
– 1 –

Connectors in configuration programming languages:
are they necessary?

Judy Bishop and Roberto Faria

Computer Science Department

University of Pretoria

Pretoria 0002, South Africa

jbishop, roberto @cs.up.ac.za

Abstract

Configuration programming is the process whereby components written in any conventional

programming language can be bound together to form a dynamic system, often suitable for

execution on distributed hardware. Among the specialised languages that exist for

configuration programming there is currently a debate over the importance of recognising

the connections between components as being as important as the components themselves.

This paper lays out the pros and cons of the debate, outlining in the process the properties

and roles of connectors. By means of experiments we show how connectors influence the

way configurations are programmed and also how some of the effects can be simulated. The

examples are given in Darwin, UniCon and WRIGHT and reference is also made to the status

of other current configuration languages.

Keywords: configuration programming, connectors, MILs, software architecture, UniCon,

Darwin, WRIGHT.

1. Introduction

Software architecture is an emerging discipline which aims to enable system designers to

express the style of a design in such a way that it can be recognised as a pattern later, and

reused in an appropriate, similar context. A fundamental component of software architecture

is therefore the expression of these styles and patterns. While work is going on at the higher

level of pattern design – often under the title of frameworks – a considerable body of

practical knowledge and tool support has been built up at a different level, that of

configuration programming [Kramer 1990, Bishop 1994, Shaw 1995b].

In configuration programming, the system designers separate the computation

involved in achieving the purpose of the system from the connection between the modules

that implement that computation. The idea is that the

a) the connection might change as the system evolves (during development or

dynamic reconfiguration), and

b) the computation modules could be reused in other systems with different

connections.

The computation is expressed in ordinary programming languages – C++, Ada, Pascal –

while the connection is the responsibility of a specialised language. Unfortunately, there is

no agreement among the community as to the term to be applied to these languages as a

group, with the following in popular use: module interconnection language (MIL), interface

definition language (IDL), software architectural description language (SARL) and

– 2 –

configuration language (CL). We shall use the latter in this paper, since MIL is a somewhat

dated term, IDL has been over-used as an actual product name, and SARL is a bit futuristic

for the level at which we are dealing.

The purpose of the configuration language is to provide the expressive power for

the “glue” needed to put components together in a manner that is

• understandable,

• secure, and

• efficient.

Schwanke [1994] has echoed the needs of the industrial community in saying that “the most

pressing architectural concern is maintaining consistency between the architecture and the

code” over periods extending for upwards of fifteen years. Understandability is therefore an

important consideration. Since many of the systems that need dynamic configuration or that

will run on distributed hardware are safety critical (transport systems, for example), security

is also an issue.

Lastly, dynamic and distributed systems often need to respond to events in real-time,

and therefore the performance of the final system must be assured. Fortunately, it has been

shown in at least two studies [Magee 1994a, Shaw 1995b] that efficiency is not

compromised if systems are built at two levels and compiled using configuration language

compilers, as shown in Figure 1.

Design

Tool

Design System

Designer

Implementer

… as well as here.

Library

Configuration

Programming

Language

Components

Configuration

Language

The system's structure

is visible and maintained

here …

Configurer

Figure 1 The role of a configuration language

At present, some ten configuration languages can be identified, of which about half are in

practical use. While each addresses specific concerns and is a product of the era in which it

was first designed, there is considerable commonality among the features they offer. Figure

2 (extended from [Bishop 1994]) shows the range for some current languages [Magee

1994a], [Barbacci 1993], [Dobbing 1993], [Callahan 1991], [Shaw 1995], [Allen 1994]..

