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Abstract

We present an athlete identification module forming part of a sys-
tem for the personalization of sport video broadcasts. The aim of this
module is the localization of athletes in the scene, their identification
through the reading of names or numbers printed on their uniforms,
and the labelling of frames where athletes are visible. Building upon a
previously published algorithm we extract text from individual frames
and read these candidates by means of an optical character recognizer
(OCR). The OCR-ed text is then compared to a known list of athletes’
names (or numbers), to provide a presence score for each athlete. Text
regions are tracked in subsequent frames using a template matching
technique. In this way blurred or distorted text, normally unreadable
by the OCR, is exploited to provide a denser labelling of the video
sequences.

Extensive experiments show that the method proposed is fast, ro-
bust and reliable, out-performing results of other systems in the liter-
ature.

Keywords embedded text detection; text tracking; sport video analysis;
athlete identification; text reading; information extraction

1 Introduction

Since text conveys semantic information, the reading of text in images and
videos plays an important role in the video content understanding process.



According to Lienhart [13], we can divide text’s appearance in videos into
two macro categories: overlaid text and scene text. The former group in-
cludes text that is superimposed over the images, like timestamps, captions
in video news, titles of movies. As the text is deliberately superimposed, it is
expected to respect certain ‘visibility’ rules regarding size, position, appear-
ance, motion, in order to be readable by the viewer. On the contrary, scene
text is inherently embedded within the scene, for example hotel or shop plac-
ards, road signs, street names, posters. Due to this natural presence, such
text can manifest itself in a wide range of conditions, depending upon sev-
eral factors related to the scene and the acquisition process. This fact, in
general, makes its detection and reading a very challenging task. Reading
text embedded in natural scenes plays an important role in several applica-
tions, such as the indexing of multimedia archives [25], recognizing signs in
driver assisted systems [31], providing scene information to visually impaired
people [7], identifying vehicles by reading their license plates [8]. Moreover,
the explosion and widespread diffusion of low-priced digital cameras and mo-
bile phones endowed with good quality cameras [6], has meant that text
extraction from camera-captured scenes has gained a renewed attention in
computer vision research [12, 34].

The extraction of textual information from scenes (still images or videos)
can be divided into sub-stages, not all necessarily present nor quite distinct:
(1) existence or absence of text in the image, (2) its localization, (3) track-
ing, (4) enhancement, (5) extraction, and (6) interpretation. An interesting
and detailed survey of these sub-stages (excluding character recognition) is
provided by Jung et al. [9]. In their paper, they categorize text localization
methods into two main types: region-based and texture-based, according to
the features utilized. The first group is further divided into connected com-
ponent and edge-based approaches. The method [16] to extract text from
images, by which the present work is inspired, is also reviewed in their paper
in the connected component-based section. In some recent approaches, scene
text segmentation relies upon graphical models and belief propagation [27],
methods that are also interestingly applied to text recognition [30].

The module described in this paper is part of a platform developed inside
the My eDirector 2012 project [22], whose main goal is to enable end-users
to set-up their own coverage of large athletic events. The user, following her
personal preferences, can interactively select actors/events within real-time
broadcasted scenes coming from a multi-camera environment. A simplified
overview of the architecture is provided in [20], while the integration of ath-
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letes identification by text reading with modules devoted to detection and
tracking using different cues, e.g. face and uniform appearance, is provided
in [21]. Our module not only permits to identify framed athletes, but it is
also used as a trigger to initiate new tracks in a more general appearance
tracking system. Furthermore, the parallel comparison of results provided
by the text reader on simultaneous sequences of the same event permits to
infer some valuable information on the cameras’ framing.

The proposed method is, as far as we know, the first one that flexibly
identify athletes by their name or number on the bib within real-time broad-
casted videos. In fact, it is highly flexible by exploiting the available external
knowledge about the text to be searched for (the dictionary and roughly the
text appearance), which allows the system to successfully process sequences
in which athlete identifiers present different visual aspects. With respect to
published works, we have tested the method on a very large data-set (about
250 000 frames), including shots where multiple athletes are simultaneously
framed. In spite of this additional difficulty, our method out-performs previ-
ous published methods. Furthermore, the proposed implementation is suit-
able for real-time elaboration of high resolution (1024 x 576) videos at 25
fps.

This paper is organized as follows: Section 2 focuses on the analysis of
text in sport images, describing the problems, pointing out the major diffi-
culties, discussing the exploitation of prior knowledge and presenting some
related works. Section 3 presents an outline of our method, whilst each of
the three subsequent sections devote themselves to the description of three
main modules: text extraction, athlete identification and text/athlete track-
ing. The results of the experiments conducted on eight undirected athletics
videos and several videoclips (for a total of 249 171 frames) are reported in
Section 7. Conclusions and problems to be faced in future work are reported
in Section 8.

2 Text in sport images

The problem Since the late '90s the problem of associating names to
people has attracted many researchers, in particular in the video indexing
field. The textual information provided by video captions, like those found in
TV news, is one of the most important sources of media to annotate, and the
challenge of solving the well-known face-name association task is particularly



attractive. In our sports application, textual information is not superimposed
into the scene (as we are dealing with un-edited, or raw, footage), instead
it is embedded inside the image, i.e. the name or identification number of
athletes are attached on their uniforms.

We can clearly define two detection scenarios associated to the problem,
namely: Who is the person in the scene? (having never been seen before)
[26], and the so called “person X finding” problem [32], which requires us to
detect which video frames contain the named person.

The task addressed in this paper belongs to the latter class, as knowledge
concerning athletes’ names list in a particular sport event is known a priori
(domain knowledge). However, text localization and reading can also be
exploited to solve the first problem (person naming). In fact, once text is
located in an image, a face detector can be guided towards a region specified
above the text, and if present, it can provide a text-face association. In
cases where the module provides high identification confidence, it is possible
to capture one (or more) instances of the athlete’s face to create/update
a face-appearance almanac for face recognitions in the same video. This is
particularly useful in future frames where extreme close-ups push text off the
bottom of the screen. Moreover, locating and identifying athletes in frames
provides a useful trigger to initialize an appearance-based person tracking
module. In all of these cases the core problem is the realization of a module
for text localization, extraction and recognition which provides a reliable
output in real-time for a personalized media streaming. Actually, the goal of
the My eDirector 2012 [22] project is to provide an interactive broadcasting
service enabling end-users to select focal actors within real time broadcasted
scenes.

The problem can therefore be formulated in the following way: given a
name, find the coordinates of video frames where this person is present.

