075m, a distance that can produce well-perceivable pitch
differences in a wind instrument.

Another reason for using fractional delays is that we often want to vary the
delay lengths continuously, in order to reproduce effects such as glissando or
vibrato. The adoption of integer-length delays would produce annoying discon-
tinuities.

The most widely used techniques for implementing fractional delays are in-
terpolation by FIR filters or by allpass filters. These two techniques are, in some
sense, complementary. The choice of one of the two has to be made according
to the peculiarities of the system to be simulated or of the architecture chosen
for the implementation. In any case, a delay of length m is obtained by means
of a delay line whose length is equal to the integer part of m, cascaded with
a block capable to approximate a constant phase delay equal to the fractional
part of m. We recall that the phase delay at a given frequency w is the delay in
time samples experienced by the sinusoidal component at frequency w. For in-
stance, consider a linear filtering block enclosed in a feedback loop (see sec. [3.4):
the frequency of the k-th resonance fi of the whole feedback system is found

1To figure this out, the reader can consider an m-sample delay line in a feedback loop. It
gives a harmonic series of partials whose fundamental is fo = % (see sec. [3.4). The set of
integer delay lengths that give the best approximation to a tempered scale can be found and

the curve of fundamental frequency errors can be drawn.

Delay Lines and Effects 55

at the points where the phase response equates the multiples of 27. At these
frequencies, the components reappear in phase every round trip in the loop,
thus reinforcing their amplitude at the output. The phase delay at frequency
fir is therefore the effective delay length at that frequency, that is the length
of an ideal (linear phase) delay line that gives the same k-th resonance. Fig. [1
shows a phase curve and its crossings with multiples of 27 giving a distribution
of resonances.

2m

arg(H)

Figure 1: Graphical construction to find the series of resonances produced by
a linear block in a feedback loop. The slope of the dashed lines indicates the
phase delay at each resonance frequency.

3.2.1 FIR Interpolation Filters

The easiest and most intuitive way to obtain a variable-length delay is to linearly
interpolate the output of the line with the content of its preceding cell in the
memory buffer. This corresponds to using the first-order FIR filter

Hy(z) =co+cr1z7". (7)
Given a certain phase delay
1 —c1 sinwy
Tphy = —— arctan ——— (8)
wo Co + €1 coswy

that has to be obtained at a given frequency wg, the following formulas give the
coefficient values:

co+c = 1
1

C1 = BTN CT)) ~ Tpho »)
1 tan (Tpho wQ) —cos (UJ())

where the approximation is valid in the low-frequency range. The first of the (9)
is needed in order to normalize the low-frequency response to one. In the special
case that cg = ¢; = % (averaging filter) the phase is linear and the delay is of
half a sample. Unfortunately, the magnitude response of this interpolator is
lowpass with a zero at the Nyquist frequency. Fig. 2| shows the magnitude,
phase, and phase delay responses for several first-order linear interpolators. We
can see that the phase is linear in most of the audio range, but the magnitude
varies from the allpass to the lowpass with a zero at the Nyquist rate. When
the interpolator is inserted within a feedback loop, its lowpass behavior can be

effective delay length

Lagrange interpolation

56 D. Rocchesso: Sound Processing

Frequency Response (magnitude) Frequency Response (phase)

o
o)

magnitude
o o
IS)

phase [rad]

o
)

0 1 2 3
frequency [rad/sample] frequency [rad/sample]

Frequency Response (phase delay)

=

o
©

o
)

o
IS

phase delay [samples]

o
)

0 1 2 3
frequency [rad/sample]

Figure 2: Magnitude, phase, and phase delay responses of a linear interpolation
filter (1 —) + az~! for a =k/16,k =0,...,16

treated as an additional frequency-dependent loss, which should be somewhat
taken into account.

Interpolation filters can be of order higher than the first. We can do quadratic,
cubic, or other polynomial interpolations. In general, the problem of designing
an interpolator can be turned into the design of an [-th order FIR filter approx-
imating a constant and linear phase frequency response. Several criteria can be
adopted to drive the approximation problem. One approach is to impose that
the first L derivatives of the error function will be zero at zero frequency. In
this way we obtain maximally-flat filters whose coefficients are the same used
in Lagrange interpolation as it is taught in numerical analysis courses. For a
thorough treatment of interpolation filters we suggest reading the article [51].
Here we only point out that using high orders allows to keep the magnitude
response close to unity and a phase response close to linear in a wide frequency
band. Of course, this is paid in terms of computational complexity.

In special architectures, where the access to delay lines is governed by (5)
and (6), the linear interpolation is implemented very efficiently by using the
r — s bits that are not used to access the 2°-samples delay line. In fact, if the
address is computed using r bits, the r — s least significant bits represent the
fractional part of the delay or, equivalenty, the coefficient ¢; of the interpolator.
Therefore, it is sufficient to access two consecutive delay cells and keep the
values ¢y and ¢; = 1 — ¢p in two registers. The implementation of a glissando

Delay Lines and Effects 57
with these architectures is immediate and free from complications.

3.2.2 Allpass Interpolation Filters

Another widely used technique to obtain the fractional part of a desired delay
length makes use of unit-magnitude IIR filters, i.e., allpass filters. Since the mag-
nitude of these filters is constant there is no frequency-dependent attenuation,
a property that can never be ensured by FIR filters. The simplest allpass filter
has order one, and it has the following transfer function:
c+ 271

H,(z) = e (10)
In order to make sure that the filter is stable, the coefficient ¢ has to stay within
the unit circle. Moreover, if we stick with real coefficients, ¢ belongs to the real
axis. The phase delay given by the filter (10) is shown in fig. [3/ for several values
of the coefficient c. It is clear that the phase delay is not as flat as in the case
of the FIR interpolator, depicted in fig. 2.

0 ﬁ\] 25
-0.5 E 2
[=%
= -1 £
B S15
g Lo)
£ s 1
a -2 ®
2]
]
-25 05
_3 0
0 1 2 3 0 1 2 3
frequency [rad/sample] frequency [rad/sample]

Figure 3: Phase response and phase delay of a first-order allpass filter for the
values of the coefficient ¢ = 1.998k/17 — 0.999,k =0, ..., 16

It is easy to verify? that, at frequencies close to dc, the phase response of (10)
takes the approximate form

sin (w) esin(w) 1-c

LH(w)~ — R
(@) c+cos(w) 14 ccos(w) “Tte

; (11)

where the first approximation is obtained by replacing the argument of the
arctan with the function value and the second approximation, valid in an even
smaller neighborhood, is obtained by approximating sin z with z and cos x with
1. The phase and group delay around dc are

1—c
14c¢’

Therefore, the filter coefficient ¢ can be easily determined from the desired low-
frequency delay as

Toh (W) = Tgr(w) = (12)

_ 1-— Tph(O)

‘" 1+ 7pn(0) 1)

2The proof of (I1)) is left to the reader as a useful exercise.

just noticeable difference

frequency-dependent
absorption

lossy delay line

58 D. Rocchesso: Sound Processing

Fig. 3l shows that the delay of the allpass filter is approximately constant
only in a narrow frequency range. We can reasonably assume that such range, for
positive values of ¢ smaller than one, extends from 0 to Fy/5. With F, = 50kHz
we see that at Fs/5 = 10kHz we have an error of about 0.05 time samples.
In a note at that frequency produced by a feedback delay line, such an error
produces a pitch deviation smaller than 1%. For lower fundamental frequencies,
such as those found in actual musical instruments, the error is smaller than
the just noticeable difference measured with slow pitch modulations (see the
appendix (C]).

If the first-order filter represents an elegant and efficient solution to the
problem of tuning a delay line, it has also the relevant side effect of detuning
the upper partials, due to the marked phase nonlinearity. Such detuning can be
tolerated in most cases, but has to be taken into account in some other contexts.
If a phase response closer to linear is needed, we can use higher-order allpass
filters [51]. In some cases, especially in sound synthesis by physical modeling,
a specific inharmonic distribution of resonances has to be approximated. This
can be obtained by designing allpass filters that approximate a given phase
response along the whole frequency axis. In these cases the problem of tuning
is superseded by the most difficult problem of accurate partial positioning [83].

With allpass interpolators it is more complicated to handle continuous delay
length variations, since the recursive structure of the filter does not show an
obvious way of transferring memory cells from and to the delay line, as it was
in the case of the FIR interpolator, which is constructed on the delay line by
a certain number of taps. Indeed, the glissando can be implemented with the
allpass filter by adding a new cell to the delay line whenever the filter coeflicient
becomes one and, at the same time, zeroing out the filter state variable and
the coefficient. What is really more complicated with allpass filters is to handle
sudden variations of the delay length, as they are found, for instance, when a
finger hole is opened in a wind instrument. In this case, the recursive nature of
allpass filters causes annoying transients in the output signal. Ad hoc structures
have been devised to cancel these transients [51].

3.3 The Non-Recursive Comb Filter

Sounds, propagating in the air, come into contact with surfaces and objects of
various kinds and this interaction produces physical phenomena such as reflec-
tion, refraction, and diffraction. A simple and very important phenomenon is
the reflection of sound about a planar surface. Due to a reflection such as this, a
listener receives two delayed copies of the same signal. If the delay is larger than
about a hundred milliseconds, the second copy is perceived as a distinguished
echo, while if the delay is smaller than about ten milliseconds, the effect of a
single reflection is perceived as a spectral coloration.

A simple model of single reflection can be constructed starting from the
basic blocks described in this and in the preceding chapters. It is constructed as
an m-samples delay line, with the incidental fractional part of m obtained by
FIR interpolation or allpass filtering, cascaded with an attenuation coefficient
g, possibly replaced by a filter if a frequency-dependent absorption has to be
simulated. The output of this lossy delay line is summed to the direct signal.
Let us analyze the structure in the case that m is integer and g is a positive

Delay Lines and Effects 59

constant not exceeding 1.
The difference equation is expressed as

yn)=zn)+g-z(n—m), (14)
and, therefore, the transfer function is
H(z)=14gz"™. (15)

In the case that g = 1, it is easy to see by using the De Moivre formula (see
section [A.6) that the frequency response of the comb filter has the following
magnitude and group delay:

|H (w)| = \/2(1 + cos (wm)) (16)

7—gr,H(W) = %)
and it is straightforward to verify that the frequency band ranging from dc to the
Nyquist rate comprises m zeros (antiresonances), equally spaced by Fs/mHz.
The phase response? is piecewise linear with discontinuities of 7 at the odd
multiples of F's/2m.
If g < 1, it is easy to see that the amplitude of the resonances is

P=1+g, (17)

while the amplitude of the points of minimum (halfway between contiguous
resonances) is

V=1-g. (18)

An important parameter of this filtering structure, called non-recursive comb
filter (or FIR comb), is the peak-to-valley ratio

P 1+g

-9 19

Vo1 g (19)
Fig. [4 shows the response of a non-recursive comb filter having length m =
11samples and a reflection attenuation g = 0.9. The shape of the frequency
response justifies the name comb given to the filter.

The zeros of the comb filter are evenly distributed along the unit circle at

the m-th roots of —g, as shown in figure 5.

3.4 The Recursive Comb Filter

A simple model of one-dimensional resonator can be constructed using the basic
blocks presented in this and in the preceding chapters. It is composed by an
m~samples delay line, with the incidental fractional part of m obtained by FIR
interpolation or allpass filtering, in feedback loop with an attenuation coefficient
g, possibly replaced by a filter in order to give different decay times at different
frequencies. Let us analyze the whole filtering structure in the case that m is
integer and g is a positive constant not exceeding 1.
The difference equation is expressed as

y(n) =z(n—m)+g-yn—-m), (20)

3The reader is invited to calculate and plot the phase response.

antiresonances
non-recursive comb filter
FIR comb

resonator

resonances

60 D. Rocchesso: Sound Processing

magnitude
=

0 1 2 3
frequency [rad/sample]

Figure 4: Magnitude of the frequency response of the comb FIR filter having
coefficient g = 0.9 and delay length m = 11

1 el R C N
s QA
\
05 O ;
/ Q
E oo X !
| !
\ ®
-0.5 © /
AN /
~ o
-1 Ol _o-7
-1 0 1
Re

Figure 5: Zeros and poles of an FIR comb filter

and the transfer function is

—m

z

H(z) (21)

:1—gz*m'

Whenever g < 1, the stability is ensured. In the case that g = 1, the frequency
response of the filter has the following magnitude and group delay:

[H (w)]

_ 1
~ 2sin (wm/2) 29
o) = 2

)

w3

and it is easy to verify that the frequency band ranging from dc to the Nyquist
rate comprises m vertical asymptotes (resonances), equally spaced by Fs/mHz.
If ¢ = 1 the filter is at the limit of stability, and this is the only case when the
phase response is piecewise linear®, starting with the value —7/2 at dc, with
discontinuities of 7 at the even multiples of F,/2m.

4The reader is invited to calculate and plot the phase response.

Delay Lines and Effects 61

If g < 1, it is easy to verify that the amplitude of the resonances is

1

P=——
I—g

(23)
while the amplitude of the points of minimum (halfway between contiguous

resonamnces) is
1

= 1 + g .
An important parameter of this filtering structure, called recursive comb
filter (or IIR comb), is the peak-to-valley ratio

(24)

P 1+g
-1 25
V 1-g¢g (25)
Fig. 6/ shows the frequency response of a recursive comb filter having a delay
line of m = 11 samples and feedback attenuation g = 0.9. The shape of the
magnitude response justifies the name comb given to the filter.

10 120
0

o 100
i 2

) 80
T 6 8
h— >

c c 60
€ 4 g

S o 40
2 @

S 20

o
o

0 1 2 3 1 2 3
frequency [rad/sample] frequency [rad/sample]

o

Figure 6: Magnitude and phase delay response of the recursive comb filter having
coefficient g = 0.9 and delay length m = 11

The poles of the comb filter are evenly distributed along the unit circle at
the m-th roots of g, as shown in figure [7.

In sound synthesis by physical modeling, a recursive comb filter can be in-
terpreted as a simple model of lossy one-dimensional resonator, like a string, or
a tube. This model can be used to simulate several instruments whose resonator
is not persistently excited. In fact, if the input is a short burst of filtered noise,
we obtain the basic structure of the plucked string synthesis algorithm due to
Karplus and Strong [47].

3.4.1 The Comb-Allpass Filter

The filter given by the difference equation (20) has a frequency response char-
acterized by evenly-distributed resonances. With a slight modification of its
structure, such filter can be made allpass. In other words, the magnitude re-
sponse of the filter can be made flat even though the impulse response remains
almost the same (20). The modification is just a direct path connecting the
input of the delay line to the filter output, as it is depicted in fig. 8. It is easy

recursive comb filter

IIR comb
one-dimensional resonator
plucked string synthesis

allpass comb filter

62 D. Rocchesso: Sound Processing

1 - XK~ %
X N
/
05 X
K \
g o} ! o sk
\ !
X /
-0.5 \ X
AN 7/
X -
-1 Sexo o X
-1 0 1
Re

Figure 8: Allpass comb filter

to see that the transfer function of the filter of fig. 8, called the allpass comb
filter can be written as
_ 9+t

HE) =1 =

(26)
which has the structure of an allpass filter. It is interesting to note that the
direct path introduces a nonzero sample at the time instant zero in the impulse
response. All the following samples are just a scaled version of those of the
impulse response of the comb filter, with a scaling factor equal to 1 — g2. The
time properties, such as the time decay, are substantially unvaried. The allpass
comb filter does not introduce any coloration in stationary signals. On the other
hand, its effect is evident on signals exhibiting rapid transients, and for these
signals we can not state that the filter is transparent.

3.5 Sound Effects Based on Delay Lines

Many of the effects commonly used in electroacoustic music are obtained by
composition of time-varying delay lines, i.e., by lines whose length is modulated
by slowly-varying signals. In order to avoid discontinuities in the signals, it is
necessary to interpolate the delay lines in some way. The interpolation by means
of allpass filters is applicable only for very slow modulations or for narrow-width
modulations, since sudden changes in the state of allpass filters give rise to tran-
sients that can be perceived as signal distortions [30]. On the other hand, linear
(or, more generally, polynomial) interpolation introduces frequency-dependent

Delay Lines and Effects 63

losses whose magnitude is dependent on the fractional length of the delay line.
As the delay length is varied, these variable losses give an amplitude distortion
due to amplitude modulation of the various frequency components. Coupled to
amplitude modulation, there is also phase modulation due to phase nonlinearity
of the interpolator, in both cases of FIR and IIR interpolation.

The terminology used for audio effects is not consistent, as terms such as
flanger, chorus, and phaser are often associated with a large variety of effects,
that can be quite different from each other. A flanger is usually defined as an FIR,
comb filter whose delay length is sinusoidally modulated between a minimum
and a maximum value. This has the effect of expanding and contracting the
harmonic series of notches of the frequency response. The name flanger derives
from the old practice, used long ago in the analog recording studios, to alterna-
tively slow down the speed of two tape recorders or two turntables playing the
same music track by pressing a finger on the flanges.

The name phaser is most often reserved for structures similar to the comb
FIR filter, with the difference that the notches are not harmonically distributed.
Orfanidis [67] proposes to use, instead of the delay line, a bunch of parametric
notch filters such as those presented in sec. 2.2.4. Each notch is controllable in
its frequency position and width. Smith [96], instead, proposes to use a large
allpass filter instead of the delay line. If this allpass filter is obtained as a cascade
of second-order allpass sections, it becomes possible to control and modulate the
position of any single pole couple, which represent all the single notches of the
overall response. A common feature of flangers and phasers is the relatively
large distance between the notches. Vice versa, if the notches are very dense,
the term chorus is preferred. Orfanidis [67], suggests to implement a chorus as
a parallel of FIR comb filters, where the delay lengths are randomly modulated
around values that are slightly different from each other. This should simulate
the deviations in time and height that are found in performances of a choir
singing in unison. Vice versa, Dattorro [30] says that a chorus can be obtained
by same structure used for the flanger, with a difference that the delay lengths
have to be set to larger values than for the flanger. In this way, the notches
are made more dense. For the flanger the suggested nominal delay is 1msec and
for the chorus it is bmsec. If the objective is to recreate the effect of a choir
singing in unison, the fact of having many notches in the spectrum is generally
disliked. Dattorro [30] proposes a partial solution that makes use of a recursive
allpass filter, where the delay line is read by two pointers, one is kept fixed and
produces the feedback signal, the other is varied to pick up the signal that is fed
directly to the output. In this way, when both the pointers are at the nominal
position, the structure does not introduce any coloration for stationary signals.

A final remark is reserved to the spatialization of these comb-based effects.
In general, flanging, phasing, and chorusing effects can be obtained from two
different time-varying allpass chains, whose outputs feed different loudspeakers.
In this case, sums and subtractions between signals at the different frequencies
happen “on air” in a way dependent from position. Therefore, the spatial sen-
sation is largely due to the different spectral coloration found in different points
of the listening area.

flanger
chorus
phaser

64 D. Rocchesso: Sound Processing

spatial processing Exercise
1ID
ITD The reader is invited to write a chorus/flanger based on comb or allpass comb

filters using a language for sound processing (e.g., CSound). As an input signal,
try a sine wave and a noisy signal. Then, implement a phaser by cascading
several first-order allpass filters having coefficients between 0 and 1.

3.6 Spatial sound processing

The spatial processing of sound is a wide topic that would require at least a thick
book chapter on its own [82]. Here we only describe very briefly a few techniques
for sound spatialization and reverberation. In particular, techniques for sound
spatialization are different if the target display is by means of headphones or
loudspeakers.

3.6.1 Spatialization
Spatialization with headphones

Humans can localize sound sources in a 3D space with good accuracy using
several cues. If we can rely on the assumption that the listener receives the
sound material via a stereo headphone we can reproduce most of the cues that
are due to the filtering effect of the pinna—head—torso system, and inject the
signal artificially affected by this filtering process directly to the ears.

Sound spatialization for headphones can be based on interaural intensity
and time differences (see the appendix [C). It is possible to use only one of the
two cues, but using both cues will provide a stronger spatial impression. Of
course, interaural time and intensity differences are just capable of moving the
apparent azimuth of a sound source, without any sense of elevation. Moreover,
the apparent source position is likely to be located inside the head of the listener,
without any sense of externalization. Special measures have to be taken in order
to push the virtual sources out of the head.

A finer localization can be achieved by introducing frequency-dependent in-
teraural differences. In fact, due to diffraction the low frequency components are
barely affected by IID, and the ITD is larger in the low frequency range. Cal-
culations done with a spherical head model and a binaural model [49, [73] allow
to draw approximated frequency-dependent ITD curves, one being displayed in
fig. 9.a for 30° of azimuth. The curve can be further approximated by constant
segments, one corresponding to a delay of about 0.38ms in low frequency, and
the other corresponding to a delay of about 0.26ms in high frequency. The low-
frequency limit can in general be obtained for a general incident angle 6 by the
formula

1D = 29 Ging (27)
C

where § is the inter-ear distance in meters and c is the speed of sound. The
crossover point between high and low frequency is located around 1kHz. Similarly,
the IID should be made frequency dependent. Namely, the difference is larger for
high-frequency components, so that we have IID curves such as that reported
in fig. O.b for 30° of azimuth. The IID and ITD are shown to change when
the source is very close to the head [32]. In particular, sources closer than five

Delay Lines and Effects 65

Time Difference Intensity Difference

0dB

-026ms \

-0.38ms /—/
frequency frequency

1kHz 1kHz

(a) (b)

Figure 9: Frequency-dependent interaural time (a) and intensity (b) difference
for azimuth 30°.

-10dB

times the head radius increase the intensity difference in low frequency. The ITD
also increases for very close sources but its changes do not provide significant
information about source range.

Several researchers have measured the filtering properties of the system pinna
- head - torso by means of manikins or human subjects. A popular collection
of measurements was taken by Gardner and Martin using a KEMAR dummy
head, and made freely available [306] 38| 2]. Measurements of this kind are usually
taken in an anechoic chamber, where a loudspeaker plays a test signal which
invests the head from the desired direction. The directions should be taken
in such a way that two neighbor directions never exceed the localization blur,
which ranges from about +3° in azimuth for frontal sources, to about +£20° in
elevation for sources above and slightly behind the listener [13]. The result of
the measurements is a set of Head-Related Transfer Functions (HRIR) that can
be directly used as coefficients of a pair of FIR filters. Since the decay time of
the HRIR is always less than a few milliseconds, 256 to 512 taps are sufficient
at a sampling rate of 44.1kHz.

A cookbook of HRIRs and direct convolution seems to be a viable solution
for providing directionality to sound sources using current technology. A funda-
mental limitation comes from the fact that HRIRs vary widely between different
subjects, in such an extent that front-back reversals are fairly common when
listening through someone else’s HRIRs. Using individualized HRIRs dramati-
cally improves the quality of localization. Moreover, since we unconsciously use
small head movements to resolve possible directional ambiguities, head-motion
tracking is also desirable.

There are some reasons that make a model of the external hearing system
more desirable than a raw catalog of HRIRs. First of all, a model might be
implemented more efficiently, thus allowing more sources to be spatialized in real
time. Second, if the model is well understood, it might be described with a few
parameters having a direct relationship with physical or geometric quantities.
This latter possibility can save memory and allow easy calibration.

Modeling the structural properties of the system pinna - head - torso gives
us the possibility to apply continuous variation to the positions of sound sources
and to the morphology of the listener. Much of the physical/geometric proper-
ties can be understood by careful analysis of the HRIRs, plotted as surfaces,
functions of the variables time and azimuth, or time and elevation. This is the
approach taken by Brown and Duda [19] who came up with a model which can

localization blur

Head-Related Transfer
Function

HRIR

66 D. Rocchesso: Sound Processing

be structurally divided into three parts:
e Head Shadow and ITD
e Shoulder Echo
e Pinna Reflections

Starting from the approximation of the head as a rigid sphere that diffracts a
plane wave, the shadowing effect can be effectively approximated by a first-order
continuous-time system, i.e., a pole-zero couple in the Laplace complex plane:

- 72&)0
= = L0 (28)
sp = —2wp, (29)

where wyq is related to the effective radius a of the head and the speed of sound
c by

wo = g . (30)

The position of the zero varies with the azimuth 6 (see fig. 10 of the appendix|C))
according to the function

6—6
a(f) = 1.05 + 0.95 cos (15()‘3”“180") , (31)

where fear is the angle of the ear that is being considered, typically 100° for
the right ear and —100° for the left ear. The pole-zero couple can be directly

translated into a stable IIR digital filter by bilinear transformation, and the
resulting filter (with proper scaling) is

_ (wo+ aFy) 4 (wo — aFg)z 7t
Fhs = T+ B+ (o -)z)

The ITD can be obtained by means of a first-order allpass filter [65, [100] whose
group delay in seconds is the following function of the azimuth angle 6:

(33)

Cc

a —QCOS(e—oear) 1f0§ |0—9ear| < 3
9 = — G £ 2
0= LT) g 0 sl <2

Actually, the group delay provided by the allpass filter varies with frequency,
but for these purposes such variability can be neglected. Instead, the filter (32)
gives an excess delay at DC that is about 50% that given by (33). This increase
of the group delay at DC is exactly what one observes for the real head [49], and
it has already been outlined in fig. 9. The overall magnitude and group delay
responses of the block responsible for head shadowing and ITD are reported in
fig. (10

In a rough approximation, the shoulder and torso effects are synthesized in
a single echo. An approximate expression of the time delay can be deduced by
the measurements reported in [19, fig. 8]

180° — 6 oo 1800 2
TSh = 12W (1 — 0.00004 (((b — 80)1800_’_0>) [msec] 5 (34)

Delay Lines and Effects 67

20 30

220 - 2 130 - |

magnitude (d8]
°

group delay [samples]
)

01 1 10 01 1 10
frequency [kHz) frequency [kHz)

Figure 10: Magnitude and Group Delay responses of the block responsible for
head shadowing and ITD (Fy = 44100H z). Azimuth ranging from fear to fear +
150°.

where 6 and ¢ are azimuth and elevation, respectively (see fig. 10! of the ap-
pendix [C). The echo should also be attenuated as the source goes from frontal
to lateral position.

Finally, the pinna provides multiple reflections that can be obtained by
means of a tapped delay line. In the frequency domain, these short echoes trans-
late into notches whose position is elevation dependent and that are frequently
considered as the main cue for the perception of elevation [48]. A formula for
the time delay of these echoes is given in [19].

The structural model of the pinna - head - torso system is depicted in Fig.[11
with all its three functional blocks, repeated twice for the two ears. The only
difference in the two halves of the system is in the azimuth parameter that is 6
for the right ear and —8 for the left ear.

monoaural
input

left output
- head shadow and ITD ‘ + channel
m I] T —
n
_|
pinna reflections
6,0
shoulder echo
6,9
G;T'; shoulder echo
I 6.9
_1
pinna reflections
-0,)
head shadow and ITD
| D

-0 right output

channel

Figure 11: Structural model of the pinna - head - torso system

Vector Base Amplitude
Panning

VBAP

68 D. Rocchesso: Sound Processing

3D panning

The most popular and easy way to spatialize sounds using loudspeakers is am-
plitude panning. This approach can be expressed in matrix form for an arbitrary
number of loudspeakers located at any azimuth though nearly equidistant from
the listener. Such formulation is called Vector Base Amplitude Panning (VBAP)
[72] and is based on a vector representation of positions in a Cartesian plane
having its center in the position of the listener. In the two-loudspeaker case

Figure 12: Stereo panning

(figure 12)), the unit-magnitude vector u pointing toward the virtual source can
be expressed as a linear combination of the unit-magnitude column vectors 1y,
and 1 pointing toward the left and right loudspeakers, respectively. In matrix
form, this combination can be expressed as

_ _ gL .
u=L-g=[1, 1R]|:9R:|. (35)
Except for degenerate loudspeaker positions, the linear system of equations (35)
can be solved in the vector of gains g. This vector has not, in general, unit mag-
nitude, but can be normalized by appropriate amplitude scaling. The solution of
system (35) implies the inversion of matrix L, but this can be done beforehand
for a given loudspeaker configuration.

The generalization to more than two loudspeakers in a plane is obtained by
considering, at any virtual source position, only one couple of loudspeakers, thus
choosing the best vector base for that position.

The generalization to three dimensions is obtained by considering vector
bases formed by three independent vectors in space. The vector of gains for
such a 3D vector base is obtained by solving the system

gL
u=L-g=[1, 1z 1z || gr |. (36)
9z

Of course, having more than three loudspeakers in a 3D space implies, for any
virtual source position, the selection of a local 3D vector base.

As indicated in [72], VBAP ensures maximum sharpness in sound source
location. In fact:

Delay Lines and Effects 69

e If the virtual source is located at a loudspeaker position only that loud-
speaker has nonzero gain;

e If the virtual source is located on a line connecting two loudspeakers only
those two loudspeakers have nonzero gain;

e If the virtual source is located on the triangle delimited by three adjacent
loudspeakers only those three loudspeakers have nonzero gain.

The formulation of VBAP given here is consistent with the low frequency
formulation of directional psychoacoustics. The extension to high frequencies
have been also proposed with the name Vector Base Panning (VBP) [68].

Room within a room

A different approach to spatialization using loudspeakers can be taken by con-
trolling the relative time delay between the loudspeaker feeds. A model sup-
porting this approach was introduced by Moore [60], and can be described as
a physical and geometric model. The metaphor underlying the Moore model is
that of the Room within a Room, where the inner room has holes in the walls,
corresponding to the positions of loudspeakers, and the outer room is the vir-
tual room where sound events have to take place (fig. [13). The simplest form of

Figure 13: Moore’s Room in a Room Model

spatialisation is obtained by drawing direct sound rays from the virtual sound
source to the holes of the inner room. If the outer room is anechoic these are
the only paths taken by sound waves to reach the inner room. The loudspeakers
will be fed by signals delayed by an amount proportional to the length of these
paths, and attenuated according to relationship of inverse proportionality valid
for propagation of spherical waves. In formulas, if I; is the path length from the
source to the i-th loudspeaker, and c is the speed of sound in air, the delay in
seconds is set to

d’i - ll/c) (37)

and the gain is set to

Lo >1
- 1,0 Y
gi { L, <1 = (38)

Vector Base Panning
Room within a Room

artificial reverberation

70 D. Rocchesso: Sound Processing

The formula for the amplitude gain is such that sources within the distance of 1m
from the loudspeaker® will be stuck to unity gain, thus avoiding the asymptotic
divergence in amplitude implied by a point source of spherical waves.

The model is as accurate as the physical system being modeled would per-
mit. A listener within a room would have a spatial perception of the outside
soundscape whose accuracy will increase with the number of windows in the
walls. Therefore, the perception becomes sharper by increasing the number of
holes/loudspeakers. Indeed, some of the holes will be masked by some walls, so
that not all the rays will be effective © (e.g. the rays to loudspeaker 3 in fig. [13).
In practice, the directional clarity of spatialisation is increased if some form of
directional panning is added to the base model, so that loudspeakers opposite
to the direction of the sound source are severely attenuated. With this trick,
it is not necessary to burden the model with an algorithm of ray-wall collision
detection.

The Moore model is suitable to provide consistent and robust spatialization
to extended audiences [60]. A reason for robustness might be found in the fact
that simultaneous level and time differences are applied to the loudspeakers.
This has the effect to increase the lateral displacement [13] even for virtual
sources such that the rays to different loudspeaker have similar lengths. Indeed,
the localization of the sound source gets even sharper if the level control is driven
by laws that roll off more rapidly than the physical 1/d law of spherical waves.
In practical realizations, the best results are obtained by tuning the model after
psychophysical experimentation [54].

An added benefit of the Room within a Room model is that the Doppler
effect is intrinsically implemented. As the virtual sound source is moved in the
outer room the delay lines representing the virtual rays change their lengths,
thus producing the correct pitch shifts. It is true that different transpositions
might affect different loudspeakers, as the variations are different for different
rays, but this is consistent with the physical robustness of the technique.

The model of the Room within a Room works fine if the movements of the
sound source are confined to a virtual space external to the inner room. This
corresponds to an enlargement of the actual listening space and it is often a
highly desirable situation. Moreover, it is natural to model the physical proper-
ties of the outer room, adding reflections at the walls and increasing the number
of rays going from a sound source to the loudspeakers. This configuration, il-
lustrated in fig. 13| with first-order reflections, is a step from spatialization to
reverberation.

3.6.2 Reverberation

Classic reverberation tools

In the second half of the twentieth century, several engineers and acousticians
tried to invent electronic devices capable to simulate the long-term effects of
sound propagation in enclosures [14]. The most important pioneering work in
the field of artificial reverberation has been that of Manfred Schroeder at the
Bell Laboratories in the early sixties [88, 189, (90, 91, [93]. Schroeder introduced

5This distance is merely conventional.
6We are neglecting diffraction from this reasoning.