– 3 –

Darwin Durra PCL Polylith UniCon WRIGHT

process term process component =

task or channel

partition = RCI

designated

library unit

module language

dependent

language

dependent

process

language

C++ plus

library

template

classes

Ada83 plus

generic

package

Ada83 or

Ada9X plus

RCI pragma

and generic

package

any + Polylith

primitives

any any

connections require and use

ports

channels

package with

ports

data_object

package with

channels

define and use

an interface

ports and a set

of connector

types

user-defined

connectors in

WRIGHT

component

term

component compound

component =

task

program application component component

component

hierarchy

yes yes no no yes yes

binding explicit and

includes

conditionals

explicit via

channels

explicit and

includes

rejoining

explicit or

implicit

explicit to

ports and

connectors

explicit

communi-

cation

synchronous

and

asynchronous

message

passing via a

network

synchronous

message

passing in

multi-threaded

clusters

synchronous

message

passing point-

to-point via an

occam harness

synchronous

message

passing on a

software

network bus

complete

variety from

pipe to RPC to

shared data

access

anything that

can be defined

in the language

language

environment

C++ with

Regis on top of

UNIX

cluster

manager on

DEC VAX

AdaMap on

top of Alsys

transputer Ada

Polylith,

Polygen,

Surgeon and

Catalyst on

DEC stations

Unix based

with Odin and

Mach (for RT

Scheduler

connectors)

not yet

specified

software-

hardware

mapping

implicit but

can be

overridden

implicit explicit implicit with

constraints

not yet

specified

not yet

specified

reconfigu-

ration

no yes via signals no yes in Surgeon

and Catalyst

no no

FIGURE 2. Comparison of optimal criteria and four languages

– 4 –

However, a question has arisen as to the need for connectors in the languages. Connectors

are not components as such, but can be thought of as “defining a set of roles that specific

named entities of the components must play” [Shaw 1995b].

The issue that this paper addresses then is: areּthe goals of understandability and

security better attained if the connection between components is given prominence in the

language, or are connectors unnecessary baggage that can be easily handled by defaults in

the language or by well-defined components? We examine the question by first looking at

the properties of connectors in general. Then we consider how they are realised in two

current languages – UniCon and WRIGHT. Thereafter we present the case of a language

without connectors – Darwin. After looking at related work, the conclusions present a short

comparison of the three languages and an assessment of future directions.

2. Properties of connectors

The proponents of connectors do not envisage them as simply another form of component.

[Allen 1994a] defines connectors as “protocols that capture the expected patterns of

communication between modules”. Shaw [1994b] states: “A connector mediates the

interaction of two or more components. It is not in general implemented as a single unit of

code to be composed.”

In order to perform its mediating role, a connector needs a specification of the type

of connection it provides, and the roles that need to be played by the components it

connects. (In general a connector is not binary (i.e. between two components) but may be N-

ary (between several components).) Four approaches to connectors can be identified, in

increasing order of sophistication:

Level Approach to connectors Example

0 Interchange formats RTF for formatted text or PICT for line drawings

1 A built-in paradigms message passing in Darwin

2 An enumerated set of built-in connectors the seven common cases in UniCon

3 User-defined connectors defined in modified CSP in WRIGHT

The use of text as a connecting mechanism is well known, with the standard “send it in

ASCII or Postscript” being popular for distributing data and documents. Other formats such

as RTF and PICT can be used in a single system composed of different programs, where a

word processor might incorporate the output of a draw utility, for example. Although of

practical value, we shall not consider this form of connection further.

We now move on to an example which successively introduces the main points of

the other three approaches.

Example

Suppose we have two components A and B, and we bind them together in a hypothetical

configuration language with built-in connectors based on the message-passing paradigm as

follows:

– 5 –

In a configuration language:

instantiations

A : A_component_type;

B : B_component_type;

bindings

A.output –– B.input;

The binding here is between the two ports output and input which must have the same

signature (data type). The binding permits component A to call port i/o procedures which

will transmit data to corresponding procedures in B. Within the code of the components

(written in a programming language) we would thus have

In a programming language:

output.send(length * height); –– in component A

input.receive (area); –– in component B

The connection is tightly coupled and the component has to be aware of the port facility

since it must call the procedures. Since ports will be implemented in some underlying

programming language (such as C++) it is possible that variations may be included, for

example to provide dynamic name binding through port references (as in Darwin [Magee

1994a]), but the fundamental nature of the connection does not change.