Difficulties Mayers et al. [18] provide a classification of the difficulties
which is related to the number of degrees of freedom in which text can ap-
pear in 3D space, by modelling the orientation of text relative to the camera
in three angles. However, their classification only encompasses text that falls
on a planar surface, whereas text often appears on a non-planar surface, e.g.
on a cylinder or on a deformable surface like an athlete’s jersey. This prob-
lem therefore exceeds the maximum difficulties considered in [18]. A list of
the difficulties of text extraction from natural scenes is also reported in [14].



Most of these factors are present in the task at hand, such as blurring, due
to both the athlete’s and camera’s motion, incorrect lens focus, variations in
illumination with shadows and glares, non-constant resolutions of the text
either far or close to the camera and complex backgrounds. Moreover, it is
important to note that text present in our particular scenario often has few
characters, like numbers on jerseys or short names, which presents a further
level of difficulty because a common hypothesis made by text location algo-
rithms is that text strings must have at least three characters. Text on an
athlete’s uniform may identify not only their name or number, but also their
nationality, club membership, sponsorship, or the make of the shirt itself.
The camera also captures text in the background scene, containing words
like the name and location of the meeting, corporate sponsorships, adver-
tisements, text from dynamic billboards, lane numbers, and so on. Overlaid
text can also be present in edited video material (with athletes’ names, record
times, laps to go, etc.). Naturally, in some frames, text is not present at all.

Once text is detected and recognized, other difficulties arise related to
tracking in subsequent frames. In fact, text motion can be a very complex
activity to predict due to dynamic camera operations (like panning, zoom-
ing, shot framing, etc.) as well as the inherent dynamic nature of athletes
(rotating, jumping, etc.).

Prior knowledge By exploiting external prior knowledge (when avail-
able), the complexity of the problem can be considerably reduced. A knowl-
edge of competition-type helps to customize the system to improve the text
localization, while a list of competing athletes can be exploited in the recog-
nition step, by adding the strings to the OCR vocabulary and checking the
results against a list of expected candidate names.

In our scenario the athletes’ names (or numbers) are black on a white
background. Furthermore, text alignment is near-horizontal, with a skew
due to body pose. Only in sporadic cases does text appear up-side-down
(Figure 1, right) or greatly sloped. Furthermore, the names on the bibs are
known a priori. This knowledge is coded in external parameter files fed as
input to the system.

Text on athletes: related works Many attempts to automatically anno-
tate sport videos have been made. A survey of approaches in sports-related
indexing and retrieval can be found in [10], however, relatively few works



Figure 1: Example of text on jerseys with different appearance: dark on
yellow, black on white, skewed, name, number, and upside down.

address the extraction of text from athlete’s jerseys for identification.

In [33], images are segmented using a generalized learning vector quan-
tization algorithm that reduces the number of colours and assigns pixels to
homogeneous regions in order to separate jersey numbers from their back-
ground. To discard non-jersey number regions, dimension, area and thickness
attributes are taken into consideration. Surviving regions are represented by
means of features invariant to scale and rotation (Zernike moments). A k-
nearest neighbour classifier is employed to classify or discard a candidate digit
(after a training phase using samples of synthetic, non-rigid, digit deforma-
tions). Candidate regions are tracked using the Sum of Squared Difference
image matching algorithm described in [11] and assessed through subsequent
frames. The final classification is obtained by a voting procedure. They re-
port, for detection only, a recall of 62% and a precision of 84% computed on
200 frames with jersey numbers, while for detection and tracking together,
a recall of 77% and a precision of 87% computed at frame level on 30 short
videoclips.

The goal of the research in [2] is to automatically annotate soccer videos
with player identities. First, faces are detected and tracked in close-up shots.
Then the frames in which faces are detected are also probed to find the
player’s number depicted on the jersey, or for superimposed text captions.
Jersey number detection is achieved through an implementation of the algo-
rithm reported in [29], using multiple detectors, each of them trained with
positive and negative examples for each specific jersey number, ranging from
1 to 22. This algorithm relies upon a number of simple classifiers, that detect
the presence of a particular feature of an object to be detected. Each detector
acts as a dichotomizer, additionally enabling the system to directly recognize
a number. Initially, a large number of simple features are considered; a high
performance classifier is then constructed by selecting a small number of im-



portant features using AdaBoost. They report a recall of 56% and a precision
of 83% computed on 36 shots, with resolution 360 x 288, where the number
is present. No performance at frame level is provided. The same authors
also propose a different method in [3]. They focus on a zone of interest by
firstly detecting and clustering Harris corners, and then on maximally stable
extremal regions. In this way, they extract binary candidate text regions
which are subsequently fed into a standard OCR. With this method, recall
is 68% and precision is 84% on 40 shots (6 000 frames) where the number is
present, being these figures computed using the shot as basic unit.

The approach presented in [24] relies upon an image segmentation method
based on the colour contrast between number and jersey, represented by
average colour vectors in the HSV colour space; these are pre-computed from
examples. This results in the creation of a bitmap in which the numbers
are represented as ‘holes’ in the jersey regions. In this way, candidates are
extracted as internal contours of objects and then filtered according to area
and bounding-rectangle aspect ratio. The located regions are then rotated
according to the contour central moments and afterwards smoothed using
median filtering. Candidate regions are subsequently grouped by distance
to accommodate double digit numbers, these are then fed into an OCR.
Temporal redundancy of OCR result is checked. On a set of 1116 selected
frames with dimensions 640 x 480 or 640 x 352, where the player number is
present, the correct localizations and identifications are 328, false alarms 51,
and miss detections 788, leading to a precision of 87% and a recall of 29%. At
shot level, the system outputs 28 identifications, of which 20 are correct, on
a set of shots taken from a data-set with 58 430 frames, 31 of which showing
player number. At shot level the precision is 71% and the recall is 65%.

Tracking techniques specific for scene text are limited in literature. In
Andrade et al. [1] the sport image is firstly segmented by colour; a region
adjacency graph and picture trees are constructed to isolate and track play-
ers by exploiting prior knowledge, such as the players’ shirt colours. Region
analysis is then applied to the focused zones to isolate players’ numbers, us-
ing the knowledge of number colour and its surrounding background (the
shirt). Candidate numbers are then normalized according to size and then
classified into one of the digits, or else rejected. The tracking is performed
in the region-space domain, by comparing the list of detected objects having
similar description in the current and previous frames, where the descrip-
tion relies upon statistics of the region and the neighborhood. This kind of
descriptor does not affect tracking in case of partial occlusions. Results of
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players detection are not provided, while tracking results are given for a sport
sequence of 55 frames. Performance of the digit classifier are also provided
with a rejection versus error plot, where, for 0 rejections, OCR error is 11%.