Delay Lines and Effects 71

the recursive comb filters (section 3.4) and the delay-based allpass filters (sec-
tion3.4.1)) as computational structures suitable for the inexpensive simulation of
complex patterns of echoes. These structures rapidly became standard compo-
nents used in almost all the artificial reverberators designed until nowadays [61].
It is usually assumed that the allpass filters do not introduce coloration in the
input sound. However, this assumption is valid from a perceptual viewpoint only
if the delay line is much shorter than the integration time of the ear, i.e. about
50ms [111]. If this is not the case, the time-domain effects become much more
relevant and the timbre of the incoming signal is significantly affected.

In the seventies, Michael Gerzon generalized the single-input single-output
allpass filter to a multi-input multi-output structure, where the delay line of m
samples has been replaced by a order- N unitary network [40]. Examples of trivial
unitary networks are orthogonal matrices, parallel connections of delay lines,
or allpass filters. The idea behind this generalization is that of increasing the
complexity of the impulse response without introducing appreciable coloration
in frequency. According to Gerzon’s generalization, allpass filters can be nested
within allpass structures, in a telescopic fashion. Such embedding is shown to be
equivalent to lattice allpass structures [39], and it is realizable as long as there
is at least one delay element in the block A(z) of fig. 8l

An extensive experimentation on structures for artificial reverberation was
conducted by Andy Moorer in the late seventies [61]. He extended the work done
by Schroeder [90] in relating some basic computational structures (e.g., tapped
delay lines, comb and allpass filters) with the physical behavior of actual rooms.
In particular, it was noticed that the early reflections have great importance
in the perception of the acoustic space, and that a direct-form FIR filter can
reproduce these early reflections explicitly and accurately. Usually this FIR filter
is implemented as a tapped delay line, i.e. a delay line with multiple reading
points that are weighted and summed together to provide a single output. This
output signal feeds, in Moorer’s architecture, a series of allpass filters and a
parallel of comb filters(see fig. 14) . Another improvement introduced by Moorer
was the replacement of the simple gain of feedback delay lines in comb filters
with lowpass filters resembling the effects of air absorption and lossy reflections.

The construction of high-quality reverberators is half an art and half a sci-
ence. Several structures and many parameterizations were proposed in the past,
especially in non-disclosed form within commercial reverb units [29]. In most
cases, the various structures are combinations of comb and allpass elementary
blocks, as suggested by Schroeder in the early works. As an example, we look
more carefully at the Moorer’s preferred structure [61], depicted in fig/T4. The
block (a) takes care of the early reflections by means of a tapped delay line.
The resulting signal is forwarded to the block (b), which is the parallel of a di-
rect path on one branch, and a delayed, attenuated diffuse reverberator on the
other branch. The output of the reverberator is delayed in such a way that the
last of the early echoes coming out of block (a) reaches the output before the
first of the non-null samples coming out of the diffuse reverberator. In Moorer’s
preferred implementation, the reverberator of block (b) is best implemented as
a parallel of six comb filters, each with a first-order lowpass filter in the loop,
and a single allpass filter. In [61], it is suggested to set the allpass delay length
to 6ms and the allpass coefficient to 0.7. Despite the fact that any allpass filter
does not add coloration in the magnitude frequency response, its time response
can give a metallic character to the sound, or add some unwanted roughness

comb filters
allpass filters

72 D. Rocchesso: Sound Processing

y(n)
(b)

Figure 14: Moorer’s reverberator

and granularity. The feedback attenuation coefficients g; and the lowpass filters
of the comb filters can be tuned to resemble a realistic and smooth decay. In
particular, the attenuation coefficients g; determine the overall decay time of the
series of echoes generated by each comb filter. If the desired decay time (usually
defined for an attenuation level of 60dB) is T}, the gain of each comb filter has

to be set to
Ty Fs

gi =10 (39)

where Fj is the sample rate and m; is the delay length in samples. Further at-
tenuation at high frequencies is provided by the feedback lowpass filters, whose
coefficient can also be related with decay time at a specific frequency or fine
tuned by direct experimentation. In [61], an example set of feedback attenua-
tion and allpass coefficients is provided, together with some suggested values
of the delay lengths of the comb filters. As a rule of thumb, they should be
distributed over a ratio 1 : 1.5 between 50 and 80ms. Schroeder suggested a
number-theoretic criterion for a more precise choice of the delay lengths [91]:
the lengths in samples should be mutually coprime (or incommensurate) to re-
duce the superimposition of echoes in the impulse response, thus reducing the
so called flutter echoes. This same criterion might be applied to the distances
between each echo and the direct sound in early reflections. However, as it was
noticed by Moorer [61], the results are usually better if the taps are positioned
according to the reflections computed by means of some geometric modeling
technique, such as the image method [3, [18]. Indeed, even the lengths of the
recirculating delays can be computed from the geometric analysis of the normal
modes of actual room shapes.

Feedback Delay Networks

In 1982, J. Stautner e M. Puckette [101] introduced a structure for artificial
reverberation based on delay lines interconnected in a feedback loop by means
of a matrix (see fig. [15). Later, structures such as this have been called Feedback

Delay Lines and Effects 73

Delay Networks (FDNs). The Stautner-Puckette FDN was obtained as a vector Feedback Delay Networks
generalization of the recursive comb filter (20), where the m-sample delay line FDN

was replaced by a bunch of delay lines of different lengths, and the feedback

gain g was replaced by a feedback matrix G. Stautner and Puckette proposed

the following feedback matrix:

0 1 1 0
-1 0 0 -1

G=9| | o o _i /V2. (40)
0O 1 -1 0

Due to its sparse special structure, G requires only one multiply per output
channel.

al‘l a1,2 a1,3 alA =
aZ‘l a'2,2 a3,2 a4,2 =

a3‘1 a3,2 a3.3 a3,4 =TT

X
Ay 8yp0d43a44
b,
F -® z™ HH,
2
> z"2 HH,
b,
4
d
>

Figure 15: Fourth-order Feedback Delay Network

More recently, Jean-Marc Jot investigated the possibilities of FDNs very
thoroughly. He proposed to use some classes of unitary matrices allowing efficient
implementation. Moreover, he showed how to control the positions of the poles of
the structure in order to impose a desired decay time at various frequencies [44].
His considerations were driven by perceptual criteria with the general goal x to
obtain an ideal diffuse reverb. In this context, Jot introduced the important
design criterion that all the modes of a frequency neighborhood should decay at
the same rate, in order to avoid the persistence of isolated, ringing resonances
in the tail of the reverb [45]. This is not what happens in real rooms though,
where different modes of close resonance frequencies can be differently affected
by wall absorption [63]. However, it is generally believed that the slow variation
of decay rates with frequency produces smooth and pleasant impulse responses.

Referring to fig. [15, an FDN is built starting from N delay lines, each being
7, = m;Ts seconds long, where Ty = 1/F} is the sampling interval. The FDN is
completely described by the following equations:

N
y(n) = Z ¢isi(n) 4+ dx(n)

state space description
delay matrix

feedback matrix
lossless prototype
normal modes

74 D. Rocchesso: Sound Processing

N
siln+m;) = Zaiyjsj(n)er,;x(n) (41)

where s;(n), 1 <1i < N, are the delay outputs at the n-th time sample. If m; = 1
for every ¢, we obtain the well known state space description of a discrete-time
linear system [46]. In the case of FDNs, m; are typically numbers on the orders
of hundreds or thousands, and the variables s;(n) are only a small subset of the
system state at time n, being the whole state represented by the content of all
the delay lines.

From the state-variable description of the FDN it is possible to find the
system transfer function [80} 84] as

= TD(z") — A b +d. (42)

The diagonal matrix D(z) = diag(z7™,27™2,...27™) is called the delay
matrix, and A = [a; j]nxn is called the feedback matrix.

The stability properties of a FDN are all ascribed to the feedback matrix.
The fact that ||A||™ decays exponentially with n ensures that the whole structure
is stable [80), 84].

The poles of the FDN are found as the solutions of

det[A —D(z"1)] =0. (43)

In order to have all the poles on the unit circle it is sufficient to choose a
unitary matrix. This choice leads to the construction of a lossless prototype but
this is not the only choice allowed.

In practice, once we have constructed a lossless FDN prototype, we must
insert attenuation coefficients and filters in the feedback loop (blocks G; in
figure [15)). For instance, following the indications of Jot [45], we can cascade
every delay line with a gain

gi =a™m . (44)

This corresponds to replacing D(z) with D(z/«) in (42). With this choice of the
attenuation coefficients, all the poles are contracted by the same factor «. As
a consequence, all the modes decay with the same rate, and the reverberation
time (defined for a level attenuation of 60dB) is given by
7, = =L (45)
log o
In order to have a faster decay at higher frequencies, as it happens in real en-
closures, we must cascade the delay lines with lowpass filters. If the attenuation
coefficients g; are replaced by lowpass filters, we can still get a local smoothness
of decay times at various frequencies by satisfying the condition (44), where g;
and a have been made frequency dependent:

Gi(z) = A™(2), (46)

where A(z) can be interpreted as per-sample filtering [43], 45] [98].

It is important to notice that a uniform decay of neighbouring modes, even
though commonly desired in artificial reverberation, is not found in real en-
closures. The normal modes of a room are associated with stationary waves,

Delay Lines and Effects 75

whose absorption depends on the spatial directions taken by these waves. For
instance, in a rectangular enclosure, axial waves are absorbed less than oblique
waves [63]. Therefore, neighbouring modes associated with different directions
can have different reverberation times. Actually, for commonly-found rooms hav-
ing irregularities in the geometry and in the materials, the response is close to
that of a room having diffusive walls, where the energy rapidly spreads among
the different modes. In these cases, we can find that the decay time is quite
uniform among the modes [50].

The most delicate part of the structure is the feedback matrix. In fact, it
governs the stability of the whole structure. In particular, it is desirable to
start with a lossless prototype, i.e. a reference structure providing an endless,
flat decay. The reader interested in general matrix classes that might work as
prototypes is deferred to the literature [44] 84, RT) [39]. Here we only mention
the class of circulant matrices, having general form 7

a(0) a(l) ... a(N —1)
A a(N —-1) a(0) ... a(N —2)
a(l) . a(N=1) a(0)

The stability of a FDN is related to the magnitude of its eigenvalues, which
can be computed by the Discrete Fourier Transform of the first raw, in the
case of a circulant matrix. By keeping these eigenvalues on the unit circle (i.e.,
magnitude one) we ensure that the whole structure is stable and lossless. The
control over the angle of the eigenvalues can be translated into a direct control
over the degree of diffusion of the enclosure that is being simulated by the FDN.
The limiting cases are the diagonal matrix, corresponding to perfectly reflecting
walls, and the matrix whose rows are sequences of equal-magnitude numbers
and (pseudo-)randomly distributed signs [81].

Another critical set of parameters is given by the lengths of the delay lines.
Several authors suggested to use lengths in samples that are mutually coprime
numbers in order to minimize the collision of echoes in the impulse response.
However, if the FDN is linked to a physical and geometrical interpretation, as
it is done in the Ball-within-the-Box model [79], the delay lengths are derived
from the geometry of the room being simulated and the resulting digital reverb
quality is related to the quality of the actual room. In the case of a rectangular
room, a delay line will be associated to a harmonic series of normal modes,
all obtainable from a plane wave loop that bounces back and forth within the
enclosure.

Convolution with Room Impulse Responses

If the impulse response of a target room is readily available, the most faithful re-
verberation method would be to convolve the input signal with such a response.
Direct convolution can be done by storing each sample of the impulse response
as a coefficient of an FIR filter whose input is the dry signal. Direct convolution
becomes easily impractical if the length of the target response exceeds small
fractions of a second, as it would translate into several hundreds of taps in the
filter structure. A solution is to perform the convolution block by block in the

7A matrix such as this is used in the Csound babo opcode.

circulant matrices
convolution

complexity—latency tradeoff

low-latency block based
implementations of
convolution

76 D. Rocchesso: Sound Processing

frequency domain: Given the Fourier transform of the impulse response, and
the Fourier transform of a block of input signal, the two can be multiplied point
by point and the result transformed back to the time domain. As this kind of
processing is performed on successive blocks of the input signal, the output sig-
nal is obtained by overlapping and adding the partial results [65]. Thanks to
the FFT computation of the discrete Fourier transform, such technique can be
significantly faster. A drawback is that, in order to be operated in real time, a
block of N samples must be read and then processed while a second block is
being read. Therefore, the input-output latency in samples is twice the size of
a block, and this is not tolerable in practical real-time environments.

The complexity—latency tradeoff is illustrated in fig. [16, where the direct-
form and the block-processing solutions can be located, together with a third
efficient yet low-latency solution 37, [64]. This third realization of convolution is
based on a decomposition of the impulse response into increasingly-large chunks.
The size of each chunk is twice the size of its predecessor, so that the latency of
prior computation can be occupied by the computations related to the following
impulse-response chunk. Details and discussion on convolution were presented

> Direct form FIR
3
Q.
IS
8

Non-uniform

block-based FFT

Block-based FFT
latency

Figure 16: Complexity Vs. Latency tradeoff in convolution

in sec. 2.5.

Even if we have enough computer power to compute convolutions by long im-
pulse responses in real time, there are still serious reasons to prefer reverberation
algorithms based on feedback delay networks in many practical contexts. The
reasons are similar to those that make a CAD description of a scene preferable
to a still picture whenever several views have to be extracted or the environ-
ment has to be modified interactively. In fact, it is not easy to modify a room
impulse response to reflect some of the room attributes, e.g. its high-frequency
absorption, and it is even less obvious how to spatialize the echoes of the impulse
response in order to get a proper sense of envelopment. If the impulse response
is coming from a spatial rendering algorithm, such as ray tracing, these manip-
ulations can be operated at the level of room description, and the coefficients of
the room impulse response transmitted to the real-time convolver. In the low-
latency block based implementations of convolution, we can even have faster
update rates for the smaller early chunks of the impulse response, and slower
update rates for the reverberant tail. Still, continuous variations of the room
impulse response are easier to be rendered using a model of reverberation oper-
ating on a sample-by-sample basis.

Chapter 4

Sound Analysis

Sounds are time-varying signals in the real world and, indeed, all of their mean-
ing is related to such time variability. Therefore, it is interesting to develop
sound analysis techniques that allow to grasp at least some of the distinguished
features of time-varying sounds, in order to ease the tasks of understanding,
comparison, modification, and resynthesis.

In this chapter we present the most important sound analysis techniques.
Special attention is reserved on criteria for choosing the analysis parameters,
such as window length and type.

4.1 Short-Time Fourier Transform

The Short-Time Fourier Transform (STFT) is nothing more than Fourier anal-
ysis performed on slices of the time-domain signal. In order to slightly simplify
the formulas, we are going to present the STFT under the assumption of unitary
sample rate (F, =T-! =1).

There are two complementary views of STFT: the filterbank view, and the
DFT-based view.

4.1.1 The Filterbank View

Assume we have a prototype ideal lowpass filter, whose frequency response is
depicted in fig. [I. Let w(-) and W(:) be the impulse response and transfer
function, respectively, of such prototype filter.

We define modulation of a signal y(n) by a carrier signal e/“°™ as the (com-
plex) multiplication y(n)e/“o™. This translates, in the frequency domain, into a
frequency shift by Aw = wg (shift theorem 1.2 of chapter [I). In other words,
modulating a signal means moving its low frequency content onto an area around
the carrier frequency. On the other hand, we call demodulation of a signal y(n)
its multiplication by e ~7“o™ that brings the components around wg onto a neigh-
borhood of dc.

By demodulation we can obtain a filterbank that slices the spectrum (be-
tween OHz and Fy) in N equal non-overlapping portions. Namely, we can trans-
late the input signal in frequency and filter it by means of the prototype lowpass

7

Short-Time Fourier
Transform

STFT
filterbank
modulation
carrier
demodulation

78 D. Rocchesso: Sound Processing

analysis window
Y Wi

0 FJN Ef

S

Figure 1: Frequency response of a prototype lowpass filter

filter in order to isolate a specific slice of the frequency spectrum. This procedure
is reported in fig. [2.

(@) = (w >)(m)
ye, ye,
? D) y
S

o o o
y(n) ° ° °

o o o

Ye, a4 Yin(@N-1) = (w * Ye, ‘*’N—)1(m)

? _ w()
L

Figure 2: Decomposition of a signal into a set of non-overlapping frequency slices.
wo, - . .,wn_1 are the central frequencies of the bands of the analysis channels.

4.1.2 The DFT View

The scheme of fig. 2l can be obtained by Fourier transformation of a “windowed”
sequence. We recall from section 1.3/ that the DTFT of an infinite sequence is

+oo

Y)= Y yn)er. (1)

n=—oo

If the DTFT is computed on a portion of y(-), weighted by an analysis
window w(m — n), we get a frame of the STFT:

+oo

“+oo
> wim = myym)e I = e 3" wlry(m - re T (2)

n=—oo rT=—00

Yo (w)

Sound Analysis 79

where the third member of the equality is obtained by defining r = m—n, and m
is a variable accounting for the temporal dislocation of the window. Therefore,
the STFT turns out to be a function of two variables, one can be thought of as
frequency, the other is essentially a time shift.

The DTFT is a periodic function of a continuous variable, and it can be
inverted by means of an integral computed over a period

w(m —n)y(n) = % /j Vi (w)e?"dw 3)

By a proper alignment of the window (m = n) we can compute, if w(0) # 0

1 ™

= (0] Yy (w)ed“ dw . (4)

y(n)

—T

The STFT in its formulation (2) can be seen as convolution
Yin(w) = (wxye)(m), ()

where y.(n) = y(n)e 7“" is the demodulated signal. If w is set to the impulse
response of the ideal lowpass filter, and if we set w = wy, we get a channel of the
filterbank of fig. 2l In general, w(-) will be the impulse response of a non-ideal
lowpass filter, but the filterbank view will keep its validity.

In practice, we need to compute the STFT on a finite set of N points. In
what follows we assume that the window is R < N samples long, so that we
can use the DFT on NN points, thus obtaining a sampling of the frequency axis
between 0 and 27 in multiples of 27/N.

The k-th point in the transform domain (said the k-th bin of the DFT) is
given by

Y (k) = > wlm — n)y(n)e =™ (6)

n=0

and, by means of an inverse DFT

1 = s 2mkn
w(m —n)y(n) = i Z Yin(k)ed ™~ . (7)
k=0

By a proper alignment of the window (m = n), and assuming that w(0) # 0
we get

1
V) = Sy 2 Yelbe (5)
More generally, we can reconstruct (resynthesis) the time-domain signal by

means of
N-1

1 j2mkn
= — Yi(k)e ™ | 9
V) = =y 2o Yle 9)
where w(m —n) # 0, which is true, given an integer ng, for a non-trivial window
defined for
m+ng<n<m+ng+R—-1. (10)

bin
resynthesis

80 D. Rocchesso: Sound Processing

analysis window N=8
rectangular window /./\
e ® wm)=wln time-centered window
. ! ! ! . ! ! ! ! !
n 0. oee
. R=5 : . : :3 [
: . Y W(o n): m=3
e - ° [
0 oo &

reconstruction of 5 samples

ofy(m)

y(1) y(5)

Figure 3: Analysis and resynthesis of a frame of STFT.

Example

Figure 3 illustrates the operations involved in analysis and resynthesis of a frame
of STFT (R=5, N =38).

4.1.3 Windowing
The rectangular window

The simplest analysis window is the rectangular window

1 n=0,...,R—1
wr(n) = { 0 elsewhere ’ (11)

Considered a filter having [11] as its impulse response, the frequency response is
found by Fourier-transformation of wg(n):

“+o0) R—1) 1 _ eiij
Wrw) =) wrn)e =3 e =——— =
n=-—oo n=0
. po1sin 9B
2 sincg(w) = e‘jw%ii (12)

sin 5

Sound Analysis 81

The real part of the function sincg(w) is plotted in figure [4] for different values
of the window length R.

radian frequency

Figure 4: sincy(w) for different values of window length R.

In figure/4! it can be noticed that 27/ R is the zero closest to dc. Therefore, we
can say that if we use the rectangular window as a prototype of filter represented
in figure (2)), the equivalent bandwidth is 27/R. If we neglect aliasing for a
moment, we realize that we can decimate each channel Y,,(wy) by a factor R
without loosing any information.

A superficial look at the expression (12)) seems to indicate that the shifted
replicas of sincg produce aliasing in the base band (—27, 27). Indeed, if we sum
R shifted replicas we verify that the aliasing components cancel out. Therefore,
with this window, it is possible to decimate the output channels by a factor
equal to the window length. Furthermore, if we choose N = R, we can perform
one FFT per frame and advance the window by N samples at each step.

According to (7), the reconstruction (resynthesis) of the analyzed signal can
be obtained by filterbank summation, as depicted in figure 5. The reconstruction
can be interpreted as a bank of oscillators driven by the analysis data. The two
stages represented in figures|2 and 5, taken as a whole, are often called the phase
vocoder.

Between the analysis stage of figure 2/ and the synthesis stage of figure 5, a
decimation stage can be inserted. Namely, with the rectangular window we can
reduce the intermediate sampling rate down to Fy/R. Of course, in order to do
the filter bank summation of figure |5, an interpolation stage will be needed to
take the sampling rate back to Fj.

For the rectangular window, the window is shifted in time by R samples
after each DFT computation. This temporal shift is technically called hop size.
In the case of the rectangular window, hop sizes smaller than R do not add any
information to the analysis.

Commonly-used windows

In practice, signal analysis is seldom performed using rectangular windows, be-
cause its frequency response has side lobes that are significantly high thus po-

resynthesis

filterbank summation
phase vocoder
decimation

hop size

side lobes

main-lobe width
side-lobe level

82 D. Rocchesso: Sound Processing

Yin(Gy)

j ayn
ewo

y(m)

1/ N w(0)

Ym (%—1)

J Wy_q N
e‘*Nl

Figure 5: Reconstruction of a signal from a set of non-overlapping frequency
slices. wp,...,wn_1 are the central frequencies of the bands of the analysis
channels.

tentially inducing erroneous estimations of frequency components. In general,
there is a tradeoff between the main-lobe width and the side-lobe level that
can be exploited by choosing or designing an appropriate window. Table 4.1
describes concisely the form and features of the most-commonly used analysis
windows.

Window w(n) Main-lobe Side-lobe Level
Name in £ <p < £ Width [dB]
(%)

Rectangular | 1 4 -13.3

Hann % (1 + cos (%)) 8 -31.5
Hamming 0.54 4 0.46 cos 272 8 -42.7
Blackman 042 + 0.5cos 272 + | 12 -58.1

0.08 cos %

Table 4.1: Characteristics of popular windows.

Each window is characterized by the main-lobe width and the side-lobe level.
The larger the main-lobe width the smaller is the decimation that I can introduce
between the analysis and synthesis stages. This has a consequence in the choice
of the hop size. For instance, using Hann! or Hamming windows I have to use at

1The Hann window is often called Hanning window, probably for the same reason that in
the US you may prefer saying “I xerox this document” rather than “I copy this document
using a Xerox copier”.

Sound Analysis 83

least a hop size equal to R/2 in order to preserve all information at the analysis
stage. Moreover, the larger the main-lobe width, the more difficult is to separate
two frequency components that are close to each other. In other words, we have
a reduction in frequency resolution for windows with a large main lobe.

The side-lobe level indicates how much a sinusoidal component affects the
DFT bins nearby. This phenomenon, called leakage, can induce an analysis
procedure to detect false spectral peaks, or measurements on actual peaks can
be affected by errors. For a given resolution considered to be acceptable, it is
desirable that the side-lobe level be as small as possible.

The window length is chosen according to the tradeoff between spectral
resolution and temporal resolution governed by the uncertainty principle. The
STFT analysis is based on the assumption that, within one frame, the signal is
stationary. The more the window is short, the closer the assumption is to truth,
but short windows determine low spectral resolution.

The windows described in this section have a fixed shape. When they are
multiplied by an ideal lowpass impulse response they impose a fixed transition
bandwidth, i.e. a certain frequency space between the passband and the stop-
band. There are other, more versatile windows, that allow to tune their behavior
by means of a parameter. The most widely used of these adjustable windows
is the Kaiser window [58], whose parameter 5 can be related to the transition
bandwidth.

Zero padding

It is quite common to use a window whose length R is smaller than the number
N of points used to compute the DFT. In thise way, we have a spectrum repre-
sentation on a larger number of points, and the shape of the frequency response
can be understood more easily. Usually, the sequency of R points is extended
by means of N — R zeros, and this operation is called zero padding. Extending
the time response with zeros corresponds to sampling the frequency response
more densely, but it does not introduce any increase in frequency resolution. In
fact, the resolution is only determined by the length and shape of the effective
window, and additional zeros can not change it.
Consider the zero-padded signal

R 0

The DFT is found as

N—1 ' R—1 o
Y(k) = Z y(n)e_ﬂNk' = Z y(n)e - Resamplingy (X, R), (14)
n=0 n=0

where the notation Resampling, (X, R) indicates the resampling on N points
of R points of the discrete-time signal X, obtained as DFT(x) = X.

Exercise

Draw the time-domain shape and the frequency response of each of the windows
of table 4.1. Then, using a Rectangular, a Hann, and a Blackman window,
analyze the signal

x(n) = 0.8sin (27 fin/Fy) + sin (27 fan/Fs) , (15)

bins

leakage

spectral resolution
temporal resolution
uncertainty principle
transition bandwidth
passband

stopband

adjustable windows
transition bandwidth
zero padding

84 D. Rocchesso: Sound Processing

sonogram where f; = 0.2F5 and fy = 0.23F,, using N = R = 64. See the effects of halfing
spectrogram and doubling N = R, and observe the presence of leakage. Finally, repeat the
waterfall plot exercise with R = 32, and N = 64 or N = 128.

4.1.4 Representations

One of the most useful visual representations of audio signals is the sonogram,
also called spectrogram, that is a color- or grey-scale rendition of the magnitude
of the STFT, on a 2D plane where time and frequency are the orthogonal axes.
Figure |6 shows the sonogram of the signal analyzed in exercise 28. Time
is on the horizontal axis and frequency is on the vertical axis. Another useful
visualization is the 3D plot, also called waterfall plot in sound analysis programs,
when the analysis frames are presented one after the other from back to front.
Figure [7 shows the 3D representation of the same signal analysis of figure 6.

Figure 6: Sonogram representation of the signal (15). N = 128 and R = 64.

The Matlab signal processing toolbox, as well as the octave-forge project
(see the appendix B)), provide a function specgram that can be used to provide
plots similar to those of figures 6 and [7. Specifically, these figures have been
obtained by means of the octave script:

Fs = 44100;

f1 = 0.2 % Fs;

f2 = 0.23 * Fs;

NMAX = 4096;

n = [1:NMAX];

x1 = 0.8 * sin (2*pi*f1/Fs#*n);
x2 = sin (2*pi*f2/Fs#*n);

y = x1 + x2;

N = 128;

R = 64;

[S,f,t] = specgram(y, N, Fs, hanning(R), R/2);

S = abs(S(2:N/2,:)); # magnitude in Nyquist range

S = S/max(S(:)); # normalize magnitude so that max is O dB.

Sound Analysis 85

(dB]
O —
i 2000
-i < //{’éll/fél'ffﬁéﬁ%ff/“//)
- Wy o
/ N i % 4
- N X //// e 7 ///,,5/,‘ /),/ ;7(,‘.» ’7"(' s
a Ll ”"Z”//Z’”{/{f%f% S i1
IO A Y '/////;‘/;“", ’w.‘:" Vi
Z T AN
0.01 7 ‘
0.02

time [seconds] 0.06 25000

0.07
0.08
0.09

0.1

15000

10000

5000
0 frequency [Hz]

Figure 7: 3D STFT representation of the signal (15). N = 128 and R = 64.

imagesc(flipud(log(8))); # display in log scale
mesh(t,f(1:1length(£)-1),log(S));

gset view 35, 65, 1, 1.2

xlabel(’time [seconds]’);

ylabel (’frequency [Hz]’);

zlabel(’ [dB]’);

replot;

In this example, the DFT length has been set to N = 128, the analysis
window is a Hann window with length R = 64, and the hop size to R/2. If the
window length is doubled, the two components separate much more clearly, as
shown in figure 8.

4.1.5 Accurate partial estimation

If the signal under analysis has a sinusoidal component that stays in between
two adjacent DFT bins, the magnitude spectrum is similar to that reported in
figure [9. We notice the two following phenomena:

parabolic interpolation
phase following

86 D. Rocchesso: Sound Processing

Figure 8: Sonogram representation of the signal (I5). N = 128 and R = 128.

30 T T
N DFT magnitude ~ +
25 | N 4
20 -
+ +
15 |- —
¥
10 - N 1
4
— et T *
g 51 + B
4
ot + q
+
+
¥
5 b . 4
+
¥
10 | - 1
+
A
4

-15 Ty E

20 | | | | | |
0 5 10 15 20 25 30 35

Figure 9: DFT image (magnitude) of a sinusoidal component.

e The sinusoidal component “leaks” some of its energy into bins that stay
within a neighborhood of its theoretical position;

e It is difficult to determine the exact frequency of the component from
visual inspection.

To overcome the latter problem, we describe two techniques: parabolic interpo-
lation and phase following.

Parabolic interpolation

Any kind of interpolation can be applied to estimate the value and position of a
frequency peak in the magnitude spectrum of a signal. Degree-two polynomial
interpolation, i.e. parabolic interpolation, is particularly convenient as it uses
only three bins of the magnitude spectrum.

Sound Analysis 87

Taken three adjacent bins of the magnitude DFT, we assign them the co-
ordinates (xo,%0), (z1,y1), and (22,y2). Then, we simply apply the Lagrange
interpolation formula

(= x1)(z — 1) (x — zg)(x — x2) (x — o) (x — x1)
Y7 oo —a) (o —22) " " (@~ wo)m —w) " (wr — wmo)(wz —w0)
(16)
Since 7
xlfxozng:m:Af:WS (17)

is the frequency quantum, any point in the parabola has coordinates (x,y)
related by

1 1
y=|(@—21)(@ —22)y0 — 5(2 — 20)(z — 22)y1 + (& — o) (& — 1)y YN
(18)
From this expression, it is straightforward to find the peak as the point where

the derivative vanishes: 3y’ = % =

Phase following

Let us assume that the signal to be analyzed can be expressed as a sum of
sinusoids with time-varying amplitude and frequency (sinusoidal model, see

sec. 5.1.1)):
1

y(t) =Y Ai(t)e! ", (19)
i=1
with ,
¢z(t) :/ wi(T)d’T, (20)
being w; the frequency of the i-th partial.
The k-th bin of the m-th frame of the STFT gives

N-1
Yulk) = D w(m —n)A;(n)el%Me-i%kn o)
n=0
= eij%km Z w(T)Ai(m — r)ej(bi(m*’l‘)efj%kr . (22)
r=m—N+1

In order to proceed with the accurate partial frequency estimation, we have
to make a

Assumption 1 Frequency and amplitude of the i-th component are constant
within a STFT frame:

dpim—1r) = ¢i(m) —rw; (23)
Am—7r) = A(m) (24)

We see that

Yo (k) = e %"’cmA(m)eMm)W(%”k —wi(m)), (25)

Lagrange interpolation
sinusoidal model

phase unwrapping
linear predictive coding
LPC

vocoder

source signal
target signal
white noise

pulse train

voiced

unvoiced

residual
prediction error
allpole filter

88 D. Rocchesso: Sound Processing

where A(m)e’?(™) contain the amplitude and instantaneous phase of the sinu-
soid that falls within the k-th bin, and W (22 k—w;(m)) is the window transform.
If we have access to the instantaneous phase, we can deduce the instantaneous
frequency by back difference between two adjacent frames. This can be done as
long as we deal with the problem of phase unwrapping, due to the fact that the
phase is known modulo 2.

It can be shown [52, pag. 287-288] that phase unwrapping can be unambigu-
ous under

Assumption 2 Said H the hop size and QW" the separation between adjacent
bins, let

vH<T. (26)

The assumption 2 holds for rectangular windows and imposes H < % For
Hann or Hamming windows the hop size must be such that H < % (75%
overlap). Therefore the frame rate to be used for accurate partial estimation is

higher than the minimal frame rate needed for perfect reconstruction.

4.2 Linear predictive coding (with Federico Fontana)

The analysis/synthesis method known as linear predictive coding (LPC) was
introduced in the sixties as an efficient and effective mean to achieve synthetic
speech and speech signal communication [92]. The efficiency of the method is
due to the speed of the analysis algorithm and to the low bandwidth required
for the encoded signals. The effectiveness is related to the intelligibility of the
decoded vocal signal.

The LPC implements a type of vocoder [10], which is an analysis/synthesis
scheme where the spectrum of a source signal is weighted by the spectral compo-
nents of the target signal that is being analyzed. The phase vocoder of figures 2
and [5is a special kind of vocoder where amplitude and phase information of the
analysis channels is retained and can be used as weights for complex sinusoids
in the synthesis stage.