Consider now a set of built-in visible connectors, The example would be extended to

include:

In a configuration language:

instantiations

C : A_B_connector;

bindings

A.output –– C.requires;

C.provides –– B.input;

The connection represented by C can be any of a variety of mechanisms such as a pipe, a

rendezvous or a remote procedure call. The behaviour of A and B will be checked to see

that it conforms to that which is expected by C. So, for example, if A_B_connector has

Unix pipe semantics (a very common connector choice) then the C requires and provides

roles will be a source and a sink, and A and B must have players to fulfill these roles. (The

analogy of a stage play is a sound one: the connector is the script, the roles are listed as

available, and players must step forward to play the roles correctly according to the script.)

In this instance, there will be no reference to the connection in the components at the

programming language level, since we are picking up a connection facility (Unix piping) at

the operating system level. Thus the components A and B will exist, and be piped together

via C, with the connection formed by the configuration.

Suppose instead that A_B_connector was some other connector type, such as a

remote procedure call. The roles for C will be something like a definer and caller, and there

would exist in A and B the appropriate statements in the programming language, for

example:

– 6 –

In a programming language:

remote procedure foo (x : integer); - - in A

call foo (4); - - in B

After this introductory example, we can arrive at the following list of properties for

connectors in general:

1. Connectors provide a means for checking the types of communication

(signatures) between components in a system.

2. They enable allowable roles to be defined for components that are to be

connected, and for their mutual behaviour (in terms of protocols) to be checked

at compile time.

3. The allowable roles may be just one (a built-in mechanism), a fixed number

(enumerated connectors) or infinite (user defined definitions).

4. Available connectors should include those commonly supported by the

operating system and the programming language, such as pipes and the RPC on

the one hand, or shared data and the rendezvous on the other.

5. Connectors should enable high-level intentions of time, reliability, ordering,

performance etc. to be specified and checked.

We now consider configuration languages which have the latter two approaches, – UniCon

and WRIGHT, and follow that with a look at an approach 1 language – Darwin.

3. Built-in connectors in UniCon

Specifying the interaction between components is not simple, and two attempts have been

made at different levels. The UniCon language [Shaw 1995b] gives a choice of seven built-

in connector types – pipe, file, procedure call, remote procedure call, PLBundler, data

access and real time scheduler. Each of these defines a set of roles that must link up to

player types of the component types which are valid in the given context. These are shown

in Figure 3. All of them are reasonably self-explanatory except PLBundler: this is an

abstraction for connecting a collection of procedure or data definitions with their calls and

uses, and is presumably included in the list in order to reduce the number of individual

connections that would need to be made in a large system.

For example, a procedure call connection could be established between a Definer

and a Caller. Both of these would need to be components of type Computation or Module,

and would need to provide players of the types RoutineDef and RoutineCall. Thus an

instance of Definer would bind to an instance of RoutineDef and similarly for the calls.

The semantics of UniCon’s built-in connectors are defined as part of the language,

and are intended to correspond to the usual interactions supported by operating systems and

languages. In order to provide for a richness in the abstraction, there is some overloading of

the abstractions. For example, the Unix pipe mechanism is represented by two connectors:

Pipe and FileIo. Pipe may link filters or sequential files, or combinations of these, whereas

the FileIo connector is intended for modules or sequential files.

– 7 –

Connector Type Roles Component Types Player Type

Pipe Source and Sink Filter StreamOut and StreamIn

SeqFile ReadNext and WriteNext

FileIO Reader and Writer Module ReadFile and WriteFile

Readee and Writee SeqFile ReadNext and WriteNext

ProcedureCall Definer and Caller Computation or Module RoutineDef and RoutineCall

RemoteProcCall Definer and Caller Process or SchedProcess RPCDef and RPCCall

PLBundler Participant Computation, Module or

SharedData

PLBundle, RoutineDef,

RoutineCall, GlobalDataUse,

GlobalDataDef

DataAccess Definer and User Shared Data or Module, plus

Computation (for use)

GlobalDataDef and

GlobalDataUse

RTScheduler Load SchedProcess RTLoad

Figure 3. The built-in connectors of UniCon

Example 1

The first example shows a single pipe connector linking two components. These can be

grouped together into a higher level component with access to the standard Unix input-

output environment, as shown in Figure 4.