An interesting framework for detection and tracking of scene text, al-
though not for athletes identification, is proposed in [15], where particle filter
is employed for robust text tracking, while text detection relies on connected
components and texture analysis. The time performance of detection and
tracking algorithm, reading not included, varies from 5 to 13 fps on different
grey-level videos recorded at 640 x 480 resolution at 15 fps. Tracking results
are available as on-line videos, but they are not provided in terms of precision
and recall.

In [19] the textual regions to be tracked are assumed to be planar in the
scene. To track a text region, possibly undergoing scale changes and 3d rigid
motion, a sufficient number of points of interest is extracted. Small regions
around them are tracked using normalized correlation in order to estimate the
planar transform over a block of multiple frames and therefore to estimate
accurately the motion of the text regions. However, this work applies to
tracking off-line and is not suitable for real-time processing. Provided results
of this text tracking algorithm are interesting but preliminary and the target
to be tracked is manually initialized to simulate the results of a text detection
process.

In Table 1 we summarize only the reviewed works which present a com-
plete system including detection, identification and tracking of the athletes,
and providing quantitative results. In Section 7 our method is compared
with them.

Table 1: Performance of related works on athlete identification by reading
text on the jersey.

method | precision recall | data-set text figures at
33] 84% 62% | 200 frames number frame level
[33] 87% 77% | 30 clips number frame level
[2] 83% 56% | 36 shots number  shot level
(3] 84% 68% | 40 shots number shot level
24] 87% 29% | 1116 frames number frame level
24] 1% 65% | +39 shots ~ number shot level




3 Outline

In this section we present the architecture of our method for the automatic
annotation of athletics video. The system aims to provide a list of visible
athletes for each frame along with the approximate location inside the image.
The diagram reported in Figure 2 depicts the three main blocks, along with
their input/output and control flow. The input is a video sequence that is
analysed on a frame-by-frame basis, along with some of a-priori knowledge
about the context. As a final output, a list of xml encoded data is generated
containing the annotation for each frame.

Task dependent prior knowledge
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Figure 2: Outline of the presented method: Details of the blocks concerning
the steps of text extraction are reported in Section 4. The blocks for athlete
identification are described in Section 5. The method used for text tracking
is explained in Section 6.

The Text Extraction block, described in Section 4, receives frames along



with parameters relating to specific knowledge about the appearance of the
text we are interested in. A detailed description of the core method used
for extracting text can be found in this previous work [16]; however, main
adaptations aimed at exploiting available prior knowledge and the restoration
step are detailed in this paper.

In the Athlete Identification block, illustrated in Section 5, each candidate
text line is fed into an OCR which plays a double role: on one side it filters
away false alarms detected as text, on the other side it provides a transcrip-
tion of the input as a string of characters. The distance of this string from
the known athletes’ names provides a confidence measure for the presence of
each athlete in a frame. The output of this module is a list of detections,
i.e. athlete names with recognition scores and minimum bounding rectangle
coordinates which indicate their location in the image.

The purpose of the Athlete Tracking block, described in Section 6, is to
update the list of active Tracks (the list of athletes found in the current
frame), by integrating the list of current detections with information from
the previous frame. The current detections are compared to active tracks
to either determine correspondences with existing tracks or to initiate new
ones. Active tracks that do not have a correspondence in the current frame
are potentially continued by searching for visually similar zones based on
previous appearances. This last step permits the system to track athletes
even when their names are visible yet unreadable, and typically provides a
significantly denser labelling of the video sequence.

4 Text extraction

To extract the text in a single frame we apply a modified version of Messelodi
and Modena’s method [16] with some adaptations. The paradigm is that
of connected component generation followed by component selection using
attribute filtering, and a divisive hierarchical clustering method to produce
candidate text lines.

In this new implementation, we exploit the knowledge about the context,
in order to improve detection rate and time performance. To this purpose we
introduce a pre-processing step which focuses the algorithm [16] on certain
zones of the images. Furthermore, two novel post-processing steps have also
been added to restore erroneously filtered objects, and to check candidate
lines before the OCR step. The steps of text extraction are indicated in the
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first block of Figure 2 and detailed in the following.

Focus on region of interest In order to reduce the risk of false alarms,
to speed up the computation of the whole system, and to avoid passing to
the OCR un-interesting strings, the computation is focused on a subset of
the image. First of all, the upper part of the image is cropped using the
common-sense constraint that a cameraman usually frames the image so
that the athlete’s bib is not in the upper part of the image (hence cutting
through the athlete’s face). The second prior knowledge that is used, is
that of black-on-white text of this scenario; by exploiting this characteristic
the attention is focused only on unsaturated colour zones in the image, in
particular white zones. These zones are obtained by selecting all of the pixels
that exhibit a relatively high luminance value L and a low saturation value
S. Regions of interest are then obtained by discarding small areas (using
an adaptive threshold which depends on the shortest athlete’s name in the
list), and considering the convex hulls of the remaining regions. We call the
union of the resulting regions background zones. Figure 3(b,c) illustrates an
example of selected pixels and the subsequently formed background zones,
respectively. In this way the text detector [16] acts on a smaller number of
pixels, depending upon scene content.

In scenarios where text foreground and background have polarities differ-
ent from black-on-white, a different criterion must be applied, using a rough
colour quantization algorithm in order to extract the pixels of the image
having approximately the text background colour.

Generation of elementary objects The first step relies on an inten-
sity normalization process to compensate for light variations throughout the
image. Normalization is achieved by the computation of the divisive local
contrast:

N(z,y) = I(z,y)/(Auw(z,y) + b) (1)

where I(x,y) is the intensity value of the pixel in (z,y), A, (x,y) is the aver-
age intensity computed inside a squared neighbourhood centred about (z, ),
w is the dimension of the moving window, and b is a bias term enforced to
avoid dividing by zero. It is analogous to unsharp masking replacing subtrac-
tion. N(z,y) is computed only on pixels (z,y) belonging to the background
zones, while the rest of N is set by default to 1. To speed up the computation
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of N, we pre-compute the summed-area table [4] (also known as the integral
image) for the local average values.

This operation improves image details and the local contrast in shadowed
regions, agreeing with Wertheimer’s contrast invariance principle: “image
interpretation does not depend on actual values of the grey levels, but only
on their relative values” [5]. This is particularly true in the case of text
interpretation. In general, the optimal value of w depends on the scale - in
pixels - of the structure to be detected. We fixed this size at an average value
of the text thickness, using some examples of text which we expected to be
successfully extracted and read. Thus, w can be regarded as a function of
image resolution.

Two thresholds can be determined by taking into account the shape of
the histogram of N:

tl = m—dL/2 (2)
tg = m—dR/Z (3)

where m is the histogram mode, and d,, dr are the left and right deviation
from m, respectively. These are then used to extract two binary maps which
should contain, respectively, positive and negative contrasting text. The
connected components of these bitmaps constitute the elementary objects.

