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Abstract

Telecommunication switches implement overload
controls to maintain call throughput and delay at ac-
ceptable levels during periods of high load. Existing
work has mostly focused on controls under sustained
overload–they do not meet the demands of modern
telecommunication systems where the increased num-
ber of services and mobile subscribers often creates fast
changing hot spots. We introduce new algorithms that
are designed to be highly reactive to sudden bursts of
load.

One algorithm is a modified version of RED for sig-
naling traffic that measures the queue size. The second
algorithm uses two measures: call acceptance rate and
processor occupancy. Using simulations of realistic sys-
tem models, we compare these new algorithms with each
other and an existing algorithm that uses processor oc-
cupancy only. Our simulation results and qualitative ar-
guments show that the combination of acceptance rate
and processor occupancy results in a highly reactive and
robust signaling overload control.

In our performance study, we consider two scenar-
ios, one where no processing costs are associated with
call requests that are throttled and another where finite
processing overhead is incurred even for calls that are
eventually throttled. In the second scenario, due to the
processing overhead, the system throughput approaches
zero under heavy overload because most or all of the
processing resources are expended in throttling calls. In
order to significantly reduce the processing overhead as-
sociated with throttled calls, we propose a simple two-
layer throttling scheme where a fraction of calls are
throttled at a lower protocol layer.

1 Introduction

Telecommunication networks are made up of various
switches interconnected by communication links. These
links comprise two separate logical networks. One net-

work is used for carrying voice and user data, and the
second for signaling and control information. To estab-
lish and release connections, and to access services and
databases, switches communicate with each other over
the signaling network. These networks and switches
are engineered to carry a certain number of active calls,
and process requests for calls and services at a certain
rate. Occasionally, they might experience more traffic
than the engineered capacity. Overload controls are re-
quired to maintain the throughput and the quality of ser-
vice at acceptable levels. Using properly designed over-
load controls is much cheaper than over-provisioning re-
sources and this may also be used for load balancing and
traffic differentiation.

In this paper, we address processor overload controls
due to signaling traffic. These controls execute inside
switch controllers to react to conditions of high signaling
requests that overwhelm internal switch processing re-
sources. Switches may experience overload conditions
even at times during which the voice and signaling net-
works are not congested. Ideally, the performance of the
switch should degrade gracefully, according to perfor-
mance profiles acceptable to a service provider. Also,
the performance of the switch should return to normal
as soon as the overload condition declines.

There are two types of response to overload. First,
a switch may invoke remote congestion controls by sig-
naling its neighbors of its state. In practice, although
recommended procedures exist to deal with inter-switch
congestion control, many deployed switches do not im-
plement these algorithms. Therefore, it is critical that
switch overload algorithms make no assumptions about
the behavior of neighboring switches. The second re-
sponse to overload is for the switch to locally protect its
own processing resources by selectively throttling sig-
naling messages. Each request to a switch, either to es-
tablish or release a connection, or to request a different
type of service, usually results in a sequence of several
messages, each of which must be processed in order for
the request to be filled. Therefore, the process of throt-
tling messages may be done intelligently by throttling



messages that initiate service requests. This practice
reduces overload by eliminating future signaling mes-
sages.

Earlier work on overload control has focused on pre-
serving performance under sustained overload. In mod-
ern telecommunication networks, due to the increased
number of service types and usage, and introduction of
mobile networks that often result in fast changing net-
work hot spots, the reactiveness of overload algorithms
has become critical. This requires new algorithms and
models. In this paper, we introduce new local overload
control algorithms that are designed to be highly reactive
to sudden bursts of load. Our first algorithm is based on
detecting and controlling overload by measuring queue-
lengths. Here we look at a modified version of the well-
known Random Early Discard (RED) algorithm [6]. The
RED algorithm has been proposed for active queue man-
agement in routers. We call our RED variant signal-
ing RED, or SRED. The second, called Acceptance-Rate
Occupancy (ARO), uses system measures of both call ar-
rival rates and switch processor occupancy. Using sim-
ulations of realistic system models, we compare these
new algorithms with each other and an existing algo-
rithm that uses only processor occupancy [4].

We find that under sudden load ramp up, ARO and
SRED reduce the response time by orders of magnitude
in comparison to the algorithm that uses processor occu-
pancy only. In comparison to SRED, ARO has a slightly
higher response time under sudden load ramp up but ex-
hibits higher throughput under heavy overload. SRED
and other variants of RED require tuning of several pa-
rameters, some of which change with processor speeds
and different software releases. ARO requires specifi-
cation of only one parameter, the target processor oc-
cupancy, which is dimensionless, making this approach
more portable and robust to system upgrades.

The choice of a particular overload control algorithm
depends upon several factors. Based on our performance
study and noting that it could be portably implemented,
we recommend the use of the ARO algorithm for pro-
cessor overload control due to signaling traffic.

In our performance study, we consider two scenar-
ios, one where no processing costs are associated with
calls that are throttled and another where finite process-
ing overhead is incurred even for calls that are eventually
throttled. In the second scenario, due to this processing
overhead, the system throughput approaches zero un-
der heavy overload. This is because most or all of the
processing resources are expended in throttling calls. In
order to reduce this processing overhead, we propose a
simple two-layer throttling scheme where a fraction of
calls are throttled at a lower protocol layer. This two-
layer throttling scheme could potentially reduce the pro-

cessing overhead by a significant amount and thereby
increase the system’s prowess of handling higher over-
load.

The rest of the paper is structured as follows. Sec-
tion 2 describes related work in overload control algo-
rithms. A high level description of a network switch
and the system model used is presented in Section 3.
The overload algorithms considered in the paper are de-
scribed in Section 4 and compared via simulations in
Section 5. The two-layer throttling scheme to reduce
processing overhead is described in Section 6. Our
conclusions and suggestions for further research are in-
cluded in Section 7.

