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Restricted Nonlinear Approximation

A. Cohen, R. A. DeVore, and R. Hochmuth

Abstract. We introduce a new form of nonlinear approximation calledrestricted ap-
proximation. It is a generalization ofn-term wavelet approximation in which a weight
function is used to control the terms in the wavelet expansion of the approximant. This
form of approximation occurs in statistical estimation and in the characterization of
interpolation spaces for certain pairs ofL p and Besov spaces. We characterize, both in
terms of their wavelet coefficients and also in terms of their smoothness, the functions
which are approximated with a specified rate by restricted approximation. We also show
the relation of this form of approximation with certain types of thresholding of wavelet
coefficients.

1. Introduction

Approximation by a linear combination ofn wavelets is a form of nonlinear approxima-
tion that occurs in several applications including image processing, statistical estimation,
and the numerical solution of differential equations. In this paper, we shall consider vari-
ants ofn-term approximation which we callrestricted approximation. As explained
further, we are motivated by certain applications in statistics and by the interpolation of
Besov spaces.

To describe our results, we recall the usual setting of multivariate wavelet analysis.
LetD be the set of dyadic cubes inRd and fork ∈ Z, we letDk denote the set of those
cubesI ∈ D at dyadic levelk, i.e.,|I | = 2−kd, where we use|K | to denote the Euclidean
measure of a setK ⊂ Rd. We denote byÄ := [0,1]d the unit cube inRd. Each cube
I ∈ Dk is of the formI = 2−k( j + Ä) with j ∈ Zd. We identify I with ( j, k). If g is
any function defined onRd, we define

gI ,p(x) := 2kd/pg(2kx − j ).

In the caseg ∈ L p, then‖gI ,p‖L p = ‖g‖L p . Here and throughout this paper all function
spaces and all norms are taken overRd unless explicitly stated otherwise. In order to
streamline notation, we shall often simply writegI in place ofgI ,p. However, it will
always be clear from the text what is the value ofp in the normalization.

Wavelet theory generates a set9 ⊂ L2 of 2d − 1 functions whose shifted dilates
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form a Riesz basis forL2 as follows. We begin with univariate scaling functionϕ and
an associated univariate wavelet functionψ and defineψ0 := ϕ andψ1 := ψ . Let E
denote the set of nonzero vertices ofÄ and define

ψe(x1, . . . , xd) :=
d∏

i=1

ψei (xi ), e∈ E.(1.1)

Then,9 := {ψe: e∈ E} is such a set.
We shall restrict ourselves in this paper to the case of compactly supported biorthogonal

wavelets. This means that the family of functionsψe, e ∈ E, are assumed to have been
generated by a compactly supported scaling functionϕ with a dual scaling function
ϕ̃ which also has compact support. The wavelet functionψ also has compact support
and has associated to it a compactly supported dual waveletψ̃ (see [CDF] or [Da,
Chap. 8] for the definition and properties of biorthogonal wavelets). We remark that all
of our theorems hold in more generality. In particular, compact support can be replaced
by suitable decay conditions. However, by imposing these additional assumptions, our
development will be more simple and hopefully more clear.

The set of functions given in (1.1) generates by shifts and dyadic dilates a Riesz basis
for L2. This means that each functionf ∈ L2 has the unique expansion

f =
∑
I∈D

AI ( f ), AI ( f ) :=
∑
e∈E

ae
I ( f )ψe

I ,(1.2)

with the wavelet functionsψe
I = ψe

I ,2 normalized inL2(Rd). Moreover, we have

‖ f ‖2L2(Rd) ³
∑
I∈D

aI ( f )2, aI ( f ) :=
(∑

e∈E

|ae
I ( f )|2

)1/2

.(1.3)

The set of functions{ψe
I }I∈D,e∈E is also an unconditional basis forL p(Rd), 1< p <

∞, and for many other function spaces such as the Hardy spaces and the Besov spaces.
We shall discuss this in more detail in the following section. For now, we want to turn
to the formulation of the nonlinear approximation problem that we shall study in this
paper.

Let−∞ < α < 1 and define for each set3 ⊂ D,

8(3) := 8α(3) :=
∑
I∈3
|I |α.

Thus,8 is a measure defined on the subsets of the discrete spaceD. For eacht > 0, we
define the space6t as the set of all

S=
∑
I∈3

AI (S), 8(3) ≤ t.(1.4)

Since the set3 is possibly infinite, some sense of convergence must be attached to the
series in (1.4). We postpone a discussion of this until Section 2 when we formulate the
restricted approximation problem in more detail. One should note in any case that6t is
not a linear space. For example, the sum of two elements from6t is generally not in6t

although it is in62t .
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We shall consider approximation in the Hardy spaceHp, 0< p <∞, by the elements
of 6t . We recall thatHp = L p, 1< p <∞. Given f we define

σ( f, t)p := σ( f, t)Hp := inf
S∈6t

‖ f − S‖Hp .(1.5)

We remark that we do not necessarily assume thatf ∈ Hp in the definition (1.5);
however, this situation will only appear in our results when dealing with the caseα > 0.
In this case, it can happen that (1.5) is finite even whenf is not inHp. In the caseα = 0
andt = n is a positive integer, the space6n consists of all functionsSwhich are a linear
combination ofn wavelets. Then, (1.5) is the error ofn-term approximation inHp.