The domain knowledge contains a coded information about positive
and/or negative contrast of the text of interest, driving the system to the
analysis of the first, the second, or both the bitmaps. In our case, the prior
knowledge suggests that only the first bitmap need to be addressed, working
under the hypothesis that the athletes’ names or numbers are darker than
their surrounding background. An example of normalized image N (obtained
with w = 7) computed on the background regions is reported in Figure 3(d).
In this example, the left threshold, computed from the analysis of the his-
togram of N, was 0.97.

Filtering of objects In this step, features of the elementary objects are
analysed by a cascade of attribute filters to mark likely non-text compo-
nents as non-interesting. Each discarded component is marked with a label
identifying why it was rejected, using the following filtering criteria:

e its area is very small (as readable text cannot be too small);
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e it touches the image border (as a character lying near to the periphery
is likely to be incomplete and thus not easily readable);

e its height is too short or too tall to be target text;

e its elongation, computed as the ratio of the equivalent ellipse’s axes
is high (only components whose area exceeds a certain threshold are
considered in this test);

e its delimitation is not sharp, i.e. the percentage of border pixels ex-
hibiting a sufficiently high gradient is too low.

e it is not significantly embedded inside the focus zone, i.e. a high per-
centage of outer boundary pixels do not belong to the background re-
gions.

An example of elementary object labelling, is reported in Figure 3(e),
where the survived elementary objects are in black, and those filtered away
are labelled with a colour according to the filtering criterion.

Each filter requires us to devise one or more thresholds. Some parame-
ters, such as area or size, as well as the normalization window dimension w,
are related to the readability of extracted characters. The threshold levels
depend upon the image resolution and are set to minimize the discarding of
potentially good characters. Some thresholds are independent of resolution,
as their corresponding features (e.g. elongation) are dimensionless, normal-
ized quantities in the range of [0, 1]; in these cases reasonably slack thresholds
are chosen.

Through experimentation, we found that the delimitation test is very im-
portant in order to filter out many non-relevant components captured by
the thresholding operation. Text which is intended to be read at a distance,
is usually created with a strong gradient with respect to the background,
although this can be weakened by poor illumination conditions or blurring.
According to the Helmholtz perception principle [5], for analysed components
to be meaningful they should have an obvious perceptual boundary. In cases
where an image is slightly out of focus, if we were to use a fixed threshold on
delimitation we would risk to discard all text components as the border is
not well defined, whilst the components per-se would remain quite readable.
Therefore, the threshold on the gradient value used to compute the delimi-
tation is adaptively estimated through the analysis of the image sharpness.
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Its reference value is adaptively computed by averaging the gradient of the
grey level values of the border pixels of all of the components in bitmap, thus
exploiting scene statistics.

Aggregation into lines Next, surviving components are recursively clus-
tered according to proximity, alignment and size similarity, until a termina-
tion criterion is satisfied. Clusters which potentially contain a single text
line are extracted. One major difference with respect to [16], is that we have
introduced a constraint in the alignment criterion in order to cluster (within
an angular range from horizontal), thus exploiting prior knowledge about
the target text type. The angular range is specified in the knowledge input
file. Not all of the components are represented in the final clusters, thus only
clusters that satisfy text line characteristics are considered.

In the example reported in Figure 3(f) four groups of elementary objects
aggregated into lines are depicted with different colour.

Component restoration Once a cluster is accepted as a candidate text-
line, all of the components inside this region, which were previously marked
as non-interesting, are reconsidered for inclusion. The idea is to recover
characters, or fragments of characters, that were discarded in the filtering
phase. For example, thin components, like the letter I. Their restoration is
often useful to improve the input for the OCR module.

The restoration algorithm concentrates its attention inside the convex hull
of the candidate line, considering all the elementary objects lying inside. Any
new candidate components are checked again. Those smaller than a certain
area are discarded, but in this case the considered area threshold ', is lower
than 64 used in the global filtering step (6’4 = 64/4). The delimitation index
of the components is tested before being restored, decreasing the gradient
reference value.

Candidate text line selection As a final step before attempting to read
the text, a set of filters is applied in order to discard possibly spurious lines.
Some examples of candidate text lines are depicted in Figure 4. By reducing
the number of text lines, system processing time can be dramatically reduced
as the OCR step is one of the most demanding in the whole chain. The tests
depend upon a set of thresholds whose values rely on the prior knowledge
or have been experimentally set through the analysis of samples of positive
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Figure 3: Text Extraction steps. (a) Input image. (b) Focus on region of
interest: pixels with text background colour (here white), after image crop-
ping. (¢) Convex hull of the connected components which have a sufficient
area to contain text characters; in this example the background zones cover
20% of the total pixels. (d) Intensity normalization map computed only in
the region of interest, for the generation of elementary objects with adaptive
binarization. (e) Elementary object labelling (here 752 in total), coloured
according to different filtering criteria. Survived components are candidate
to be text; here are marked in black (27 in total). (f) Candidate text lines
(here 4) obtained by clustering by nearness and alignment of the survived
elementary objects. In this example one cluster, the smallest one, will be
filtered away by the last line selection procedure, before the OCR step.
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Figure 4: Examples of cluster before the candidate text line selection.

(text lines) and negative (non text lines) cases all extracted from a training
set. The cascade of filters applied to lines are as follows:

[133)]

e Possibly broken characters, or composite characters like “i” are aggre-

gated into a single unit. Using the prior knowledge about the spe-
cific scenario, a filter is applied to the candidate lines to exclude those
formed by too few units with respect to a fraction of characters building
the shortest name in the list.

Lines whose aspect ratio (width/height of the minimum bounding rect-
angle) is out of a range are discarded. The range is computed from the
aspect ratio of a fraction of the shortest name and a factor of longest
name in the list, as would typed in a standard sans-serif font.

The gradient inside a candidate line region is computed and if the
average gradient magnitude is below a threshold (4% of the highest
possible gradient value in our experiments) the line is discarded.

Colours inside the line zone are tested, which should be concentrated
on the text and background colour. In our black-on-white case, we
classify the pixels into three classes: coloured if the pixel saturation
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is above a threshold T,, white if the pixel is not coloured and its
luminance is above a threshold 7Tj,,,, black otherwise. A candidate line
passes through the filter if the percentage of coloured pixels is below a
threshold T, and the percentage of white pixels is above a threshold
Twhite- In our experiments we use the following values: T,,; = 40,
Tium = 128, Theo = 10%, Tynite = 50%. System performance appears
to be robust with respect to small variations of these values.

Clusters which survive are subsequently passed on to the character recognizer
for classification.