2 Related Work

Overload and congestion control (OLC) has been a
topic of active study both in circuit switched (Telecom)
and packet switched (Internet) networks. Telecom sig-
naling network overload control schemes, including the
ones discussed in this paper, are designed to manage
processor utilization. The goal is to allow as high a pro-
cessor occupancy and, hence, signaling throughput as
possible, without overloading the processor.

Some of the earlier work [10, 5] (see [9] for a sum-
mary) on overload control in telecom switches focused
on delaying dial tones (useful only in the case of a local
access switch), or throttling new calls when the number
of calls being processed in the switch exceeded a certain
predetermined number. Such drop tail schemes suffer
from synchronization effects in which remote switches
might reduce, or increase, sending traffic at the same
time, causing degraded performance. A later proposal
by [4] suggested gradually throttling a fraction of new
calls depending on the measured processor occupancy,
which is an indication of the system load. As shown in
the performance study in Section 5, one of the problems
with this approach is that it reacts slowly to sudden ramp
up in input traffic. Earlier work on modeling and analy-
ses of overload control [9] has concentrated on average
value analysis with Poisson assumptions.

Our work differs from the existing work on overload
control in telecom networks in the following significant
ways. First, we propose a new algorithm, which uses
both the processor occupancy and the acceptance rate of
the system. Under steady overload, the performance of
our new algorithm is similar to the algorithm based only
on processor occupancy. However, our new algorithm
drastically reduces the response time under sudden load
ramp up. Second, our approach applies to both access
and toll (or tandem) switches. Third, we do not restrict
our performance study to theoretical analyses; we use
simulations to consider a variety of arrival patterns and
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study a variety of overload control schemes. Most im-
portantly, we study the reactiveness of the overload con-
trol approaches.

Very recently, Pillai [8] has examined two overload
control schemes using an M/M/1 queuing model. Both
the schemes, one that uses arrival rate threshold and
another that uses buffer size threshold, work in con-
junction with delay thresholds. Delay thresholds are
hard to budget across multiple switching hops and even
across components in the same switch. The problem be-
comes harder when different end-to-end paths have var-
ied number of switching hops. Hence we do not con-
sider delay-based approaches in our work. Our belief is
corroborated by Pillai’s observation that average end-to-
end delays are very different from the end-to-end de-
lay bounds leaving ample room for further tuning of
individual thresholds. Our work differs from Pillai’s
in many additional aspects. Unlike our overload con-
trol schemes, Pillai’s buffer size threshold scheme uses
drop tail throttling. His arrival rate threshold scheme
could use random throttling but the computation of drop
probability and the random throttling alogorithm are not
specified in [8]. As mentioned before, we do not re-
strict ourselves to Poisson assumptions and also con-
sider bursty call arrivals. Our algorithm design empha-
sizes robustness of the overload control. We use a richer
system model that treats calls as made up of several sub-
tasks with variable delays in between their execution.
We also propose a two-layer throttling scheme to reduce
the processing overheads associated with calls that are
eventually throttled.

In the Internet, overload control has focused on the
active queue management (AQM) of the output links
of routers. Most of the proposed approaches to AQM
are variants of the Random Early Discard (RED) algo-
rithm [6]. RED uses a probabilistic approach to drop-
ping packets, in which the drop probability depends on
the average queue size. In AQM schemes, processor uti-
lization is not an issue. It is assumed that the link, rather
than the processor, is the bottleneck and there is always
enough processing power to handle packet forwarding
at full link rate while implementing the AQM scheme.
To study the applicability of RED-like approaches in
the context of controlling processor overload due to sig-
naling traffic, we modify RED. Our modified version,
called signaling RED, or SRED, uses the basic concept
of measuring queue lengths like RED, but differs from
it in many other ways as indicated in Section 4. The
performance of RED has been mainly evaluated in the
presence of TCP traffic with TCP’s end-to-end conges-
tion control. In our evaluation of SRED, we do not as-
sume any remote overload controls.

3 System Model

A typical network switch is shown in Figure 1. It
consists of several components including those dealing
with signaling, call processing and administrative func-
tions. The switch also has resources for bearer (voice or
data) traffic. The signaling component processes sig-
naling traffic associated with call setup and call tear-
down from/to neighboring switches and is responsible
for any signaling protocol processing. It also processes
messages from/to the call processing and administrative
components. The call requests from the signaling card
are sent to a call processing component which maintains
call states and implements call processing functions and
any other upper layer protocol processing.

Bearer ResourcesBearer Traffic

Signaling Traffic Signaling

Administrative, 
Other Functions

Call Processing

Figure 1. A Typical Network Switch.

We are concerned with signaling overload control at
the signaling and the call processing cards. When a sig-
naling message arrives at a signaling card, the signaling
card must first perform lower layer protocol processing
(e.g., Message Transfer Part, MTP, layers 1-3 process-
ing [1]) and any other processing to determine if the
signaling message is a new call request. Hence even if
a new call is throttled due to overload in the signaling
card, it imposes some processing cost on the signaling
card. This processing cost is called the throttling cost.
A call processing card may avoid this cost by commu-
nicating its load (or the rate at which it would accept
calls) to the signaling card(s) which identifies and throt-
tles new calls appropriately. The division of function-
ality across cards varies in different switch implemen-
tations. In our work, we study processor overload con-
trol in a single card of a network switch under two gen-
eral scenarios representing the two throttling situations
describe above, one in which throttling comes for free
(where throttling cost is incurred by a neighboring card),
and another where the card incurs throttling cost 1. We

1A hybrid of the two scenarios is also possible but will be ignored
in this paper.
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assume that there is enough memory available so that the
card does not run out of buffers even during overload.

   Delay
Variable

CPU

Create new tasks
for accepted calls

Throttled Requests

New Requests Completed Requests

Throttled Requests

                   by neighboring card.                    by signaling card.Scenario1: Cost of throttling incurred Scenario2: Cost of throttling incurred

Figure 2. Single processor queue model
for a card.