In the standard formulation of LPC, the source signals are either a white
noise or a pulse train, thus resembling voiced or unvoiced excitations of the
vocal tract, respectively.

The basic assumption behind LPC is the correlation between the n-th sample
and the P previous samples of the target signal. Namely, the n-th signal sample
is represented as a linear combination of the previous P samples, plus a residual
representing the prediction error:

z(n) = —a1z(n —1) —agz(n —2) — ... —apx(n — P) +e(n) . (27)

Equation (27) is an autoregressive formulation of the target signal, and the
analysis problem is equivalent to the identification of the coefficients a1,...ap
of an allpole filter. If we try to minimize the error in a mean square sense, the
problem translates into a set of P equations

P
Z ag Z z(n—k)x(n—1i)=— Z z(n)x(n —1), (28)

k=1 n n

Sound Analysis 89

or

P
> arR(i—k)=—R(),i=1,...,P, (29)
k=1

where

1>

R(i) =) x(n)x(n — i) (30)
n
is the signal autocorrelation.
In the z domain, equation (27) reduces to

E(2) = A(2)X () (31)

where A(z) is the polynomial with coefficients a; ...ap. In the case of voice sig-
nal analysis, the filter 1/A(z) is called the allpole formant filter because, if the
proper order P is chosen, its magnitude frequency response follows the envelope
of the signal spectrum, with its broad resonances called formants. The filter
A(z) is called the inverse formant filter because it extracts from the voice signal
a residual resembling the vocal tract excitation. A(z) is also called a whitening
filter because it produces a residual having a flat spectrum. However, we dis-
tinguish between two kinds of residuals, both having a flat spectrum: the pulse
train and the white noise, the first being the idealized vocal-fold excitation for
voiced speech, the second being the idealized excitation for unvoiced speech. In
reality, the residual is neither one of the two idealized excitations. At the resyn-
thesis stage the choice is either to use an encoded residual, possibly choosing
from a code book of templates, or to choose one of the two idealized excitations
according to a voiced/unvoiced decision made by the analysis stage.

When the target signal is periodic (voiced speech), a pitch detector can be
added to the analysis stage, so that the resynthesis can be driven by periodic
replicas of a basic pulse, with the correct inter-pulse period. Several techniques
are available for pitch detection, either using the residual or the target signal [53].
Although not particularly efficient, one possibility is to do a Fourier analysis
of the residual and estimate the fundamental frequency by the techniques of
section 4.1.5.

Summarizing, the information extracted in a frame by the analysis stage are:

e the prediction coefficients aq,...,ap;

e the residual e;

pitch of the excitation residual;

voiced /unvoiced information;
e signal energy (RMS amplitude).

These parameters, possibly modified, are used in the resynthesis, as explained
in section 5.1.3.

The equations (29) are solved via the well-known Levinson-Durbin recur-
sion [53], which provides the reflection coefficients of the lattice realization of
the filter 1/A(z). As we mentioned in section [2.2.4, the reflection coefficients
are related to a piecewise cylindrical modelization of the vocal tract. The LPC
analysis proceeds by frames lasting a few milliseconds. In each frame the signal

autocorrelation
formant filter
formants

inverse formant filter
whitening filter
vocal-fold excitation
prediction coefficients
reflection coefficients

90 D. Rocchesso: Sound Processing

is assumed to be stationary and a new estimation of the coefficients is made.
For the human vocal tract, P = 12 is a good estimate of the degrees of freedom
that are needed to represent most articulations.

Besides its applications in voice coding and transformation, LPC can be
useful whenever it is necessary to represent the shape of a stationary spectrum.
Spectral envelope extraction by LPC analysis can be accurate as long as the
filter order is carefully chosen, as depicted in figure [10. The accuracy depends
on the kind of signal that is being analyzed, as the allpole nature of the LPC
filter gives a spectral envelope with rather sharp peaks.

25 T T T

20 . LPC: 32
15 o i B

10 |

[dB]

210 b 4

.15 F 4

-20

L L L
0 5000 10000 15000 20000
frequency [Hz]

Figure 10: DFT image (magnitude) of a target signal and frequency response of
allpole filters, identified via LPC with three different values of the order P.

Chapter 5

Sound Modelling

5.1 Spectral modelling

5.1.1 The sinusoidal model

A sound is expressed according to the sinusoidal model if it has the form

I

y(t) =Y Ai(t)e!), (1)
i=1
where ¢;(t) = fjoo w;(7)d7, and A;(t) and w;(t) are the i-th sinusoidal-component
instantaneous magnitude and frequency, respectively. In practice, we consider
discrete-time real signals. Therefore, we can write

I
y(n) = Z Ai(n) cos (¢i(n)) , (2)
with o
gbz(n) = /O wi(T)dT =+ ¢0,i . (3)

In principle, if I is arbitrarily high, any sound can be expressed according
to the sinusoidal model. This principle states the generality of the additive
synthesis approach. Actually, the noise components would require a multitude of
sinusoids, and it is therefore convenient to treat them separately by introduction
of a “stochastic” part e(n):

I
yn) =3 Ameos(oum) + eln) (4)

i=0
\ Stochastic Part

Deterministic Part

The separation of the stochastic part from the deterministic part can be done by
means of the Short-Time Fourier Transform using the scheme of figure [1. Here,
we rely on the fact that the STFT analysis retains the phases of the sinusoidal
components, thus allowing a reconstruction that preserves the wave shape [94].
In this way, the deterministic part can be subtracted from the original signal

91

sinusoidal model
additive synthesis
stochastic part
deterministic part

stochastic residual

sms

spectral modeling synthesis
guides

hysteresis

92 D. Rocchesso: Sound Processing

to give the stochastic residual. One popular implementation of the scheme in
figure 1l is found in the software sms, an acronym for spectral modeling synthe-
i

sis* [5].

Magnitude trajectory
sound magnitudg Peak Frequency traector
——=()——= FFT Detection y
C? phase and Phase trajectory
Analysis Continuation
e Additive
Synthesis
Deterministic
Smoothing window Component
=P
residual
Spectral
Fitting
Filter J l Noise
Coefficient Level

Figure 1: Separation of the sinusoidal components from a stochastic residual.

Peak detection and continuation

In order to separate the sinusoidal part from the residual we have to detect and
track the most prominent frequency peaks, as they are indicators of strong
sinusoidal components. One strategy is to draw “guides” across the STFT
frames [94], in such a way that prolongation by continuity fills local holes that
may occur in peak trajectories. If a guide detects missing evidence of the sup-
porting peak for more than a certain number of frames, the guide is killed.
Similarly, we start new guides as long as we detect a persistent peak. Therefore,
the generation and destruction of peaks is governed by hysteresis (see figure 2).

A A Birth
Desth A A

Figure 2: Hysteretic procedure for guide activation and destruction.

In order to better capture the deterministic structure during transients, it is

IThe executable of sms is freely downloadable from http://www.iua.upf.es/ sms/

http://www.iua.upf.es/~sms/�

Sound Modelling 93

better to run the analysis backward in time, since in most cases a sharp attack
is followed by a stable release, and peak tracking is more effective when stable
states are reached gradually and suddenly released, rather than vice versa.

If we can rely on the assumption of harmonicity of the analyzed sounds, the
partial tracking algorithm can be “encouraged” by superposition of a harmonic
comb onto the spectral profile.

For a good separation, frequencies and phases must be determined accu-
rately, following the procedures described in section [4.1.5. Moreover, for the
purpose of smooth resynthesis, the amplitudes of partials should be interpolated
between frames, the most common choice being linear interpolation. Frequencies
and phases should be interpolated as well, but one should be careful to ensure
that the frequency track is always the derivative of the phase track. Since a
third-order polynomial is uniquely determined by four degrees of freedom, by
using a cubic interpolating polynomial one may impose the instantaneous phases
and frequencies between any couple of frames.

Resynthesis of the sinusoidal components

In the resynthesis stage, the sinusoidal components can be generated by any of
the methods described in section 5.2, namely the digital oscillator in wavetable
or recursive form, or the FFT-based technique. The latter will be more conve-
nient when the sound has many sinusoidal components.

The DTFT of a windowed sinusoidal signal is the transform of the window,
centered on the frequency of the sinusoid, and multiplied by a complex num-
ber whose magnitude and phase are the magnitude and phase of the sine wave.
A signal that is the weighted sum of sinusoids gives rise, in the frequency do-
main, to a weighted sum of window transforms centered around different central
frequencies.

If the window has a

A. sufficiently-high sidelobe attenuation,

we are allowed to consider only a restricted neighborhood of the window trans-
form peak. The sound resynthesis can be achieved by anti-transformation of a
series of STFT frames, and by the procedure of overlap and add applied to the
time-domain frames. The signal reconstruction is free of artifacts if

B. the shifted copies of the window overlap and add to give a constant.

If w is the window that fulfills property (A), and A is the window that fulfills
property (B), we can use w for the analysis and multiply the sequence by A/w
after the inverse transformation [35]. Using two windows gives good flexibility in
satisfying both the requirements (A) and (B). A particularly simple and effective
window that satisfies property (B) is the triangular window.

This FFT-based synthesis (or FFT! synthesis) is convenient when the si-
nusoidal model gives many sine components, because its complexity is largely
due to the cost of FFT, which is independent on the number of components. It
is quite easy to introduce noise components with arbitrary frequency distribu-
tion just by adding complex numbers with the desired magnitude (and arbitrary
phase) in the frequency domain.

resynthesis
overlap and add
FFT-based synthesis

waveshape preservation

broad-band noise

LPC analysis

sines-plus-noise
decomposition

sound modification

94 D. Rocchesso: Sound Processing

Extraction of the residual

The extraction of a broad-spectrum noise residual could be performed either
in the frequency domain or, as proposed in figure [1, directly by subtraction
in the time domain. This is possible because the STFT analysis preserves the
information on phase, thus allowing a waveshape preservation. The stochastic
component can be itself represented on a frame-by-frame basis, but the corre-
sponding frame can be smaller than the analysis frame so that transients are
captured more accurately.

Residual spectral fitting

The stochastic component is modeled as broad-band noise filtered by a lin-
ear coloring block. Such decomposition corresponds to a subtractive synthesis
model [78], whose parameters may be obtained by LPC analysis (see section[4.2).
However, if the purpose of the sines-plus-noise decomposition is that of sound
modification, it is more convenient to model the stochastic part in the frequency
domain. The magnitude spectrum of the residual can be approximated by means
of a piecewise-linear function, that is described by the coordinates of the joints.
The time-domain resynthesis can be operated in the time domain by inverse
FFT, after having imposed the desired magnitude profile and a random phase
profile.

Sound modifications

The sinusoidal model is interesting because it allows to apply musical transfor-
mations to sounds that are taken from actual recordings. The separation of the
stochastic residual from the sinusoidal part allows a separate treatment of the
two components.

Examples of musical transformations are:

Coloring: The spectral profile can be changed at will;

Emphasizing: The stochastic or the sinusoidal components can be exagger-
ated;

Time Stretching: the temporal extension of the sound can be altered without
pitch modifications and with limited artifacts;

Pitch Shifting: The pitch can be transposed without changing the sound
length and with limited artifacts;

Morphing: for instance,

e The spectral envelope of a sound can be imposed to another sound;

e A residual from a different sound can be used for resynthesis.

Figure 3 shows the framework for performing these musical modifications.

Sound Modelling 95
Fi Fi :
M . requency . Deterministic (sinusoidal’ transients
Musical Additive Part sines + noise + transients
Magnitude Transformations Magnitude Synthesis SNT
DCT
T Sound Discrete Cosine Transform
Control
l Noise
Intensity
Musical Subtractive
Coefficients Transformations Spectral Shapd Synthesis Stochastic
— Part

Figure 3: Framework for performing music transformations.

5.1.2 Sines + Noise + Transients

The fundamental assumption behind the sinusoids + noise model is that sound
signals can are composed of slowly-varying sinusoids and quasi-stationary broad-
band noises. This view is quite schematic, as it neglects the most interesting part
of sound events: transients. Sound modifications would be much more easily
achieved if transients could be taken apart and treated separately. For instance,
in most musical instruments extending the duration of a note does not have any
effect on the quality of the attack, which should be maintained unaltered in a
time-stretching task.

For these reasons, a new sines + noise + transients (SNT) framework for
sound analysis was established [108]. The key idea of practical transient extrac-
tion comes from the observation that, as sinusoidal signals in the time domain
are mapped to well-localized spikes in the frequency domain, by duality short
pulses in the time domain would correspond to sine-like curves in the frequency
domain. Therefore, the sinusoidal model can be applied in the frequency domain
to represent these sinusoidal components. The scheme of the SNT decomposition
is represented in figure 4.

Sines

Sound Noise

Sinusoidal
Modelling !

Noise
Modelling

Sinusoidal

| Modelling i I
SoPUT TransentDetector |

Figure 4: Decomposition of a sound into sines + noise + transients.

The DCT block in figure 4| represents the operation of Discrete Cosine Trans-
form, defined as
; <) .

The DCT has the property that an impulse is transformed into a cosine, and a
cluster of impulses becomes a superposition of cosines. Therefore, in the trans-
formed domain it makes sense to use the sinusoidal model and to extract a
second residue that is given by transient components.

(2n + 1)knm

5N ()

subtractive synthesis
excitation signal
allpole filter

pitch shifting

time stretching

data reduction
digital oscillator

96 D. Rocchesso: Sound Processing

5.1.3 LPC Modelling

As explained in section 4.2 the Linear Predictive Coding can be used to model
piecewise stationary spectra. The LPC synthesis proceeds according to the feed-
forward scheme of figure 5. Essentially, it is a subtractive synthesis algorithm
where a spectrally-rich excitation signal is filtered by an allpole filter. The exci-
tation signal can be the residual e that comes directly from the analysis, or it is
selected from a code book. Alternatively, we can make use of voiced/unvoiced
information to generate an excitation signal that can either be a random noise
or a pulse train. In the latter case, the pulse repetition period is derived from
pitch information, available as a parameter.

a, ., &

e —

pitch —» Excitation Allpole 4_>_>
Synthesis Filter

viuv —

RMS amplitude

Figure 5: LPC Synthesis

Between the analysis and synthesis stages, several modifications are possible:
e pitch shifting, obtained by modification of the pitch parameter;

e time stretching, obtained by stretching the window where the signal is
assumed to be stationary;

e data reduction, by model order reduction or residual coding.

5.2 Time-domain models

While the description of sound is more meaningful if done in the spectral domain,
in many applications it is convenient to approach the sound synthesis directly
in the time domain.

5.2.1 The Digital Oscillator

We have seen in section 5.1.1 how a complex sound made of several sinusoidal
partials is conveniently synthesized by the FFT™! method. If the sinusoidal
components are not too many, it may be convenient to synthesize each partial
by means of a digital oscillator.

From the obvious identity

ejwo(nJrl) _ ejwoejwon , (6)

said /9" = xr(n)+jz7(n), it is evident that the oscillator can be implemented
by one complex multiplication, i.e., 4 real multiplications, at each time step:

zr(n+ 1) = cosworr(n) — sinwozr(n) (7)

xzr(n+1) =sinwgxg(n) + coswozr(n) . (8)

Sound Modelling 97

The initial amplitude and phase can be imposed by scaling the initial phasor
e/*00 and adding a phase shift to its exponent. It is easy to show? that the
calculation of zg(n + 1) can also be performed as

zr(n+1) =2coswozr(n) —xr(n—1), 9)

or, in other words, as the free response of the filter

! 1
T 1- 2coswgz~1 4+ 272 - (1 — e—jwoz_l) (1 _ ejwoz—l) : (10)

Hp(z)

The poles of the filter (10) lay exactly on the unit circumference, at the limit of
the stability region. Therefore, after the filter has received an initial excitation,
it keeps ringing forever.

If we call zz; and = o the two state variables containing the previous samples
of the output variable xg, an initial phase ¢y can be imposed by setting®

Tr1 = sin(¢g —wp) (11)
TR — sin (¢0 — 2&)0) . (12)

The digital oscillator is particularly convenient to perform sound synthesis
on general-purpose processors, where floating-point arithmetics is available at
no additional cost. However, this method for generating sinusoids has two main
drawbacks:

e Updating the parameter (i.e., the oscillation frequency) requires comput-
ing a cosine function. This is a problem for audio rate modulations, where
to compute a modulated sine we need to compute a cosine at each time
sample.

e Changing the oscillation frequency changes the sinusoid amplitude as well.
Therefore, some amplitude control logic is needed.

5.2.2 The Wavetable Oscillator

The most classic and versatile approach to the synthesis of periodic waveforms
(sinusoids included) is the cyclic reading of a table where a waveform period is
pre-stored. If the waveform to be synthesized is a sinusoid, symmetry consid-
erations allow to store only one fourth of the period and play with the index
arithmetic to reconstruct the whole period.

Call buf [] the buffer that contains the waveform period, or wavetable. The
wavetable oscillator works by circularly accessing the wavetable at multiples of
an increment I and reading the wavetable content at that position.

If B is the buffer length, and fj is the frequency that we want to generate
at the sample rate Fj, the increment has to be set to

_ By
F, -~

I (13)

2The reader is invited to derive the difference equation [9
3The reader can verify, using formulas (29-32) of appendix [A] that xr(0) = sin ¢g, given
zr(—1) = zr1 and zr(—2) = xzRa.

wavetable
wavetable oscillator
increment

digital noise
sampling-rate conversion

98 D. Rocchesso: Sound Processing

It is easy to realize that the reading pointer accesses the wavetable at indexes
that are, in general, fractional. Therefore, some form of interpolation has to
be used. The following strategies have an increasing degree of accuracy (and
complexity):

Truncation: buf [|index|]
Rounding: buf [|index + 0.5]]

Linear Interpolation: buf [|index]|] (index — |index|) +
buf [|index|] (1 — index + |index|)

Higher-order polynomial interpolation

“Multirate” interpolation: the problem is re-casted as a sampling-rate con-
version.

By increasing the complexity of interpolation it is possible, given a certain
level of acceptable digital noise, to decrease the wavetable size [41]. The linear
interpolation is particularly attractive for implementations in custom or special-
ized hardware (see section B.5.1 of the appendix B)). The most-significant bits of
the index can be used to access the buffer locations, and the least-significant bits
are used to approximate the quantity (index — |index]) in the computation of
the interpolation.

Sampling-rate conversion

The problem of designing a wavetable oscillator can be re-casted as a problem

of sampling-rate conversion, i.e., transforming a signal sampled at rate Fy ; into
Fso
Fs

its copy re-sampled at rate F 5. If = ﬁ, with L and M irreducible integers,

we can re-sample by:
1. Up-sampling by a factor L
2. Low-pass filtering
3. Down-sampling by a factor M .

Figure [6] represents these three operations as a cascade of linear (but non-
time-invariant) blocks, where the upward arrow denots upsampling (or introduc-
ing zeros between non-zero samples) and the downward arrow denotes down-
sampling (or decimating).

x(n) X y
e h(n) Y
Fs FqL FsL

y(m)
FL/M

Figure 6: Block decomposition of re-sampling

Figure [7 shows the spectral effects of the various stages of resampling when
L/M =3/2.

If the interpolation is realized by sampling-rate conversion the problem re-
duces to designing a good lowpass filter. However, since the resampling ratio
L/M changes for each different pitch that is obtained from the same wavetable,

Sound Modelling 99

x® wavetable sampling
synthesis
sustain
loop
-F, F, 0 FyF2 F, f splits
X dynamic levels
F. Fy 0 R F2 F, 3F, f
Y'(f)
-F, -Fy, 0 FyF/2 F 3F, f
Y
“F. —F, 0 Fy 32F, 3F f

Figure 7: Example of re-sampling with L/M = 3/2

the characteristics of the lowpass filter have to be made pitch-dependent. Alter-
natively, a set of filters can be designed to accomodate all possible pitches, and
the appropriate coefficient set is selected at run time [55].

5.2.3 Wavetable sampling synthesis

The wavetable sampling synthesis is the extension of the wavetable oscillator to
e Non-sinusoidal waveforms;
e Wayvetables storing several periods.

Usually, this kind of sound synthesis is based on the following tricks:
e The attack transient is reproduced “faithfully” by straight sampling;

e A selection of periods of the central part of the sound (sustain) is stored
in a buffer and cyclically read (loop). The increment is selected in order
to produce the desired pitch;

e The keyboard® is divided into segments of contiguous notes (splits). Each
split uses transpositions of the same sample;

e Different dynamic levels are obtained by

— Sampling at different dynamic levels and obtaining the intermediate
samples by interpolation, or

4The keyboard metaphor is used very often even for sound timbres that do not come from
keyboard instruments.

fortissimo

control signals
control rate
Temporal envelopes

Attack - Decay - Sustain -
Release

Low-Frequency Oscillators
LFO

vibrato

tremolo

grains

granular synthesis

asynchronous granular
synthesis

100 D. Rocchesso: Sound Processing

— Sampling fortissimo notes and obtaining lower intensities by dynamic
filtering (usually lowpass).

In wavetable sampling synthesis, the control signals are extremely important
to achieve a natural sound behavior. The control signals are tied to the evolution
of the musical gesture, thus evolving much more slowly than audio signals.
Therefore, a control rate can be used to generate signals for

e Temporal envelopes (e.g., Attack - Decay - Sustain - Release);
e Low-Frequency Oscillators (LFO) for vibrato and tremolo;

e Dynamic control of filters.

5.2.4 Granular synthesis (with Giovanni De Poli)

Short wavetables can be read at different speeds and the resulting sound grains
can be concatenated and overlapped in time. This time-domain approach to
sound synthesis is called granular synthesis. Granular synthesis starts from the
idea of analyzing sounds in the time domain by representing them as sequences
of short elements called “grains”. The parameters of this technique are the
waveform of the grain gi(-), its temporal location I, and amplitude ay,

sg(n) = argr(n —l) . (14)
p

A complex and dynamic acoustic event can be constructed starting from a large
quantity of grains. The features of the grains and their temporal locations de-
termine the sound timbre. We can see it as being similar to cinema, where a
rapid sequence of static images gives the impression of objects in movement.
The initial idea of granular synthesis dates back to Gabor [26], while in music it
arises from early experiences of tape electronic music. The choice of parameters
can be via various criteria driven by interpretation models. In general, granular
synthesis is not a single synthesis model but a way of realizing many different
models using waveforms that are locally defined. The choice of the interpreta-
tion model implies operational processes that may affect the sonic material in
various ways.

The most important and classic type of granular synthesis (asynchronous
granular synthesis) distributes grains irregularly on the time-frequency plane in
form of clouds [77]. The grain waveform is

gk (1) = wq(i) cos(2m fr Tsi) , (15)
where wgy(4) is a window of length d samples, that controls the time span and the
spectral bandwidth around fi. For example, randomly scattered grains within
a mask, which delimits a particular frequency/amplitude/time region, result
in a sound cloud or musical texture that varies over time. The density of the
grains within the mask can be controlled. As a result, articulated sounds cane
be modeled and, wherever there is no interest in controlling the microstructure
exactly, problems involving the detailed control of the temporal characteristics
of the grains can be avoided. Another peculiarity of granular synthesis is that
it eases the design of sound events as parts of a larger temporal architecture.

Sound Modelling 101

For composers, this means a unification of compositional metaphors on different
scales and, as a consequence, the control over a time continuum ranging from
the milliseconds to the tens of seconds. There are psychoacoustic effects that can
be easily experimented by using this algorithm, for example crumbling effects
and waveform fusions, which have the corresponding counterpart in the effects
of separation and fusion of tones.

5.3 Nonlinear models

5.3.1 Frequency and phase modulation

The most popular non-linear synthesis technique is certainly frequency modula-
tion (FM). In electrical communications, FM has been used for decades, but its
use as a sound synthesis algorithm in the discrete-time domain is due to John
Chowning [23]. Essentially, Chowning was doing experiments on different ex-
tents of vibrato applied to simple oscillators, when he realized that fast vibrato
rates produce dramatic timbral changes. Therefore, modulating the frequency
of an oscillator was enough to obtain complex audio spectra.
Chowning’s FM model is:

x(n) = Asin (wen + I'sin (wyn)) = Asin (wen + ¢(n)) , (16)

where w, is called the carrier frequency, w,, is called the modulation frequency,
and I is the modulation index. Strictly speaking, equation (16) represents a
phase modulation because it is the instantaneous phase that is driven by the
modulator. However, when both the modulator and the carrier are sinusoidal,
there is no substantial difference between phase modulation and frequency mod-
ulation. The instantaneous frequency of (16) is

w(n) = we — Iwy, cos (wnn) , (17)

or, in Hertz,
f(n) = fe— 1 fm cos (27Tfmn) . (18)

Figure |8 shows a pd patch implementing the simple FM algorithm. The
modulation frequency is used to control an oscillator directly, while the carrier
frequency controls a phasor”™ unit generator. This block generates the cyclical
phase ramp that, when given as index of a cosinusoidal table, produces the same
result as the osc unit generator. However, this decomposition of the oscillator
into two parts (i.e., the phase generation and the table read) allows to sum the
output coming from the modulator directly to the phase of the carrier.

Given the carrier and modulation frequencies, and the modulation index, it
is possible to predict the distribution of components in the frequency spectrum
of the resulting sound. This analysis is based on the trigonometric identity [I]

z(n) = Asin(wen + Isin (wyn))
= AL Jo(I)sin (wen) + (19)
—_—— ——

carrier

frequency modulation
FM

carrier frequency
modulation frequency
modulation index

phase modulation
instantaneous frequency

side components
sound bandwidth

102 D. Rocchesso: Sound Processing

("FH") USING THO OSCILLATORS

pd dsp 1| pd dsp 0
OH OFF

modulation . 4)ation index
r frequency in hundredths

Fin-output
amplitude-controlled medulation
oscillator output
E To de phase modulation, we split a "carrier oscillator™
m -- click te graph into its phase calculation (phasor~) and its waveform

tabwrite~ fm-output] lookup (cos~). These together would be equivalent to an
osc~ object, but the "+~" hetween them adds another

] <-- output amplitude oscillator's output to the phase.
. . You will get the best graphs by choosing reasonably low
put|<-- as in previous patch carrier and modulation frequencies (50-100, say). The

modulation index is usually between 0 and 1 (which means
the control will typically range from 0-100).

updated for Pd version 0.33

Figure 8: pd patch for phase modulation. Adapted from a help patch of the pd
distribution.

> Ji) [sin (we + kwm)n) + (=1)F sin (we — kwm)n)] ¢
k=1

side frequencies

where Ji(I) is the k-th order Bessel function of the first kind. These Bessel
functions are plotted in figure[9l for several values of k (number of side frequency)
and I (modulation index).

Therefore, the effect of phase modulation is to introduce side components
that are shifted in frequency from the fundamental by multiples of w,,, and whose
amplitude is governed by Ji(I). Generally speaking, the larger the modulation
index, the wider is the sound bandwidth. Since the number of side components
that are stronger than one hundredth of the carrier magnitude is approximately

M =1+ 0.241°%7 (20)
the bandwidth is approximately
BW =2 (I 4 0.241°%7) w,, ~ 21wy, . (21)

If the ratio w./w, is rational the resulting spectrum is harmonic, and the
partials are multiple of the fundamental frequency

We Wm

—_—c_m 22
Ny Ny’ (22)

wo

where N
We
—L = X¢ Wwith Ny, N, irreducible couple . (23)
N2 Wm
For instance, if Ny = 1, all the harmonics are present, and if No = 2 only the
odd harmonics are present.
When calculating the spectral components, some of the partials on the left

of the carrier may assume a negative frequency. Since sin(—f) = —sinf =

Sound Modelling

=
1r 25255 i"
08 s
(SO
0.6 z,;‘” =
04 2 22552552052
5252 %2
2

-0.2 <
04 F

10

Modulation Index

Figure 9: Bessel functions of the first kind

..
..
N
NN
R

NN

N

N
=

R
\ TR
Nk
R RN
NN
N ONNNON

NN

N

’Q’D

S\

N

NN
W
7

\\\\\\\\\\\
.

=

==
N

\
\\\\\\s§§
%

N
N
N

KA
Q
N
=
=

=

)
N

N
—

N
NN
D

=
N
N

RO
RORAR
N
N

=
N

n

RO
NN
v

KA

§

NN

SN

N

N

NRR

0

9/

SRR

Ny

N

N\
NS

7
N
N

N

D
N

=
=
N
N
NN
N
X
N

N

K
AR
R

N
N

W
NN
N

XN

N

¢
NN
N
N
Ny
\\\\:\\
N
XN
W

N

N

i
XXX
AR

N
NN
N
D
N

N
N
N

N
SRR
NN
NN
N

N

N
X
N
N

K
N
N
X
N

N

W
R
NN

R
N
N

N
N
NN

N

N
NN
AN

N
R

\
N
N\
\\
N
R
N

N
N
LN
RN
N

N

N
N
N

N
AN

R
R

N

N
N

N

X
N
AR
NS

N
N
N
N

AN

Ty
N

N

X
N

N
N

AANNAW
AN
W

N

NN
NN

N

103

10 Number of side frequency

sin (§ — 7), these components have to be flipped onto the positive axis and
summed (magnitude and phase) with the components possibly already present

at those frequencies.

Complex carrier

We can have a bank of oscillators sharing a single modulator or, equivalently, a
non-sinusoidal carrier. In this case, each sinusoidal component of the complex
carrier is enriched by side components as if it were the carrier of a simple FM

couple.

One application of FM with a complex carrier is the construction of vowel-
like spectra, as it was demonstrated by Chowning in the eighties. Each partial
of the carrier may be associated with the center of one formant, i.e. a prominent
lobe in the envelope of the magnitude spectrum. For a given person’s voice, each

vowel is characterised by a certain frequency distribution of formants.

Exercise

The reader is invited to implement an FM instrument (in, e.g., Octave or pd)
that reproduces the vowel /a/, whose formants are found at 700, 1200, and 2500
Hz. How can a vibrato be implemented in such a way that the formant position

remains fixed?

bank of oscillators
FM couple

vowel-like spectra

formant

spectral envelope

feedback modulation index
sawtooth wave

amplitude modulation

104 D. Rocchesso: Sound Processing

Complex modulator

The modulating waveform can be non-sinusoidal. In this case the analysis can
be quite complicated. For instance, a modulator with two partials w; and wo,
acting on a sinusoidal carrier, gives rise to the expansion

AZZJk 1) I (I2) sin ((we + kwy + mwa) n) . (24)

Partials are found at the positions |w. + kwy + mws| . If wyr = MCD(wy, ws),
the spectrum has partials at |w. + kwys|. For instance, a carrier f. = 700Hz
and a modulator with partials at f; = 200Hz and f; = 300Hz, produce a
harmonic spectrum with fundamental at 100Hz. The advantage of using complex
modulators in this case is that the spectral envelope can be controlled with more
degrees of freedom.

Feedback FM

A sinusoidal oscillator can be used to phase-modulate itself. This is a feedback
mechanism that, with a unit-sample feedback delay, can be expressed as

z(n) = sin (w.n + fz(n — 1)), (25)

where 3 is the feedback modulation index. The trigonometric expansion
2 .
=> %Jk(kﬁ) sin (kwen) (26)
k

holds for the output signal. By a gradual increase of 8 we can gradually trans-
form a pure sinusoidal tone into a sawtooth wave [78]. If the feedback delay is
longer than one sample we can easily produce routes to chaotic behaviors as
is increased [12| [15].

FM with Amplitude Modulation

By introducing a certain degree of amplitude modulation we can achieve a more
compact distribution of partials around the modulating frequency. In particular,
we can use the expansion® [74]

= Ik
el eos(@nn) gin (wen + I'sin (wyn)) = sin (wen Z 7 in ((we + hwm)n)
k=1

(27)
to produce a sequence of partials that fade out as 1/k in frequency, starting from
the carrier. Figure 10/ shows the magnitude spectrum of the sound produced
by the mixed amplitude/frequency modulation (27) with carrier frequency at
3000Hz, modulator at 1500Hz, modulation index I = 0.2, and sample rate
F, = 22100Hz.

5The reader is invited to verify the expansion (27) using an octave script with wm = 100; wc
=200; I =0.2; n = [1:4096]; y1 = exp(I*cos(wm*n)) .* sin(wc*n + I*sin(wm¥n));

Sound Modelling 105

80 T T T

T
magnitude spectrum

60 B

[dB]

20 B

20 ! I !
0 2000 4000 6000 8000 10000

frequency [Hz]

Figure 10: Spectrum of a sound produced by amplitude/frequency modulation
as in (27).

Discussion

The synthesis by frequency modulation was very popular in the eighties, es-
pecially because it was implemented in the most successful synthesizer of all
times: the Yamaha DX7. At that time, obtaining complex time-varying spectra
with a few multiplies and adds was a major achievement. There was a theory
that allowed to predict the spectra given the parameter, and the bandwidth of
FM sounds could be controlled smoothly by means of the modulation index.
However, it proved difficult to obtain FM patches starting from the analysis of
real sounds, so that the most successful reproductions have been based on intu-
ition and multiple trials. Some of the parameters, such as the carrier/modulator
frequency ratio) are too critical and non-intuitive. Namely, little changes in a
modulator frequency produce dramatic changes in timbre. The modulation in-
dex itself, despite displaying a global intuitive behavior, is related to each single
partial amplitude by means of exotic functions that have no relationship with
the human hearing system.