5 Athlete identification

An athlete’s identity can most robustly be established through two visual
modalities: face recognition and name/number reading. In this paper, we
only address the second one, whilst fusion with the result of a face recognizer
is left to future work.

5.1 Text reading

The output supplied by the text extractor is composed of a set of candidate
text lines, i.e. clusters made up of connected components of binary pixels. To
interpret them, we apply an OCR system which transcribes the pictorial rep-
resentation of text into a coded version, where a unique code (e.g. ascii, utf-
8) is assigned to each different character. The OCR system selected for our
experiments is Tesseract [28], a free optical character recognition engine orig-
inally developed as proprietary software by Hewlett-Packard between 1985
and 1995. Hewlett-Packard released it as open source in 2005 and it is now
available at http://code.google.com/p/tesseract-ocr under the Apache
License 2.0. Tesseract proved itself be one of the top three OCR engines in
the 1995 Annual Test of OCR Accuracy [23] and it is now considered to be
one of the most accurate free OCR engines currently available. Tesseract
2.04 is a pure OCR engine, and does not include document layout analysis
and output formatting. Since our text detection/extraction module produces
a list of separated text lines (or words), Tesseract is ideal for our recognition
purposes. We also explored the possibility of training Tesseract for specific
fonts using sample characters extracted from test images, but found that the
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“eng” language, provided within the standard distribution, is adequate for
our task. We used the list of athletes’ names as its “user-words” file.

After running the text extractor, the connected components grouped into
candidate words are converted into a raster image, for subsequent feeding into
the OCR system. The output of the OCR is a string of characters accompa-
nied by an index, in the range [0 — 100], quantifying an average recognition
confidence. Let us consider, as an example, the processing of the frame in
Figure 5 (left), where the detected candidate lines are superimposed (right).
The text detector has located three candidates, two of which are actual text
and are recognized as “DANIEL KIN” (OCR confidence 83) and “IENDEZ”
(confidence 69). The third one is a false alarm which is interpreted by the
OCR as “MMM?” (confidence 15). We can filter away lines with a low OCR
confidence, as they are likely to be derived from noise.

Figure 5: OCR results for candidate text lines. The red line is read as
“DANIEL KIN” with OCR confidence 83, the white one as “MMM” with

OCR confidence 15, and the green one “IENDEZ” with OCR confidence 69.
The OCR confidences here act as a filter on the candidate athletes’ names.

5.2 Distance from athlete names

The results delivered by the OCR are far from accurate for several reasons:
low text resolution, poor quality image resulting from compression artefacts,
non-textual components erroneously passed as an input, distortion of char-
acter shapes, false character connections, text occlusions, fragments lost, etc.
Nevertheless, the output often appears to be significantly similar to one of
the actual names we know to be taking part in the event, thus making it
feasible to identify an athlete’s name by measuring the similarity between
the OCR output string and each of the candidate names. The edit distance
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proposed in [17] has been employed to compare each athlete’s name with the
OCR results. This check returns a value between [0, 1], where 0 represents
complete dissimilarity, and 1 indicates a perfect match between the strings.
We consider a detection to be valid only if an athlete has a high similarity
score with the OCR-ed text. In the case where two (or more) strings from the
same frame deliver the same name, only that which has a higher similarity
is kept.

The output for the frame ¢ is a list of detections D(t) indicating the
athletes identified. Each element D, of D(t) is a 4-tuple (N;, B;, S;, V;)
constructed from: the athlete’s name N;, the coordinates of the bib position
B; (namely the bounding box), the string similarity value S; and a visual
signature V;. The latter is a quantized colour histogram of the region cropped
by B; in the frame t.

6 Athlete tracking

The identification of athletes based solely on the detection and reading of
text on their uniforms (especially when coupled with a knowledge about
how text should appear and a list of expected names) typically provides a
highly reliable output. Unfortunately, due to a variety of reasons, only on
a small subset of video frames (i.e. when the text is readable), will provide
such a text identification output. When considering sports applications, two
critical factors affect the readability of text: (i) athletes move in a non-rigid
way, quickly changing postures; (ii) cameras are non-static as pan/tilt/zoom
operations are applied in order to better follow the event. Motion blur,
partial occlusions and bib deformations also complicate or make it impossible
to read text. As a direct consequence, any video annotation system based
solely on the reading of text on a frame-by-frame basis can only provide
sparse annotations.

To improve the denseness of the annotations, temporal continuity can be
exploited, trying to best fill gaps in between successive detections, taking
into consideration other features typically based on the visual appearance of
the athlete’s bib.

The text tracking module follows athletes by updating an active tracks list
7 (t) for each frame ¢. Each element Tj, of 7 (t) is a 4-tuple (N;, B;, S}, V)
constructed from: the athlete’s name /V;, the bounding box coordinates of
the bib position Bj, a confidence score of the track S; and a visual signature
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V; (a quantized colour histogram inherited from a detection).

7 (t) is populated on a frame-by-frame basis taking into account the out-
put of the athlete identification step D(¢) and the active list 7 (¢ — 1). The
active list 7 (), is computed in two steps, by comparing the detections of the
frame ¢t with the active tracks of the frame ¢ — 1, and by tracking only those
having no correspondence in the detections set.

First step - Comparing current detections to active tracks The lists
D(t)={D;,i=0...n}and 7(t—1) ={7};,7 = 0...m} are compared in or-
der to find name and/or location correspondences. We divide the possibilities
into five groups:

1. full correspondences: pairs {D;,T;} relating to the same athlete, i.e.
N;+ = Nj,_1, and whose bounding boxes B;; and Bj;_; match;

2. name correspondences: pairs {D;, T;} such that N;; = N;;_;, but boxes
do not match;

3. location correspondences: pairs {D;,T;} such that the bounding boxes
B;+ and B;;_; match, but names are different;

4. detections that do not correspond to any 7}, j = 0,...m;
5. active tracks that do not correspond to any D;, ¢ =0,...n.

The match between bounding boxes is defined in term of their spatial
overlap: they match if the ratio between the intersection area and the union
area overcomes a prefixed threshold. In this case, we make the reasonable
assumption that the variation of bib location in two successive frames is
limited.

1. For each full correspondence (D;¢,T;:1), the detection D;; is used

to define a track to be inserted into 7(¢): the new track is
(Ni,ta Bi,t> maX(Si,t> Sj,t71)> Vi,t)-

2. Concerning the name correspondences (D; ¢+, T;+—1), the decision about
keeping the information contained in D;; is postponed to the end of
the tracking step described below, i.e. considering the result of tracking
T;¢—1 in frame ¢.
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3. If (D;+,Tj4-1) is a location correspondence, the decision about keeping
information concerning D,; depends upon the comparison of the de-
tection score S;; and the tracking score S;,_;. If S;; > S;;_1, the new
track (Ni¢, Bit, Sit, Vi) is inserted into 7 (t), otherwise D;; is erased
and Tj,;_; is moved into the group of tracks without correspondence
(fifth group).