We model a card, also referred to as system, by a
single processor queue as shown in Figure 2. In this
model, new call requests are assumed to arrive at the
queue according to some arrival process. Depending on
the current measure of load of the system and the over-
load control algorithm, a new request could be accepted
or throttled. If the new request is accepted, it is pro-
cessed by the CPU and, depending on the nature of the
request, an additional task is generated and fed back into
the system after a variable delay. This additional task,
when processed, may generate more tasks which are fed
back into the system. The processor schedules tasks us-
ing a first-in-first-out policy. Eventually, when all the
tasks associated with an accepted request are executed,
the request is considered completed and removed from
the system. The generation of new tasks models the mul-
tiple tasks and messages associated with a request. The
variable delay applied to a task, before it is fed back
into the system, models the variable delay between ar-
rival of different tasks associated with a request. The
two throttling scenarios are also shown in Figure 2. In
the first scenario, a new call is throttled in a neighboring
card and hence is shown to be throttled even before it
is queued. In the second scenario a new call is throttled
after incurring some processing cost.

4 Overload Control Algorithms

In this paper, we describe algorithms to locally con-
trol processor overload in a system (a card of a network
switch as described in Section 3) due to excessive signal-
ing traffic.These algorithms are based on gradual throt-
tling of input traffic and use a time varying variable

�
,

which is interpreted as the fraction allowed, or the prob-
ability that a new request will be accepted. Under nor-
mal operation,

�����
, meaning that all traffic will be

let in. When the switch enters in overload,
�

is reduced

to control the load on the switch by throttling fewer or
more new calls. It is assumed that ongoing calls can not
be terminated to reduce overload.

All overload control algorithms considered in this pa-
per are time driven: the system performance is measured
at fixed probe intervals. At each ���	� probe time, de-
noted the assessment time, overload is assessed and

�
possibly modified. Different system measures may be
used to evaluate overload. These system measures, de-
scribed later in this section, are evaluated at each probe
time and summarized (usually by averaging) at each as-
sessment time. Let 
�� represent the vector of summa-
rized system measures observed at the 
 �	� assessment
time. The general form of the overload control algo-
rithms considered in this paper is

� ����� ������� ����
����������
where

�
is the feedback control function, assumed non-

increasing in each element of 
 � , and � is a vector of
control parameters (e.g., target values of system mea-
sures). In this paper, we only consider algorithms for
which

�
is continuous; discrete feedback control algo-

rithms, which use discontinuous
�

, tend to be less sta-
ble and have worse overall performance than continuous
feedback control algorithms. We present three overload
control algorithms in the following three subsections.

4.1 Occupancy Algorithm

We first present the processor occupancy-based al-
gorithm proposed by [4] and discuss its applicability
under different types of input traffic. Processor occu-
pancy, � , is defined as the percentage of time, within
a given probe interval, that the processor is busy pro-
cessing tasks. Processor occupancy is a dimensionless
quantity, which makes it relatively system independent.
An occupancy close to

� �!�#"
indicates that the switch is

fully loaded and corrective action is needed.
The algorithm proposed by [4] specifies a target pro-

cessor occupancy �%$	&('	) , such that, if the estimated pro-
cessor occupancy *� � at assessment time 
 (given by the
average of the last � probed processor occupancies) is
below � $	&('	) , the fraction allowed

�
is increased, or un-

changed (if already at 100%), otherwise, if *���,+�� $	&�'-) ,�
is decreased. The feedback control function for this

algorithm is defined below.

� ����� � ./ 0 �2143 5 � 6 � � �87 �9143 5� � 6 � � � + �
6�� � ���;:!<(=%> ?(@BADCE>!F �

where 6 � �HG AJI � �!$	&�'-)�KL*� � ��6 1 &(M�� . A minimum frac-
tion allowed

��143 5
is used to prevent the system from

throttling all incoming calls.
We observe that, because � cannot exceed 100%,

�
can decrease by at most

�E�ON � $	&�'-) � � �L�P" between suc-
cessive assessment times, which may lead to a slow
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reaction to overload conditions. For example., using� $	&('	) � � F � allows
�

to decrease by at most
� �P"

be-
tween assessment times. This problem is worse under
overload caused by a sudden increase in call load, be-
cause of the reaction delay associated with � . However,
the fraction allowed can increase by up to 6 1 &(M � �!�#"
between successive assessment times, so that the algo-
rithm reacts faster to ceasing overload conditions.

4.2 Signaling RED Algorithm

The RED algorithm [6] has been proposed for man-
aging router queues in IP networks. We describe an
adaption of RED for our signaling application, which
we call Signaling RED (SRED) algorithm. Like RED,
the SRED algorithm uses as a measure of overload an
Exponentially Weighted Moving Average (EWMA) es-
timate � � of the average queue length, based on the
measured lengths � � of the new calls queue, defined as� ��� � � �E� N�� ��� ��� � � � . The updating weight

�
needs to be specified. The simulation results in Sec-
tion 5 indicate that values of

�
in the range 0.01–0.1

(considerably larger than the ones proposed for RED)
are appropriate. The feedback control function for the
SRED algorithm is

� ��� � � .�/ �0 � 143 5 � � ��	
� 1 &EM� � � ���
�
���J�G������2� 143 5 �������������! �����������!�#" $&% �;:!<(=%> ?(@BADC(> F
To keep the algorithm close in spirit to the original RED
algorithm, the fraction allowed is updated at each probe
interval, when a new ��� is measured.

The basic differences between SRED and RED are:' SRED is time-driven, while RED is event-driven:
in SRED, � � is measured and � � and

�
are updated

at each probe interval, while RED does this is at
every new call. SRED has smaller overhead.' Because SRED is time-driven, no special treatment
is required for the case when the queue is empty
( � � � �

); this is naturally handled by the EWMA
estimate � � .' SRED uses a deterministic throttling scheme, de-
scribed in the Section 4.4, which produces more
uniform throttling sequences and requires less pro-
cessing than the probabilistic throttling scheme
used in RED.