5.3.2 Nonlinear distortion

The sound synthesis by nonlinear distortion (NLD), or waveshaping [§], is con-
ceptually very simple: the oscillator output is used as argument of a nonlinear
function. In the discrete-time digital domain, the nonlinear function is stored in
a table, and the oscillator output is used as index to access the table.

The interesting thing about NLD is that there is a theory that allows to
design the distorting table given certain specifications of the desired spectrum.
If the oscillator is sinusoidal, we can formulate NLD as

z(n) = Acos(won) (28)
y(n) = F(x(n)) . (29)

For the nonlinear function, we use Chebyshev polynomials [1]. The degree-n

Yamaha DXT7

carrier/modulator frequency
ratio

nonlinear distortion
NLD
waveshaping

direct manipulation
gestural controllers
mass-spring-damper system

106 D. Rocchesso: Sound Processing

Chebyshev polynomial is defined by the recursive relation:

To(ilf) = 1
Ti(z) = =
Tn(a:) = 2$Tn,1($> — Tn,Q(.’lﬁ) s (30)

and it has the property
T, (cosB) = cosnb . (31)

In virtue of property (31), if the nonlinear distorting function is a degree-m
Chebyshev polynomial, the output y, obtained by using a sinusoidal oscillator
z(n) = coswon, is y(n) = cos (mwon), i.e., the m-th harmonic of x.

In order to produce the spectrum

y(n) = Z hy; cos (kwon) , (32)

k

it is sufficient to use the linear composition of Chebyshev functions

F(z) = hTi(x) (33)
k

as a nonlinear distorting function.

Varying the oscillator amplitude A, the amount of distortion and the spec-
trum of the output sound are varied as well. However, the overall output ampli-
tude does also vary as a side effect, and some form of compensation has to be
introduced if a constant amplitude is desired. This is a clear drawback of NLD
as compared to FM. Time-varying spectral variations can also be introduced by
adding a control signal to the oscillator output x, so that the nonlinear function
is dynamically shifted.

5.4 Physical models

Instead of trying to model the air pressure signal as it appears at the entrance of
the ear canal, we can simulate the physical behavior of mechanical systems that
produce sound as a side effect. If the simulation is accurate enough, we would
obtain veridical sound dynamics and a detailed control in terms of physical
variables. This allows direct manipulation of the sound synthesis model and
direct coupling with gestural controllers.

5.4.1 A physical oscillator

Let us consider a simple mechanical mass-spring-damper system, as depicted in
figure11. Let f be an exogenous force that drives the system. It is a mechanical
series connection, as the components share the same = position and the forces
sum up to zero:

fm:fR+fk+f:>m'i:_Ri_km+f' (34)

By taking the Laplace transform of (34) (with null initial conditions) we get

Sound Modelling 107

v
X
Figure 11: Mass-Spring-Damper system
the algebraic relationship
$*>mX(s) + sRX(s) + kX(s) = F(s), (35)

and we can derive the transfer function between the forcing term f and the

displacement z:
X(s) 1/m
H(s) = = . 36
O F) T e Eea L o

The system oscillates with characteristic frequency 2 2 Vk/m = 2rfy and

the damping coefficient is p 2 R/m. The quality factor of the system is Q =
Qo/p and it is the number of cycles that the characteristic oscillation takes
to attenuate by a factor 1/e™. The damping coeflicient p is proportional to
the resonance bandwidth. If we use the bilinear transformation to discretize
the transfer function (36) we obtain the discrete-time system described by the
transfer function

-1 -2
H(z) — 1+ 22 —l:z 37
mh? 4+ Rh+ k + 2(k — mh2)z=1 + (k 4+ mh? — Rh)z—2
bo + blz*I + bgziz
14+a1271 +ag22
Therefore, the damped mechanical oscillator can be simulated by means of a
second-order discrete-time filter. For instance, the realization Direct Form I,
depicted in figure 24! of chapter 2, can be used for this purpose. We notice that
there is a delay-free path that connects the input f with the output x, and this
may represent a problem when connecting several simulations of physical blocks
together.

5.4.2 Coupled oscillators

Let us consider the system obtained by coupling the mass-spring-damper oscil-
lator with a second mass-spring system (see figure [12)):

mig1 = —ki(x1 —x2) — R(#1 —d2) + f (38)
meds = —ki(x1 —x2) — koo + R(&1 — d2) .

characteristic frequency
damping coefficient
quality factor

mass points
visco-elastic links
CORDIS-ANIMA

108 D. Rocchesso: Sound Processing

Using the Laplace transform, the system (39) can be converted into

ko

Figure 12: Two coupled mechanical oscillators

Xi(s) = m [F'(s) + (k1 + Rs)Xa(s)] 2 Hi(s) [F(s) + G(s) Xa(s)]
1 A
Xo(s) = m2s? + Rs + (k1 + k) (k1 + Rs)X1(s) = Ha(s)G(s)X1(s) , (39)

and this can be represented as a feedback connection of filters, as depicted in
figure [13. This simple example gives us the possibility to discuss a few different

|
Xy

I § % H9)

Figure 13: Block decomposition of the coupled oscillators

ways of looking at physical models. One of these ways is the cellular approach,
where complex linear systems are obtained by connection of mass points (H;
and Hs in our example) and visco-elastic links. Such approach is the basis of the
CORDIS-ANIMA software developed at ACROE in Grenoble [20]. Another pos-
sibility, is to look for functional blocks in the system decomposition. In figure 13
we have outlined three functional blocks:

E - exciter: a dynamic physical system that can elicit and sustain an oscilla-
tion by means of an external forcing term;

R - resonator: a dynamic physical system (with small losses) that sustains
the oscillations;

Sound Modelling 109

I - interaction: asystem that connects E and R in such a way that the physical
variables at the two ends are compatible.

Although in our example the resonator is a lumped mechanical oscillator, usually
the resonator is a medium where waves propagate. Therefore the resonator is
a distributed system, described by partial differential equations (PDE). Among
the different ways of discretizing it, we mention

e Network of elementary coupled oscillators (cellular models);
e Numerical integration of the PDE (for instance, finite difference methods);
e Discretization of the solutions of the PDE (waveguide models).

The exciter is usually a lumped system described by ordinary differential
equations (ODE) that can be integrated using numerical methods, the bilin-
ear transformation, or the impulse invariance method. Often the exciter ex-
hibits strong nonlinearities, such as the pressure-flow characteristic of a clarinet
reed [31].

The interaction block is the place where the different discretizations of the
exciter and resonator blocks talk to each other. Moreover, this is the right place
to insert sound component that are difficult to capture with a physical model,
either because the physics is too complicated or because we just don’t know
to model some phenomena. For instance, where the clarinet reed (exciter) is
connected to the bore (resonator), small flow-dependent noise bursts can be
injected to increase the simulation realism.

In a system such as the one of figure(13], if each block is separately discretized
a computability problem may arise when the blocks are connected to each other.
Namely, if the realization of each block has a delay-free input-output path then
a non-computable delay-free loop will appear in the model. There are techniques
to cope with these delay-free loops (implicit solvers) or to eliminate them [16].

5.4.3 One-dimensional distributed resonators

Physical systems such as strings or acoustic tubes can be idealized as one-
dimensional distributed resonators, described by a couple of dual variables, here
called Kirchhoff variables, which are functions of time and longitudinal space.
For a string, the Kirchhoff variables are force and velocity. For the acoustic tube,
these variables are pressure and air flow. In any case, each of these variables is
governed by the wave equation [63]

0?p(w,t) _ 2 0?p(w,t)
ot? oz2

where ¢ is the wave speed in the medium. The symbol p in (40) can be thought
of as the instantaneous and local air pressure inside a tube.

One of the most popular ways of solving PDEs such as (40) is finite dif-
ferencing, where a grid is constructed in the spatial and time variables, and
derivatives are replaced by linear combinations of the values on this grid. Two
are the main problems to be faced when designing a finite-difference scheme for
a partial differential equation: numerical losses and numerical dispersion. There
is a standard technique [70], [103] for evaluating the performance of a finite-
difference scheme in contrasting these problems: the von Neumann analysis.

(40)

partial differential equations
cellular models

finite difference methods
waveguide models

ordinary differential
equations

one-dimensional distributed
resonators

Kirchhoff variables

wave equation

waveguide models
traveling waves

110 D. Rocchesso: Sound Processing

Replacing the second derivatives by central second-order differences?, the ex-
plicit updating scheme for the i-th spatial sample of displacement (or pressure)
is:

C2 2
plin+1) — 2(1— Aﬁi)pu,n)—p(i,n—n
C2 2
f;; (i +1,n) +p(i — 1,n)] , (41)

where At and Ax are the time and space grid steps. The von Neumann analysis
assumes that the equation parameters are locally constant and checks the time
evolution of a spatial Fourier transform of (41). In this way a spectral amplifi-
cation factor is found whose deviations from unit magnitude and linear phase
give respectively the numerical loss (or amplification) and dispersion errors. For
the scheme (41) it can be shown that a unit-magnitude amplification factor is
ensured as long as the Courant-Friedrichs-Lewy condition [70]

cAt

AL <1 (42)
is satisfied, and that no numerical dispersion is found if equality applies in (42).
A first consequence of (42) is that only strings having length which is an integer
number of cAt are exactly simulated. Moreover, when the string deviates from
ideality and higher spatial derivatives appear (physical dispersion), the simula-
tion becomes always approximate. In these cases, the resort to implicit schemes
can allow the tuning of the discrete algorithm to the amount of physical dis-
persion, in such a way that as many partials as possible are reproduced in the
band of interest [22].

It is worth noting that if ¢ in equation (40) is a function of time and space,
the finite difference method retains its validity because it is based on a local (in
time and space) discretization of the wave equation. Another advantage of finite
differencing over other modeling techniques is that the medium is accessible
at all the points of the time-space grid, thus maximizing the possibilities of
interaction with other objects.

As opposed to finite differencing, which discretize the wave equation (see
egs. (40) and (41)), waveguide models come from discretization of the solution
of the wave equation. The solution to the one-dimensional wave equation (40)
was found by D’Alembert in 1747 in terms of traveling waves

plz,t) =pt(t—az/c)+p (t+x/c). (43)

Eq. (43) shows that the physical quantity p (e.g. string displacement or acous-
tic pressure) can be expressed as the sum of two wave quantities traveling
in opposite directions. In waveguide models waves are sampled in space and
time in such a way that equality holds in (42). If propagation along a one-
dimensional medium, such as a cylinder, is ideal, i.e. linear, non-dissipative and
non-dispersive, wave propagation is represented in the discrete-time domain by
a couple of digital delay lines (Fig.14), which propagates the wave variables p™
and p~.

6The reader is invited to derive (41) by substituting in (40) the first-order spatial deriva-

Sound Modelling 111

+ +
P P-nm)
Wave Delay

Py Pt +nT)
Wave Delay

Figure 14: Wave propagation propagation in a ideal (i.e. linear, non-dissipative
and non-dispersive) medium can be represented, in the discrete-time domain,
by a couple of digital delay lines.

Let us consider deviations from ideal propagation due to losses and disper-
sion in the resonator. Usually, these linear effects are lumped and simulated
with a few filters which are cascaded with the delay lines. Losses due to ter-
minations, internal frictions, etc., give rise to gentle low pass filters, whose pa-
rameters can be identified from measurements. Wave dispersion, which is often
due to medium stiffness, is simulated by means of allpass filters whose effect
is to produce a frequency-dependent propagation velocity [83]. The reflecting
terminations of the resonator (e.g., a guitar bridge) can also modeled as filters.
In virtue of linearity and time invariance, all the filters can be condensed in a
single higher-order filtering block, and all the delays can be connected to form a
single longer delay line. As a result, we would get the recursive comb filter, de-
scribed in chapter 3, which forms the structure of the Karplus-Strong synthesis
algorithm [47].

One-dimensional waveguide models can be connected together by means of
waveguide junctions, thus forming digital waveguide networks, which are used
for simulation of multi-dimensional media (e.g., membranes [34]) or complex
acoustic systems (e.g., several strings attached to a bridge [17]). The general
treatment of waveguide networks is beyond the scope of this book [85].

tive with the difference (p(i + 1,n) — p(i,n))/X, and the first-order time derivative with the
difference (p(i,n + 1) — p(i,n))/T

"The D’Alembert solution can be derived by inserting the exponential eigenfunction e
into (40)

st+vx

Karplus-Strong synthesis
waveguide junctions
digital waveguide networks

112 D. Rocchesso: Sound Processing

Appendix A

Mathematical
Fundamentals

A.1 Classes of Numbers
A.1.1 Fields

Given a set F of numbers, two operations called sum and product over these
numbers, and some algebraic properties that we are going to enumerate, F is
called a field. The sum of two elements of the field u,v € F is still an element
of the field and has the following properties:

S1, Associative Property : (u+v) +w =u+ (v + w)
S2, Commutative Property : u+v=v-+u

S3, Existence of the Zero : There exists one and only element in F, called
the zero, that is the neutral element for the sum, i.e., u +0 = u , for all
ueF

S4, Existence of the Opposite : For each u € F there exists one and only
element in F, called the opposite of u, and written as —u, such that
u+ (—u) =0.

The product of two elements of the field u,v € F is still an element of the field
and has the following properties:

P1, Associative Property : (uv)w = u(vw)
P2, Commutative Property : uv = vu

P3, Existence of the Unity : There exists one and only element in F, called
the unity, that is the neutral element for the product, i.e., ul = u , for all
ueF

P4, Existence of the Inverse : For each v € F different from zero, there
exists one and only element in F, called the inverse of u, and written as
u~!, such that wu=! = 1.

113

field
Zero
opposite
unity
inverse

ring
commutative ring
complex numbers
imaginary unity

114 D. Rocchesso: Sound Processing

The two operations of sum and product are jointly characterized by the dis-
tributive properties:

D1, Distributive Property : u(v + w) = uwv + uw
D2, Distributive Property : (v + w)u = vu + wu

The existence of the opposite and the reciprocal implies the existence of two
other operations, namely, the difference u — v = u + (—v) and the quotient
u/v=u(vt).

Given the properties of a field, we can say that the natural numbers N =
0,1,... do not form a field since, for instance, they do not have an opposite.
Similarly, the integer numbers Z = ..., -2 —1,0,1,... do not form a field
because, in general, they do not have an inverse. On the other hand, the rational
numbers Q, which are given by ratios of integers, do satisfy all the properties
of a field.

The real numbers R are all those numbers that can be expressed in decimal
notation as z.y, where the number of digits of y is not necessarily bounded. Real
numbers can be obtained as the union of the set of rational numbers with the
set of transcendental numbers, i.e., those numbers that can not be expressed as
a ratio of integers. An example of transcendental number is 7, which is the ratio
between the circumference and the diameter of any circle. The real numbers do
form a field, and the rationals are a subfield of the reals.

A.1.2 Rings

A set of numbers provided with sum and product, and such that the properties
S1-4, P1 e D1-2 are satisfied is called a ring. If P2 is satisfied we have a com-
mutative ring, and if P3 is satisfied the ring has a unity. For instance, the set Z
of integer numbers forms a commutative ring with a unity.

Whenever we want to indicate the sets of ordered couples or triples of el-
ements belonging to a field (or a ring) F we will use the notation F2 or F?3,
respectively.

A.1.3 Complex Numbers

The classes of numbers introduced so far are instrumental to a hierarchical
system, where the natural numbers are contained in the integers, which are
part of the rationals, and this latter class in contained in the real numbers.
This hierarchy is resemblant of the temporal evolution of the classes of numbers
since the antiquity to the XVI century. The extension of the hierarchy was always
motivated by the ease with which practical and formal problems could be solved
by manipulation of numerical symbols. The same kind of motivation led to the
introduction of the class of complex numbers. As we will see in sec. [A.3), they
come into play when one wants to represent the solutions of a second-order
equation.

In order to define the complex numbers, we have to define the imaginary
unity ¢ as that number that multiplied by itself (i.e., squared), gives —1. There-
fore,

ii=—1. (1)

Mathematical Fundamentals 115

In several branches of engineering the symbol j is preferred to i, because it is
more easily distinguished from the symbol of current. In this book, the symbol
i is used exclusively.
Given the preliminary definition of i, the complex numbers are defined as
the couples
T+ 1y (2)

where x and y are real numbers called, respectively, real and imaginary part of
the complex number.

Given two complex numbers ¢; = x7 + iy; and co = xo + iys the four
operations are defined as follows!:

Sum : ¢; + g = (z1 + x2) +i(y1 + y2)
Difference : ¢; — co = (21 — x2) + i(y1 — y2)
Product : cico = (122 — y1y2) + i(x1y2 + T2v1)

¢ Lix (Y122 — T
Quotient : b (21 2+y1y2)2+ (3121 2 1y2)'
02 xz +y2

If the introduction of complex numbers dates back to the XVI century, their
geometric interpretation, that gave an intuitive framework for widespread use,
was introduced in the XVIII century. The geometric interpretation is simply
obtained by considering the geometric number ¢ = x 414y as a point of the plane
having coordinates x and y. This interpretation, depicted in fig. [1, allows to
switch from the orthogonal coordinates x and y to the polar coordinates p and
0, called magnitude (or absolute value) and phase (or argument), respectively.
The = and y axes are called, respectively, the real and imaginary axes. The
magnitude of a complex number is calculated by application of the Theorem of
Pythagoras:

pP ="+ = (x+iy)(z —iy) = cc (3)
where € is the complex conjugate of ¢, also depicted in fig [1?. The argument of
a complex number is the angle formed by the positive horizontal semi-axis with
the line conducted from the geometric point to the origin of the complex plane.
The argument is signed, and the sign is positive for anti-clockwise angles (see
fig. [1)).

A.2 Variables and Functions

In mathematics, the entities that one works with are often arbitrary elements of
a class of numbers. In these cases, the entities can be represented by a variable
z defined in a domain D. In this appendix, we have already used some variables
implicitly, for instance, to state the properties of a field.

When the domain is an interval of the field of real numbers having extremes
a and b, we can say that z is a continuous variable of the interval [a, b] and we
write a < x < b.

1The expressions can be derived by application of the usual algebraic operations on real
numbers and by substituting i2 with —1. In order to derive the quotient, it is useful to multiply
and divide by zo — iy2.

It is easy to show that the magnitude of the product is equal to the product of the
magnitudes. Vice versa, the magnitude of the sum is not equal to the sum of the magnitudes

orthogonal coordinates
polar coordinates
magnitude

absolute value

phase

argument

complex conjugate
variable

domain

independent variable
argument

dependent variable
codomain

inverse function

116 D. Rocchesso: Sound Processing

c=x+iy

c=x-iy

Figure 1: Geometric interpretation of a complex number

When every value of the variable x is associated with one and only one value
of another variable y we say that y is a function of z, and we write

y = f(). (4)

x is said to be the independent variable (argument) while y is the dependent
variable, and the set of values that it takes for different assumed by z in its
domain is called the codomain. If, for each 1 # xa, f(z1) # f(z2), then domain
and codomain have a biunivocal correspondence. In that case the roles of domain
and codomain can be inverted, and it is possible to define an inverse function
x = f~1(y). In general, functions can have more than one independent variable,
thus indicating a relation among many variables.

Often functions are defined by means of algebraic expressions, and associated
with domains and interpretations for the variables. For instance, the pitch A (in
Hz) of the note produced by an ideal string can be expressed by the function

1 /¢

where [is the length of the string in meters, ¢ is the string tension in Newton,
and d is the density per unit length (Kg/m). This concise expression allows
to represent the pitch of a note whatever are the values of length, tension,
and density, as long as these values belong to the domain of non-negative real
numbers (indicated by RT).

Functions can be graphically represented in the cartesian plane. The abscissa
corresponds with an independent variable, and the ordinate corresponds to the
dependent variable. If we have more than one dependent variable, only one is
represented in abscissa, and the other ones are set to constant values.

For example, fig. 2 shows the function (5)), with values of tension and den-
sity ® set to 952N and 0.0367Kg/m, respectively. The domain of string lengths
ranges from 0.5m to 4.0m.

The chart of fig. 2/ can be obtained by a simple script in Octave or Matlab:

r=0.0367; t=952; Y, definitions of density and tension
1=[0.5:0.01:4.0]; % domain for the string length

3These values are appropriate for the piano note C2.

Mathematical Fundamentals 117

Pitch of note as a function of string length
200

150

h [Hz]
=
o
o

50

0 1 2 3 4
I [m]

Figure 2: Pitch of a note as a function of string length

h=1./(2*1)*sqrt(t/r); % expression for pitch

plot(1,h);

grid; title(’Pitch of note as a function of string length’);
xlabel(’1 [m]’);

ylabel(°h [Hz]’);

% replot; % Octave only

In order to visualize functions of two variables, we can also use three-
dimensional representations. For example, the function (5) can be visualized
as in fig. [3 if the variables length and tension are defined over intervals and the
density is set to a constant. In such a representation, the function of two depen-
dent variables becomes a surface in 3D. The Octave/Matlab script for fig. [3] is

Pitch of note as a function of string length and tension

0
1200

t[N] 800 0 I [m]

Figure 3: Pitch of a note as a function of string length and tension

the following:

r=0.0367; % definition of density

1=[0.5:0.1:4.0]; % domain for the string length

t=[800:10:1200]; % domain for the string tension
h=(1./(2%1’)*sqrt(t./r))’; % expression for pitch

mesh(1l,t,h);

grid; title(’Pitch of note as a function of string length and tension’);

multivariable function
contour plot
polynomials
coefficients

118 D. Rocchesso: Sound Processing

xlabel(’l [m]’);
ylabel(’t [N]’);
zlabel (’h [Hz]’);
% replot; % Octave only

Of a multivariable function we can also give the contour plot, i.e., the plot of
curves obtained for constant values of the dependent variable. For example, in
the function (5)), if we let the dependent variable to take only seven prescribed
values, the cartesian plane of length and tension displays seven curves (see fig.).
Each curve corresponds to an horizontal cut of the surface of fig. [3.

Pitch of note as a function of string length and tension

1200 |
\
120
1100 J*
Z1000f 0" g
= \ -
IBsid
|
|
900}, .
140
‘ 8.8
800
1 2 3 4
1 [m]

Figure 4: Contour plot of pitch as a function of string length and tension

The Octave/Matlab script producing fig. 4! is the following:

r=0.0367; % definition of demnsity
1=[0.5:0.1:4.0]; % domain for the string length
t=[800:10:1200]; % domain for the string tension
h=(1./(2%1°)*sqrt(t./r))’; % expression for pitch
% contour(h’, 7, 1, t); % Octave only
co=contour(l, t, h, 7); % Matlab only

clabel(co); % Matlab only
title(’Pitch of note as a function of string length and tension’);
xlabel(’1l [m]’);

ylabel(’t [N]?);

zlabel(*h [Hz]’);

A.3 Polynomials

An important class of one-variable functions is the class of polynomials, which
are weighted sums of non-negative powers of the independent variable. Each
power with its coefficient is called a monomial. A polynomial has the form

y=f(z) =ap+ a1z + axx® + ... + a,z" , (6)

where the numbers a; are called coefficients and, for the moment, they can be
considered as real numbers. The highest power that appears in (6)) is called the
order of the polynomial.

Mathematical Fundamentals 119

The second-order polynomials, when represented in the x —y plane, produce
a class of curves called parabolas, while third-order polynomials generate cubic
curves.

We call solutions, or zeros, or roots of a polynomial those values of the
independent variable that produce a zero value of the dependent variable. For
second and third-order polynomials there are formulas to derive the zeros in
closed form. Particularly important is the formula for second-order polynomials:

ar’ +br+c = 0 (7)

—b+Vb% — dac . (8)

vz 2a

As it can be easily seen by application of (8) to the polynomial z2 + 1,
the roots of a real-coefficient polynomial are real numbers. This observation
was indeed the initial motivation for introducing the complex numbers as an
extension of the field of real numbers.

The Fundamental Theorem of Algebra states that every n-th order real-
coefficient polynomial has exactly n zeros in the field of complex numbers, even
though these zeros are not necessarily all distinct from each other. Moreover,
the roots that do not belong to the real axis of the complex plane, are couples
of conjugate complex numbers.

For polynomial of order higher than three, it is convenient to use numerical
methods in order to find their roots. These methods are usually based on some
iterative search of the solution by increasingly precise approximations, and are
often found in numerical software packages such as Octave.

In Octave/Matlab a polynomial is represented by the list of its coefficients
from a,, to ag. For instance, 1 4+ 222 4 5x° is represented by
p=10500201]
and its roots are computed by the function
rt = roots(p)

In this example the roots found by the program are

rt =
-0.87199 + 0.00000i1
0.54302 + 0.576351

0.54302 - 0.576351
-0.10702 + 0.595251
-0.10702 - 0.595251

and only the first one is real. If the previous result is saved in a variable rt,
the complex numbers stored in it can be visualized in the complex plane by the
directive

axis([-1,1,-1,1]1);
plot(real(rt),imag(rt),’o0’);

and the result is reported in fig. 5.

It can be shown that the real-coefficient polynomials form a commutative
ring with unity if the operations of sum and product are properly defined. The
sum of two polynomials is a polynomial whose order is the highest of the orders
of the operands, and having coefficients which are the sums of the respective

solutions
Z€eros
roots

Fundamental Theorem of
Algebra

vectors

120 D. Rocchesso: Sound Processing

1
@) o)
Or O
O @]
-1

-1 -05 0 0.5 1
Figure 5: Roots of the polynomial 1 + 222 + 52° in the complex plane

coefficients of the operands. The product is done by application of the usual dis-
tributive and associative properties to the product of sums of powers. The order
of the product is given by the sum of the orders of the polynomial operands,
and the k-th coefficient of the product is obtained by the coefficients a; and b,
of the operands by the formula

C = Z aibj 5 (9)

it+j=k

where this notation indicates a sum whose addenda are characterized by a couple
of indices 1, j that sum up to k.

As it can be seen from sec. 1.4, the polynomial multiplication is formally
identical to the convolution of discrete signals, and this latter operation is fun-
damental in digital signal processing.

A.4 Vectors and Matrices

Physicists use arrows to indicate physical quantities having both an intensity and
a direction (e.g., forces or velocities). These arrows, sometimes called vectors,
are oriented according to the direction of the physical quantity and their length
is proportional to the intensity. These vectors can be located in the plane (or
the 3D space) as if they were departing from the origin. In this way, they can be
represented by the couple (or triple) of coordinates of their second extremity.
This representation allows to perform the sum of vectors and the multiplication
of a vector by a constant as the usual algebraic operations done with each
separate coordinate:

(1,91, 21) + (T2,92,22) = (1 +T2,491 +y2,21 + 22)

a(ry,y1,21) = (ax,ayr,az) (10)

More generally, an n-coordinate vector is defined in a field F as the ordered

Mathematical Fundamentals 121

set of n numbers? z; € F:
v=[z1,...,2,] . (11)

The set of all n-coordinate vectors defined in the field F, for which the
operations (10) give vectors within the set itself, form the n-dimensional vector
space V, (F).

Every subset of V,,(F) that is closed” with respect to the operations (10) is
called vector subspace of V,,(F). For instance, in the two-dimensional plane, the
points of a cartesian axis form a subspace of the plane. Similar, subspaces of the
plane are given by any straight line passing through the origin, and subspaces
of the 3D space are given by any plane passing through the origin.

m vectors vq, ..., V,,, are said to be linearly independent if there is no choice
of m coefficients aq, ..., a,, (the choice of all zeros is excluded) such that
a1vi+ ...+ anvy, =0. (12)

In the 2D plane, two points on different cartesian axes are linearly indepen-
dent, as are any two points belonging to different straight lines passing through
the origin. Viceversa, points belonging to the same straight line passing through
the origin are always linearly dependent.

It can be shown that, in an n-dimensional space V,,(F), every set of m > n
vectors is linearly dependent. A set of n linearly independent vectors (if they
exist) is called a basis of V,,(F), in the sense that any other vector ofV, (F)
can be obtained as a linear combination of the base vectors. For instance, the
vectors [1,0,0], [0, 1,0], and [0,0, 1] form a basis for the 3D space, but there are
infinitely many other bases.

Between any two vectors of the same vector space the operation of dot prod-
uct is defined, and it returns the scalar sum of the component-by-component
products. As a formula, the dot product is written as

n
viw 2 Zvjwj . (13)
j=1

By convention, with v we indicate a column vector, while v/ denotes its transpo-
sition into a row. Therefore, the operation (13) can be referred as a row-column
product.

A matrix can be considered as a list of vectors, organized in a table where
each element of the list occupies (by convention) one column. A matrix having
n rows and m columns defined over the field F can be written as

1,1 e Q1m
A= e Frxm (14)

Gna1 .- Gpnm

The multiplication of a matrix A € F™**™ by a (column) vector v € V,,(F)

4In this book, the square brackets are used to indicate vectors and matrices. This is also the
notation used in Octave. Moreover, the variables representing vectors or matrices are always
typed in bold font.

5A set I is closed with respect to an operation on its elements if the result of the operation
is always an element of I.

vector space

vector subspace
linearly independent
basis

dot product

column vector
transposition
matrix

matrix product
transposed

122 D. Rocchesso: Sound Processing

is defined as

m
E a1,j0;
j=1

Av=| ... , (15)
D anvj
j=1

i.e., as a (column) vector whose i-th element is given by the dot product of the
i-th row by the vector v.

The product of a matrix A € R'™ by a matrix B € R™*™ can be obtained
as a list of vectors, each being the product of matrix A by a column of B, and
it is a matrix C € RY*™. The product is properly defined only if the number of
column of the first matrix is equal to the number of rows of the second matrix.
In general, the order of factors can not be reversed, i.e., the matrix product is
not commutative.

Given a matrix A, the matrix A’ obtained by exchanging each row with the
corresponding column is called the transposed of A.

Languages such as Octave and Matlab were initially conceived as languages
for matrix manipulation. Therefore, they offer data structures and builtin op-
erators for representing and manipulating matrices. For example, a matrix
A € R?*3 can be represented as
A=1[1, 2, 3; 4, 5, 6];
where the semicolon is used to separate one row from the following one. A col-
umn vector can be entered as
b= [1; 2; 3];
or, alternatively, we can transpose a row vector
b=1[1, 2, 3]%;

Given the definitions of the variables A and b, we can multiply the Matrix by
the vector and assign the result to a new vector variable c:

c=Axb

thus obtaining the result

c =

14
32

The product of a matrix A € R'*™ by a matrix B € R™*" is represented
by
A x B
When we want to do element-wise operations between two or more vectors or
matrices having the same size, we just have to place a dot before the operator
symbol. For instance,

(1, 2, 31 .*x [4, 5, 6]
returns the (row) vector [4 10 18] as a result.

Octave allows to operate on scalars, vectors, and matrices belonging to the
complex field, just by representing as a sum of real and imaginary parts (e.g.,
2 + 3i).

When we use Octave/Matlab to handle functions, or to draw their plot, we
usually operate on collections of points that are representative of the functions.

Mathematical Fundamentals 123

There is a concise way to assign to a variable all the values regularly spaced
(with step inc) between a min and a max:

x = [min, inc, max];

This kind of instruction has been used to plot the function of fig. 2. After having
defined the domain as the vector of points

1=[0.5: 0.1: 4.0];

the vector representing the codomain has been computed by application of the
function to the vector 1:

f=1./(2%1) *sqrt(t/r);

A.4.1 Square Matrices

The n-th order square matrices defined over a field F are a set F"*" which
is very important for its affinity with the classes of numbers. In fact, for these
matrices the sum and product are always defined and it is easy to verify that
the properties S1-4, P1, and D1-2 of appendix |A.1l do hold. The property P3
is also verified and the neutral element for the product is found in the unit
diagonal matrix, which is a matrix that has ones in the main diagonal® and zeros
elsewhere. In general, the commutativity is not ensured for the product, and a
matrix might not admit an inverse matrix, i.e., an inverse obeying to property
P4. In the terminology introduced in appendix [A.1, the square matrices F"™*"
form a ring with a unity. This observation allows us to treat the square matrices
with compact notation, as a class of numbers which is not much different from
that of integers”.

A.5 Exponentials and Logarithms

Given a number a € R*, it is clear what is its natural m-th power, that is
the number obtained multiplying a by itself m times. The rational power a'/™,
with m a natural number, is defined as the number whose m-th power gives
a. If we extend the power operator to negative exponents by reciprocation of
the positive power, we give meaning to all powers a”, with r being any rational
number. The extension to any real exponent is obtained by imposing continuity
to the power function. Intuitively, the function f(xz) = a® describes a continuous
curve that “interpolates” the values taken at the points where z is rational. The
power operator has the following fundamental properties:

El : a%a¥ = o* 1Y
E2 : —=a¢"7Y
E3 : (a®)¥ = a™

E4 : (ab)® = a®b® .