4. For each detection D;; without correspondence the new track
(Ni,ta Bz‘,t, Si,ta ‘/i,t) is added to T(t)

5. For each active track Tj,_; from the last group, the second step is
executed.

Second step - Tracking active tracks In this step, only active tracks
T;:—1 from the second and the fifth groups are involved. The procedure
consists of searching in the current frame ¢ for a sub-image similar to that
of the bib region defined by B;, i, investigating the neighbourhood around
the previous location, using template matching.

Let IR be the bib region extracted from the previous frame t—1 using B; ;4
whose starting point is (x, yg). From this point, the algorithm repositions R
in the current frame ¢ inside a restricted region around the point (zg,yg). For
each position of R, we compute a similarity measure based on the L! distance
between R and the corresponding region. In order to reduce computational
cost, we apply a standard multi-resolution technique through the creation of
two pyramids, for the template R and for the region of interest in the current
frame. To achieve this, images are first convolved with a blurring filter and
then subsampled to get their lower resolution versions. A best-match search
proceeds from coarse to fine resolutions in the following manner: the smallest
template is matched against the smallest image, with the location of the
minimum distance being identified; matches in subsequent pyramid levels
are limited around the corresponding location. The result of the template
matching step is a tracking score M, and a tracking position M, defined
respectively as the minimum L' distance and the corresponding location in
the current frame.

After tracking we check two conditions on the score M, and on the vi-
sual similarity between the track T}, 1, stored in V;;_1, and the appearance
extracted from the current frame t in the position M,. If both (i) M; is
below a given threshold and (ii) the two appearance histograms are close
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enough (i.e. their L' distance is below a threshold), then the new track
(Nji—1,M,, Sji—1 % f(1— M), V;,—1) is inserted into 7 (¢). The score of the
new track is modulated by multiplying the previous track score S;;_; by
a function f of (1 — Mj), in order to reward tracks characterized by good
bib-region similarity throughout the frames. The second condition has been
introduced in order to mitigate the typical problem known as track-drift,
a phenomenon in which the target gradually shifts away from its original
appearance.

Otherwise, i.e. at least one of the two conditions is not satisfied, if 7} ;_;
belong to the second group the information from D;; is retained: the new
track (Njy, Bit, Sit, Vit) is inserted into 7 (t).

As an example of tracking let us consider the case represented in Figure 6.
In the start list of the event there are, among others, two athletes identified
by numbers 429 and 438. At frame t (the first one in the Figure) a text
detection occurs which wrongly identifies the athlete as 429 with score 0.857
(OCR output is the string 4129). It falls in the group 4: it is inserted as
a track into 7 (t). At frame ¢+1 no detection occurs and the tracking step
is applied to the track in 7 () (group 5): tracking score is good (0.951) as
well as visual similarity. Hence the track is inserted into 7 (¢ + 1) with the
modulated score 0.846.

At frame t+2 athlete 438 has been correctly detected (with score 0.666),
in a position overlapping the track in 7 (t+1): it is a location correspondence
(group 3) where the score of the track (0.846) is greater than the score of
the detection. The detection is ignored and the track is regarded as a track
without correspondence (group 5). The tracking is performed: the tracking
score is 0.953 and the visual signatures are similar. Hence the track is inserted
into 7 (t+2) with score 0.835. At frame ¢t+3 athlete 438 is correctly detected
with score 1.0 in a location which overlaps the track in 7 (¢ + 2). It is a
location correspondence (group 3) where the score of the detection (athlete
438) is greater than the track score (athlete 429). Then the detection is
inserted into 7 (¢ + 3) with its score.

Once 7 (t) has been computed, an xml encoded output is generated to

provide a stream of information concerning athletes’ presence at frame t and
their corresponding position inside the image.
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Figure 6: Four consecutive frames of a sequence to illustrate an example of
the tracking procedure. Bounding boxes superimposed represent the location
of the active tracks.

7 Experimental results

Considering the aim of the module inside the My eDirector 2012 project, we
extensively tested the method on undirected athletic video sequences. Fur-
thermore, to compare properly our performance with those of other systems
available in the literature, we tested the method on several edited videoclips
taken from the Internet.

We evaluated the performance through the comparison of the iden-
tity /position of the athletes proposed by the system to their actual position
in the frames. Although manually counting correct outputs is a tedious task,
a user can be provided with an interface in which the athlete’s name is super-
imposed over the frame in the found location, thus aiding a visual verification
of correct and false detections and identifications. Counting missed detec-
tions is not so simple, however, as it requires the user to establish whether
the name of the athlete is visible and readable in the scene. Such a task poses
several difficulties, especially in cases of borderline readability, cropped text,
partially occluded text, blurred or small text.

To provide an estimate of the real occurrences we need to visually check
every single frame and note the athletes which we expect the system should
be able to identify solely through text. Of course this is a rather vague
definition. Qualitatively, we decided to take into account only athletes for
which (i) the bib is un-occluded, or almost completely visible, (ii) the bib
presents an approximately frontal view, and (iii) the text has a resolution of
at least 6 pixels per inch. These criteria can only provide a rough estimate
of actual occurrences, however, we believe that it can sufficiently deliver an
idea of the system’s limits and recall performance. As an example, we can
consider the frames in Figure 7: in the first row (from left to right) we have
two athletes matching the above criteria, then one, and finally three. But,
images in the second row do not contain any views of valid athlete to be
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inserted in the ground-truth.

Figure 7: Examples of frames where the athletes are present at different
resolutions: close shot, close medium shot, long shot, far field, very far field,
no athlete.

We have included in the ground-truth occurrences of athletes framed in
long shots, although the text often has limited readability. In such scenes
possibly only the tracking of an already identified athlete, but not the text
reader, can produce a correct labelling. As a consequence, the relative fre-
quency of athletes framed in close, close medium, and long shots in a sequence
heavily affects the recall rate.

7.1 Undirected video sequences

We have extensively tested the presented method on eight undirected video
sequences taken from a large data-set created for the My eDirector 2012
EU project. Five sequences, walk-cam02, walk-cam06, longjump-w-cam12,
longjump-w-cam13, longjump-w-cam14, have been recorded for BBC in the
Birmingham athletics stadium in 2009, and three sequences (longjump-m-
ch05, longjump-m-ch06, longjump-m-ch07) have been recorded for BBC in
the Crystal Palace London athletics stadium in 2010. The first two sequences
last 24’ 32” and were recorded by two cameras observing the 5000m walk.
The remaining three Birmingham videos last 15" 42” and relate to a long-
jump women event observed by three cameras from different point of views.
Finally, the three London videos last 207 each one, all concerning a long-jump
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men event. For all the sequences the frame rate is 25 fps, the frame size is
1024 x 576 pixels and the text dimensions of the name depend heavily upon
the framing: ranging from close shot to very far field. Framing examples are
reported in Figure 7).