R : RemoveVowels : FilterC : CatFile : Filter

P : Unix- pipe : pipe

S : System : Filter

stdin stdout

stderror

error

input output
input output

source sink

outputinput

indicates component code written in the programming language

Figure 4 A Simple system in UniCon

The UniCon code for setting up such a system is given in Figure 5. Filter is a standard

component type. CatFile and RemoveVowels are user defined components derived from

this type. Their implementations are actual executable files originating in a programming

language. Similarly, System has the same Filter interface, but has a more elaborate

implementation consisting of the two filters and a pipe. Notice that UniCon supports two

kinds of connection: port bindings, as well the roles of the names connectors.

– 8 –

Example 2

Now consider a more complex example which illustrates the use of four connectors of three

different kinds. The objective is to transfer data from a file and a filter on the left into a

module, which is then called by a computation component on the right (6a). According to

the table in Figure 3, computation components can connect via procedure calls or data

access to other computations or modules. We shall choose a procedure call as the most

appropriate connection here. The FileIo connector can bring data in from a sequential file to

a module, and we have the first part of the problem solved (6b).

The second part is more complicated. A consequence of the UniCon approach of

selecting a built-in set of connectors with strict rules about their use is that sometimes

certain designs, such as this one, cannot be realised directly. Filters can only connect via

pipes to other filters or to files. Filters cannot mix with modules, so we need to establish an

intermediate file. The filter pipes to the file which can be correctly read by the module (6c).

COMPONENT System

INTERFACE is

TYPE Filter

PLAYER input IS StreamIn

SIGNATURE (“line”)

PORTBINDING (stdin)

END input

PLAYER output IS StreamOut

SIGNATURE (“line”)

PORTBINDING (stdout)

END output

PLAYER error IS StreamOut

SIGNATURE (“line”)

PORTBINDING (stderr)

END error

END INTERFACE

IMPLEMENTATION IS

USES C INTERFACE CatFile

USES R INTERFACE RemoveVowels

USES P PROTOCOL Unix-pipe

BIND input TO C.input

BIND ouput TO R.output

BIND C.error TO error

BIND R.error TO error

BIND P.err to error

CONNECT C.output TO P.source

CONNECT P.SINK to R.input

END IMPLEMENTATION

END System

COMPONENT CatFile

INTERFACE is

TYPE Filter - - exactly as before

END INTERFACE

IMPLEMENTATION IS

VARIANT CatFile IN “catfile”

IMPLTYPE (Executable)

END CatFile

END IMPLEMENTATION

END CatFile

COMPONENT RemoveVowels

INTERFACE is

TYPE Filter - - exactly as before

END INTERFACE

IMPLEMENTATION IS

VARIANT RemoveVowels IN “remove”

IMPLTYPE (Executable)

END RemoveVowels

END IMPLEMENTATION

END RemoveVowels

CONNECTOR Unix-pipe

PROTOCOL IS

TYPE Pipe

ROLE source IS source

MAXCONNS (1)

END source

ROLE sink IS sink

MAXCONNS (1)

END sink

ROLE err is sink

MAXCONNS (1)

END err

END PROTOCOL

IMPLEMENTATION IS

BUILTIN

END IMPLEMENTATION

END Unix-Pipe

Figure 5. UniCon code for a simple System

– 9 –

SeqFile

Filter

Computation

Module

FileIo
ReadNext

ReadFile

SeqFile

Filter

Module

ProcedureCallRoutineDef

RoutineCall

Computation

FileIo
ReadNext

ReadFile

SeqFile

Module

ProcedureCallRoutineDef

RoutineCall

Computation

Pipe

StreamOut

Filter

WriteNext

ReadNext

FileIo

SeqFile

ReadFile

6(a)

6(b)

6(c)

Figure 6. An example of connectors in UniCon

Thus the discipline of UniCon’s connectors has ensured that we maintain the correct

behaviour between components. We could not have connected the output of StreamOut to

input via ReadFile using any of the built-in connectors. If a StreamOut to ReadFile

connection is indeed a sensible thing to do, then the facility to be able to include user-

defined connector types is necessary.