6The main diagonal goes from the top leftmost corner to the bottom rightmost corner.

"Two important differences with the ring of integers is the non commutativity and the
possibility that two non-zero matrices multiplied together give the zero matrix (the zero
matrix admits non-zero divisors).

unit diagonal matrix
inverse matrix
power

exponential
logarithm
decibel

rms level
Neper number

124 D. Rocchesso: Sound Processing

The function f(z) = a” is called exponential with base a.
Given these preliminary definitions and properties, we define the logarithm
of y with base a
v =log,y, (16)

as the inverse function of y = a”. In other words, it is the exponent that must
be given to the base in order to get the argument y. Since the power a* has been
defined only for a > 0 and it gives always a positive number, the logarithm is
defined only for positive values of the independent variable y.

Logarithms are very useful because they translate products and divisions
into sums and differences, and power operations into multiplications. Simply
stated, by means of the logarithms it is possible to reduce the complexity of
certain operations. In fact, the properties E1-3 allow to write down the following
properties:

L1 :log, zy =log, x + log, y
L2 :log, r_ log, x —log, vy
Y

L3 :log,z¥ =ylog, x .

In sound processing, the most interesting logarithm bases are 10 and 2. The
base 10 is used to define the decibel (symbol dB) as a ratio of two quantities. If
the quantities z and y are proportional to sound pressures (e.g., rms level), we
say that z is wdB larger than y if x > y > 0 and

w =20 loglog . (17)

When the quantities z and y are proportional to a physical power (or intensity),
their ratio in decibel is measured by using a factor 10 instead of 20% in (17).

The base 2 is used in all branches of computer sciences, since most com-
puting systems are based upon binary representations of numbers (see the ap-
pendix [A.9). For instance, the number of bits that is needed to form an address
in a memory of 1024 locations is

log, 1024 = 10 . (18)

In Octave/Matlab, the logarithms of x having base 2 and 10 are indicated
with log2(x) and logl0(x), respectively. Fig. |6l shows the curves of the loga-
rithms in base 2 and 10. From these curves we can intuitively infer how, in any
base, log1 = 0, and how the function approaches —oco (minus infinity) as the
argument approaches zero.

Given a logarithm expressed in base a, it is easy to convert it in the logarithm
expressed in another base b. The formula that can be used is

logyz = —*— . (19)

A base of capital importance in calculus is the Neper number e, a transcen-
dental number approximately equal to 2.7183. As we will see in appendix [A.7.1}

81n acoustics [86], the power is proportional to the square of a pressure. Therefore, applying
property L3, we fall back into the definition (17).

Mathematical Fundamentals 125

0 0.5 1 15 2

Figure 6: Logarithms expressed in the fundamental bases 2 (solid line) and 10
(dashed line)

the exponentials expressed in base e are eigenfunctions for the derivative op-
erator. In other words, differential linear operators do not alter the form of
these exponentials. Moreover, the exponential with base e admits an elegant
translation into an infinite series of addenda

2 a8

@ _ r T T
e —1+1!+2!+3!+..., (20)
where n! is the factorial of n and is equal to the product of all integers ranging
from 1 to n. It can be proved that the infinite sum on the right-hand side of (20)

gives meaning to the exponential function even where its argument is complex.

A.6 Trigonometric Functions

Trigonometry describes the relations between angles and segments subtended
by these angles. The main trigonometric functions are easily visualized on the
complex plane, as in fig. [7, where the unit circle is explicitly represented.

1

Figure 7: Trigonometric functions on the complex plane

An angle 6 cuts on the unit circle an arc whose length is defined as the
measure in radians of the angle. Since the circumference has length 27, the 360°

eigenfunctions
factorial
radians

126 D. Rocchesso: Sound Processing

angle measures 27 radians, and the 90° angle corresponds to /2 radians. The
main trigonometric functions are:

Sine sinf = PQ
Cosine cosf = 0Q
Tangent tanf = PQ/0Q

It is clear from fig. [7l and from the Pythagoras’ theorem that, for any 6, the
identity
sin? @ + cos? 0 = 1 (21)

is valid.

The angle, considered positive if oriented anti clockwise, can be considered
the independent variable of trigonometric functions. Therefore, we can use Oc-
tave/Matlab to plot the main trigonometric functions, thus obtaining fig. 8.
These plots can be obtained as subplots of a same figure by the following Oc-
tave/Matlab script:

theta = [0:0.01:4%pi];

s = sin(theta);

c cos(theta);

t = tan(theta);

subplot(2,2,1); plot(theta,s);
axis([0,4*pi,-1,11);

grid; title(’Sine of an angle’);
xlabel(’angle [rad]’);
ylabel(’sin’);

% replot; % Octave only
subplot(2,2,2); plot(theta,c);
grid; title(’Cosine of an angle’);
xlabel(’angle [rad]’);
ylabel(’cos’);

% replot; % Octave only
subplot(2,2,3); plot(theta,t);
grid; title(’Tangent of an angle’);
xlabel(’angle [rad]’);
ylabel(’tan’);
axis([0,4*pi,-6,6]);

% replot; % Octave only

It is clear from the plots that the functions sine and cosine are periodic with
period 27, while the function tangent is periodic with period 7. Moreover, the
codomain of sine and cosine is limited to the interval [—1, 1], while the codomain
of the tangent takes values on all real axis. The tangent approaches infinity for
all the values of the argument that multiples of 7/2, i.e. in these points we have
vertical asymptotes.

As we can see from fig. [7, a complex number ¢, having magnitude p and
argument 6, can be represented in its real and imaginary parts as

c=x+1iy = pcosh +ipsind . (22)

Mathematical Fundamentals 127

Sine of an angle Cosine of an angle
1 1
0.5 0.5
%)
5 0 g o0
-0.5 -0.5
-1 -1
0 5 10 0 5 10 15
angle [rad] angle [rad]

Tangent of an angle

[}

0 5 10
angle [rad]

Figure 8: Trigonometric functions

A fundamental identity, that links trigonometry with exponential functions,
is the Euler formula
e = cosf +isinf (23)
which expresses a complex number laying on the unit circumference as an ex-
ponential with imaginary exponent?. When 6 is left free to take any real value,
the exponential (23)) generates the so-called complex sinusoid.
Any complex number ¢ having magnitude p and argument € can be repre-
sented in compact form as
c=pe'? (24)

and to it we can apply the usual rules of power functions. For instance, we can
compute the m-th power of ¢ as

™ = pmet™ = p™(cosmb + isinmh) (25)

thus showing that it is obtained by taking the m-th power of the magnitude and
multiplying by m the argument. The (25) is called De Moivre formula.

The order-m root of a number ¢ is that number b such that ™ = c. In
general, a complex number admits m order-m distinct complex rootst?. The De
Moivre formula establishes that' the order-m roots of 1 are evenly distributed

9The actual meaning of the exponential comes from the series expansion (20)

10For instance, 1 admits two square roots (1 and -1) and four order-4 roots (1, -1, i, -i).

11 The reader is invited to justify this statement by an example. The simplest non-trivial
example is obtained by considering the cubic roots of 1.

Euler formula
complex sinusoid
De Moivre formula

128 D. Rocchesso: Sound Processing

reg}ﬂar. functions along the unit circumference, starting from 1 itself, and they are separated by
derivative a constant angle 27 /m.
At this point, we propose some problems for the reader:

e Prove the following identities, which are corollaries of the Euler identity

0 ,—if
cosf= ¢ , (26)
2
6 —i6
e’ —e
in=—.7-— . 27
sin % (27)
e Prove the “most beautiful formula in mathematics” [59]
€T +1=0. (28)
e Prove, by means of the De Moivre formula, the following identities:
cos 20 = cos® § — sin? @, (29)
sin26 = 2sinf cos b . (30)

e Prove, by the representation of unit-magnitude complex numbers e*?, that
the following identities are true:

cos (0 + ¢) = cosfcos¢ —sinfsing , (31)

sin (6 + ¢) = cosfsin ¢ + sinf cos ¢ . (32)

A.7 Derivatives and Integrals

A.7.1 Derivatives of Functions

Given the function y = f(x) (for the moment, we only consider functions of
one variable), it might be interesting to find the places where local maxima and
minima are located. It is natural, in such a search, to focus on the slope of the
line that is tangent to the function curve, in such a way that local maxima and
minima are found where the slope of the tangent is zero (i.e., the tangent is
horizontal). This operation is possible for all regular functions, which are func-
tions without discontinuities and without sharp corners. Given this assumption
of regularity, the shape of the curve can be defined at any point, thus becom-
ing itself a function of the same independent variable. This function is called
derivative and is indicated with

’ dy
y=o- (33)
The notation (33) recalls how the local shape of a curve can be computed:
the tangent line is drawn, two distinct points are taken on this line, the ratio
between the differences of coordinates y and x of the points is formed. As we have
already seen in appendix [A.6l this operation corresponds to the computation of
the trigonometric tangent, whose argument is the angle formed by the tangent

Mathematical Fundamentals 129

line with the horizontal axis. This observation should have made the terminology
more clear.

In fig. 9/ the polynomial y = f(x) = 4+3x+222 —23 is plotted for z € [—4,4],
together with its derivative. As we can see, the derivative is positive where f(x)
is increasing, negative where f(x) is decreasing, and zero where f(z) has a local
extremal point.

y(x), dy/dx

100

50

-50

-100

Figure 9: A degree-3 polyonomial and its derivative

The Octave/Matlab script used to produce fig. 9 is the following:

x = [-4:0.01:4]; % domain
poli = [-1 2 3 4]; % coefficients of a degree-3 polynomial
y = polyval(poli, x); ' evaluation of the polynomial
% coefficients of the derivative of the polynomial
% polid = polyderiv(poli); % Octave only
polid = poli(l:length(poli)-1).*[length(poli)-1:-1:1];
% Matlab only (polyderiv is not available)
yp = polyval(polid, x); % evaluation of the derivative
plot(x, y, ’-’); hold on;
plot(x, yp, ’--’); hold off;
ylabel(’y, y¢’);
xlabel(’x’);
title(Cy(x), dy/dx’);
grid;
% replot; % Octave only

In the script there are two new directives. The first one is the function invoca-
tion polyval(poli, x), which returns the vector of values taken by the polyno-
mial, whose coefficients are specified in poli, in correspondence with the points
specified in x. The second directive is the function invocation polideriv(poli),
which returns the coefficient of the polynomial that is the derivative of poli.
This function is not available in Matlab, but it can be replaced by an explicity
calculation, as indicated in the script. The fact that the derivative of a polyno-
mial is still a polynomial is ensured by the derivation rules of calculus. Namely,
the derivative of a monomial is a lower-degree monomial given by the rule

d(az™)

e anz"t . (34)

130 D. Rocchesso: Sound Processing

composition of functions The derivative is a linear operator, i.e.,

e The derivative of a sum of functions is the sum of the derivatives of the
single functions

e The derivative of a product of a function by a constant is the product of
the constant by the derivative of the function

Another important property of the derivative is that it transforms the com-
position of functions in a product of functions. Given two functions y = f(x)
and z = g(y), the composed function z = g(f(x)) is obtained by replacing
the domain of the second function with the codomain of the first one 12. The
derivative of the composed function is expressed as

dz _ dz@

/ /
— = T) = — 35
which remarks the effectiveness of the notation introduced for the derivatives.
For the purpose of this book, it is useful to know the derivatives of the main
trigonometric functions, which are given by

dsi
Sdlz T = cosz (36)
d
Cd(: T = sz (37)
dtanx 1
— 38
dx cos? x (38)

Therefore, we can say that a sinusoidal function conserves its sinusoidal charac-
ter (it is only translated along the x axis) when it is subject to derivation. This
property comes from the fact, already anticipated, that the exponential with
base e is an eigenfunction for the derivative operator, i.e.,

de” N
il (39)
If we consider the complex exponential e’® as the composition of an exponential
function with a monomial with imaginary coefficient, it is possible to apply the
linearity of derivative to the composed function and derive the formulas (36)
and (37).

In order to derive (38) we also have to know the rule to derive quotients of
functions. In general, products and quotients of functions are derived according

to
W _ priayg(a) + s/ (10)
dlo@)/I@)] _ @)@~ @)
dx B 12(2) ' (41)

12For instance, logz? is obtained by squaring 2 and then taking the logarithm or, by the
property L3 of logarithms, ...

Mathematical Fundamentals 131

A.7.2 Integrals of Functions

For the purpose of this book, it is sufficient to informally describe the defined
integral of a function f(z),x € R as the area delimited by the function curve
and the horizontal axis in the interval between two edges a e b (see fig. 10).
When the curve stays below the axis the area has to be considered negative,
and positive when it stays above the axis. The defined integral is represented in
compact notation as

b
/ f(@)dz . (42)

and it takes real values.

f y=1(x)
a 0 \/ X

Figure 10: Integral defined as an area

In order to compute an integral we can use a limiting procedure, by approxi-
mating the curve with horizontal segments and computing an approximation of
the integral as the sum of areas of rectangles. If the segment width approaches
zero, the computed integral converges to the actual measure.

There is a symbolic approach to integration, which is closely related to func-
tion derivation. First of all, we observe that for the integrals the properties of
linear operators do hold:

e The integral of a sum of functions is the sum of integrals of the single
functions

e The integral of a product of a function by a constant is the product of the
constant by the integral of the function.

Then, we generalize the integral operator in such a way that it doesn’t give a
single number but a whole function. In order to do that, the first integration
edge is kept fixed, and the second one is left free on the = axis. This newly
defined operator is called indefinite integral and is indicated with

F(z) = /1 flu)du . (43)

The argument of function f(), also called integration variable, has been called
u to distinguish it from the argument of the integral function F().

The genial intuition, that came to Newton and Leibniz in the XVII century
and that opened the way to a great deal of modern mathematics and science,
was that derivative and integral are reciprocal operations and, therefore, they
are reversible. This idea is translated in a remarkably simple formula:

Flz) = f(x), (44)

defined integral
indefinite integral

primitive function
transforms

Laplace Transform
exponential function

132 D. Rocchesso: Sound Processing

which is valid for regular functions. The reader can justify the (44) intuitively
by thinking of the derivative of F'(x) as a ratio of increments. The increment at
the numerator is given by the difference of two areas obtained by shifting the
right edge by dx. The increment at the denominator is dx itself. Called m the
average value taken by f() in the interval having length dz, such value converges
to f(z) as dz approaches zero.

F(z) is also called a primitive function of f(z), where the article a subtends
the property that indefinite integrals can differ by a constant. This is due to the
fact that the derivative of a constant is zero, and it justifies the fact that the po-
sition of the first integration edge doesn’t come into play in the relationship (44)
between a function and its primitive.

At this point, it is easy to be convinced that the availability of a primitive
F(xz) for a function f(z) allows to compute the definite integral between any
two edges a and b by the formula

b
/ f(u)du = F(b) — F(a) . (45)

We encourage the reader to find the primitive functions of polynomials,
sinusoids, and exponentials. To acquire better familiarity with the techniques
of derivation and integration, the reader without a background in calculus is
referred to chapter VIII of the book [25].

A.8 Transforms

The analysis and manipulation of functions can be very troublesome opera-
tions. Mathematicians have always tried to find alternative ways of expressing
functions and operations on them. This research has expressed some transforms
which, in many cases, allow to study and manipulate some classes of functions
more easily.

A.8.1 The Laplace Transform

The Laplace Transform was introduced in order to simplify differential calculus.
The Laplace transform of a function y(t), t € R is defined as a function of the
complex variable s:

+oo
Yi(s) = / y(t)e"tdt,s €T C C, (46)
—o00
where I is the region where the integral is not divergent. The region I is always
a vertical strip in the complex plane, and within this strip the transform can be
inverted with)
LT e (a7)
y(t):—,/ Yir(s)e®*ds,t € R . 47
277.7 o—joo
The edges of the integration (47) indicate that the integration is performed
along a vertical line with abscissa o.
Example 1. The most important transform for the scope of this book is
that of the causal complex exponential function, which is defined as
et t>0,s50€C
MUZ{ ’

0 t<0 (48)

Mathematical Fundamentals 133

Such transform is calculated as®

+o0 +oo +oo
YL(s)=/ y(t)e_“’tdtz/ eSOte_Stdt:/ e (sms0)tgp —
0 0

—00
1 1

—(s—s0)00 —(5—50)0y _ 49

$— 580 (e ¢) 5—80 49)

and it is convergent for those values of s having real part that is larger than the
real part of so. We have seen in appendix|A.7 that the exponential function is an
eigenfunction for the operators derivative and integral, which are fundamental
for the description of physical systems. Therefore, we can easily understand the
practical importance of the transform (49).

#HH A

A central property of the Laplace transform is given by the transformation
of the derivative operator into a multiply by s:

WY . vas) ~ wlo)] (50)

where the term within square brackets is the initial value in the case that y(t) is
a causal function, i.e. y(t) = 0 for any ¢ < 0. Conversely, the integral is converted
into a division by the complex variable s:

/ y(u)du < %YL(S) . (51)

— 00

Since physics describes systems by means of equations containing derivatives
and integrals, these equations can be transformed into polynomial equations by
means of the Laplace transform, and the calculus turns out to be simplified.

Example 2. The second Newton’s law states that, for a body having mass
m, the relationship among force f, mass, acceleration a, displacement z, and
time ¢, can be expressed by

&Pz

f:ma:mﬁ, (52)

where the notation % indicates a second derivative, i.e. the derivative applied

twice. The relation (52)) is Laplace-transformed into the polynomial equation
Fr(s) = s>mXy(s) — [smx(0) +ma’(0)] , (53)

where the term within square brackets is determined by the initial condition of
displacement and velocity at time O.

#HH A

131n a rigorous treatment, the notation e~ (s—s0)o0

for t — oco.

should be replaced by a limiting operation

kernel of the Fourier
transform

spectrum
magnitude spectrum
phase spectrum

7Z transform

134 D. Rocchesso: Sound Processing

A.8.2 The Fourier Transform

The Fourier transform of y(t), ¢t € R, can be obtained as a specialization of the
Laplace transform in the case that the latter is defined in a region comprising
the imaginary axis. In such case we define!#

Y () 2Y1(9) (54)
or, in detail,
+oo
Y(Q) = / y(t)e 7%t (55)

where 5 indicates a generic point on the imaginary axis. Since the kernel of the
Fourier transform is the complex sinusoid (i.e., the complex eponential) having
radial frequency €2, we can interpret each point of the transformed function as
a component of the frequency spectrum of the function y(t). In fact, given a
value © = Qg and considered a signal that is the complex sinusoid y(t) = 71t
the integral (55) is maximized when choosing Qg = €, i.e., when y(t) is the
complex conjugate of the kernel 1%, The codomain of the transformed function
Y () belongs to the complex field. Therefore, the spectrum can be decomposed
in a magnitude spectrum and in a phase spectrum.

A.8.3 The Z Transform

The domains of functions can be classes of numbers of whatever kind and nature.
If we stick with functions defined over rings, particularly important are the
functions whose domain is the ring of integer numbers. These are called discrete-
variable functions, to distinguish them from functions of variables defined over
R or C, which are called continuous-variable functions.

For discrete-variable functions the operators derivative and integral are re-
placed by the simplest operators difference and sum. This replacement brings a
new definition of transform for a function y(n), n € Z:

+oo
Yz(2) = Z yn)z ", zel' CC. (56)

n=—oo

The transform (56)) is called Z transform and the region of convergence is a
ring’® of the complex plane. Within this ring the transform can be inverted.
Example 3. The Z transform of the discrete-variable causal exponential

+oo +oo 1

+o0o
V()= 3 ylm)z =Y e =3 (e) = s (57)
n=0

n=-—oo 0

MOften the Fourier transform is defined as a function of f, where 27f = Q
5Exercise: find the Fourier transform of the causal complex exponential (48), with sg =
a + j€0, and show that it has maximum magnitude for 2 = Q.
16 A ring here is the area between two circles and not an algebraic structure.
—+oo
1
"The latter equality in (57) is due to the identity E at = T—a |a] < 1, which can be
—a

n=0

verified by the reader with a = 1/2.

Mathematical Fundamentals 135

and it is convergent for values of z that are larger than e®(%0) in magnitude'®.

Similarly to what we saw for continuous-variable functions, the Fourier trans-
form for discrete-variable functions can be obtained as a specialization of the
Z transform where the values of the complex variable are restricted to the unit
circumference.

Y(w) =Yz(e), (58)
or, in detail,
+00]
Y(w)= Z y(n)e 7" . (59)

In this book, we use the symbol w for the radian frequency in the case of discrete-
variable functions, leaving €2 for the continuous-variable functions.

HH

A.9 Computer Arithmetics

A.9.1 Integer Numbers

In order to fully understand the behavior of several hardware and software tools
for sound processing, it is important to know something about the internal
representation of numbers within computer systems. Numbers are represented
as strings of binary digits (0 and 1), but the specific meaning of the string
depends on the conventions used. The first convention is that of unsigned integer
numbers, whose value is computed, in the case of 16 bits, by the following
formula

15
=0

where x; is the i-th binary digit starting from the right. The binary digits are
called bits, the rightmost digit is called least significant bit (LSB), and the
leftmost digit is called the most significant bit (MSB). For instance, we have

01000011001001105 = 2! + 2% 4 25 4+ 2% 4 29 4+ 21 = 17190 , (61)

where the subscript 2 indicates the binary representation, being the usual deci-
mal representation indicated with no subscript.

The leftmost bit is often interpreted as a sign bit: if it is set to one it means
that the sign is minus and the absolute value is given by the bits that follow.
However, this is not the representation that is used for the signed integers. For
these numbers the two’s complement representation is used, where the leftmost
bit is still a sign bit, but the absolute value of a negative number is recovered
by bitwise complementation of the following bits, interpretation of the result as
a positive integer, and addition of one. For instance, with four bits we have

1010, = — (01013 + 1) = —(5+ 1) = —6.. (62)

The two’s complement representation has the following advantages:

18R (z) is the real part of the complex number x

binary digits
unsigned integer
bits
least significant bit
most significant bit
signed integers
two’s complement
representation

136 D. Rocchesso: Sound Processing

bytes e there is only one representation of the zero!.

hexadecimal

fixed point e it has a cyclic structure: a unit increment of the largest representable
floating point positive number gives the negative number with the largest absolute value

e the sums between signed numbers are performed by simple bitwise op-
eration and without caring about the sign (a carry on the left can be
ignored)

We note that

e the negative number with the largest absolute value is 100. .. 02. Its abso-
lute value exceeds that of the largest positive number (i.e., 011...15) by
one

e the negative number with the smallest absolute value is represented by
111...15

e the range of the numbers representable in two’s complement with 16 bits
is [—215 215 — 1] = [-32768, 32767]

e the range of the numbers representable in two’s complement with 8 bits
is [-27,27 — 1] = [-128,127]

Often, in computer memory words and addresses are organized as collections
of 8-bit packets, called bytes. Therefore, it is useful to use a representation where
the bits are considered in packets of four units, each packet tacking integer values
from 0 to 15. This representation is called hexadecimal and, for the numbers
between 10 and 15, it uses the hexadecimal “digits” A, B, C, D, E, F. For
instance, a 16-bit binary number can be represented as

01001011001001102 = 48266 . (63)

A.9.2 Rational Numbers

We have two alternative possibilities to represent rational non-integer numbers:
e fixed point
e floating point

The fixed point representation is similar to the representation of integer
numbers, with te difference that we have a decimal point at a prescribed position.
The digits are divided into two sets: the integer part and the fractional part.
The 16-bit representation, without sign and with 3 bits of integer part is

2
r= > ax2, (64)

i=—13

and is obtained by multiplication of the integer number on 16 bits by 2713,
In the two’s complement representation, the operations can be done without
caring of the position of the decimal point, as we would be operating on integer

19Vice versa, the sign and magnitude representation has one positive and one negative zero

Mathematical Fundamentals 137

numbers. Often, the rational numbers are considered to be normalized to one,
i.e., to be limited to the range [—1,1). In such a case, the decimal point is placed
before the leftmost binary digit.

For the floating point representation we can follow different conventions. In
particular, the IEEE 754 floating-point single-precision numbers obey to the
following rules

e the number is represented as
laaxx...zg x 299Y2 (65)

where x are the binary digits of the mantissa and y are the binary digits
of the exponent

e The number is represented on 32 bits according to the following block
decomposition

— bit 31: sign bit
— bits 23-30: exponent yy...y in biased representation??, from the
most negative 00...0 to the most positive 11...1

— bits 0-22: mantissa in unsigned binary representation

The IEEE 754 standard of double-precision floating-point numbers uses 11 bits
for the exponent and 52 bits for the mantissa.

It should be clear that both the fixed- and the floating-point representations
take a subset of rational numbers. Fixed-point numbers are equally spaced be-
tween the minimum and the maximum representable value with a quantization
step equal to 27¢, where d is the number of digits on the right of the deci-
mal point. Floating-point numbers are unevenly distributed, being more sparse
for large values of the exponent and more dense for little exponents. Floating-
point numbers have the possibility to represent a large range, from 2 x 10738 to
2 x 1038 in single precision, and from 2 x 1073%® to 2 x 103%8 in double precision.
Therefore, it is possible to do many computations without worrying of errors
due to overflow. Moreover, the high density of small numbers reduces the prob-
lems due to the quantization step. This is paid in terms of a more complicated
arithmetics.

20The bias is 127. Therefore, the exponent 1 is coded as 1 + 127 = 128 = 100000002. The
biased representation simplifies the bit-oriented sorting operations.

mantissa

exponent

biased representation
quantization step

138 D. Rocchesso: Sound Processing

Appendix B

Tools for Sound Processing

(with Nicola Bernardini)

Audio signal processing is essentially an engineering discipline. Since engineer-
ing is about practical realizations the discipline is best taught using real-world
tools rather than special didactic software. At the roots of audio signal pro-
cessing there are mathematics and computational science: therefore we strongly
recommend using one of the advanced maths softwares available off the shelf.
In particular, we experienced teaching with Matlab, or with its Free Software
counterpart Octave L. Even though much of the code can be ported from Matlab
to Octave with minor changes, there can still be some significant advantage in
using the commercial product. However, Matlab is expensive and every special-
ized toolbox is sold separately, even though an less-expensive student edition is
available. On the other hand, Octave is free software distributed under the GNU
public license. It is robust, highly integrated with other tools such as Emacs for
editing and GNUPIlot for plotting.

For actual sound applications, there are at least three other categories of
softwares for sound synthesis that it is worth considering: languages for sound
processing, interactive graphical building environments, and inline sound edi-
tors.

When sound applications are targeted to the market of information appli-
ances, it is likely that the processing algorithms will be implemented on low-cost
hardware specifically tailored for typical signal-processing operations. Therefore,
it is also useful to look at how signal-processing chips are usually structured.

B.1 Sounds in Matlab and Octave

In Octave/Matlab, monophonic sounds are simply one-dimensional vectors (rows
or columns), so that they can be transformed by means of matrix algebra, since
vectors are first—class variables. In these systems, the computations are vector-
ized, and the gain in efficiency is high whenever looped operations on matrices
are transformed into compact matrix-algebra notation [9]. This peculiarity is
sometimes difficult to assimilate by students, but the theory of matrices needed

Thttp: //www.octave.org

139

Matlab
Octave

http://www.octave.org�

140 D. Rocchesso: Sound Processing

in order to start working is really limited to the basic concepts and can be
condensed in a two-hours lecture.

Processing in Octave/Matlab usually proceeds using monophonic sounds, as
stereo sounds are simply seen as couples of vectors. It is necessary to make clear
what the sound sample rate is at each step, i.e., how many samples are needed
to produce one second of sound.

Let us give an example of how we can create a 440H z sinusoidal sound,
lasting 2 seconds, and using the sample rate Fy, = 44100H z:

f 440; % pitch in Hz

Fs= 44100; 7 sample rate in Hz

1 =2; % soundlength in seconds

Y = sin(2*pi*f/Fsx[0:Fs*1]); % sound vector

The sound is simply defined by application of the function sin() to a vector
of Fs*1 + 1 elements (namely, 88200 elements) containing an increasing ramp,
suitably scaled so that f cycles are represented in F's samples.

Once the sound vector has been defined, one may like to listen to it. On
this point, Matlab and Octave present different behaviors, also dependent on
the machine and operating system where they are running. Matlab offers the
function sound() that receives as input the vector containing the sound and,
optionally, a second parameter indicating the sample rate. Without the second
parameter, the default sample rate is 8192Hz. Up to version 4.2 of Matlab, the
number of reproduction bits was 8 on a Intel-compatible machine. More recent
versions of Matlab reproduce sound vectors using 16 bits of sample resolution.
In order to reproduce the sound that we have produced with the above script
we should write

sound (Y, Fc);

Up to now, in the core Octave distribution the function that allows to pro-
duce sounds from the Octave interpreter is playaudio (), that can receive “file-
name” and “extension” as the first and second argument, respectively. The
extension contains information about the audio file format, but so far only the
formats raw data linear and mu-law are supported. Alternatively, the argument
of playaudio can be a vector name, such as Y in our example. The reproduction
is done at 8 bits and 8192 Hz, but it would be easy to modify the function so
that it can use better quantizations and sample rates. Fortunately, there is the
octave-forge project 2 that contains useful functions for Octave which are not in
the main distribution. In the audio section we notice the following interesting
functions (quoting from the help lines):

sound(x [, £s]) Play the signal through the speakers. Data is a matrix with
one column per channel. Rate fs defaults to 8000 Hz. The signal is clipped
to [-1, 1].

soundsc(x, fs, limit) or soundsc(x, fs, [lo, hi]) Scale the signal so
that [min(x), max(x)] — [-1, 1], then play it through the speakers at 8000
Hz sampling rate. The signal has one column per channel.

2 lhttp://www.sourceforge.net

http://www.sourceforge.net�

Tools for Sound Processing 141

[x, fs, sampleformat] = auload(’filename.ext’) Reads an audio wave-
form from a file. Returns the audio samples in data, one column per chan-
nel, one row per time slice. Also returns the sample rate and stored format
(one of ulaw, alaw, char, short, long, float, double). The sample value will
be normalized to the range [-1,1) regardless of the stored format. This
does not do any level correction or DC offset correction on the samples.

ausave(’filename.ext’, x, fs, format) Writes an audio file with the ap-
propriate header. The extension on the filename determines the layout of
the header. Currently supports .wav and .au layouts. Data is a matrix of
audio samples, one row time step, one column per channel. Fs defaults to
8000 Hz. Format is one of ulaw, alaw, char, short, long, float, double

B.1.1 Digression

In Matlab versions older than 5, the function sound had a bug that is worth
analyzing because it sheds some light on risks that may be connected with the
internal representations of integer numbers. Let us construct a sound as a casual
sequence of numbers having values 1 and —1:

Fs = 8192;
W=rand(size(0:Fs)) - 0.5;
for i = 1:length(W)
if (W(1)>0) W(i) = 1.0;
else W(i) = -1.0;
end;
end;

In order to be convinced that such sound is a spectrally-rich noise we can
plot its spectrum, that would look like that of fig. [1.

Surprisingly enough, in old Matlab versions on Intel-compatible architectures
if the sound W was played using sound (W) the audio outcome was, at most, a
couple of clicks corresponding to the start and end transients.

50 T T T T T T T T

linel —
45 W
40 ‘

35

30 i

dB

25

20

5 ! ! ! ! ! ! ! !

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Hz

Figure 1: Spectrum of a random 1 and -1 sequence

142 D. Rocchesso: Sound Processing

smoothing This can be explained by thinking that, on 8 bits, 256 quantization levels
can be represented. A number between —1.0 and +1.0 is recasted into the 8-
bits range by taking the integer part of its product by 128. The problem is
that, when the resulting integer number is represented in two’s complement, the
number +1.0 is not representable since, on 8 bits, the largest positive number
that can be represented is 127. Due to the circularity of two’s complement
representation, the multiplication 1.0 x 128 produces the number —128, which
is also the representation of —1.0. Therefore, the audio device sees a constant
sequence of numbers equal to the most negative representable number, and it
does not produce any sound, except for the transients due to the initial and final
steps. Once the problem had been discovered and understood, the user could
circumvent it by rescaling the signal in a slightly larger range, e.g., [-1, 1.1].
In the Matlab environment the acquisition and writing of sound files from
and to the disk is done by means of the functions auread (), auwrite (), wavread (),
e wavwrite (). The former couple of functions work with files in au format, while
the latter couple work with files in the popular wav format. In earlier version
of Malab (before version 5) these functions only dealt with 8-bit files, thus pre-
cluding high-quality audio processing. For users of old Matlab versions, two
routines are available for reading and writing 16-bit wav files, called wavrl6.m
and lwavw16.m|, written by F. Caron and modified to ensure Octave compatibil-
ity. An example of usage for wavr16() is

[L,R,format] = wavri16(’audiofile.wav’)

that returns the right and left channels of the file audiofile.wav, in the
L and R vectors, respectively. The two vectors are identical if the file is mono-
phonic. The returned vector format has four components containing format
information: the kind of encoding (indeed only PCM linear is recognized), the
number of channels, the sample rate, and the number of quantization bits.