Sequences walk-cam02 and walk-cam06 cover the same event, however,
one always offers a closer view with respect to the other. We estimate that
about three quarters of walk-cam06 sequence depicts athletes in far field,
less than 10% are close and close medium shots, and the rest are long shots
with borderline readability. In both the sequences two or more athletes are
often depicted in a frame. The same happens for the long-jump women
event. The longjump-w-cam1/ sequence frames the athletes closer with re-
spect to longjump-w-cam12 and longjump-w-cam13. In longjump-w-cami2,
athletes are captured during the running and jumping phases, in longjump-
w-cam13 they are captured by a camera that is located just after the landing
zone. Finally, sequence longjump-w-cam1/ depicts a close medium shot of
the athletes while they are preparing to jump. Concerning the long-jump
men event, cameras are devoted to different phases of the jump, with infre-
quent field overlap. In longjump-m-ch05 the athletes are always quite far. In
the other two sequences athletes are framed from close shot to long shot; a
considerable percentage of the sequence longjump-m-ch07is garbage footage,
framing the ground.

The output generated by the proposed module for the eight test videos is
generalised in Table 2. In this table, the comparison between system output
and ground-truth is reported: the number of labelled regions generated by
the system (system output), the number of correct athlete localizations and
identifications (correct id), the number of errors due to incorrect athlete
identifications (false id) and to incorrect localizations (false loc).

Performance of the system, in terms of precision and recall, are reported
in Table 3.

The precision rate ranges from 88% to 100% (on average is around 98.9%).
The relatively low precision of walk-cam06 is due to a single false localization
tracked for more than 6 seconds. For the sequence longjump-m-ch05 neither
precision nor recall are meaningful: The athletes are framed in far field, so
their recognition through text reading is not practicable. We have included
this sequence to test deeply the method on false alarm rate. The 90 false
localizations correspond to only one false detection tracked for less than 4
seconds.

The recall rate ranges from 12.9% to 89.2% (on average is around 45%).
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Table 2: Athlete identification results for the eight undirected sequences.

sequence frames ground | system correct false false

truth | output id id loc
walk-cam02 36800 27 500 9814 9715 80 19
walk-cam06 36800 10 360 1514 1333 8 173
longjump-w-cam12 | 23550 10 600 2192 2192 0 0
longjump-w-cam13 | 23550 5 400 1784 1777 6 1
longjump-w-cam14 | 23550 11900 | 10614 10613 0 1
longjump-m-ch05 30000 0 90 0 0 90
longjump-m-ch06 30000 14 080 9399 9374 11 14
longjump-m-ch07 30000 5 630 3484 3460 0 24
TOTAL 234250 85470 | 38891 38464 105 322

In the walk-cam02 sequence the recall rate is 35%, whilst in walk-cam06,
which generally covers the event in long and far-field, the estimated recall
rate drops to 13%.

In longjump-w-cam12, athletes are captured during the running and jump-
ing phases using a wide field-of-view perspective, consequently the text is
often blurred and its resolution is at the lower limit of the acceptable range.
Here, the recall rate is about 20%. In the longjump-w-caml13 sequence, ath-
letes are running towards the camera and after the jump they are very close,
thus framed from the waist upwards, making the text readable in many cases.
The recall rate for this camera is at 33%. Sequence longjump-w-cam1/ de-
picts athletes while they are preparing to jump with medium shots. In this
condition the text is often sharp and large, and the recall rate moves up
to 89%. The comparison of the system output for the last three sequences
covering the same long jump event is shown in Figure 8. Considering that
the identification is easier in close and close medium shots, this graphical
representation puts into evidence the different framing of the cameras.

Finally, for longjump-m-ch06 and longjump-m-ch07, where long shots are
not the major part, recall is 66.6% and 61.5%, respectively.

The recall figures vary in a wide range putting in evidence the limits
of the algorithm in long shots. Nevertheless, it is important to note that
the proposed module provides a reliable output throughout close and close
medium sequences.

26



Table 3: Athlete identification performance for the eight undirected se-
quences.

precision  recall
walk-cam02 99.0% 35.3%
walk-cam06 88.0% 12.9%
longjump-w-cam12 | 100.0% 20.7%
longjump-w-cam13 99.6% 32.9%
longjump-w-cam14 | 100.0% 89.2%
longjump-m-ch05 - -
longjump-m-ch06 99.7% 66.6%

longjump-m-ch07 99.3% 61.5%
TOTAL 98.9% 45.0%

The processing time (reported in Table 4), has been calculated on a Linux
platform endowed with a 2.83GHz CPU and 4 GB RAM. The table reports
the average processing time per frame for the five Birmingham sequences, for
the three main blocks of the system. We can observe that the processing rate
is adequate for a 25 fps video feed, thus real-time processing is possible. While
text extraction depends on the complexity of the scene, athlete identification
depends on how many candidate lines are processed by the OCR.

Table 4: System processing time (in milliseconds). For each Birmingham
sequence, the average time to process a frame is reported (last row), along
with the average time for the three main modules of the system.

time (msecs) cam02 cam06 caml?2 caml3 camly
text extraction 15.38  12.89 1756 18.22  14.87
athlete identification | 13.16 7.15 3.43 6.42 5.59
athlete tracking 5.61 0.28 0.83 1.14 4.14
total (per frame) 34.15 2033 21.82 25.79 24.60
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Figure 8: Athlete detection through text reading/tracking in the video se-
quences longjump-w-cam12, longjump-w-cam13 and longjump-w-cam14. The
identification is more frequent in the frames of longjump-w-cam1j because
this camera zooms in on the athletes as they prepare to jump.

7.2 Directed videoclips

Although our method has been developed to work on undirected videos (elec-
tronic direction is one of the aim of the My eDirector 2012 project), supple-
mentary experiments have been performed on directed videoclips, mainly for
a comparison with the state of the art.

We collected from Internet several edited high resolution videoclips con-
cerning athletics Youth Games of Singapore 2010, where athletes are iden-
tified by a three digit numbers on the bib, instead of the name (Figure 6).
The duration of the videoclips ranges from one to two minutes, and the frame
size is 1280 x 720. This footage is rather heterogeneous presenting different
athletic games under various illumination conditions (natural, artificial by
night, raining).

The format of the videoclips, edited with different kind of transitions,
may include a panoramic view of the stadium, the superimposed start list,
close-up shots of some of the athletes with caption, the live event, the replay,
the superimposed result table and the victory ceremony.