– 10 –

4. User-defined connectors in WRIGHT

The language which has gone the furthest towards supporting user-specified connectors is

WRIGHT [Allen 1994b]. WRIGHT has a rich semantics based on Hoare’s CSP for specifying

the behaviour of connectors. Figure 7 shows how a simple connector for sharing data would

be defined in WRIGHT.

connector Shared Data =

role User1 = set -> User1 ∩ get -> User1 √

role User2 = set -> User2 ∩ get -> User2 √

glue = User1.set -> glue ❏ User2.set -> glue

❏ User1.get -> glue ❏ User2.get -> glue ❏√

Figure 7. A shared data connector in WRIGHT

The connector specifies that there are two role players for this connector. Each may get or

set repeatedly. The glue code then regulates this process. In this simple version, there is no

initialisation of the data, so a get may precede the first set. By redefining the roles to

distinguish between an initiator and a user, and by expanding the glue description, this

problem can be overcome in a variety of ways [Allen 1994b].

Example

Now consider how the example posed for UniCon might be implemented in WRIGHT

(Figure 8). The important point is that FileIo connector can be so defined as to provide a

service between files and the module or between filters and the module. The definition is

not given here, as WRIGHT expertise is still being gained.

System Example2

Component SeqFile

Port ReadNext [with its protocol]

Port WriteNext [with its protocol]

Spec [SeqFile specification]

Component Filter

Port StreamIn [with its protocol]

Port StreamOut [with its protocol]

Spec [Filter specification]

Component Module

Port ReadFile1 [with its protocol]

Port ReadFile2 [with its protocol]

Port RoutineDef [with its protocol]

Spec [Module specification]

Component Computation

Port RoutineCall [with its protocol]

Spec [Computation specification]

Connector FileIo

role Writer = [its role]

role Reader = [its role]

glue = [its glue]

Connector ProcedureCall

role Definer = [its role]

role Caller = [its role]

glue = [its glue]

Instances

S : SeqFile

F : Filter

M : Module

C : Computation

SM : FileIo

MC : ProcedureCall

FM : FileIo

Attachments

S.ReadNext as SM.Reader

M.ReadFile1 as SM.Writer

M.RoutineDef as MC.Definer

C.RoutineCall as MC.Caller

F.StreamOut as FM.Reader

M.ReadFile2 as FM.Writer

end Example2

Figure 8. The second example in WRIGHT

– 11 –

5. Emulating connectors in Darwin

As with UniCon, developing a system in Darwin involves constructing systems from simple

components and connections between them. Components are strongly typed first class

language primitives in Darwin and composite components can be formed from sinpler ones.

As well as allowing for nested structuring, Darwin supports incremental structuring by

extension. This feature is provided by allowing component types to be declared as derived

component types (similar to single level inheritance in object-oriented languages).

While Darwin allows the programmer to specify which components are to be

connected together, it does not consider connections as first class language primitives. It has

always been Darwin’s standpoint that the component concept is powerful enough to

encompass the effect of connectors as defined in, say, UniCon.

Example

Consider the simple example posed in Figure 4. In a normal Darwin system, CatFile and

RemoveVowels would be bound together directly. The components themselves (written in

C++) would have to include calls to in and out methods defined for the port class, written in

the Regis system in C++ [Magee 1994a], as shown in Figure 9. The C++ is expressed as

constructors which are linked in with header files produced as a result of the corresponding

Darwin components. It is in these components that the ports will be defined. In this

example, Steamlines is a class defined for the type of data being passed between the

components. It serves the same purpose as the SIGNATURE(“lines”) statement in the

UniCon version (Figure 5).