The main advantage of this algorithm is that it is
based on a measure that reacts very fast to the onset of
overload, as evidenced by the simulation results in Sec-
tion 5. The new calls queue length is directly associated

to the processor overload and it appears to have little la-
tency in reacting to changes in overload conditions. The
basic drawback of SRED is that it requires the specifica-
tion of parameters (

� �(� 143 5 � and � 1 &EM ) which heavily
depend on the processor capacity and traffic character-
istics, making it less portable and non-robust to system
upgrades.

4.3 Algorithms Based on Acceptance Rate

We now propose a new algorithm that uses two sys-
tem measures, the system acceptance rate in conjunction
with processor occupancy. This algorithm has the porta-
bility and robustness of the Occupancy algorithm and
also reacts fast to a sudden onset of overload.

Acceptance rate is defined as the number of calls ac-
cepted by the system in a given time interval. An al-
gorithm based on acceptance rate measure requires the
specification of a target acceptance rate, which may be
either fixed by design, or dynamically estimated using
system measurements, as described below.

Let ) $	&('	) represent the target call acceptance rate for
the system and *)4� the estimated call acceptance rate at
assessment time 
 (given by the average of the accep-
tance rates in the previous � probe intervals). A sim-
ple overload control algorithm based on acceptance rate
(AR) uses the feedback control function below.

� ����� � ./ 0 �2143 5 � 6 � � �87 �9143 5� � 6 � � � + �
6 � � � �;:!<(=%> ?(@BADCE> � (1)

where 6�� � ) $	&�'-) K#*)�� . With this feedback control func-
tion, if a large number of calls are accepted in an as-
sessment period, then a large fraction of calls are throt-
tled in the next assessment period. For example, if the
acceptance rate in an assessment period is three times
the target acceptance rate, two thirds of the calls will be
throttled in the next assessment period. Thus, the accep-
tance rate based feedback control function reacts very
fast to sudden traffic ramp up. The problem with us-
ing an algorithm based only on acceptance rate is that
this measure does not indicate overload induced by in-
ternal changes in the system. An increase in the service
rate for certain calls or consumption of processing re-
sources by background tasks cannot be captured by ac-
ceptance rate. Therefore, it is necessary to combine ac-
ceptance rate with another system measure that repre-
sents the system’s processed load and not just offered
load. We propose to use acceptance rate in conjunc-
tion with processor occupancy. The acceptance rate–
occupancy based algorithm (ARO) produces a fraction
allowed

� � G AJI ���+* � ��, � , where
�+*

and
�+,

are the
fraction allowed using acceptance rate and processor oc-
cupancy feedback control functions respectively.
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Even though ARO requires measurement of two sys-
tem measures, in comparison to one in the case of
SRED, it requires specification of only one parameter,
the target processor occupancy. Processor occupancy
is dimensionless and does not change with processor
speed. Hence ARO is very robust against system up-
grades.

4.3.1 Determining the Target Acceptance Rate

The target acceptance rate ) $	&�'-) is a crucial parameter
in the ARO algorithm described in (1). It may either be
determined based on the engineered capacity of the sys-
tem, or it may be estimated dynamically. The method-
ology used to estimate )4$	&�'-) depends on whether or not
there is a processing cost associated with the throttling
of new calls, as described below.

No Throttling Cost

When there is no processing cost associated with throt-
tling of new calls (Scenario 1 in Figure 2), ) $	&�'-) can
be dynamically estimated by determining the maximum
system throughput � 1 &(M � *)�KL*� , where *) is the current
estimate of the call processing rate and *� is the current
estimate of the processor occupancy. � 1 &(M is also the
maximum acceptance rate, ) 1 &EM , that can be allowed
into the system. We use ) $	&�'-) � � $	&�'-) ) 1 &(M . Because) $	&('	) is constant under the no-throttling cost scenario,
it is updated less frequently and more slowly than the
fraction allowed

�
: ) $	&�'-) is updated at every ��� �

probe interval, according to an exponentially weighted
moving average (EWMA) scheme with small updating
weight. The EWMA helps in coverging to the true ) $	&('	)
starting from some initial value.

With Throttling Cost

If throttling costs are present, under heavy overload a
substantial part of the processor occupancy may be re-
lated only to the throttling of new calls, and not to the
processing of existing calls. In this case, ) $	&�'-) is no
longer constant, as changes in the call load will reflect
in changes in target acceptance rate, and needs to be dy-
namically estimated.

A first modification needed in this case is to correct
the formula to calculate ) 1 &EM to take into account only
the portion of *� that is associated with the processing
of existing calls. Letting � denote the relative cost of
throttling (that is, the fraction of the total service time
of a call that is used, on average, just to throttle it) and�

the current fraction allowed of calls, the fraction of
the total processor occupancy associated with throttling
is � � � � � N � �(K ��� ��� �E� N � �E� . Therefore, the total
processor occupancy available for processing accepted

calls is
� N ��*� , of which

� � N ��� *� is effectively being
used. Hence, the equivalent processor occupancy *���
	
when throttling costs are present is

*���
	 � � �BN ����*��BN ��*� � � *�� ��� � �BN � � � �BN *� � F
Note that, when � � �

, *�
�
	 � *� , as expected. The
maximum acceptance rate is then estimated as ) 1 &EM �
*)�KP*���
	 .