An example of invocation of the function wavw16() is

wavwl6 (’audiofile.wav’, M, format)

where format is, again, a four-component vector containing format informa-
tion, and M is a one- or two-column matrix containing the channels to be written
in a monophonic or stereophonic file.

Since sounds are handled as monodimensional vectors, sound processing
can be reduced in most cases to vectorial operations. The iterative, sample-by-
sample processing is quite inefficient with interpreters such as Octave or Matlab,
that are optimized to handle matrices. As an example of elementary processing,
consider a simple smoothing operation, obtained by substitution of each input
sound sample with the average between itself and the following sample. Here is
a script that does this operation in Octave, after having loaded a monophonic
sound file:

[L,R,format] = wavrl6(’mal.wav’);
S = (L + [L(2:1length(L)); 0]) / 2; %°‘smoothed’’ sound

The operation is expressed in a very compact way by summation of the vector
L with the vector itself left-shifted by one position®. The smoothing operation
may be expressed iteratively as follows:

3The last element is set to zero to fill the blank left by the left-shift operation on L. The
reader can extend the example in such a way that the input sound is overlapped and summed
with its echo delayed by 200ms.

http://www.sci.univr.it/~rocchess/htmls/corsi/�
http://www.sci.univr.it/~rocchess/htmls/corsi/�

Tools for Sound Processing 143

[L,R,format] = wavrl6(’mal.wav’);
S =1L/2;

for i=1:length(L)-1

S(i) = (L(i) + L(i+1))/2;

end;

The code turns out to be less compact but, probably, more easily under-
standable. However, the running time is significantly higher because of the for
loop.

In the Matlab environment, there is a collection of functions called the Signal
Processing Toolbox. In the examples of this book we do not use those functions,
preferring public-domain routines written for Octave, possibly modified to be
usable within Matlab. One such function is function is stft.m, that allows to
have a time-frequency representation of a signal. This can be useful for time-
frequency processing and representation, as in the script

SS = stft(S);
mesh (20*10g10(8S)) ;

whose result is a 3D representation of the time-frequency behavior of the
sound contained in S.

B.2 Languages for Sound Processing

In this section we briefly show how sounds are acquired and processed using
languages that have been explicitely designed for sound and music processing.

The most widely used language is probably Csound, developed by Barry Ver-
coe at the Massachusetts Institute of Technology and available since the middle
eighties. Csound is a direct descendant of the family of Music-N languages that
was created by Max Mathews at the Bell Laboratories since the late fifties.
In this family, the language of choice for most computer-music composers be-
tween the sixties and the eighties was Music V, that established a standard in
symbology of basic operators, called Unit Generators (UG).

According to the Music-N tradition, the UGs are connected as if they were
modules of an analog synthesizer, and the resulting patch is called an instrument.
The actual connecting wires are variables whose names are passed as arguments
to the UGs. An orchestra is a collection of instruments. For every instrument,
there are control parameters which can be used to determine the behavior of
the instrument. These parameters are accessible to the interpreter of a score,
which is a collection of time-stamped invocations of instrument events (called
notes). Fig.[2/shows a schematic description of how Music-V-like languages work:
a) is a Music-V source text* while b) is its graphical representation. The or-
chestra/score metaphor, the decomposition of an orchestra into non-interacting
instruments, and the description of a score as a sequence of notes, are all design
decisions which were taken in respect of a traditional view of music. However,
many musical and synthesis processes do not fit well in such a metaphorical
frame. As an example, consider how difficult it is to express modulation pro-
cessing effects that involve several notes played by a single synthesis instrument
(such as those played within a single violin bowing): it would be desirable to have

4picked up from [56) page 45]

Signal Processing Toolbox
Unit Generators (UG)
patch

instrument

orchestra

parameters

score

notes

http://www.sci.univr.it/~rocchess/htmls/corsi/�

per-thread processing

Nyquist language
Common Lisp Music
SAOL

144 D. Rocchesso: Sound Processing

INS o‘nl P D
osc (P51 {P6}(B2}{F2] P30 | ;
ouT iB2! B1 ;
END 7§~ 7!,444[
TGEN 0 1{2!0 0 .999 §0 .99[205 -.999 306 -.999
461 0 511 ;
com P2 P3 P4 P5 6_. ;i
NOT 0.00 1 .50 {125} i i
NOT 0.75

17 250

0
0 1
NOT 1.00 1 .50 500 8.04
NOT 1.75 1 .17 1000 8.05 P5 P6
NOT 2.00 1 .95 2000 8.07 ;
NOT 3.00 1 .95 1000 8.04
NOT 4.00 1 .50 500 8.05
NOT 4.75 1 .17 500 8.05 ; &
NOT 5.00 1 .50 700 8.05 ; B
NOT 5.75 1 .17 1000 9.00 ;
NOT 6.00 1 1.95 2000 8.11 ;
TER 8.00 ;
a) b)

Figure 2: Music-V file description

the possibility of modifying the instrument state as a result of a chain of weakly
synchronized events (that is, to perform some sort of per-thread processing).
Instead, languages such as Music V rely on special initialization steps encoded
within instruments to handle articulatory gestures involving several pitches.

Other models have been proposed for dealing with less rigid descriptions
of sound and music events. One such model is tied to the Nyquist language ,
developed by the team of Roger Dannenberg at the Carnegie Mellon Univer-
sity [28]. This language provides a unified treatment of music and sound events
and is based on functional programming (Lisp language). Algorithmic manipu-
lations of symbols, processing of signals, and structured temporal modifications
are all possible without leaving a consistent framework. In particular, Nyquist
exploits the idea of behavioral abstraction, i.e. time-domain transformations
are interpreted in an abstract sense and the details are encapsulated in de-
scriptions of behaviors [27]. In other words, musical concepts such as duration,
onset time, loudness, time stretching, are specified differently in different UGs.
Modern compositional paradigms benefit from this unification of control signals,
audio signals, behavioral abstractions and continuous transformations.

Placing some of the most widely used languages for sound manipulation
along an axis representing flexibility and expressiveness, the lower end is prob-
ably occupied by Csound while the upper one is probably occupied by Nyquist.
Another notable language which lies somewhere in between is Common Lisp
Music @ (CLM), which was developed by Bill Schottstaedt as an extension of
Common Lisp [87]. If CLM is not too far from Nyquist (thanks to the underlying
Lisp language) there is another language closer to the other edge of the axis,
which represents a “modernization” of Csound. The language is called SAOL 7
and it has been adopted as the formal specification of Structured Audio for the
MPEG-4 standard [107]. SAOL orchestras and scores can be translated into C
language by means of the software translator SFRONT ® developed by John
Lazzaro and John Wawrzynek at UC Berkeley.

The simple examples that we are presenting in this book are written in

Shttp://www.cs.cmu.edu/ rbd /nyquist.html

6 http://www-ccrma.stanford.edu/software/clm/
“http://www.saol.net
8http://www.cs.berkeley.edu/ lazzaro/sa/

http://www.cs.cmu.edu/~rbd/nyquist.html�
http://www-ccrma.stanford.edu/software/clm/�
http://www.saol.net�
http://www.cs.berkeley.edu/~lazzaro/sa/�

Tools for Sound Processing 145
Csound, and realizations in CLM and SAOL are presented for comparison.

B.2.1 Unit generator

The UGs are primitive modules that produce, modify, or acquire audio or con-
trol signals. For audio signal production, particularly important primitives are
those that read tables (table) and run an oscillator (oscil), while for producing
control signals the envelope generators (1ine) are important. For sound modi-
fication, there are UGs for digital filters (reson) and time-domain processing,
such as delays (delay). For sound acquisition, there are special UGs (soundin).

According to the Music-V tradition, several UGs can be connected to form
complex instruments. The connections are realized by means of variables. In
Csound the instruments are collected in a file called orchestra. The instrument
parameters can be initialized by arguments passed at invocation time, called
p-fields. Invocations of events on single instruments are considered to be notes,
and they are collected in a second file, called score. The dichotomy between
orchestra and score, as well as the subdivision of the orchestra into autonomous
non-interacting entities called instruments, are design choices derived from a
rather traditional view of music composition. We have already mentioned how
certain kinds of operation with synthesis instruments do not fit well in this view.

The way the control and communication variables are handled in instruments
made of several UGs is another crucial aspect to understand the effectiveness
of a computer-music language. In Csound, variables are classified as: audio-rate
variables and control-rate variables. The former can vary at audio rate, the latter
are usually band-limited to a lower rate. In this way it is possible to update the
control variables at a lower rate, thus saving some computations. Following
the treatment of Roads [78], such run-time organization is called block-oriented
computation, as opposed to sample-oriented computation. This is not to say
that block-oriented computation are vectorized, or intrinsically parallel on data
blocks, but rather that control variables are not loaded in the machine registers
at each audio cycle.

The split of variables between audio rate and control rate does not offer any
semantic benefit for the composer, but it is only a way to reach higher compu-
tation speeds. Vice versa, sometimes the sound designer is forced to choose a
control rate equal to the audio rate in order to avoid some artifacts. Namely,
this occurs in computational structures with delayed feedback loops?. On the
other hand, vectorized computations are an alternative way to arrange the op-
erations, that in many cases can lead to compact and efficient code, as it was
shown in the smoothing example of section B.1.

In the languages that we are considering there are UGs for time-frequency
processing that operate on a frame basis. Typically, the operations on a single
frame can be vectorized and we can have block-oriented computations when the
control rate coincides with the frame rate.

Csound also presents a third family of variables, the initialization variables,
whose value is computed only when a note starts in the score. In order to
partially overcome the problems of articulation between different notes, Csound

9Consider the case, pointed out to my attention by Gianantonio Patella, of a CSound
instrument with a feedback delay line. Since the UG delay is iterated seamlessly for a number
of times equal to the ratio between sample rate and control rate, the effective length of the
delay turns out to be extended by such number of samples.

orchestra

p-fields

score

audio-rate

control-rate

block-oriented computation

sample-oriented
computation

frame
frame rate
initialization

146 D. Rocchesso: Sound Processing

legato allows to hold a note (ihold), in such a way that the following note of the
same instrument can be treated differently during the initialization (tigoto).
For instance, these commands can be used to implement a smooth transition
between notes, as in a legato.

An interesting aspect that has to be considered is how the sound-processing
languages acquire pre-recorded material for processing. In Csound there is the
primitive soundin that acquires the samples from an audio file for as long as the
note that invoked the instrument remains active. Alternatively, with the function
table statement f a table can be loaded with the content of an audio file, and
such table can be read later on by UGs such as table or oscil. This strategy
allows to perform important modifications, such as transposition, stretching,
grain extraction, already at the reading stage.

The Csound architecture, largely inherited from Music V, is more oriented
toward sound synthesis than sound manipulation. For instance, a reverb contin-
ues to produce meaningful signal even when its input has ceased to be active,
and this fact has produced the practice to call the UG reverb by means of a
separate instrument that takes its input from global orchestra variables. On the
other hand, in CLM sound transformations are more clearly stated since any
filter can have a sound file name among its parameters. For CLM, a reverb is any
filter whose invocation is made explicit as an argument of a sound-generation
function.

B.2.2 Examples in Csound, SAOL, and CLM

Let us face the problem of reading an audio fragment memorized in the file
“march.aiff” and to process it by means of a linearly-increasing transposition a
100ms echo.

A Csound solution is found in the following orchestra and score files:

; Sweep.orc

sr = 22000 ;audio rate
kr = 220 ;control rate
ksmps = 100 ;audio rate / control rate

nchnls = 1

;number of channels

instr 1 ;sound production

ilt = ftlen(1)/sr ;table length in samples

kfreq 1line 1, p3, p4 ;linear envelope from 1 to p4 in p3 seconds

gas loscil 25000, kfreq/ilt, 1, 1/ilt, 0, 1, ftlen(l1)

;frequency-varying oscillator on table 1

endin
instr 2 ;sound processing

as delay gas, p4d ;p4 seconds delay on global variable gas
out pb*as + gas ;input + delayed and attenuated signal
endin

; sweep.sco
; table stored from sound
; # time size file

file

skip format chan

Tools for Sound Processing 147

f1 0 1048576 1 "march.aiff" O 0 1
; Pl p2 p3 p4 pb

i1 0 256 2.0 ;sound-production note
i2 0 25 0.11.0 ;sound-processing note

The code can be easily understood by means of the comments and by refer-
ence to the Csound manual [106]. We only observe that both the sound produc-
tion and processing are activated by means of notes on different instruments.
The communication between the two instruments is done by means of the global
variable gas. The audio file is preliminarly loaded in memory by means of the
statement f of the score file. The table containing the sound file is then read by
instrument 1 using the UG loscil, that is a sort of sampling device where the
reading speed and iteration points (loops) can be imposed.

To understand how SAOL is structurally similar to CSound but syntacti-
cally more modern, we propose some SAOL code for the same solution to our
processing problem. The orchestra is

global {
outchannels 1;
srate 22000;
krate 220;

table tabl(soundfile, -1, "march.aiff");

route (busl, generator);

// delay amplitude
send (effect; 0.1, 1.0; busl);
}

instr generator(env_ext) {
// env_ext: target point of the linear envelope (from 1 to env_ext)

ksig freq;

asig signa;

imports table tabl;
ivar lentab;

lentab = ftlen(tabl)/s_rate; //table length in seconds

freq = kline(l, dur, env_ext);
signa = oscil(tabl, freq/lentab, 1);
output(signa);

}

instr effect(del,ampl) {

// del: echo delay in seconds

// ampl: amplitude of the echo
asig signa;

signa = delay(input, del);
output (input + ampl*signa);

loops

148 D. Rocchesso: Sound Processing

audio busses }
Digital Signal Processor
(DSP) while the score reduces to the line
0.00

generator 25.0 2.0

In SAOL, variable names, parameters, and instruments are handled more
clearly. The block enclosed by the keyword global contains some features shared
by all instruments in the orchestra, such as the sample and control rate, or the
audio files that are accessed by means of tables. Moreover, this section contains
a configuration of the audio busses where signal travels. In the example the
generator instrument sends its output to the bus called bus1. From here, signals
are sent to the effect unit together with the processing parameters del and
ampl, In the global section it is possible to program arbitrarily-complex paths
among production and processing units.

Let us examine how the same kind of processing can be done in CLM. Here
we do not have an orchestra file, but we compose as many files as there are
generation or processing instruments. Every instrument is defined by means of
the LISP macro definstrument, and afterwords it can be compiled and loaded
within the LISP environment as a primitive function. The code segment that is
responsible for audio sample generation is enclosed within the Run macro, that is
expanded into C code at compilation time. In the past, the Run macro could also
generate code for the fixed-point Digital Signal Processor (DSP) Motorola 56000,
that was available in NeXT computers, in order to speed up the computations.
In contemporary general-purpose computers there is no longer an advantage in
using DSP code, as the C-compiled functions are very efficient and they do not
suffer from artifacts due to fixed-point arithmetics.

Here is the CLM instrument that reads an audio file at variable speed:

(definstrument sweep (file &key
;5 parameters:
;; DURATION of the audio segment to be acquired (seconds)
;3 AMPSCL: amplitude scaling
;3 FREQ-ENV: frequency envelope
(duration 1.0) (ampscl 1.0) (freq-env ’(0 1.0 100 1.0)))

(let ((f (open-input file))) ;; input file assigned to variable f
(letx*
((beg 0) ;; initial inst.
(end (+ beg (floor (* sampling-rate duratiomn)))) ;; final inst.
(freq-read-env (make-env :envelope freq-env)) ;; freq. env.

(sr-convert-a (make-resample :file f :srate 1.0))
;; sr-convert-a: var. containing the acquired file
(out-sig-a 0.0)) ;3 dummy var.
(Run
(loop for i from beg to end do
(setf out-sig-a (* ampscl (resample sr-convert-a
(env freq-read-env))))
;; transposition envelope (in octaves)
(outa i out-sig-a)
(if *reverb* (revout i out-sig-a))

2))))

Tools for Sound Processing 149

The reader can notice how, within the parentheses that follow the instrument
name (sweep), there are mandatory parameters, such as the file to be read,
and optional parameters, such as duration, ampscl, and freq-env. For the
optional parameters a default value is given. It is interesting how several kinds of
objects can be used as parameters, namely strings (file), numbers (duration,
ampscl), or envelopes with an arbitrary number of segments (freq-env).

The intermediate code section contains various definitions of variables and
objects used by the instrument. In this section envelopes and UGs are prepared
to act as desired. The Run section contains a loop that is iterated for a number
of times equal to the samples to be produced. This loop contains the signal
processing kernel. The read at increasing pace is performed by the UG resample,
whose reading step is governed by the envelope passed as a parameter. The last
code line sends the signal to the post-processing unit reverb, when that is
present. In our example, the post-processing unit is a second instrument, called
eco:

(definstrument eco
(startime dur &optional (volume 1.0) (length 0.1))
(let*x (
(d1 (make-zdelay (* sampling-rate length)))
(vol volume)
(beg 0)
(end (+ beg (floor (* dur sampling-rate)))))
(run
(loop for i from beg to end do
(outa i (* vol (zdelay dl (revin i))))
))
)

The eco instrument will have to be compiled and loaded as well. After, the
entire processing will be activated by

(with-sound (:reverb eco :reverb-data(1.0 0.1))
(sweep "march.wav" :duration 25 :freq-env ’(0 0.0 100 1.0)))

The macro with-sound operates a clear distinction between sound produc-
tion and modification, as any kind of modification is considered as a reverb.

The three sound-processing examples written in CSound, CLM, and SAOL
produce almost identical resultst?. The [resulting sound waveshape and its sono-
gram are depicted in fig. [3. This figures has been obtained by means of the
analysis program snd, a companion program of CLM (see section B.4). From
the sonogram we can visually verify that the audio file is read at increasing
speed and that such read does not contain discontinuities.

default
post-processing unit
sonogram

B.3 Interactive Graphical Building Environments

In recent times, several software packages have been written to ease the task
of designing sound synthesis and processing algorithms. Such packages make
extensive use of graphical metaphors and object abstraction reducing the pro-
cessing flow to a number of small boxes with zero, one or more audio/control

10Subtle differences are possible due to the diversity of implementation of the UGs.

http://www.sci.univr.it/~rocchess/sounds/sweep.wav�

graphical building
environments

rapid prototyping tools

real-time processing

audio stream

MIDI

Kyma/Capybara

ARES/MARS

Scope

Max

150 D. Rocchesso: Sound Processing

4000

4 ST AT ;:.'-._.."..;;;.f._.‘_t
oo PR E R R AT TRTTE FErE

T
0.0 time 20.0 0.0 time 20.0

Figure 3: Waveshape and sonogram of a sound file that is echoed and read at
increasing speed

inputs and outputs connected by lines, thus replicating once again the old and
well known modular synthesizer interface taxonomy.

The steady increase in performance of modern computers has allowed the
interactive use of these graphical building environments, that become effectively
rapid prototyping tools. The speed of modern processors allow sophisticated sig-
nal computations at a rate faster than the sampling rate. For instance, if the
sampling rate is Fs = 44.1kHz, it is possible that the processor is capable to pro-
duce one or more sound samples in a time quantum 7' = 1/F; = 22.6usec. If such
condition holds, even the languages of section B.2/ can be used for real-time pro-
cessing, i.e., they can produce an audio stream directly into the analog-to-digital
converters. The user may alter this processing by control signals introduced by
external means, such as MIDI messages'!.

Initially, many interactive graphical building packages where created to tame
the daunting task of writing specialized code for dedicated signal processing
tasks. In these packages, each object would contain some portion of DSP as-
sembly code or microcode which would be loaded on-demand in the appropriate
DSP card. With a graphical interface the user would easily construct, then,
complex DSP algorithms with detailed controls coming from different sources
(audio, MIDI, sensors, etc.). Several such applications still exist and are fairly
widely used in the live-electronics music field (just to quote a few of the latest (re-
maining) ones): the Kyma/Capybara environment written by Carla Scaletti and
Kurt Hebel 12, the ARES/MARS environment [7, 11} 21, 6] developed by IRIS-
Bontempi, and the Scope package produced by the german firm Creamware 12,

While these specialized packages for music composers and sound designers
are bound to disappear with the rapid and manifold power increase of general
purpose processors:¥, the concept of graphic object-oriented abstraction to eas-
ily visually construct signal processing algorithms has spur an entire new line
of software products.

The most widespread one is indeed the Max package suite conceived and
written by Miller Puckette at IRCAM. Born as a generic MIDI control logic
builder, this package has known an enormous expansion in its commercial ver-

HMIDI (Musical Instrument Digital Interface) is a standard protocol for communication of
musical information

12 Thttp: //www.symbolicsound.com

13 lhttp:/ /www.creamware.de

14This is not a personal but rather a classic darwinian consideration: the maintenance costs
of such packages added to the intrinsinc tight binding of such code with rapidly obsolescent
hardware exposes them to an inevitable extinction.

http://www.symbolicsound.com�
http://www.creamware.de�

Tools for Sound Processing 151

sion produced by Cycling '74 and maintained by Dave Zicarelli *°. A recent
extension to Max, written by Zicarelli, is MSP which features real-time signal
processing objects on Apple PowerMacs (i.e. on general-purpose RISC architec-
tures). Another interesting path is being currently followed by Miller Puckette
himself who is the principal author of Pure Data (pd) [71], an open-source public
domain counterpart of Max which handles MIDI, audio and graphics (extensions
by Mark Danks '%). pd is developed keeping the actual processing and its graph-
ical display as two cooperating separate processes, thus enhancing portability
and easily modeling its processing priorities (sound first, graphics later) on the
underlying operating system thread/task switching capabilities. pd is currently
a very early-stage work-in-progress but it already features most of the graphic
objects found in the experimental version of Max plus several audio signal pro-
cessing objects. Its tcl/tk graphical interface makes its porting extremely easy

(virtually “no porting at all”)L”.

File Edit Put Find Windows Audio Help
frequency Control Path A
control ,:‘M'pli

ncontrols:

convert to i 0.11 -
signal data abt
oscillator envelope

litude generator
st] Fmmmmrmms---- Auidio Path
andio t.'lutput'

i :

g -

vasual =

nfgtmation -

1: " ;—SS

0.1 2001/11/18 15:39:26 ¥
S R P

Audio Modules

Figure 4: A Pd screen shot

B.3.1 Examples in ARES/MARS and pd

While the use of systems that are based on specialized digital signal processors is
fading out in the music and sound communities, those kinds of chips still play a
crucial role in communication and embedded systems. In general, wherever one
needs signal processing capabilities at a very low cost, digital signal processors
come into play, with their corollary of peculiar assembly language and parallel
datapaths. For this reason, it is useful to look at the ARES/MARS workstation

15 lhttp: //www.cycling74.com

16 Thttp://www.danks.org/mark/GEM/

17 Pure Data currently runs on
boxes and on Windows NT platforms;
http://crca.ucsd.edu/ msp/software.html

Graphics workstations, on Linux
and binaries can be found at

Silicon
sources

MSP

Pure Data

pd

digital signal processors

http://www.cycling74.com�
http://www.danks.org/mark/GEM/�
http://crca.ucsd.edu/~msp/software.html�

analog-to-digital converter
digital-to-analog converter
memory buffers
harmonizer

152 D. Rocchesso: Sound Processing

as a prototypical example of such systems, and to see how our problem of sound
echoing and continuous transposition would have been solved with such system.

In the IRIS ARES/MARS workstation there is a host computer, that is used
to program the audio patches and the control environments, a micro-controller
that uses its proprietary real-time operating system to handle the control signals,
and one or more digital signal processors that are used to process the signals
at audio rate. The audio patch that solves our processing problem is shown in
fig. 5l The input signal is directly taken from an analog-to-digital converter, and
the output signal is sent to a digital-to-analog converter.

‘asp__Final:
F

) (=)

41

Figure 5: MARS patch for echoing and linearly-increasing transposition

There are two main blocks: the first, called HARMO, is responsible for input
signal transposition. The second, having a small clock as an icon, produces the
echo. Since we want a gradually-increasing transposition, the HARMO block is
controlled by a slowly-varying envelope, updated at a lower rate, programmed
to ramp from trasp_iniziale to trasp_finale. The transposed signal goes
into the delay unit and produces the echo that gets summed to the transposed
signal itself before being sent to the output. Among the parameters of the HARMO
and delay units, there are those responsible for memory management, since
both units use memory buffers that must be properly allocated, as explained in
section B.5.

Figure 6l shows a possible solution to our sweep-and-echo problem using pd.
Again, we have a harmo block that performs the pitch transposition. However,
in pd this harmonizer is not a native module, but it is implemented in a separate
patch by means of cross-fading delay lines [110]. Similarly, the ramped_phase
block encapsulates the operations necessary to perform a one-pass read of the
wavetable containing the sound file. The subgraph in the lower right corner
represents the linear increase in pitch transposition, obtained by means of the
line UG and used by the harmo unit.

Tools for Sound Processing 153

Loadbang

readfile ./march.aifl

=

fase]

~ array?|

delvrite~ delay2 200 yrite to delay Line
00 < delay time
delread~ delay2 100| read from delay line

add the original and the delayed sigmal

| <-- output awplitude
E

Figure 6: pd patch for echoing and linearly-increasing transposition

Transposition in semitones, used in harmo

B.4 Inline sound processing

A completely different category of music software deals with inline sound pro-
cessing. The software included in this category implies direct user control over
sound on several levels, from its inner microscopic details up to its full external
form.

In its various forms, it allows the user to: (i) process single or multiple
sounds (ii) build complex sound structures into a sound stream (iii) view differ-
ent graphical representations of sounds. Hence, the major difference between
this category and the one outlined in the preceding paragraphs lies perhaps
in this software’s more general usage at the expense of less ’inherent’ musical
capabilities: as an example, the difference between single event and event organi-
zation (the above-mentioned orchestra/score metaphor and other organizational
forms) which is pervasive in the languages for sound processing hardly exists
in this category. However, this software allows direct manipulation of various
sound parameters in many different ways and is often indispensable in musical
pre-production and post-production stages.

Compared to the Music-N-type software the one of this category belongs
to a sort of “second generation” computer hardware: it makes widespread and
intensive use of high-definition graphical devices, high-speed sound-dedicated
hardware, large core memory, large hard disks, etc. . In fact, we will shortly
show that the most hardware-intensive software in music processing - the digital
live-electronics real-time control software - belongs to one of the sub-categories
exposed below.

154 D. Rocchesso: Sound Processing

B.4.1 Time-Domain Graphical Editing and Processing

The most obvious application for inline sound processing is that of graphical
editing of sounds. While text data files lend themselves very conveniently to
musical data description, high-resolution graphics are fundamental to this spe-
cific field of applications where single-sample accuracy can be sacrificed to a
more intuitive sound event global view.

Most graphic sound editors allow to splice and process sound files in different
ways.

Eile Edt Yiew Project Effect Help Controls

I T} ; rd Time Scale
o
=lo| o4 :
o e, e, o
< [dagustbuss [10 — Envelope Shaping

[Mana, 44100Hz
My Sob | o

-10 ¥
I 1 =
Click and diag o selec! avdio
Pioject (ate: 44100 Sefection: 0118774 - 01503334 5
L Region] Sound Display
Definition

Figure 7: A typical sound editing application

As fig. [718 shows the typical graphical editor displays one or more soundfiles
in the time-domain, allowing to modify it with a variety of tools. The important
concepts in digital audio editing can be summarised as follows:

e regions - these are graphically selected portions of sound in which the
processing and/or splicing takes place;

e in-core editing versus window editing - while simpler editors load the sound
in RAM memory for editing, the most professional ones offer buffered on-
disk editing to allow editing of sounds of any length: given the current
storage techniques, high-quality sound is fairly expensive in terms of stor-
age (ca. 100 kbytes per second and growing), on-disk editing is absolutely
essential to serious editing;

e editing and rearranging of large soundfiles can be extremely expensive
in terms of hardware resources and hardly lend themselves to the gen-
eral editing features that are expected by any multimedia application:
multiple-level undos, quick trial-and-error, non-destructive editing, etc.:
several techniques have been developed to implement these features - the
most important one being the playlist, which allows soundfile editing and
rearranging without actually touching the soundfile itself but simply stor-
ing pointers to the beginning and end of each region. As can be easily
understood, this technique offers several advantages being extremely fast
and non-destructive;

18 The editor in this example is called Audacity, an Free Software audio editing
and processing application written by Dominic Mazzoni, Roger Dannenberg et al.[57]
(' http://audacity.sourceforge.net) for Unix, Windows and MacOs workstations.

http://audacity.sourceforge.net�

Tools for Sound Processing 155

S AR

P
e[}

|/
Playlist Amplitude Sound File
Scalings Region
References

Figure 8: A snapshot of a typical ProTools©) editing session

In fig. 8, a collection of soundfiles is aligned on the time axis according to a
playlist indicating the starting time and duration of each soundfile reference
(i.e. a pointer to the actual soundfile). Notice the on-the-fly amplitude rescaling
of some of the soundfiles?

Graphical sound editors are extremely widespread on most hardware plat-
forms: while there is no current favourite application, each platform sports one
or more widely used editors which may range from the US$ 10000 professional
editing suites for the Apple Macintosh to the many Free Software programs for
unix workstations. In the latter category, it is worthwile to mention the snd ap-
plication by Bill Schottstaedt 22 which features a back-end processing in CLM.
More precisely, sounds and commands can be exchanged back and forth between
CLM and snd, in such a way that the user can choose at any time the most
adequate between inline and language-based processing.

B.4.2 Analysis/Resynthesis Packages

Analysis/Resynthesis packages belong to a closely related but substantially dif-
ferent category: they are generally medium-sized applications which offer differ-
ent editing capabilities. These packages are termed analysis/resynthesis pack-
ages because editing and processing is preceded by an analysis phase which
extracts the desired parameters in their most significant and convenient form;
editing is then performed on the extracted parameters in a variety of ways and
after editing, a resynthesis stage is needed to re-transform the edited parameters
into a sound in the time domain. In different forms, these applications do: (i)
perform various types of analyses on a sound (ii) modify the analysis data (iii)
resynthesize the modified analysis.

Many applications feature a graphical interface that allows direct editing in
the frequency-domain: the prototypical application in this field is Audiosculpt

19 Pro Tools@© is manufactured by Digidesign (|http://www.digidesign.com)
20 http://www-ccrma.stanford.edu/software /snd/

http://www.digidesign.com�
http://www-ccrma.stanford.edu/software/snd/�

156 D. Rocchesso: Sound Processing

developed by Philippe Depalle, Chris Rogers and Gilles Poirot at the IRCAM 2!
(Institut de Recherche et Coordination Acoustique-Musique) for the Apple Mac-
intosh platform. Based on a versatile FFT-based phase vocoder called SVP(which
stands for Super Vocodeur de Phase), Audiosculpt is essentially a drawing pro-
gram which allows the user to “draw” on the spectrum surface of a sound.

=TE xinp T — sy

Graphic Editing Palette

Time-Domain | §~

—— Envelope
v —— L Current
B T (e " FFT Frame |

et BE

v

Spectrogram Editing Regions

Figure 9: A typical AudioSculpt session

In fig. |9, some portions of the spectrogram have been delimited and different
magnitude reductions have been applied to them.

Other applications, such as Lemur %, (running on Apple Macintoshes) [33]
or Ceres (developed by Oyvind Hammer at NoTam “%) perform different sets of
operations such as partial tracking and tracing, logical and algorithmic editing,
timbre morphing, etc.

The contemporary sound designer can also benefit from tools which are
specifically designed to transform sound objects in a controlled fashion. One
such tool is SMS™“* (Spectral Modeling Synthesis), designed by Xavier Serra as
an offspring of his and Smith’s idea of analyzing sounds by decomposing them
into stochastic and deterministic components [95] or, in other words, noise and
sinusoids. SMS uses the Short-Time Fourier Transform (STFT) for analysis,
tracking the most relevant peaks and resynthesizing from them the deterministic
component of sound, while the stochastic component is obtained by subtraction.
The decomposition allows flexible transformations of the analysis parameters,
thus allowing good-quality time warping, pitch contouring, and sound morphing.
In order to further improve the quality of transformations, extensions of the SMS
model have been proposed though not included in the distributed software yet.
Namely, a special treatment of transients has been devised as the way of getting
rid of artifacts which can easily come into play when severe transformations

21 http://www.ircam.fr

22 http://www.cerlsoundgroup.org/Lemur/
23 http://www.NoTam.uio.no/

24 http://www.ina.upf.es/ sms/

http://www.ircam.fr�
http://www.cerlsoundgroup.org/Lemur/�
http://www.NoTam.uio.no/�
http://www.iua.upf.es/~sms/�

Tools for Sound Processing 157

are operated [108]. SMS comes with a very appealing graphical interface under
Microsoft Windows, with a web-based interface, and is available as a command-
line program for other operating systems, such as the various flavors of unix.
SMS uses an implementation of the Spectral Description Interchange Format “°,
which could potentially be used by other packages operating transformations
based on the STFT. As an example, consider the following SMS synthesis
score which takes the results of analysis and resynthesizes with application of a
pitch-shifting envelope and an accentuation of inharmonicity:

InputSmsFile march.sms
OutputSoundFile exroc.snd
FreqSine 0 1.2 .5 1.1 .81 11
FreqSineStretch 0.2

B.5 Structure of a Digital Signal Processor

In this section we examine the ARES/MARS workstation as a prototypical case
of hardware/software systems dedicated to digital audio processing. Namely, we
explain the internal arithmetics of the X20 processor, the computational core of
the workstation, and the memory management system.