#include "CatFile.h"

#include "GlobalClasses.h"

#include <stdio.h>

CatFile::CatFile()

{

 StreamLines s;

 do {in.in(s);} while (!s.isAtEnd());

 FILE *f;

 f=fopen("paper.txt","rt");

 while(!feof(f))

 {

 char buffer[BUFFER_SIZE];

 fgets(buffer,sizeof(buffer),f);

 s.set(buffer);

 out.out(s);

 }

 fclose(f);

 s.markEnd();

 out.out(s);

}

#include "RemoveVowels.h"

#include <string.h>

#include <ctype.h>

int isVowel(char possibleVowel);

{

 possibleVowel=tolower(possibleVowel);

 return

 ((possibleVowel=='a')||(possibleVowel=='e')||

 (possibleVowel=='i')||(possibleVowel=='o')||

 (possibleVowel=='u'));

}

RemoveVowels::RemoveVowels()

{

 StreamLines s, outgoing;

 in.in(s);

 while(!s.isAtEnd())

 {

 char temp[BUFFER_SIZE]; temp[0]='\0';

 for (int ct=0;ct<strlen(s());ct++)

 if (!isVowel(s()[ct]))

 {

 temp[strlen(temp)+1]='\0';

 temp[strlen(temp)]=s()[ct];

 }

 outgoing.set(temp);

 out.out(outgoing);

 in.in(s);

 }

}

Figure 9. The actual C++ components used in the simple example

– 12 –

Now one could insert a pipe component between CatFile and RemoveVowels, and the

Darwin program would be as in Figure 10.

component Environment

{

 inst

 s : System;

 stdIn: StandardInput;

 stdOut: StandardOutput;

 stdErr: StandardError;

 bind

 stdIn.yield -- f.in;

 f.out -- stdOut.receive;

 f.error -- stdErr.receive;

}

component Filter

{

 provide in<port StreamLines>;

 require out<port StreamLines>;

 require error<port StreamLines>;

}

component Pipe

{

 provide source <port StreamLines>;

 require sink <port StreamLines>;

 bind source -- sink;

}

component RemoveVowels: Filter;

component CatFile: Filter;

component System: Filter

{

 inst

 c: CatFile;

 r RemoveVowels;

 p: Pipe;

 bind

 in -- c.in ;

 c.error -- error;

 c.out -- p.source;

 p.sink -- s.in;

 r.out -- out;

 r.error -- error;

}

component StandardError

{

 provide receive<port StreamLines>;

}

component StandardOutput

{

 provide receive<port StreamLines>;

}

component StandardInput

{

 require yield<port StreamLines>;

}

Figure 10. The simple example in Darwin

No implementation is required for Pipe since all it does is connect two already existing

computations. The loops and checking for end of data and so on are all embodied in these

C++ components. So what does it buy us? Well, having a defined connector between the

two components raises the level of abstraction, so that the reader can see and be assured that

the communication is pipe-like, not via RPC, say. However, the assurance is flimsy,

because it is based only on the association of the name of the connector with an existing

well-known mechanism. If we had called the connector XYZ, then a reader would have

been none the wiser, without delving into the C++ code. Similarly, if we had left the

connector as pipe, and then changed the code in CatFile and RemoveVowels to reflect

something different, such a discrepency could not be detected. Finally, we note that the

existance of a pipe connector in no way means that Darwin can make use of the pipe facility

in the underlying operating system. This is not the case in UniCon, where the built in

connectors can link up directly with whatever is available in the platform on which UniCon

is running (in this case, Unix).

Pipe is a reasonably easy abstraction to insert into Darwin programs. However, the

other connectors offered by UniCon have to be modelled laboriously. For example, shared

– 13 –

data would require a locking mechanism implemented in C++, and the data could not be

used naturally: it would have to be fetched via the message passing system first. So if X is a

variable shared by the components A and B described in section 2, Unicon and WRIGHT

could allow B to have statements such as

X := X + 1;

assuming that X is owned by A. All the protection associated with X would be taken care of

by the shared data connector between A and B.