When the call load is in steady state, ) $	&('	) should
remain approximately constant, so we don’t want to up-
date it too frequently or too fast. However, if the call
load changes fast and significantly, then ) $	&�'-) should be
updated accordingly. In this case, the total processing
cost that can be handled by the system should be kept
approximately constant, so that

� �E�BN � � � * � � � ) 1 &(M�� � �
� � �BN � ����� � * � ����� � ) 1 &(M�� ����� �

where
� � � * � � � and ) 1 &EM�� � denote respectively the frac-

tion allowed, the arrival rate, and the maximum accep-
tance rate at time 
 . This suggests the following updat-
ing scheme) 1 &(M�� �!��� � ) 1 &(M�� � �

� � � �BN � � � * � � N � �BN � ��� � � * � ������� � (2)

so that abrupt increases in * � will cause ) 1 &(M�� � to de-
crease and abrupt decreases in * � will have the opposite
effect on ) 1 &EM�� � . The updating scheme for ) 1 &(M�� � must
serve a dual purpose: to react fast to sudden changes
in * � � and to vary slowly when * � � is approximately
constant. In order to achieve this, we use a hybrid
scheme, applying (2) to update ) 1 &EM�� � at each assess-
ment time (thus allowing fast reaction to sudden changes
in ) 1 &EM�� � ) and using an EWMA updating scheme like
the one described for the no-throttling cost case (but with*���
	 used in place of *� ) at every � $�� interval (the slowly
changing part of the updating algorithm). As before, we
set ) $	&�'-) � � $�&('-) ) 1 &EM�� � .

4.4 Throttling

Given the fraction allowed
� � to be used during the

n �	� interval, a throttling scheme determines which new
calls to drop. We describe and compare two probabilis-
tic and one deterministic throttling algorithm that can be
used for this purpose.

For simplicity of notation, let � � � N � � . Possi-
bly the simplest probabilistic throttling algorithm is the
one that uses a pseudo-random number � uniformly dis-
tributed in

�	� � � � , as described next.
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Generate � � � ��� � � � .
If � � � , reject call
else accept call.

This algorithm, which we will denote by Prob., as
discussed in [6], tends to produce clusters of throttled
calls, and may lead to synchronization problems. An al-
ternative probabilistic algorithm, proposed for RED in
[6] produces more uniform throttling, but results in a
larger throttling fraction than the desired � . To obtain
the right � , we corrected the RED throttling scheme by
using a fraction ��� � � K ����N � � . The corrected algorithm
is

��� � � � �
Generate � � � ��� � � � .
If � � � � K � � N ��� � �

reject call��� � �
.

else accept call.

The variable � , representing the number of new calls that
were accepted since the last throttled call, is initialized
to zero.

Both the Prob. and the RED throttling schemes re-
quire pseudo-random number generation, which intro-
duces additional variation from the desired � , and pro-
cessing overhead. In order to reduce random variation
and the overhead of random number generation, we con-
sider a deterministic throttling scheme first proposed by
[7], which we denote Determ.. In this algorithm, a vari-
able � is first initialized to 0, then the accept/reject deci-
sion procedure described below is used.

��� � � � �E� N � � .
If � 	 �

��� � � N �
accept call

else reject call.

To compare the performance of the different throt-
tling schemes, we simulated data according to a Poisson
process with an arrival rate of 100 calls/s and used the
three algorithms to throttle calls using � � � F 	 . Fig-
ure 3 shows the observed fraction of throttled calls per
200 ms interval for each of the throttling schemes, dur-
ing the first 15 seconds of traffic.

The smallest variation associated with the Determ. al-
gorithm is evident from Figure 3: the observed throttled
fractions corresponding to this algorithm remain much
closer to the target of 30% than for either of the other
two algorithms. The RED algorithm represents an im-
provement over the Prob. algorithm, but still presents
considerable variability in the observed throttling frac-
tion. The Determ. algorithm has better performance than
the other two probabilistic algorithms and does not have
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Figure 3. Throttling fractions per 200 ms
for Poisson traffic with rate of 100 calls/s.

the overhead associated with the pseudo-random num-
ber generation. Therefore, we propose to use Determ.
for throttling in our overload control schemes.

5 Performance of Algorithms

We compare the performance of the overload algo-
rithms described in Section 4 by simulating2 Scenario 1
and 2 of the system model described in Section 3. The
simulator used to obtain the results presented in this sec-
tion is custom written.

We make the simplifying assumption that the process
of detecting overload is free. The call model used for the
simulations treats each request as consisting of two task
segments: call setup and call termination (see Figure 4).
The call setup and call release segments comprise of sev-
eral tasks which are generated after a random delay. For
simplicity, we combine subtasks occurring with negligi-
ble delay of each other into one subtask, which results
in the call setup being subdivided into three subtasks and
the call termination being composed of a single subtask.

more setup
    tasks

call release
   tasks

more release
    tasks

call released
call setup
   tasks

call arrives call completed

Figure 4. Call task and event structure.

The system represented in the simulation is designed
to operate under approximately 95% processor occu-

2We do not attempt to derive theoretical results for the performance
of the different overload control algorithms, in order to avoid making
any assumptions that would limit the scope of the conclusions pre-
sented here. In particular, we study overload scenarios with non-steady
call loads (see Section 5.2), which would be too difficult to analyze
theoretically.

7



pancy under a load of 1.9 million busy hour calls at-
tempts (BHCA), corresponding to an average of about
528 call attempts per second. The probability distri-
butions used for the delays until the next subtask and
the subtask processing times are listed in Table 1, with> � � � � � denoting the exponential distribution with pa-
rameter � and � � ) ����� denoting the Gamma distribution
with parameters ) and � .

Subtasks
Task Number Delay Proc. Mean
Setup 1 > � � � ����� � � � 	%���	���� � 1.1

2 > � � ��
����!� � � � � � � � � .2
3 > � � � � �L�!�L� � � � � � � � � .2

Release 1 — � � � ��
 �� � .3

Table 1. Probability distributions for sub-
task processing time and delay between
subtasks.

The choice of distributions and parameter values in
Table 1 is based on recommendations and measurements
from telecommunications traffic engineering for wire-
line switches. Under these assumptions, the total aver-
age processing time per call is

� F ����� . Thus, 100%
capacity for the simulated system would be about 556
calls/s, or about two million BHCA. The holding time
for a call, that is, the time between the end of the call
setup and the start of the call termination, is assumed to
be exponentially distributed with mean 90 seconds. We
assume that new calls arrive according to a Poisson pro-
cess3. In order to study reactiveness, sudden ramp up in
new call arrival is caused by ramping up the mean arrival
rate in a short time interval.