We have mentioned that the ARES/MARS workstation uses an expansion
board divided into two parts: a control part based on the microcontroller Mo-
torola MC68302, and an audio processing part based on two proprietary X20
processors. The X20 processor runs, for each audio cycle, a 512-instruction mi-
croprogram, contained in a static external memory. Each microinstruction is 64
bits long, and it is computed in a 25ns machine cycle. Multiplying this cycle by
the 512 instructions we get the working sampling rate of the machine, that is
Fs = 39062.5Hz.

A rough scheme of the X20 processor is shown in figure [10, where we can
notice three units:

e Functional Unit: adder (ALU), multiplier (MUL), registers (RM), data
busses (C and Z);

e Data Memory Unit: data memories DMA and DMB, data busses (A,
B, and W);

e Control Unit: addresses of data memories (ADR), access to external
memory (FUN), connection to DAC/ADC audio bus, connection to mi-
croprogram memory and microcontroller (not shown in figure [10).

The computations are based on a circular data flow that involves the data
memories and the functional unit. The presence of two data memories and one
functional unit allows a parallel organization of microprograms. The data flow
can be divided into four phases:

e Data gathering from memories DMA, DMB, or external memory (FUN);
e Selection of input data for the functional unit;

e Data processing by the functional unit;

25 http://cnmat.cnmat.Berkeley.edu/SDIF/

ARES/MARS workstation
X20 processor

ALU

MUL

data flow

http://cnmat.cnmat.Berkeley.edu/SDIF/�

control word

158 D. Rocchesso: Sound Processing

to DAC Bbus
A
from " * ‘ :
FUN RM RM
i L
MUL ALU
to
Zbus Chus FUN
from
DMA | ADR ADC . RM ADR .| DMB
Whbus T

Figure 10: Block structure of the X20 processor

e Insertion of the result back into the functional unit (by means of C and Z
busses) or memorization into the data memories (W bus).

B.5.1 Memory Management

The waveforms, tables, samples, or delay lines, are allocated in the external
memory2%, that is organized in, at most, 16 banks of 1MWord?”. Each word
is 16 bits long. In order to access the external memory we have to specify the
base address in a 16-bit control word. Those bits are divided into two variable-
length fields, separated by a zero bit. On the right there are ones, in a number
n such that 32 x 27 is the size of the table?®. The field on the left is a binary
number that denotes the ordinal number of the 32 x 2™-words area allocated
in memory. For instance, the control word |0001|1101|1111]1111| (1DF Fy¢ in
hexadecimal) represents the eight area of 16 KWords. Summarizing, in order to
select an external table, the user has to specify the memory bank (0 to 15), the
table size in powers of two, the offset, i.e., the ordinal number of table of the
dimension that we are considering. The 16-bit control word is indeed only part
of the 24-bit CWO register, the remaining 8 bits being used to select a waveform
derived from reading the fourth part of a sine wave, memorized in 1024 words
of internal read-only memory.

In another 24-bit register, called VAD, the table-reading phase pointer is
stored. In order to access successive elements of the table, such register gets
summed with the content of a 24-bit increment register. For example, 4KWord
tables are accessed using an increment equal to 00100014, while for 2KWord
tables the increment is 002000,5. A 4KWord table is not stored in contigu-
ous locations of the memory bank, but it uses locations that are seprated by
1024/4 = 001016 positions. The first 2 bytes of the increment account for this
distance. The extension of the phase to 3 bytes allows a fractional addressing,
with interpolations between logically-contiguous samples. For instance, consider

26Called FUN or function memory
271MWord is equal to 220 ~ 1000000 words
28The minimal number of words in a table is, therefore, 32

Tools for Sound Processing 159

reading a 4KWord table: only the 12 most significant bits of the phase are used
to address the table, the remaining 12 bits?” being considered as the fractional
part of the address and assigned to a register ALFA. If the 12 bits of the phase
give the value n, an interpolated read of the table will return the value =Y

y = (1 - ALFA)table(n) + ALF Atable(n + 1) (1)

With an increasing table size, the number of bits available for the fractional part
decreases, and indeed this corresponds to a decrease in accuracy of interpolation
for tables larger than 64KWord.

B.5.2 Internal Arithmetics

The data memories of the X20 processor are made of 24-bit locations, and 24
bits are also used for the registers feeding the ALU and for the busses C, Z,
and W. On the other hand, we have only 16 bits for external functions and
for the registers feeding the MUL. The internal arithmetics of the X20 can be
summarized as:

e Representation of signals in two’s complement fixed point, with normal-
ization to one;

Algebraic sum with 24-bit precision;

Multiplication of two 16-bit numbers with 24-bit result;

Tables and delay lines stored with 16-bit precision (FUN memory)

16-bit digital-to-analog and analog-to-digital conversion.
The addition can be performed as follows

e Normal mode: For the result, all the field of two’s complement 24-bit
numbers is used, with no handling of overflows. Ex.: 50000014+400000:¢ =
90000016 = —7000004¢.

e Overflow-protected mode: when an overflow occurs the result is set to the
maximum or minimum representable number. Ex.: 50000016 + 40000016 =
90000016 = TFFFF Fy;.

e Zero-protected mode: every negative result is forced to be zero.

e Overflow- and Zero-protected mode: the sum is first executed in overflow-
protected mode, and any negative result is forced to be zero.

The first mode is useful whenever one has to generate cyclic waveforms or ac-
cess to the memory cyclically, for instance to compute the phase pointer of an
oscillator. The second mode is used when we are doing signal processing, since it
protects from large-amplitude discontinuities and limit cycles (see section [1.6).
The following table shows some examples of sums performed with the different

29 Actually, only the first 8.
30The reader may observe that for ALFA equal to zero, the value table(n) is returned, while
for ALFA equal to one the returned value is table(n 4 1).

jump operations

Arithmetic Logic Unit

160 D. Rocchesso: Sound Processing
modes**

a b a+b | a+b (OVP) | a+b (ZEP) | a+b (OVPZEP)

-05 (0.7 |02 |02 0.2 0.2

0.5 | 07 |-0.8 | 1.0 0.0 1.0

0.5 | -0.7 | -0.2 | -0.2 0.0 0.0

-0.5|-07 |08 |-1.0 0.8 0.0

Multiplications are performed on the 16 most-significant bits of the operands
in order to give a 24-bit result. The multiplication can be summarized in the
following steps:

1) Consider only the 16 most-significant bits of the operands;
2) Multiply with 16-bit operand precision;
3) Consider only the 24 most-significant bits of the (31-bit) result.

The steps 1 and 3 imply quantization operations and precision loss. I passi 1
e 3 comportano delle operazioni di quantizzazione e pertanto comportano una
perdita di precisione. The following table shows some examples of multiplica-
tions expressed in decimal and hexadecimal notations>?

a b ab 16 b16 CLb16

1.0 1.0 0.999939 | 7FFFFF | 7TFFFFF | TFFEOO
1.0 0.5 0.499985 | "FFFFFE | 400000 3FFEF80
0.001 | 0.001 | 0.000001 | 0020C5 0020C5 000008
-1.0 1.0 -0.99970 | 800000 7TFFFFF | 800100
-1.0 -1.0 -1.0 800000 800000 800000

The examples highlight the need of looking at the results of multiplications with
special care. The worst mistake is the one in the last line, where the result is off
by 200% !

Another observation concerns the jump operations, that seem to be forbidden
in an architecture that is based on the cyclic reading of a fixed number of
microinstructions. Indeed, there are conditional instructions, that can change
the selection of operands feeding the ALU according to a control value taken,
for instance, from bus C. The presence of these instructions justify the name
ALU for the adder, since it is indeed a Arithmetic Logic Unit.

B.5.3 The Pipeline

We have seen that the architecture of a Digital Signal Processor allows to per-
form some operations in parallel. For instance, we can simultaneously perform
data transfers, multiplication, and addition. Most digital filters are based on the
iterative repetition of operations such as

y=y+ hs; (2)

where h; are the coefficients of the filter and s; are memory words containing the
filter state. A DSP architecture such as the one of the X20 allows to specify, in

31Copied from the online help system of the ARES/MARS workstation.
32Copied from the online help system of the ARES/MARS workstation.

Tools for Sound Processing 161

a single microinstruction, the product of two registers containing h; and s;, the
accumulation of the product obtained at the prior cycle into another register
(containing y), and the register load with values h; and s; to be used at the
next cycle. In other terms, the Multiply and Accumulate (MAC) operation is
distributed onto three clock cycles, but for each cycle three MAC operations are
in execution simultaneously. This is a realization of the principle of the pipeline,
where the sample being “manufactured” has a latency time of three samples, but
the frequency of sample delivery is one per clock cycle. In digital filters, another
fundamental operation is the state update. In practice, after s; has been used,
it has to assume the value s;_1. As it is shown in chapter 2, such operation can
be avoided by proper indexing of memory accesses (circular buffering): Instead
of moving the data with s; < s;_1 we shift the indexes with ¢ < ¢ — 1, in a
circular fashion.

Multiply and Accumulate
(MAC)

pipeline

state update

circular buffering

162 D. Rocchesso: Sound Processing

pinna

ear canal
ear drum
oval window
hammer
anvil
stirrup

Appendix C cochlea

basilar membrane
scala vestibuli
scala timpani

Fundamentals of base

apex
helicotrema

p Sy ChO aCO u St iC S tectorial membrane

hair cells

Psychoacoustics is a “discipline within psychology concerned with sound, its
perception and the physiological foundations of hearing” [75]. A few concepts
and facts of psychoacoustics are certainly useful to the sound designer and to
any computer scientist interested in working with sound. Several books provide
a wider treatment of this topic, at different degrees of depth [86, (105, 42, [111].

C.1 The ear

The human ear is usually described as composed of three parts. This system is
schematically depicted in figure (1.

the outer ear: The pinna couples the external space to the ear canal. Its shape
is exploited by the hearing system to extract directional information from
incoming sounds. The ear canal is a tube (length [~ 2.6cm, diameter d ~
0.6cm) closed on the inner side by a membrane called the ear drum. The
tube acts as a quarter-of-wavelength resonator, exciting frequencies in the
neighborhood of fo = 5 ~ 3.3kHz, where c is the speed of sound in air;

the middle ear: It transmits mechanical energy, received from the ear drum,
to the inner ear through a membrane called the oval window. To do so, it
uses a chain of small bones, called the hammer, the anvil, and the stirrup;

the inner ear: It is a cavity, called cochlea, shaped like a snail shell, which is
shown rectified for clarity in figure [1. It contains a fluid and it is divided
by the basilar membrane into two chambers: the scala vestibuli and the
scala timpani. The length of the cochlea is about 3.5cm. Its diameter is
about 2mm at the oval window (base) and it gets narrower at the other
extreme (apex), where a narrow aperture (the helicotrema) allows the two
chambers to communicate. On top of the basilar membrane, the tectorial
membrane sustains about 16,000 hair cells that pick up the transversal
motion of the basilar membrane and transmit it to the brain.

The vibrations of the oval window excite the fluid of the scala vestibuli. By
pressure differences between the scala vestibuli and scala timpani, the basilar

163

impedance of the tube
acoustic intensity

164 D. Rocchesso: Sound Processing

Acoustic Nerve

Pinna
Ear canal
Ear

Scala Tympani

Outer ear Middle ear Inner ear

Figure 1: Cartoon physiology of the ear

membrane oscillates and transversal waves are propagated. The basilar mem-
brane can be thought of as a string having a decreasing tension as we move from
the base to the apex. This tension changes by about four orders of magnitude
from base to apex. Along a string, the waves propagate at speed

T Tension
cm [=y (1)
oL Linear density

and the wavelength associated with the component at frequency f is

1 /T c
A_f\/pt_f' ®

The impedance of the tube is zyp = +/pr 1 and, if v;,4, is the peak value of
transversal velocity, the wave power is
1

P = §Zov$na:r = % pLTvrQnaz . (3)
While a wave component at frequency f is propagating from the base to the
apex, its wavelength decreases (because tension decreases) and, due to the physi-
cal requirement of power constancy, its amplitude increases. However, this prop-
agation is not lossless, and dissipation increases with the amplitude, so that a
frequency-dependent maximum region will emerge along the basilar membrane
(see figure[2)). Since the high frequencies are more affected by propagation losses,
their characteristic resonance areas are cluttered close to the base, while low fre-
quencies are more widely distributed toward the apex. About two thirds of the
length of the cochlea is devoted to low frequencies (about one fourth of the
audio bandwidth), thus giving more frequency resolution to the slowly-varying
components.

C.2 Sound Intensity

Consider a sinusoidal point source in free space. It generates spherical pressure
waves that carry energy. The acoustic intensity is the power by unit surface that

Fundamentals of Psychoacoustics 165

velocity

transversal velocity

base <- position along the basilar membrane -> apex

Figure 2: Cartoon of the transversal velocity pattern elicited by an incoming
pure sine tone

is carried by a wave front. It is a vectorial quantity having magnitude

2 1 2 2
I = pmaa:i _ Prax — Pryvs , (4)
2 2 2pc pc

where ppq. and prys are the peak and root-mean-square (RMS) values of
pressure wave, respectively, and zg = pc = density x speed is the impedance of
air.

At 1000Hz the human ear can detect sound intensities ranging from I,,;, =
10~'2W/m? (threshold of hearing) to I,,4, = 1W/m? (threshold of pain).

Consider two spherical shells of areas a; and as, at distances r; and ro
from the point source. The lossless propagation of a wavefront implies that the
intensities registered at the two distances are related to the areas by

]10,1 = [20,2 . (5)
Since the area is proportional to the square of distance from the source, we also
have
11 T2 2
2 Z2) . 6
2-(2) ®
The intensity level is defined as
1
IL =10log;, — , (7)
Iy

where Iy = 10712W/m? is the sound intensity at the threshold of hearing. The
intensity level is measured in decibel (dB), so that multiplications by a factor
are turned into additions by an offset, as represented in table [C.2. Similarly, the
sound pressure level is defined as

SPL = 20log;q 292 = 901og,, LM (8)
Po,max Po,RM S

RMS

threshold of hearing
threshold of pain
intensity level
decibel

sound pressure level

standing wave
Fletcher-Munson curves
equal-loudness curves
loudness level

phons

loudness

sones

standardized loudness scale

166 D. Rocchesso: Sound Processing

I IL
x1.26 | +1
X2 +3
x 10 +10

Table C.1: Relation between factors in the linear intensity scale and shifts in
the dB intensity-level scale

where po mae and po Ry s are the peak and RMS pressure values at the threshold
of hearing. For a propagating wave, we have that IL = SPL. For a standing
wave, since there is no power transfer and since IL is a power-based measure,
the SPL is more appropriate.

Given a reference tone with a certain value of IL at 1kHz, we can ask a
subject to adjust the intensity of a probe tone at a different frequency until
it matches the reference loudness perceptually. What we would obtain are the
Fletcher-Munson curves, or equal-loudness curves, sketched in figure 3. Each
curve is parameterized on a value of loudness level (LL), measured in phons.
The loudness level is coincident with the intensity level at 1kHz.

Equal-loudness curves

120

100

80

} e e PR

IL [dB]

40

Thresholds

90 phons -------
20 60 phons --------
20 phons

100 1000
frequency [Hz]

Figure 3: Equal-loudness curves. The parameters express values of loudness level
in phons.

Even though the Fletcher-Munson curves are obtained by averaging the re-
sponses of human subjects, the LL is still a physical quantity, because it refers
to the physical quantity IL and it does not represent the perceived loudness in
absolute terms. In other words, doubling the loudness level does not mean dou-
bling the perceived loudness. A genuine psychophysic measure is the loudness in
sones, which can be obtained as a function of LL by asking listeners to compare
sounds and decide when one sound is “twice as loud” as another. Somewhat ar-
bitrarily, a LL of 40 phons is set equal to 1 sone. Figure 4] represents a possible
average curve that may emerge from an experiment. The standardized loudness
scale (ISO) uses the straight line approximation of figure 4, that corresponds

Fundamentals of Psychoacoustics 167

to the power law

1 (1\"
L[sones| = 15 810 ([0> . (9)

Roughly speaking, an increment by 9 phons is needed to double the perceived
subjective loudness in sones. This holds for tones at the same frequency or within
the same critical band. In a physiological perspective, the critical band can be
defined as the band of frequencies whose positions along the basilar membrane
stay within the area excited by a single pure tone (see figure 2l and section [C.4).
We can say that the intensities of uncorrelated signals effectively sum:

I=IL+1;p"=pi+ps=p=1/p}+1}. (10)

For uncorrelated pure tones within a critical band, if the law represented by
the straight line in figurel4 does apply, if we double the intensity we have 3 phons
of increment. Therefore, 3 doublings (x8) are needed to have an increase by 9
phons. This is the increase that roughly corresponds to a doubling in loudness.
For example, 8 violins playing the same note at the same loudness level are
needed to effectively double the perceived loudness.

If two sounds are far apart in frequency, their intensities sum much more
effectively. In this case, using two sources at different frequencies also doubles
the loudness.

100

=
o
I

Loudness (sones)
I

o
e
|

001

| | | | |
20 40 60 80 100

Loudness Level (phons)

Figure 4: Sones vs. phons

C.2.1 Psychophysics

In psychophysics, the Just Noticeable Difference (JND) of a physical quantity
is the minimal difference of that quantity that can be noticed in two stimuli,
or by modulation of a single stimulus. Sincy our perception is driven by neural
firings statistically distributed in time, the appropriate way to measure JNDs
is by subjective experimentation and statistical analysis. The random nature of
perception is indeed the cause of JNDs, because the accuracy of our internal
representations is limited by the intrinsic noise of these random processes.

The relation between physics and psychophysics is represented in table C.2.1
by means of three important acoustic quantities. The JNDs are represented by

critical band
Just Noticeable Difference
JND

Fechner’s idea
Weber’s law

168 D. Rocchesso: Sound Processing

Physics Psychophysics

Physical Sound ® | Perceived Sound ¥
Intensity I, AT Loudness L, AL
Frequency f, Af | Pitch p, Ap

Duration d, Ad Apparent Duration d, Ad

Table C.2: Physics vs. Psychophysics

the symbol A preceding the physical or psychophysical variable name, in the
latter case being a mnemonic for the internal noise variance.
The construction of psychophysical scales relies on the Fechner’s ideal that:

The value of the perceived quantity is obtained by counting the
JNDs, and the result of such counting is the same whether we count
physical or sensed JNDs. There is a “zero level” for sensation, i.e.,
the scale of sensations is a ratio scale (all four arithmetic operations
are allowed).

For instance, for loudness:

AL - N, =1L N = —. 11
JND = INJND AL (11)
If the JND is not constant:
L
dL

N = 12
IND = | AL (12)

From the Fechner’s idea we have

dL dl

Njynp = = [——. (13)

AL(L) AI(I)
Fechner’s psychophysics is based on two assumptions (exemplified for loudness):
1. AL is constant;
2. Al is proportional to I, or % = k, with k constant (Weber’s law).

Based on the two assumptions, the Fechner’s law is derived as

L=AL-Nyyp=AL % = klog(l) , (14)

for a certain value of the constant k.

For the loudness of pure tones neither the assumption 1 nor 2 are valid.
Therefore, the Fechner’s law (14) does not hold?. However, the Fechner’s paradigm
is the basis of new developments that provide models matching the experimental
results quite closely. More details can be found in [42, [4].

LGustav Theodor Fechner (1801-1887) is considered the father of psychophysics.
2Weber’s and Fechner’s laws are taken for granted quite often in human-computer interac-
tion.

Fundamentals of Psychoacoustics 169

Experimental curves similar to that reported in figure 4/ show in many cases
significant deviations from (14). For instance, the relation between intensity and
loudness is more similar to

Lo VT, (15)

as three doublings of intensity are needed for approximating one doubling in
loudness.

Power laws such as the (15) are the natural outcome of the so called direct
methods of psychophysical experimentation, where it is the sensation itself that
is the unit for measuring other sensations. Such experimental paradigm was
largely established by Stevens®, and it is the one in use when the experimenter
asks the subject to double or half the perceived loudness of a tone, or when a
direct magnitude production or estimation is used.

C.3 Pitch

Periodic tones elicit a sensation of pitch, thus meaning that they can be ordered
on a scale from low to high. Many aperiodic or even stochastic sounds can elicit
pitch sensations, with different degrees of strength.

If we stick with pure tones for this section, pitch is the sensorial correlate
of frequency, and it makes sense to measure the frequency JND using the tools
of psychophysics. For instance, if a pure tone is slowly modulated in frequency
we may seek for the threshold of modulation audibility. The resulting curve of
average results would look similar to figure 5.

JND in frequency for a modulated pure tone

> T
% IND ——
3% resolution -------
1% resolution --------
0.6% resolution
0.5% resolution ——-—

JND in Hz

100 1000 10000
Central frequency in Hz

Figure 5: JND in frequency for a slowly modulated pure tone.

Again, from the curve of figure 5 we notice a significant deviation from the
Weber’s law Af o f. The physiological interpretation is that there is more
internal noise in the frequency detection in the very-low range.

If we integrate ﬁ(f) we obtain a curve such as that of figure |6/ that can be
interpreted as a subjective scale for pitch, whose unit is called mel. Convention-

ally 1000 Hz corresponds to 1000 mel. This curve shouldn’t be confused with the

3Stanley Smith Stevens (1906-1973).

direct methods

pitch

frequency JND
subjective scale for pitch
mel

Musical scales

musical octave

chroma

place theory of hearing
virtual pitch

missing fundamental

temporal processing of
sound

timbre

170 D. Rocchesso: Sound Processing

scales that organize musical height. Musical scales are based on the subdivision
of the musical octave into a certain number of intervals. The musical octave is
usually defined as the frequency range having the higher bound that has twice
the value in Hertz of the first bound. On the other hand, the subjective scale
for pitch measures the subjective pitch relationship between two sounds, and it
is strictly connected with the spatial distribution of frequencies along the basi-
lar membrane. In musical reasoning, pitch is referred to as chroma, which is a
different thing from the tonal height that is captured by figure 6.

Subjective pitch curve

pitch

3000

2500

2000

1500

Pitch in Mels

1000

500

100 1000 10000
Frequency in Hz

Figure 6: Subjective frequency curve, mel vs. Hz.

So far, we have described pitch phenomena referring to the position of hair
cells that get excited along the basilar membrane. Indeed, the place theory of
hearing is not sufficient to explain the accuracy of pitch perception and some
intriguing effects such as the virtual pitch. In this effect, if a pure tone at fre-
quency fy is superimposed to a pure tone at frequency fy = % f1, the perceived
pitch matches the missing fundamental at fo = f1/2. If the reader, as an ex-
cercise, plots this superposition of waveforms, she may notice that the apparent
periodicity of the resulting waveform is 1/fy. This indicates that a temporal
processing of sound may occur at some stages of our perception. The hair cells
convey signals to the fibers of the acoustic nerve. These neural contacts fire at
a rate that depends on the transversal velocity of the basilar membrane and on
its lateral displacement. The rate gets higher for displacements that go from the
apex to the base, and this creates a periodicity in the firing rate that is multi-
ple of the waveform periodicity. Therefore, the statistical distribution of neural
spikes keep track of the temporal behavior of the acoustic signals, and this may
be useful at higher levels to extract periodicity information, for instance by
autocorrelation processes [86].

Even for pure tones, pitch perception is a complex business. For instance, it is
dependent on loudness and on the nature and quality of interfering sounds [42].
The pitch of complex tones is an overly complex topic to be discussed in this
appendix. It suffices to know that pitch perception of complex tones is linked to
the third (after loudness and pitch) and most elusive attribute of sound, that is
timbre.

Fundamentals of Psychoacoustics 171

C.4 Critical Band

As illustrated in figure 6 of chapter 2, two pure tones whose frequencies are close
to each other give rise to the phenomenon of beating. In formula, from simple
trigonometry

Q o)t Q-0
(1+ 2) COS(l Q)t

sin 21t + sin 9t = 2sin 5 ,

(16)

where the first sinusoidal term in the product can be interpreted as a carrier
signal modulated by the second, cosinusoidal term.

As we vary the distance between the frequencies 27 and €, the resulting
sound is perceived differently, and a sense of roughness emerges for distances
smaller than a certain threshold. A schematic view of the sensed signal is rep-
resented in figure [7. The solid lines may be interpreted as time-varying sensed
pitch tracks. If they are far enough we perceive two tones. When they get closer,
at a certain point a sensation of roughness emerges, but they are still resolved.
As they get even closer, we stop perceiving two separate tones and, at a certain
point, we hear a single tone that beats. Also, when they are very close to each
other, the roughness sensation decreases.

Roughness
(Critical Band)
One Tone

Q

t

Figure 7: Schematic representation of the subjective phenomena of beats and
roughness (adapted from [86])

The region where roughness gets in defines a critical band, and that fre-
quency region roughly corresponds to the segment of basilar membrane that
gets excited by the tone at frequency €2;. The sensation of roughness is related
with that property of sound quality that is called consonance, and that can
be evaluated along a continuous scale, as reported in figure 8. We notice that
the maximum degree of dissonance is found at about one quarter of critical
bandwidth.

C.5 Masking

When a sinusoidal tone impinges the outer ear, it propagates mechanically until
the basilar membrane, where it affects the reception of other sinusoidal tones
at nearby frequencies. If the incoming 400Hz tone, called the masker, has 70dB
of IL, a tone at 600Hz has to be more than 30dB louder than its miniminal

roughness
masker

masking

upward spread of masking
outer hair cells

temporal masking
forward masking
backward masking

172 D. Rocchesso: Sound Processing

Degree of consonance

0.8 \
0.6 \
0.4

Degree of consonance

0 0.2 0.4 0.6 0.8 1 12
Frequency separation in critical bandwidth

Figure 8: Degree of consonance between two sine tones as a function of their
frequency distance, measured as a fraction of critical bandwidth (Measurement
by Plomp and Levelt (1965) reported also in [105]).

thresholding level in order to become audible in presence of the masker. This
phenomenon is called masking and it is cartoonified in figure 9. Indeed, masking
is ill-defined in the immediate proximity of the masker, because there the pres-
ence of beats may let the interference between masker and masked tone become
apparent.

Two features of masking can be noticed in figure [9. First, masking is much
more effective towards high frequencies (note also the log scale in frequency).
Second, high-intensity maskers spread their effects even more towards high fre-
quencies. The latter phenomenon is called upward spread of masking, and it is
due to the nonlinear behavior of the outer hair cells of the cochlea, whose stiff-
ness depends on the excitation they receive [4]. A high-frequency cell, excited
by a lower-frequency tone, increases its stiffness and becomes less sensitive to
components at its characteristic frequency.

In complex tones, the partials affect each other as far as masking is con-
cerned, so that it may well happen that in a tone with a few dozens of partials,
only five or six emerge from a collective masking threshold. In a sound coding
task, it is obvious that we should use all our resources (i.e., the bits) to encode
those partials, thus neglecting the components that are masked. This idea is the
basis for perceptual audio coding, as it is found in the MPEG-1 standard [69].

For coding purposes, it is also useful to look at temporal masking. Namely,
the effects of masking extend in the future for up to 40ms (forward masking),
and in the past for up to 10ms (backward masking). These temporal effects
may occur because the brain integrates sound information over time, and there
are inherent delays in this operation. Therefore, a soft tone preceding a louder
tone by a couple of milliseconds is likely to be just canceled from our perceptual
system.

Fundamentals of Psychoacoustics 173

60

T
30 dB Intensity Level
50 dB Intensity Level -------
70 dB Intensity Level --------

50

40

30

Masking Level in dB

20

0 b hS —
100 1000
Frequency in Hz

Figure 9: Schematic view of masking level for a sinusoidal masker at 400Hz at
30, 50, and 70 dB of intensity level.

C.6 Spatial sound perception

Classic psychoacoustic experiments showed that, when excited with simple sine
waves, the hearing system uses two strong cues for estimating the apparent
direction of a sound source. Namely, interaural intensity and time differences
(IID and ITD) are jointly used to that purpose. IID is mainly useful above
1500H z, where the acoustic shadow produced by the head becomes effective,
thus reducing the intensity of the waves reaching the contralateral ear. For this
high-frequency range and for stationary waves, the ITD is also far less reliable,
since it produces phase differences in sine waves which often exceed 360°. Below
1500H z the IID becomes smaller due to head diffraction which overcomes the
shadowing effect. In this low-frequency range it is possible to rely on phase
differences produced by the ITD. IID and ITD can only partially explain the
ability to discriminate among different spatial directions. In fact, if the sound
source would move laterally along a circle (see figure[10) the IID and ITD would
not change. The cone formed by the circle with the center of the head has been
called cone of confusion. Front-back and vertical discrimination within a cone
of confusion are better understood in terms of broadband signals and Head-
Related Transfer Functions (HRTF). The system pinna - head - torso acts like
a linear filter for a plane wave coming from a given direction. The magnitude
and phase responses of this filter are very complex and direction dependent, so
that it is possible for the listener to disambiguate between directions having the
same, stationary, I'TD and IID. In some cases, it is advantageous to think about
these filtering effects in the time domain, thus considering the Head-Related
Impulse Responses (HRIR) [13} 182].

interaural intensity and
time differences

11D
ITD
cone of confusion

Head-Related Transfer
Functions

HRTF

Head-Related Impulse
Responses

HRIR

174 D. Rocchesso: Sound Processing

Figure 10: Interaural polar coordinate system and cone of confusion

Appendix D

GNU Free Documentation
License

Version 1.2, November 2002

Copyright (© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional
and useful document “free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

D.1 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains
a notice placed by the copyright holder saying it can be distributed under the
terms of this License. Such a notice grants a world-wide, royalty-free license,

175

176 D. Rocchesso: Sound Processing

unlimited in duration, to use that work under the conditions stated herein.
The “Document”, below, refers to any such manual or work. Any member of
the public is a licensee, and is addressed as “you”. You accept the license if
you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and
a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public, that is
suitable for revising the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters
or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent
if used for any substantial amount of text. A copy that is not “Transparent” is
called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, IMTEX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming simple HTML, PostScript
or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance

GNU Free Documentation License 177

of the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorse-
ments”, or “History”.) To “Preserve the Title” of such a section when you modify
the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

D.2 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the
license notice saying this License applies to the Document are reproduced in
all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough number
of copies you must also follow the conditions in section [D.3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

D.3 COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy
of the Document, free of added material. If you use the latter option, you must

178 D. Rocchesso: Sound Processing

take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at
the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

D.4 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections|D.2 and D.3labove, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B List on the Title Page, as authors, one or more persons or entities respon-
sible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its prin-
cipal authors, if it has fewer than five), unless they release you from this
requirement.

C State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D Preserve all the copyright notices of the Document.

E Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

F Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H Include an unaltered copy of this License.

I Preserve the section Entitled “History”, Preserve its Title, and add to it
an item stating at least the title, year, new authors, and publisher of the
Modified Version as given on the Title Page. If there is no section Entitled
“History” in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

GNU Free Documentation License 179

J Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K For any section Entitled “Acknowledgements” or “Dedications”, Preserve
the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and /or dedications given
therein.

L Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M Delete any section Entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N Do not retitle any existing section to be Entitled “Endorsements” or to
conflict in title with any Invariant Section.

O Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties—for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

D.5 COMBINING DOCUMENTS

You may combine the Document with other documents released under this Li-
cense, under the terms defined in section [D.4/ above for modified versions, pro-
vided that you include in the combination all of the Invariant Sections of all

180 D. Rocchesso: Sound Processing

of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in
the various original documents, forming one section Entitled “History”; likewise
combine any sections Entitled “Acknowledgements”, and any sections Entitled
“Dedications”. You must delete all sections Entitled “Endorsements”.

D.6 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

D.7 AGGREGATION WITH INDEPENDENT
WORKS

A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section [D.3|is applicable to these copies of
the Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket
the whole aggregate.