In a system connected with Darwin, we would need a component which has ports to

lock, transfer and unlock the data. The code in B would look like this:

lock;

transfer.in (X);

X := X+1;

transfer.out (X);

unlock;

6. Related work

The original MILs relied on procedure call for interaction, or as Garlan calls it:

Definiton/Use. Configuration languages conceived in the later eighties such as PCL

[Dobbings 1993], Durra [Barbacci 1993] and Polylith [Callahan 1991] do not have

connectors, but some do include a more general form of connection, such as the software

bus [Purtilo 1994]. The original form of Darwin that was based on Pascal [Magee 1993]

provided only one kind of port, but in principal the new version based on C++ classes

should enable a greater variety of connections to be defined. In practice, as we have shown,

these must be restricted to the underlying message-passing paradigm. More recently,

connectors have become topical and a language bred in industry, Gestalt [Schwanke 1994],

is based heavily on the ideas of both UniCon and WRIGHT.

Work has also proceeded on the theoretical side, with a taxonomy of system

structures and a notation for their connections being described in [Dean 1995]. In [Rice

1994] and [Magee 1994b] attempts have been made to provide formal models for

configuration programmming languages, but neither of these places emphasis on

connectors. The work that goes into the greatest depth formally so far is that of [Allen

1994b]. Mention should also be made of the recent extensions by the UniCon team [Shaw

1995a] which gives more precise definitions of the connectors, and explains how the

UniCon compiler realises connectors from available intermediate products using

information localised into experts.

7. Conclusions

We set out to evaluate the value, properties and status of connectors in configuration

programming, and to see whether they could be adequately modelled by a language which

does not have them. The following was established:

1. Value. Connectors can be assesed in terms of their contribution to

understandability and security of the resulting systems. Because they reveal the

structure of the connection, they are a valuable architectural tool. Because the

– 14 –

connection can be checked in terms of its behaviour as well as the data it

handles, they make a significant contribution towards security.

2. Status. A layered categorisation of languages with and without connectors was

defined, and examples from each category dicussed.

3. Properties. A list of five properties was drawn up, and these are present in some

form or other in the languages studied.

Finally, we present a comparison of the three languages with respect to certain factors

which became evident as the research progressed (Figure 11). The first row indicates for

noting that Darwin is heavily based on a C++ programming platform, and an accompanying

environment called Regis [Magee 1994a]. UniCon runs presently in Unix environments and

generates instructions for Odin, a unitlity similar to make. Wright has as yet to state where it

will place itself.

Darwin UniCon Wright

PL or OS base C++ and Regis Unix and Odin any

Connector level built-in paradigm enumerated set user-defined

Coupled loosely to PL close to OS and PL none

Protocol given in C++ classes OS or PL mechanisms Wright definitions

Figure 11. Comparison of Darwin, UniCon and Wright connectors

The connector level has already been discussed, and we can now see a consequence of it, as

shown in the last two rows of the table. Since Darwin does not have connectors, it relies on

the C++ classes defined for ports in Regis. The fact that the coupling is loose is both an

advantage and a disadvantage: components can be relinked, which is good, but there is also

a loss of information when the connector information is actually coded down at the

component level, as was illustrated in the example in Section 5.

UniCon on the other hand scores because it has carefully crafted a set of likely

connected and has arranged for these to be directly linked into the existing constructs in the

operating system or language. Just to show that the user-defined connectors are not always

the best, we see that WRIGHT is almost the same as Darwin in that the protocols may be

defined and visible, but it will be exceedingly difficult to tie these up with operating system

constructs.

In conclusion, therefore, we can say that connectors are definitely a good idea. It is

yet to be proven that they can be efficiently implemented and made use of, since both

UniCon and Wright are still in the experimental stage. There are advantages and

disadvantages to user-defined connectors, and it would seem that the best way forward

would be to try to provide both user-definition and an enumerated set of common

connectors.