All overload algorithms considered in the simulation
use the same probe intervals, 100 ms, and the same min-
imum fraction allowed,

� 143 5 ��� F �L��� . Table 2 lists the
parameter values used in the simulations for the different
algorithms.

The parameter values for the SRED algorithms were
chosen to produce an average processor occupancy of
about 95% under mild to moderate overload conditions
(call rate between 550 and 1500 calls/s), for Scenario 1
of no throttling costs. As discussed in Section 5.1, due
to the sensitivity of queue lengths to changing load and
due to smaller assessment interval, the performance of
SRED deteriorates under high overload (call rates above
2000 calls/s) and it is not possible to choose parameter
values that give steady 95% occupancy for the range of
call rates considered in the simulation.

3Other arrival processes can be easily used in our simulator.

Algorithm
Parameter Occupancy SRED ARO�L$	&�'-) 0.95 – 0.956 1 &(M 20 – 20� 10 1 10�

– 0.05 0.02� – – 300� 143 5
– 3 –� 1 &EM – 8 –

Table 2. Parameter values used in the sim-
ulations for the different overload control
algorithms.

The performance metrics used to compare the algo-
rithms are task delay (time in queue until start of pro-
cessing), call throughput, and fraction of calls allowed
into the system. In the rest of this section, we first de-
scribe our simulation study for the scenario where no
processing costs are associated with the calls that are
throttled (Scenario 1 of Figure 1). The experiments and
results for the scenario where throttled calls incur pro-
cessing costs (Scenario 2 of Figure 1) are described later
in Section 5.3.

5.1 Performance Under Steady Load

We investigate the performance of the overload con-
trol algorithms, when call arrivals are Poisson under
steady mean call attempt rates varying between 1.5 mil-
lion BHCA (417 calls/s) and 9 million BHCA (2500
calls/s), covering the range from non-overload to se-
vere overload with respect to the nominal load of 2 mil-
lion BHCA assumed for the simulated system. For each
mean call attempt rate, calls were simulated over a 30-
minute period, with the performance metrics measured
at each probe time and averaged over the whole period.

Figure 5 shows the averages of the performance met-
rics versus call attempt rate, for each overload control
algorithm. The ARO and Occupancy algorithms per-
form well and similarly with respect to the performance
metrics considered. The SRED algorithm is not capa-
ble of maintaining a stable performance with increasing
call attempt rate. It has comparable performance to the
other two algorithms up to a call attempt rate of 1500
call/s (with larger average task delays), but its perfor-
mance deteriorates for higher call attempt rates (at 2500
call/s, its average process occupancy is 82% and its av-
erage throughput is 457 calls/s – about 50 call/s smaller
than the average throughput for ARO and Occupancy).
It should be noted that the original RED algorithm is de-
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Figure 5. Average performance metrics
versus call attempt rate by overload con-
trol algorithm.

signed to work with IP networks, where it can be safely
assumed that remote overload control mechanisms will
prevent the system from reaching the level of overload
we consider in the simulation. In the context of signal-
ing networks, however, such an assumption can not be
made and one needs to study the behavior of overload
control algorithms under severe overload conditions.

The reason for the loss in performance for SRED
under high call attempt rates seems to be the instabil-
ity observed for the feedback mechanism of this algo-
rithm under these overload conditions. This is because
queue length is very sensitive to changing load and the
fact that SRED uses smaller assessment interval. This
translates into a highly variable fraction allowed of calls.
Figure 6 presents the inter-quartile ranges (i.e., the dif-
ference between the third and the first quartiles, which
provides a measure of variation for the variable under
consideration) of the fractions allowed

� � observed over
time during the simulation, for the different call attempt
rates. The SRED fraction allowed variation is about ten
times larger under heavy overload than the variation cor-
responding to the other two algorithms. In order to fur-
ther explore this issue we study the behavior of the algo-
rithms over time.

We consider the case of a steady state call rate of
7.2 million BHCA (2000 calls/s), considerably above
the nominal capacity of 2 million BHCA (556 calls/s).
Figure 7 shows the behavior of the performance metrics
(given as averages per second), after the third minute of
operation, for the three overload control algorithms.

The ARO and Occupancy algorithms have similar,
good performances with respect to all three metrics, with
Occupancy showing more variability with respect to task
delay. The SRED algorithm shows consistently higher
(but less variable) task delays, but substantially more
variation in fraction allowed. As mentioned in Sec-
tion 5.1, the high fraction allowed variability leads to a
decrease in average throughput (under 2 million BHCA,
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Figure 6. Inter-quartile ranges of fraction
allowed versus call attempt rate by over-
load control algorithm.
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Figure 7. Evolution of performance metrics
under a steady load of 7.2 million BHCA.

the average throughput is about 525 calls/s for ARO and
Occupancy and about 500 call/s for SRED). At this level
of overload, the performance of SRED begins to show
clear signs of deterioration, as indicated in Figures 5, 6,
and 7.

5.2 Performance Under Non-Steady Load

In the scenario investigated here, the call process op-
erates at a mean call rate of 1.8 million BHCA (500
calls/s) up to 300 seconds, at which point the mean call
rate increases to 7.2 million BHCA (2000 calls/s) in 1.5
seconds, stays at that level for two minutes, and then
drops back to 1.8 million BHCA in 1.5 seconds. The
arrival process for each mean call rate is Poisson but the
overall arrival process is not Poisson anymore. The ob-
jective of this simulation is to study how fast the over-
load algorithms are to react to a sudden onset of overload
and to a sudden cessation of overload. Figure 8 presents
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the evolution of the performance metrics for the three
algorithms.
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Figure 8. Evolution of performance metrics
under non-steady overload.