GNU Free Documentation License 181

D.8 TRANSLATION

Translation is considered a kind of modification, so you may distribute transla-
tions of the Document under the terms of section [D.4L Replacing Invariant Sec-
tions with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation
of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a
disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedica-
tions”, or “History”, the requirement (section [D.4) to Preserve its Title (sec-
tion D.1) will typically require changing the actual title.

D.9 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

D.10 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems
or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any
later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after
the title page:

Copyright © YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU

182 D. Rocchesso: Sound Processing

Free Documentation License, Version 1.2 or any later version pub-
lished by the Free Software Foundation; with no Invariant Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the li-
cense is included in the section entitled “GNU Free Documentation
License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combina-
tion of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recom-
mend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

Bibliography

[1]

2]

M. Abramowitz and I. Stegun, editors. Handbook of Mathematical Func-
tions. Dover Publications, New York, 1972.

V. Algazi, R. Duda, D. Thompson, and C. Avendano. The CIPIC HRTF
database. In Proc. IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics, pages 99-102, Mohonk, NY, Oct. 2001.

J. Allen and D. Berkley. Image method for efficiently simulating small-
room acoustics. J. Acoustical Soc. of America, 65(4):943-950, Apr. 1979.

J. B. Allen. Psychoacoustics. In J. G. Webster, editor, Wiley Encyclopedia
of FElectrical and Electronics Engineering, pages 422-437. John Wiley &
Sons, 1999.

X. Amatriain, J. Bonada, A. Loscos, and X. Serra. Spectral processing.
In U. Zolzer, editor, Digital Audio Effects. John Wiley and Sons, Ltd.,
Chichester Sussex, UK, 2002.

P. Andrenacci, F. Armani, R. Bessegato, A. Paladin, P. Pisani, A. Presti-
giacomo, C. Rosati, S. Sapir, and M. Vetuschi. The new MARS worksta-
tion. In Proc. International Computer Music Conference, pages 215-219,
Thessaloniki, Greece, Sept. 1997. ICMA.

P. Andrenacci, E. Favreau, N. Larosa, A. Prestigiacomo, C. Rosati, and
S. Sapir. MARS: RT20M/EDIT20 Development tools and graphical user
interface for a sound generation board. In A. Strange, editor, Proc. Inter-
national Computer Music Conference, pages 340-343, San Jose, CA, Oct.
1992. ICMA.

D. Arfib. Digital synthesis of complex spectra by means of multiplication
of non-linear distorted sine waves. J. Audio Eng. Soc., 27(10):757-779,
1979.

D. Arfib. Different ways to write digital audio effects programs. In Proc.
Conf. Digital Audio Effects (DAFx-98), Barcelona, Spain, pages 188-191,
Nov. 1998.

D. Arfib, F. Keiler, and U. Zdlzer. Source-filter processing. In U. Zdlzer,

editor, Digital Audio Effects, pages 299-372. John Wiley and Sons, Ltd.,
Chichester Sussex, UK, 2002.

183

184

[11]

[13]

[14]

[15]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

D. Rocchesso: Sound Processing

F. Armani, L. Bizzarri, E. Favreau, and A. Paladin. MARS - DSP En-
vironment and Applications. In A. Strange, editor, Proc. International
Computer Music Conference, pages 344-347, San Jose, CA, Oct. 1992.
ICMA.

A. Bernardi, G. Bugna, and G. D. Poli. Music signal analysis with chaos.
In C. Roads, S. Pope, A. Picialli, and G. D. Poli, editors, Musical Signal
Processing, pages 187-220. Swets & Zeitlinger, 1997.

J. Blauert. Spatial Hearing: the Psychophysics of Human Sound Localiza-
tion. MIT Press, Cambridge, MA, 1983.

B. Blesser. An interdisciplinary synthesis of reverberation viewpoints. J.
Audio Eng. Soc., 49(10):867-903, 2001.

G. Borin, G. De Poli, and A. Sarti. Sound Synthesis by Dynamic Systems
Interaction. In D. Baggi, editor, Readings in Computer-Generated Music,
pages 139-160. IEEE Computer Society Press, 1992.

G. Borin, G. D. Poli, and D. Rocchesso. Elimination of delay-free loops
in discrete-time models of nonlinear acoustic systems. IEEFE Transactions
on Speech and Audio Processing, 8(5):597-605, 2000.

G. Borin, D. Rocchesso, and F. Scalcon. A physical piano model for music
performance. In Proc. International Computer Music Conference, pages
350-353, Thessaloniki, Greece, Sept. 1997. ICMA.

J. Borish. An Auditorium Simulation for Home Use. In Audio Eng. Soc.
Convention, New York, 1983. AES.

C. P. Brown and R. O. Duda. A structural model for binaural sound
synthesis. IEEE Trans. Speech and Audio Processing, 6(5):476-488, Sept.
1998.

C. Cadoz, A. Luciani, and J.-L. Florens. CORDIS-ANIMA: A modeling
and simulation system for sound synthesis - the general formalism. Comp-
uter Music J., 17(1):19-29, Spring 1993.

S. Cavaliere, G. D. Giugno, and E. Guarino. MARS - The X20 device and
the SM1000 board. In A. Strange, editor, Proc. International Computer
Music Conference, pages 348-351, San Jose, CA, Oct. 1992. ICMA.

A. Chaigne. On the Use of Finite Differences for Musical Synthesis. Appli-
cation to Plucked Stringed Instruments. J. Acoustique, 5:181-211, 1992.

J. M. Chowning. The synthesis of complex audio spectra by means of
frequency modulation. Journal of the Audio FEng. Soc., 21(7):526-534,
1973.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press, Cambridge, MA, 1990.

R. Courant and H. Robbins. What is Mathematics?: an elementary ap-
proach to ideas and methods. Oxford Un. Press, New York, 1941. Trad.
It. Che Cos’e la Matematica?, Universale Scientifica Boringhieri, 1971.

References 185

[26]

[27]

[28]

[29]

[30]

[31]

[32]

D. Gabor. Acoustical Quanta and the Theory of Hearing. Nature,
159(4044):591-594, May 1947.

R. B. Dannenberg. Abstract time warping of compound events and signals.
Computer Music J., 21(3):61-70, 1997.

R. B. Dannenberg. Machine tongues XIX: Nyquist, a language for com-
position and sound synthesis. Computer Music J., 21(3):50-60, 1997.

J. Dattorro. Effect design - part 1: Reverberator and other filters. J.
Audio Eng. Soc., 45(19):660-684, Sept. 1997.

J. Dattorro. Effect design - part 2: Delay-line modulation and chorus. J.
Audio Eng. Soc., 45(10):764-788, Oct. 1997.

G. De Poli and D. Rocchesso. Physically-based sound modeling. Organised
Sound, 3(1):61-76, 1998.

R. O. Duda and W. L. Martens. Range dependence of the response of a
spherical head model. J. Acoustical Soc. of America, 104(5):3048-3058,
Nov. 1998.

K. Fitz and L. Haken. Sinusoidal modeling and manipulation using lemur.
Computer Music J., 20(4):44-59, 1997.

F. Fontana and D. Rocchesso. Physical modeling of membranes for percus-
sion instruments. Acustica, 84(13):529-542, Jan. 1998. S. Hirzel Verlag.

A. Freed, X. Rodet, and P. Depalle. Synthesis and control of hundreds of
sinusoidal partials on a desktop computer without custom hardware. In
Proc. 1993 Int. Computer Music Conf., Tokyo, pages 98-101, 1993.

B. Gardner and K. Martin. HRTF measurements of a KEMAR dummy-
head microphone. Technical report # 280, MIT Media Lab, Cambridge,
MA, 1994.

W. G. Gardner. Efficient convolution without input-output delay. J.
Audio Eng. Soc., 43(3):127-136, 1995.

W. G. Gardner. 3-D Audio using Loudspeakers. Kluwer Academic Pub-
lishers, Norwell, MA, 1998.

W. G. Gardner. Reverberation algorithms. In M. Kahrs and K. Bran-
denburg, editors, Applications of Digital Signal Processing to Audio and
Acoustics, pages 85—131. Kluwer Academic Publishers, Norwell, MA, 1998.

M. A. Gerzon. Unitary (Energy Preserving) Multichannel Networks with
Feedback. Electronics Letters V, 12(11):278-279, 1976.

W. M. Hartmann. Digital waveform generation by fractional addressing.
J. Acoustical Soc. of America, 82(6):1883-1891, 1987.

W. M. Hartmann. Signals, Sound, and sensation. Springer-Verlag, New
York, 1998.

186

[43]

[44]

[45]

[46]

[47]

[49]

[50]

[51]

[52]

[55]

[56]

[57]

D. Rocchesso: Sound Processing

D. A. Jaffe and J. O. Smith. Extensions of the Karplus-Strong Plucked
String Algorithm. Computer Music J., 7(2):56-69, 1983.

J.-M. Jot. Ftude et Redlisation d’un Spatialisateur de Sons par Modéles
Physiques et Perceptifs. PhD thesis, TELECOM, Paris 92 E 019, 1992.

J.-M. Jot and A. Chaigne. Digital Delay Networks for Designing Artificial
Reverberators. In Audio Eng. Soc. Convention, Paris, France, Feb. 1991.
AES.

T. Kailath. Linear Systems. Prentice-Hall, Englewood Cliffs, 1980.

K. Karplus and A. Strong. Digital Synthesis of Plucked String and Drum
Timbres. Computer Music J., 7(2):43-55, 1983.

G. S. Kendall. A 3-D Sound Primer: Directional Hearing and Stereo
Reproduction. Computer Music J., 19(4):23-46, Winter 1995.

G. Kuhn. Model for the interaural time differences in the azimuthal plane.
J. Acoustical Soc. of America, 62:157-167, July 1977.

H. Kuttruff. A Simple Iteration Scheme for the Computation of Decay
Constants in Enclosures with Diffusely Reflecting Boundaries. J. Acous-
tical Soc. of America, 98(1):288-293, July 1995.

T. I. Laakso, V. Valimaki, M. Karjalainen, and U. K. Laine. Splitting
the Unit Delay—Tools for Fractional Delay Filter Design. IEEE Signal
Processing Magazine, 13(1):30-60, Jan 1996.

J. Laroche. Time and pitch scale modification of audio signals. In M. Kahrs
and K. Brandenburg, editors, Applications of Digital Signal Processing to
Audio and Acoustics, pages 279-309. Kluwer Academic Publishers, 1998.

J. Makhoul. Linear prediction: A tutorial review. Proc. IEEE, 63(4):561—
580, Apr. 1975.

W. L. Martens. Psychophysical calibration for controlling the range of
a virtual sound source: multidimensional complexity in spatial auditory
display. In Proc.Int. Conf. Auditory Display (ICAD-01), pages 197207,
Espoo, Finlnd, 2001.

D. C. Massie. Wavetable sampling synthesis. In M. Kahrs and K. Bran-
denburg, editors, Applications of Digital Signal Processing to Audio and
Acoustics, pages 311-341. Kluwer Academic Publishers, 1998.

M. Mathews, J. E. Miller, F. R. Moore, J. R. Pierce, and J.-C. Risset.
The Technology of Computer Music. MIT Press, Cambridge, MA, 1969.

D. Mazzoni and R. Dannenberg. A fast data structure for disk-based audio
editing. In Proc. International Computer Music Conference, La Habana,
Cuba, Sep 2001. ICMA.

S. K. Mitra. Digital Signal Processing: A computer-Based Approach.
McGraw-Hill, New York, 1998.

References 187

[59]

[60]

[61]

[69]

[70]

[71]

[72]

[73]

[74]

F. R. Moore. An Introduction to the Mathematics of Digital Signal Pro-
cessing. Part I: Algebra, Trigonometry, and the Most Beautiful Formula
in Mathematics. Computer Music J., 2(1):38-47, 1978.

F. R. Moore. A General Model for Spatial Processing of Sounds. Computer
Music J., 7(3):6-15, 1982.

J. A. Moorer. About this Reverberation Business. Computer Music J.,
3(2):13-18, 1979.

J. A. Moorer. The Manifold Joys of Conformal Mapping: Applications to
Digital Filtering in the Studio. J. Audio Eng. Soc., 31(11):826-840, 1983.

P. M. Morse. Vibration and Sound. American Institute of Physics for
the Acoustical Society of America, New York, 1991. 1st ed. 1936, 2nd ed.
1948.

C. Miiller-Tomfelde. Low-latency convolution for real-time applications.
In Proc. Audio Eng. Soc. Int. Conference, pages 454-459, Rovaniemi, Fin-
land, April 1999. Journal of the Audio Eng. Soc.

A. V. Oppenheim and R. W. Schafer. Discrete-Time Signal Processing.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989.

A. V. Oppenheim and A. S. Willsky (with S. H. Nawab). Signals and Sys-
tems. Prentice-Hall, Inc., Upper Saddle River, NJ, 1997. Second edition.

S. J. Orfanidis. Introduction to Signal Processing. Prentice Hall, Engle-
wood Cliffs, N.J., 1996.

J.-M. Pernaux, P. Boussard, and J.-M. Jot. Virtual sound source posi-
tioning and mixing in 5.1 implementation on the real-time system genesis.
In Proc. Conf. Digital Audio Effects (DAFx-98), Barcelona, Spain, pages
76-80, Nov. 1998.

K. C. Pohlmann. Principles of Digital Audio. McGraw-Hill, New York,
1995.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Nu-
merical recipes in c. 1988. sections available online at .

M. Puckette. Pure data. In Proc. International Computer Music Confer-
ence, pages 224-227, Thessaloniki, Greece, Sept. 1997. ICMA.

V. Pulkki. Virtual sound source positioning using vector base amplitude
panning. J. Audio Eng. Soc., 45(6):456-466, 1997.

V. Pulkki, M. Karjalainen, and J. Huopaniemi. Analyzing virtual sound
source attributes using binaural auditory models. J. Audio Eng. Soc.,
47(4):203-217, Apr. 1999.

T. Quatieri and R. McAulay. Audio signal processing based on sinusoidal
analysis/synthesis. In M. Kahrs and K. Brandenburg, editors, Applica-
tions of Digital Signal Processing to Audio and Acoustics, pages 343—416.
Kluwer Academic Publishers, 1998.

188

[75]

[76]

[77]

[78]

[79]

[80]

[82]

[83]

[84]

[87]

[88]

[89]

[90]

[91]

D. Rocchesso: Sound Processing

A.S. Reber and E. Reber. The Penguin Dictionary of Psychology. Penguin
Books Ltd., London, UK, 2001. Third Edition.

P. A. Regalia, S. K. Mitra, and P. P. Vaidyanathan. The Digital All-
Pass Filter: A Versatile Signal Processing Building Block. Proc. IEEE,
76(1):19-37, Jan. 1988.

C. Roads. Asynchronous granular synthesis. In Representations of Musical
Signals, pages 143-186. MIT Press, Cambridge, MA, 1991.

C. Roads. The Computer Music Tutorial. MIT Press, Cambridge, Mass.,
1996.

D. Rocchesso. The Ball within the Box: a sound-processing metaphor.
Computer Music J., 19(4):47-57, Winter 1995.

D. Rocchesso. Strutture ed Algoritmi per I’Elaborazione del Suono basati su
Reti di Linee di Ritardo Interconnesse. Phd thesis, Universita di Padova,
Dipartimento di Elettronica e Informatica, Feb. 1996.

D. Rocchesso. Maximally-Diffusive yet Efficient Feedback Delay Networks
for Artificial Reverberation. IEEE Signal Processing Letters, 4(9):252-255,
Sept. 1997.

D. Rocchesso. Spatial effects. In U. Zdlzer, editor, Digital Audio Effects,
pages 137-200. John Wiley and Sons, Ltd., Chichester Sussex, UK, 2002.

D. Rocchesso and F. Scalcon. Bandwidth of perceived inharmonicity for
physical modeling of dispersive strings. IEEE Transactions on Speech and
Audio Processing, 7(5):597-601, Sept. 1999.

D. Rocchesso and J. O. Smith. Circulant and Elliptic Feedback Delay
Networks for Artificial Reverberation. IEEE Transactions on Speech and
Audio Processing, 5(1):51-63, Jan. 1997.

D. Rocchesso and J. O. Smith. Generalized digital waveguide networks.
IEEE Transactions on Speech and Audio Processing, 11(5), 2003.

J. G. Roederer. Introduction to the Physics and Psychophysics of Music.
Springer-Verlag, Heidelberg, 1975.

B. Schottstaedt. Machine tongues XVII: CLM: Music V meets common
lisp. Computer Music J., 18(2):30-37, 1994.

M. R. Schroeder. Improved Quasi-Stereophony and “Colorless” Artificial
Reverberation. J. Acoustical Soc. of America, 33(8):1061-1064, Aug. 1961.

M. R. Schroeder. Natural-Sounding Artificial Reverberation. J. Audio
Eng. Soc., 10(3):219-233, July 1962.

M. R. Schroeder. Digital Simulation of Sound Transmission in Reverberant
Spaces. J. Acoustical Soc. of America, 47(2):424-431, 1970.

M. R. Schroeder. Computer Models for Concert Hall Acoustics. American
Journal of Physics, 41:461-471, 1973.

References 189

[92]

[93]

[94]

[100]

[101]

[102]

[103]

[104]

[105]

106]

M. R. Schroeder. Computer Speech: Recognition, Compression, and Syn-
thesis. Springer Verlag, Berlin, Germany, 1999.

M. R. Schroeder and B. Logan. “Colorless” Artificial Reverberation. J.
Audio Eng. Soc., 9:192-197, July 1961. reprinted in the IRE Trans. on
Audio.

X. Serra. Musical sound modeling with sinusoids plus noise. In C. Roads,
S. Pope, A. Picialli, and G. D. Poli, editors, Musical Signal Processing,
pages 91-122. Swets & Zeitlinger, 1997.

X. Serra and J. O. Smith. Spectral modeling synthesis: A sound analy-
sis/synthesis system based on a deterministic plus stochastic decomposi-
tion. Computer Music Journal, 14(4):12-24, 1990.

J. O. Smith. An allpass approach to digital phasing and flanging. In Proc.
International Computer Music Conference, page 236, Paris, France, 1984.
ICMA. Also available as Rep. STAN-M-21, CCRMA, Stanford University.

J. O. Smith. Fundamentals of Digital Filter Theory. Computer Music J.,
9(3):13-23, 1985.

J. O. Smith. Physical modeling using digital waveguides. Computer Music
J., 16(4):74-91, Winter 1992.

J. O. Smith and J. S. Abel. The Bark Bilinear Transform. In Proc. IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics,
Mohonk, NY, Oct. 1995.

J. O. Smith and B. Friedlander. Adaptive interpolated time-delay esti-
mation. IEEE Trans. Aerospace and Electronic Systems, 21(2):180-199,
Mar. 1985.

J. Stautner and M. Puckette. Designing Multichannel Reverberators.
Computer Music J., 6(1):52-65, Spring 1982.

K. Steiglitz. A Digital Signal Processing Primer. Addison-Wesley, Menlo
Park, CA, 1996.

J. Strikwerda. Finite Difference Schemes and Partial Differential Equa-
tions. Wadsworth & Brooks, Pacific Grove, CA, 1989.

C. R. Sullivan. Extending the Karplus-Strong Algorithm to Synthesize
Electric Guitar Timbres with Distortion and Feedback. Computer Music
J., 14(3):26-37, 1990.

J. Sundberg. The Science of Musical Sounds. Academic Press, San Diego,
CA, 1989. First Ed. 1973.

B. Vercoe. Csound: A manual for the audio processing system and
supporting programs with tutorials. Technical report, Media Lab,
M.L.T., Cambridge, Massachusetts. Software and Manuals available from
ftp://ftp.maths.bath.ac.uk/pub/dream/, 1993.

190

[107)

[108]

109

[110]

[111]

D. Rocchesso: Sound Processing

B. L. Vercoe, W. G. Gardner, and E. D. Scheirer. Structured Audio: Cre-
ation, Transmission, and Rendering of Parametric Sound Representations.
Proc. IEFE, 86(5):922-940, May 1998.

T. S. Verma, S. N. Levine, and T. H. Y. Meng. Transient modeling syn-
thesis: a flexible analysis/synthesis tool for transient signals. In Proc.
International Computer Music Conference, pages 164-167, Thessaloniki,
Greece, Sept. 1997. ICMA.

U. Zolzer. Digital Audio Signal Processing. John Wiley and Sons, Inc.,
Chichester, England, 1997.

U. Zolzer, editor. Digital Audio Effects. John Wiley and Sons, Ltd.,
Chichester Sussex, UK, 2002.

E. Zwicker and H. Fastl. Psychoacoustics: Facts and Models. Springer
Verlag, Berlin, Germany, 1990.

Index

legato, 146 basilar membrane, 163
basis, 121
absolute value, 115 biased representation, 137
absolutely summable, 11 BIBO, 11
acoustic intensity, 164 bilinear transformation, 12
additive synthesis, 91 bin, 79
adjustable windows, 83 binary digits, 135
aliasing, 5 bins, 8, 83
allpass comb filter, 62 bits, 135
allpass filter, 44 block-oriented computation, 145
allpass filters, 71 boost, 43
allpole filter, 88, 96 bounded-input bounded-output, 11
ALU, 157 broad-band noise, 94
amplitude modulation, 104 bytes, 136
analog signal, 15
analog system, 12 carrier, 77
analog-to-digital converter, 152 carrier frequency, 101
analysis window, 78, 80 carrier/modulator frequency ratio, 105
antiresonances, 59 causality, 11
antisymmetric impulse response, 27 cellular models, 109
anvil, 163 characteristic frequency, 107
apex, 163 chorus, 63
ARES/MARS, 150 chroma, 170
ARES/MARS workstation, 157 circulant matrices, 75
argument, 115, 116 circular buffer, 34
Arithmetic Logic Unit, 160 circular buffering, 161
artificial reverberation, 70 cochlea, 163

asynchronous granular synthesis, 100 codomain, 116
Attack - Decay - Sustain - Release, 100 coefficients, 118

audio busses, 148 Coloring, 94
audio stream, 150 column vector, 121
audio-rate, 145 comb filters, 71
Auto-Regressive Moving Average, 34 Common Lisp Music, 144
autocorrelation, 89 commutative ring, 114
averaging filter, 20 complementary filters, 49
complexr conjugate, 115
backward masking, 172 complex numbers, 114
band-limited, 4 complex sinusoid, 127
bandwidth, 39 complezity-latency tradeoff, 76
bank of oscillators, 103 composition of functions, 130
base, 163 cone of confusion, 173

191

192

conformal mapping, 13
conformal transformation, 51
contour plot, 118
control rate, 100
control signals, 100
control word, 158
control-rate, 145
convolution, 2, 10, 75
CORDIS-ANIMA, 108
Cosine, 126

critical band, 167
crossover filter, 49

damped oscillator, 40

damping coefficient, 107

data flow, 157

data reduction, 96

dB, 171

dc component, 14

dc frequency, 29

DCT, 95

De Moivre formula, 127
decibel, 124, 165

decimation, 81

decimator, 9

default, 149

defined integral, 151

delay matriz, 7/

demodulation, 77

dependent variable, 116
derivative, 128

deterministic part, 91

DFT, 8

digital filter, 19

digital frequencies, 5

digital noise, 98

digital oscillator, 96

digital signal, 15

Digital Signal Processor (DSP), 148
digital signal processors, 151
digital wavegquide networks, 111
digital-to-analog converter, 152
Direct Form I, 46

Direct Form II, 46

direct manipulation, 106

direct methods, 169

Discrete Cosine Transform, 95
Discrete Fourier Transform, 8
Discrete-Time Fourier Transform, 5
discrete-time system, 9

D. Rocchesso: Sound Processing

dither, 16
domain, 115
dominant pole, 37
dot product, 121
DTFT, 5
dynamic levels, 99

ear canal, 163

ear drum, 163

effective delay length, 55
eigenfunctions, 125
elementary resonator, 37
Emphasizing, 94
envelope, 25
equal-loudness curves, 166
Euler formula, 127
excitation signal, 96
exponent, 137
exponential, 124
exponential function, 152

factorial, 125

Fast Fourier Transform, 9
FDN, 73

Fechner’s idea, 168

Feedback Delay Networks, 73
feedback matriz, 7/

feedback modulation index, 104
FFT, 9

FFT-based synthesis, 93
field, 118

filter coefficients, 26

filter order, 34

filterbank, 77

filterbank summation, 81
finite difference methods, 109
Finite Impulse Response, 19
FIR, 19

FIR comb, 59

fixed point, 136

flanger, 63

Fletcher-Munson curves, 166
floating point, 136

FM, 101

FM couple, 103

foldover, 5

formant, 103

formant filter, 89

formants, 89

fortissimo, 100

References

forward masking, 172

Fourier matriz, 9

frame, 145

frame rate, 145

frequency JND, 169

frequency leakage, 7

frequency modulation, 5, 101
frequency resolution, 6

frequency response, 2

frequency warping, 52
frequency-dependent absorption, 58
Fundamental Theorem of Algebra, 119

gestural controllers, 106

grains, 100

granular synthesis, 100

graphical building environments, 150
group delay, 24

guides, 92

hair cells, 163

hammer, 163

harmonizer, 152

Head-Related Impulse Responses, 173
Head-Related Transfer Function, 65
Head-Related Transfer Functions, 173
helicotrema, 163

hexadecimal, 136

holder, 4

hop size, 81

HRIR, 65, 173

HRTF, 173

hysteresis, 92

Hz, 59

1ID, 64, 173

IIR, 19

IIR comb, 61

images, 3

mmaginary unity, 114
impedance of the tube, 164
impulse invariance, 12
impulse response, 2, 10
increment, 97

indefinite integral, 131
independent variable, 116
Infinite Impulse Response, 19
initialization, 145

mner ear, 163
instantaneous frequency, 101

193

mstrument, 143

intensity level, 165

interaural intensity and time differences,
173

tnverse, 113

Inverse Discrete Fourier Transform, 9

inverse formant filter, 89

inverse function, 116

inverse matriz, 123

ITD, 64, 178

JND, 167

Jump operations, 160

Just Noticeable Difference, 167
just noticeable difference, 54, 58

Karplus-Strong synthesis, 111
kernel of the Fourier transform, 134
kernel of the transform, 11
Kirchhoff variables, 109
Kyma/Capybara, 150

Lagrange interpolation, 56, 87

Laplace Transform, 132

lattice structure, 47

leakage, 83

least significant bit, 135

LFO, 100

limit cycles, 17

linear and time-invariant systems, 9

linear predictive coding, 88

linear quantization, 15

linear systems, 1

linear time-invariant, 1

linearly independent, 121

localization blur, 65

logarithm, 124

loop, 99

loops, 147

lossless prototype, 74

lossy delay line, 58

lossy quantization, 17

loudness, 166

loudness level, 166

Low-Frequency Oscillators, 100

low-latency block based implementations
of convolution, 76

lowpass filter, 21

LPC, 88

LPC analysis, 94

194 D. Rocchesso: Sound Processing

LTI 1, 9 opposite, 113
orchestra, 143, 145
magnitude, 115 ordinary differential equations, 109
magnitude response, 20 orthogonal coordinates, 115
magnitude spectrum, 134 outer ear, 163
main lobe, 7 outer hair cells, 172
main-lobe width, 82 oval window, 163
mantissa, 157 overflow oscillations, 17
masker, 171 overflow-protected operations, 17
masking, 172 overlap and add, 93
mass points, 108
mass-spring-damper system, 106 p-fields, 145
Matlab, 159 parabolic interpolation, 86
matrixz, 121 parameters, 143
matrix product, 122 parametric filters, 50
Mazx, 150 partial differential equations, 109
mel, 169 partial fraction expansion, 37
memory buffers, 152 passband, 83
middle ear, 163 patch, 148
MIDI, 150 pd, 151
missing fundamental, 170 per-thread processing, 144
modulation, 77 phase, 115
modulation frequency, 101 phase delay, 24
modulation index, 101 phase following, 86
Morphing, 94 phase modulation, 101
most significant bit, 135 phase opposition, 49
MSP, 151 phase response, 20
MUL, 157 phase spectrum, 134
Multiply and Accumulate (MAC), 161 phase unwrapping, 26, 88
multiply-and-accumulate, 33 phase vocoder, 81
Multirate, 98 phaser, 63
multivariable function, 118 phons, 166
musical octave, 170 pinna, 163
Musical scales, 170 pipeline, 161
pitch, 169
Neper number, 12/ Pitch Shifting, 94
NLD, 105 pitch shifting, 96
non-recursive comb filter, 59 place theory of hearing, 170
non-recursive filters, 19 plucked string synthesis, 61
nonlinear distortion, 105 polar coordinates, 115
normal modes, 74 pole, 2
notch, 43 pole-zero couple, 44
notes, 148 poles of the filter, 22
Nyquist frequency, 4 polynomials, 118
Nyquist language, 144 post-processing unit, 149
power, 123
Octave, 139 precursors, 24
one-dimensional distributed resonators, prediction coefficients, 89
109 prediction error, 88

one-dimenstonal resonator, 61 presence filter, 51

References

primitive function, 132
pulse train, 88
Pure Data, 151

quality factor, 43, 107
quantization error, 15
quantization levels, 15
quantization noise, 15
quantization step, 137
quantum interval, 15

radians, 125

rapid prototyping tools, 150
real-time processing, 150
reconstruction filter, 4
rectangular window, 7, 80
recursive comb filter, 61
reflection coefficient, 48
reflection coefficients, 89
region of convergence, 37
reqular functions, 128
residual, 88

resonances, 60

resonator, 59

resynthesis, 79, 81, 93
ring, 114

RMS, 165

rms level, 124

RMS value, 16

Room within a Room, 69
root-mean-square value, 16
roots, 119

roughness, 171

sample and hold, 4
sample-oriented computation, 145
sampler, 4

sampling, 3

sampling interval, 3

Sampling Theorem, 3
sampling-rate conversion, 98
SAOL, 144

sawtooth wave, 104

scala timpani, 163

scala vestibuli, 163

Scope, 150

score, 143, 145

second-order filter, 38

shift operation, 10

Short-Time Fourier Transform, 77

stde components, 102

stde lobes, 81

side-lobe level, 82

signal flowchart, 12

signal flowgraph, 46

signal flowgraphs, 34

Signal Processing Toolbox, 143
signal quantization, 15

195

signal-to-quantization noise ratio, 16

signed integers, 135

Sine, 126

sines + noise + transients, 95
sines-plus-noise decomposition, 94
sinusoidal model, 87, 91
SISO, 1

smoothing, 142

sms, 92

SNR, 16

SNT, 95

solutions, 119

sones, 166

sonogram, 42, 84, 149

sound bandwidth, 102

sound modification, 9/

sound pressure level, 165
source signal, 88

spatial processing, 64

spectral envelope, 104

spectral modeling synthesis, 92
spectral resolution, 83
spectrogram, 84

spectrum, 3, 134

splits, 99

stability, 11

standardized loudness scale, 166
standing wave, 166

state space description, 74
state update, 161

state variables, 42
steady-state response, 23, 37
STFT, 77

stirrup, 163

stochastic part, 91

stochastic residual, 92
stopband, 83

subjective scale for pitch, 169
subtractive synthesis, 96
superposition principle, 1
sustain, 99

symmetric impulse response, 27

196

Tangent, 126

tapped delay line, 34
taps, 34

target signal, 88
tectorial membrane, 163
Temporal envelopes, 100
temporal masking, 172
temporal processing of sound, 170
temporal resolution, 83
threshold of hearing, 165
threshold of pain, 165
timbre, 170

time constant, 37

time tnvariance, 9

Time Stretching, 94
time stretching, 96
transfer function, 1, 10
transforms, 132
transient response, 23, 37
transients, 95

transition band, 51
transition bandwidth, 83
transposed, 122
Transposed Form I, 47
Transposed Form II, }7
transposition, 121

transposition of a signal flowgraph, 46

trapezoid rule, 14
traveling waves, 110
tremolo, 100

two’s complement representation, 135

Uncertainty Principle, 6
uncertainty principle, 83

unit diagonal matriz, 123

Unit Generators (UG), 143
unity, 113

unsigned integer, 135
unvoiced, 88

unwarping, 52

upward spread of masking, 172

variable, 115
VBAP, 68

Vector Base Amplitude Panning, 68

Vector Base Panning, 69
vector space, 121

vector subspace, 121
vectors, 120

vibrato, 100

D. Rocchesso: Sound Processing

virtual pitch, 170
visco-elastic links, 108
vocal-fold excitation, 89
vocoder, 88

voiced, 88

vowel-like spectra, 103

waterfall plot, 84

wave equation, 109

wave packets, 25

waveguide junctions, 111
waveguide models, 109, 110
waveshape preservation, 9/
waveshaping, 105
wavetable, 97

wavetable oscillator, 97
wavetable sampling synthesis, 99
Weber’s law, 168

white noise, 15, 88
whitening filter, 89
window, 6

X20 processor, 157
Yamaha DX7, 105

Z tramsform, 184
zero, 2, 113
zero padding, 83
zeros, 119

zeros of the filter, 22