8. Future work

The work described here is being continued as part of a larger project to investigate the

developemnt of a new distributed computing environment for South African universities.

The project is called Polelo, which is the Tswana word for communication, and involves a

– 15 –

strong team of ATM experts. Our research will be to continue to define new connectors, to

evaluate them in existing languages, and if possible to extend Darwin to accommodate a

high-level form of connector.

Acknowledgements

The teams involved in Darwin, Unicon and WRIGHT have given willingly of their time and

expertise in answering our questions for this paper. We thank in particular Greg Zelesnik,

Jeff Kramer, Mary Shaw and David Garlan. Any errors in the work remain our own.

References

[Allen 1994a] Allen R and Garlan D, “Beyond definition/use: Architectural interconnection”, Proc.

Workshop on Interface Definition Languages, Portland, Oregon, Jan. 1994, in Sigplan

Notices 29 (8) 35–45, August 1994.

[Allen 1994b] Allen R and Garlan D, Formalizing architectural interconnection, Proc. 16th Int’l

Conference on Software Engineering (ICSE), Sorrento, Italy, May 1994.

[Barbacci 1993] Barbacci MR, Weinstock CB, Doubleday DL, Gardner MJ and Lichota RW, Durra: a

structure description language for developing distributed applications, Software

engineering journal, 8 (2) 83–94, March 1993.

[Bishop 1994] Bishop J M, Languages for configuration programming: a comparison, IEEE Trans. Soft

Eng. to appear, also UP CS Tech Report 94/04.

[Callahan 1991] J R Callahan and J M Purtilo, A packaging system for heterogeneous execution

environments, IEEE Trans. Soft. Eng. 17 (6) pp 626– 635 June 1991

[Dean 1995] Dean T and Cordy JR, A syntactic theory of software architecture, IEEE Trans on Soft

Eng. 21 (4) 302–313, April 1995.

[Dobbing 1993] Dobbing B, Experiences with the partitions model, Ada Letters, XIII (2) pp 65–77,

March/April 1993

[Kramer 1990] Kramer J, Configuration Programming – a framework for the development of distributable

systems, Proceedings of the IEEE Int’l Conference on Computer Systems and Software

Engineering (CompEuro 90), Israel, May 1990.

[Magee 1993] Magee J, Dulay N and Kramer J, Structuring parallel and distributed programs, Software

Engineering Journal 8 (2) 73–82 March 1993.

[Magee 1994a] Magee J, Dulay N and Kramer J, Regis: a constructive development environment for

distributed programs, Distributed Systems Engineering Journal 1 (5) 304–312 September

1994.

[Magee 1994b] Magee J, Eisenbach S and Kramer J, System structuring: a convergence of theory and

practice?, internal report, Department of Computing, Imperial College, London, 1994.

[Purtilo 1994] J Purtilo, The Polylith software bus, ACM Trans. on Prog. Lang. and Sys., 16 (1) 151–174

January 1994

[Rice 1994] Rice MD and Seidman SB, A formal model for module interconnection languages, IEEE

Trans. Soft. Eng. 20 (1) 88–101, January 1994.

[Schwanke 1994] Schwanke R W, Strack V A, Werthmann-Auzinger T, Industrial software architecture

with Gestalt, Siemens Technical Report, Princeton NJ, 1994.

[Shaw 1994] Shaw M, Procedure calls are the assembly language of software interconnection:

connectors deserve first-class status, CMU-SEI Tech Report 94-TR-2.

– 16 –

[Shaw 1995a] Shaw M, DeLine R and Zelesnik G, Abstractions and Implementations for architectural

connections, unpublished manuscript, March 1995.

[Shaw 1995b] Shaw M, DeLine R, Klein D V, Ross T L, Young D M and Zelesnik G, Abstractions for

software architecture and tools to support them, IEEE Trans. Soft. Eng. 21 (4) 314–335,

April 1995.