The SRED algorithm has the best overall perfor-
mance with respect to task delay under this overload
scenario. The Occupancy algorithm has the worst task-
delay performance, taking more than one minute to re-
cover from the call rate ramp up and experiencing delays
of up to 11 seconds. The ARO algorithm has a much bet-
ter performance than the Occupancy algorithm, but not
quite as good as SRED: about 12 seconds to recover and
maximum delay of 1.5 seconds. Once again, the SRED
algorithm displays a marked increase in variability of
fraction allowed under overload, which is not observed
for the other two algorithms. All three algorithms show
almost immediate recovery when the system goes from
overload to non-overload.

There are two main reasons for the better task-delay
performance of SRED: the greater sensitivity to over-
load conditions of queue length, the system measure-
ment used in SRED, and also the fact that � ���

(i.e., the
fraction allowed changes at every probe interval) for this
algorithm. To get a fairer comparison of the algorithms
under this scenario, while keeping reasonable variation
in

�
, we consider versions of ARO and Occupancy with� �
	 , which we denote ARO-3 and Occupancy-3, re-

spectively. Figure 9 shows the performance of these al-
gorithms and SRED.

The task-delay performance of the ARO-3 algorithm
is now nearly identical to that of SRED: 3 seconds of re-
covery time and maximum task delay of 245 ms. The
Occupancy-3 has much better task-delay performance
than the original Occupancy algorithm (recovery time
of 20 seconds, maximum delay of 3.1 seconds), but is
still substantially worse than the other two algorithms.
The basic reason for this is the greater latency of pro-
cessor occupancy as a measure of overload, compared
to either queue length or call acceptance rate. As ex-
pected, the use of � �

	 for ARO and Occupancy also
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Figure 9. Performance metrics under non-
steady overload with modified ARO an Oc-
cupancy algorithms.

resulted in greater feedback variability, but this variabil-
ity is similar to that of SRED under non-overload con-
ditions and much smaller in the case of fraction allowed
during overload. Alternative values of � may be inves-
tigated to strike a better balance between speed of reac-
tion and feedback variability for ARO and Occupancy,
but this is left for future research.

In summary, under sudden load ramp up, ARO and
SRED reduce the response time by orders of magnitude
in comparison to the algorithm that uses processor occu-
pancy only. In comparison to SRED, ARO experiences
a slightly higher response time under sudden load ramp
up but exhibits higher throughput under heavy overload.

5.3 Throttling Cost Case

We now describe the experiments and results of sim-
ulations of the system when finite processing costs are
incurred even for calls that are eventually throttled. A
new call request that is eventually throttled may undergo
several layers of protocol processing and result in gen-
eration of a release message which also goes through
several layers of protocol processing. Based on pro-
cessing cost measurements on experimental prototypes
in our simulation experiments, the relative cost of throt-
tling (defined in Section 4), � , is set to 1/3. This means
that the processing cost incurred by a throttled call re-
quest is about 33% of the processing cost incurred by a
call request that is accepted.

Figure 10 shows how the average performance of the
three algorithms changes with increasing call attempt
rates under steady overload. The experimental setup for
this figure is same as that of Figure 5 with the exception
that now we also consider processing costs associated
with throttled calls. As expected, the average throughput
starts decreasing close to the maximum system capacity
(556 calls/s) and it approaches zero when the call at-
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Figure 10. Average performance metrics vs
call attempt rate under steady overload.

tempt rate is about three times the system capacity. This
is because the processing associated with throttled calls
effectively reduces the processing prowess of the system
and when the call attempt rate is three times the sys-
tem capacity, almost all the processing power is used in
throttling calls and no new calls are accepted.
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Figure 11. Performance metrics vs time un-
der non-steady overload.

Figure 11 shows how the performance metrics of
the three algorithms change with time under non-steady
overload conditions. The input traffic pattern for this
figure is same as that for Figure 11. Interestingly, in
comparison to the delay curve in Figure 11, the delay
curve in Figure 11 shows that it takes longer to recover
from sudden overload when processing costs are asso-
ciated with throttled calls. Another observation is that
due to smaller probe intervals, SRED reacts much faster
than ARO. This is because in the throttling cost scenario
the sensitivity to system capacity estimation increases.
SRED uses a smaller assessment interval (100ms) in
comparison to ARO (300ms) and is therefore quicker in
estimating the reduced capacity. When we reduce the
assessment time for ARO from 300ms to 100ms we find
that the difference in response to sudden overload be-
tween SRED and ARO reduces considerably. This be-

havior is shown in Figure 12.
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Figure 12. Performance metrics vs time un-
der non-steady overload with assessment
period = 100ms.

In summary, inclusion of throttling costs results in
reduced throughput for all the three algorithms. It also
results in reduced responsiveness under sudden over-
load. The responsiveness could be improved by reduc-
ing the assessment period. The relative throttling cost,� , plays an important role in determining the system
performance especially the load at which the system
throughput approaches zero. In the next section we pro-
pose a new approach to dynamically reduce the cost of
throttling, taking the amount of overload in the system
into account.

6 Two–Layer Throttling

The cost of throttling depends on the complexity of
the throttle mechanism. Traditionally, in telephone net-
works that implement the Signaling System 7 (SS7) pro-
tocol stack, calls are throttled at the ISUP (Integrated
Services Digital Network User Part [2]) layer by sending
a call release, REL, message to the adjacent switch. The
throttling cost is significant in this case due to the proto-
col processing at the protocol layers up to ISUP and the
cost of generating and sending the REL message in re-
sponse to each incoming call that is throttled. We refer to
this throttling mechanism as the release mechanism. A
simpler form of throttling is to simply discard incoming
calls. This can be done at the MTP3 (Message Trans-
fer Part 3 [1]) layer, that is just below the ISUP layer
in the SS7 stack, before the call is handed over to the
ISUP layer for processing. This avoids the complexity
and cost of ISUP level processing including generation
of REL messages. We refer to this mechanism as the
discard mechanism. In this case, the throttling cost is
simply the cost of parsing the signaling request in order
to identify whether it is a candidate for throttling or not,
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which is significantly less than that of the release mech-
anism.