Results are summarized in Table 5 where the ground-truth column reports
the manual count of bib views in the frames, system output is the number
of identifications proposed by the system, false id/loc are the errors due
to false identification or to false detections, precision is the percentage of
correct identifications on system outputs, recall is the percentage of correct
identifications on expected output.

Edited videoclips present some characteristics which pose further diffi-
culties for our method. Some situations, that are considered anomalous in

28



Table 5: Results of our athlete identifier on directed videoclips.

sequence frames ground | system correct  false | precision recall
truth | output id id/loc
100m W 2 378 801 901 792 109 88.0% 98.9%
100m M 3 001 1178 | 1167 965 202 82.7% 81.9%
200m W 1797 520 341 332 9 97.4% 63.3%
200m M 1777 658 507 485 22 95.7% 73.7%
110mH M 1757 796 451 451 0 100.0% 56.7%
Hammer W | 2 304 347 212 204 8 96.2% 58.8%
TripleJ M 1907 782 917 761 156 83.0% 97.3%
TOTAL 14921 5082 | 4496 3990 506 88.7% 79.0%

undirected videos, are frequent in the edited ones, like two athletes depicted
in the same location in two subsequent frames, due to a cut, or an athlete
in two different locations in the same frame due to a dissolve. Superimposed
captions, chronometer, start and result list are not present in rough videos
and some false alarms occur just in correspondence of them, when superim-
posed text is similar to an athlete identification number (e.g. in 100m W the
athlete with number 117 is erroneously identified in correspondence of the
superimposed time 11.73).

We note a significantly different precision rate in the two sets of exper-
iments (98.9% vs. 88.7%). The main reason is that it is generally easier
to identify athletes by name than by short numbers, which can be confused
not only with overlaid text but also with other numbers often present in the
scene.

The difference in the recall figures (45.0% vs. 79.0%) depends on the
type of videos: undirected vs. directed. As mentioned, the frequency of
close, close medium, and long shots included in the ground-truth influences
the recall rate. In edited videoclips, the selected shots present a higher
percentage of athlete close-ups. For example, the percentage of athlete oc-
currences appearing in close and medium shots, is almost 100% in 100m W,
66% in 200m W, 64% in 110m Hurdles M, while the percentage is about 15%
in walk-cam06 and about 30% in longjump-w-cam12.

Experiments on videoclips where athletes are identified by numbers per-
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mit a meaningful comparison with the state of the art works summarized
in Table 1. We computed performance using the frame or the shot as basic
unit, taking into account that in our videoclips more than one target can be
present in the same unit.

The results reported in [33] for detection and tracking in videoclips, are
86.9% and 76.7% for precision and recall, respectively, provided at frame
level. Correspondent figures of our method are 88.7% and 79.0%.

To compare our method with results reported by [3] and [24], we man-
ually split the videoclips into shots in correspondence of transitions (cuts,
dissolves) and annotate each of them with the athletes, from the start list,
who are present in the shot. The athlete is considered present if she is iden-
tifiable by her number in at least 10% of the frames of the shot. Data set
and results using the shot as validation unit are reported in Table 6.

Table 6: Results of our athlete identifier on directed videoclips computed at
shot level.

sequence shots shot with nr of | system correct false miss
athletes athletes | output id id
100m W 18 8 8 8 8 0 0
100m M 19 5 7 7 7 0 0
200m W 12 5 7 5 4 1 3
200m M 13 7 8 7 7 0 1
110mH M 16 6 6 5 5 0 1
Hammer W 9 2 2 2 2 0 0
TripleJ M 7 3 5 7 5 2 0
TOTAL 94 36 43 41 38 3 5

The global precision and recall, at shot level, are 93% and 88%, respec-
tively, while the correspondent figures in [3] are 84% and 68%. To properly
compare the performance with the figures in [24], where precision is 71%
and recall is 65%, we consider the output of our system on all the 94 shots,
framing or not the athletes. Precision drops to 84% because the system out-
put contains four more false alarms, while recall is obvioulsy the same. Our
system remarkably out-performs both the methods in both the figures.

The comparison of our method with some of the related work presented
in Table 1 is summarized in Table 7.
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Table 7: Comparison with related works.

method | precision recall | note
[33] 86.9%  76.7% | frame level
our 83.7%  79.0%

3] 84% 68% | shots with athletes
our 93% 88%

[24] 1% 65% | all the shots

our 84% 88%

8 Conclusions and future works

In this paper, a knowledge-based identification system for athletes in videos
has been presented. A module that automatically detects and extracts em-
bedded text from images is applied to each and every frame. Then, each
extracted text region is passed to an OCR, which in turn provides a string
representation for it. A comparison between these strings and the list of
athlete names is then performed in order to generate a probability score that
an athlete is portrayed in the image. When an athlete is identified with a
sufficiently high confidence, the text zone is subsequently tracked by pyra-
midal template matching until a new text detection with a similarly high
confidence occurs or it is no more trackable. Text detections with lower
confidences (when available), are utilised to enforce tracking hypotheses in
cases of low matching score. The text tracking strategy presented preforms
well when matching blurred (unreadable) text, but it needs to be improved
to compensate for scale changes of the target, which often occur due to the
relative movements of athletes and cameraman zooming. Partial occlusions
of the bib (due to an athlete’s arm or a second athlete) are also frequent,
therefore partial matching with the template should also be considered.
The precision, i.e. the probability that the output of the proposed method
is correct, has been shown to be very good (98.9% in the performed experi-
ments on undirected videos and 88.7% on directed videos). The recall rate
computation requires a manual labelling of each athlete in each frame, to
indicate if the text on their bib is visible in the scene (or not). Considering
that visibility is difficult to define and that a huge effort is required to label
long sequences at high frame rates, we have provided only a rough estimation
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of the recall performance of the system, which is around 45% for undirected
videos and 79% for directed videos, both computed on the presence of ath-
letes at frame level.

A more reliable measure of recall in directed videoclips, 88%, is obtained
considering the presence of the athlete at shot level, in this case precision is
93%. These figures improve in a significant way those of previous works in
the literature.

The high precision of the system to localize and identify athletes suggests
that it could be used as a trigger to initiate new tracks in a more general
tracking system [21] (one which integrates several other visual features like
face detection, face recognition, body appearance colour, skin detection, etc.),
therefore providing a denser labelling of the video. As it is evident by the
recall figures, missed detections in long shots is one of the main problem that
will be investigated in the future work.

The whole system uses some simple but efficient techniques and experi-
mental results on various data-sets show its high precision and fast speed. In
fact, the processing rate is adequate for real-time processing of 25 fps videos.
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