REL messages could be used to carry the level of
congestion at an overloaded switch4. The neighboring
switches could use this congestion level information in
the REL messages to reduce the call requests toward
the overloaded switch provided they implement remote
overload control. When calls are simply discarded at
the MTP3 layers the congestion level information is not
available at the neighboring switches. In order to re-
duce processing overhead and at the same time be able
to send some REL messages to facilitate remote over-
load control when it is implemented, we are interested
in throttling solutions which incorporate both the release
and discard mechanisms — we refer to this as two–layer
throttling.

If
�

is the fraction of incoming calls that are dis-
carded, and � is the fraction of calls that are released,
and if

�
is the fraction of calls allowed into the system,

then we have
�E�BN � � � � ��� .

Two layer throttling raises the question as to the rel-
ative proportion of

�
and � . The possible solutions for

�
and � can be visualized using Figure 13 . In this figure,
the X-axis shows the fraction of throttled calls (

� N �
),

while the Y-axis shows the fraction of calls released ( � ),
discarded (

�
) and not allowed into the system ( � � �

).
The diagonal line represents � � �

, since by definition,� � N � � � �
� �
. A sample

�
curve is plotted in Fig-

ure 13. As can be seen, the fraction of released calls ( � )
is the amount bounded by the

�
curve and the diagonal.

Figure 13 also shows a specific point
���

on the
�

curve
and the corresponding release fraction value � � . The set
of possible

�
curves is constrained to lie in the region

bounded by the X-axis and the diagonal, and the corre-
sponding � curve is simply the difference between the

�
curve and the diagonal.

Even though several choices for
�

and � are possible,
a good solution should have the following properties:' as the load increases (and

�
decreases),

�
should

increase,' sufficient REL messages should be transmitted to
facilitate remote overload control, i.e., we should
not simply discard all traffic, and' oscillations should be avoided.

We propose a simple solution that, based on prelim-
inary analytical analysis, seems to exhibit all the desir-
able properties. This is based on the observation that�� ��� represents the fraction of released calls amongst
the throttled calls. When

�
is small, implying that the

4More details on the use of congestion levels for remote overload
control could be found in [3].
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Figure 13. Two Layer Throttling - Solution
Space

system is heavily overloaded and most calls are being
throttled, we desire this fraction to be small, since the
cost of � is higher than the cost of d. Conversely, as�

becomes larger, we want this percentage to increase.
The simplest solution is to let

�� � ����� � �
. In this case,� � �E� N � � � � N � � and � � � � � �E� N � � . Figure 14

illustrates our initial solution. As can be seen, at low
loads, the fraction of calls discarded is less, but as the
load increases, the fraction of calls discarded increases.
However, even as the load increases, the fraction of re-
leased calls does not go to 0 until the state of complete
overload. We believe that this implementation of two–
layer throttling provides an acceptable compromise be-
tween lowered cost of throttling at high loads and suffi-
cient RELs being sent at lower levels of overload. The
impact of the number of release messages could be ap-
propriately evaluated only in conjunction with a remote
overload control scheme which is beyond the scope of
this paper.

We end this section by demonstrating the benefit of
two–layer throttling with a simple numerical example.
The throttling cost parameter, � , described earlier, could
be adjusted by finding the average processing cost asso-
ciated with a throttled call as

� � � � � � � � ��K � � � � � . Here,� � and � � denote the processing costs of releasing and
dropping a call, respectively. Typically, � � is much less
than � � , so that the overall cost will decrease as

�
domi-

nates � . Based on the values used in Section 5, we find
that the average processing cost, � � , of receiving a new
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call request at ISUP and immediately releasing it is 0.6
ms. The cost of discarding a new call request at MTP3,� � , is 0.1 ms. When the fraction of call allowed into the
system,

�
, is equal to 30%, then using the discard and re-

lease functions proposed above,
� � � F � �

and � � � F �%� .
With these parameters, the average processing cost as-
sociated with throttling a call reduces to 0.25 ms from
0.6 ms. Therefore the relative throttling cost, � , with
two–layer throttling, reduces to 0.14 from 0.33. This re-
duction in � suggests that the system throughput would
approach zero only when the offered load is about seven
times more than the engineered capacity of the system.
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7 Conclusions

We proposed approaches for controlling processor
overload due to excessive signaling traffic in a network
switch. Our algorithms are designed to be highly reac-
tive to sudden bursts of load. One algorithm, called Sig-
naling Random Early Discard (SRED), is an extended
version of RED for signaling protocols. The second,
called Acceptance-Rate Occupancy (ARO), uses system
measures of both call arrival rates and switch processor
occupancy. Using simulations of realistic system mod-
els, we compared these new algorithms with each other
and an existing algorithm that used only processor occu-
pancy. Based on our performance study and noting that
ARO is more portable and robust to system upgrades,
we recommend the use of ARO for processor overload
control. We also proposed and demonstrated the benefit
of a two-layer throttling scheme to reduce the processing
overhead associated with calls that are eventually throt-
tled.

Future work can proceed in several directions. First,

we have considered overload control in a single card of
a switch. A switch typically contains several cards. We
believe that our single queue model could be easily ex-
tended to a network of queues. Second, there is a need
to study the local overload control algorithms examined
in this paper in conjunction with remote overload con-
trol, especilly in the presence of two–layer throttling.
We also need to model call retries. Third, we have con-
sidered only one class of calls in this paper. A net-
work switch might offer different classes of calls, some
more important than the others. For example, in wire-
less switches, different traffic types such as location up-
dates and short message services might be given differ-
ent priorities with respect to regular voice calls. It would
be important to extend our work to consider multiple
classes of input traffic.
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