We shall be interested in this paper in describing the functionsf for whichσ( f, t)p has
a prescribed asymptotic behavior ast →∞ andt → 0. For 0< p <∞, 0< q ≤ ∞,
andγ > 0, we define the approximation classAγq (Hp) to be the set of allf such that

| f |Aγ
q (Hp)

:=


(∫ ∞

0
[tγ σ ( f, t)p]q dt/t

)1/q

, 0< q <∞,
sup
t>0

tγ σ ( f, t)p, q = ∞.
(1.6)

From the monotonicity ofσ( f, t)p, it follow that (1.6) is equivalent to a discrete norm

| f |Aγ
q (Hp)
³


(∑

j∈Z

[2 j γ σ ( f,2 j )p]q

)1/q

, 0< q <∞,

sup
j∈Z

2 j γ σ ( f,2 j )p, q = ∞.
(1.7)

In the caseα ≤ 0, one can actually restrictt in (1.6) to be≥ 1 ( j in (1.7) to be≥ 0) without
changing the spaceAγq (Hp). However, in order to treat all cases ofα simultaneously we
need the full range oft ≥ 0.

Our main results characterize the spacesAγq (Hp) in several ways: in terms of interpo-
lation spaces; in terms of wavelet coefficients; and in terms of smoothness spaces (Besov
spaces). Consider, for example, the case 1< p <∞ andα ≤ 0 and letβ := 1− α so
thatβ ≥ 1. Fors > 0, let Bs

q(Lτ ) denote the Besov space of smoothness orders in Lτ
and auxiliary parameterq (a fuller discussion of Besov spaces is given in Section 2). For
spacesX,Y we also denote by(X,Y)θ,q the interpolation spaces generated by the real
method of interpolation (K -functional) with parameters 0< θ < 1, 0< q ≤ ∞ (see
Section 2). We show that for each 1< p <∞ andq > 0, we have

Aγq (L p) = (L p, Bs
τ (Lτ ))γ /s,q, 0< γ < s, 0< q ≤ ∞,(1.8)

for a certain range ofs which depends on the waveletsψ, ψ̃ and with τ defined by
s = βd(1/τ − 1/p). It is well known that for each suchγ and forq defined byγ =
βd(1/q − 1/p), the interpolation space on the right side of (1.8) is the Besov space
Bγq (Lq). This has a simple geometrical description given in Figure 1. In this figure, the
x-axis corresponds toLq spaces withx identified with 1/q. The y-axis corresponds to
the smoothness order. Thus, the point(1/q, γ ) corresponds to the smoothness space
Bγq (Lq). Then, (1.8) says that the approximation spaceAγq (L p) corresponds to the point
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Fig. 1

(1/q, γ ) on the line segment connecting(1/p,0) (corresponding toL p) to (1/τ, s)
(corresponding toBs

τ (Lτ )). This line segment has slopeβd.
Our results also serve to prove theorems about the interpolation of Besov spaces on the

line with slopeβd in Figure 1. While these interpolation theorems are known, wavelet
methods provide simple proofs and also allow ways to realize theK -functional between
Hp and one of these Besov spaces.

Another way to describe the spaceAγq (Hp) is through thresholding and wavelet coef-
ficients. It turns out that restricted approximation is intimately connected to thresholding
coefficients in theLr -norm withr := p/β. Let aI ( f ) be defined as in (1.3), except we
now take the wavelets normalized inLr . We can create a good approximation tof from
3t by a sum of the form

S=
∑

I∈3(ε, f )

AI ( f )

with 3(ε, f ) := {I : aI ( f ) > ε}. The proper choice ofε gives an element of6t . Using
these ideas, we can characterize the approximation spaceAγq (Hp) as the set of allf for
which the sequence(aI ( f ))I∈D is in the weighted Lorentz space`µ,q(w) with µ related
to γ by γ = βd(1/µ− 1/p), andw(I ) := |I |α, I ∈ D.

The study of theL p error resulting from a thresholding of the wavelet expansion in
the Lr -norm with r 6= p is motivated by problems of statistical estimation: in a white
noise model, one is required to threshold the noisy signal inL2, even when interested
by minimizing the estimation error inL p for p 6= 2 (see [DJKP] for a general review of
wavelet thresholding techniques for statistical estimation and [CDKP] for the application
of our results in this context).

In order to prove our main results, we shall introduce new techniques for nonlinear
wavelet approximation which apply even to the case ofn-term approximation. These
new proofs forn-term wavelet approximation are somewhat simpler than those given
in [DJP].
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An outline of this paper is as follows. In Section 2, we discuss wavelet characterizations
of spaces and define the smoothness spaces (in terms of wavelet coefficients), which
we shall use in the characterization of approximation order. In Section 3, we discuss
certain fundamental relations between approximation spaces and interpolation spaces
which we shall use in our characterization of approximation spaces. In particular, we
discuss the role of Jackson and Bernstein inequalities in these matters. We also prove
some general results on when approximation methods can realize theK -functional for
a pair of spaces. In Section 4, we considern-term wavelet approximation corresponding
to the particular choiceα = 0. Most results of this section are already known (see,
e.g., [DJP]), but the way of proof is somehow simpler than in the existing literature.
In Section 5, we consider the general case of restricted nonlinear approximation as
described above, and prove the corresponding Jackson and Bernstein inequalities for
this type of approximation. In Section 6, we characterize the approximation spaces for
restricted nonlinear approximation as noted above. In Section 7, we show that restricted
approximation can be achieved through the simple thresholding procedure of the wavelet
expansion. For the sake of simplicity, all our results are stated for spaces of functions
defined on the whole ofRd, using the whole range of scalesk ∈ Z in the wavelet
decomposition. In Section 8, we make some concluding remarks on the adaptation of
our results to the approximation of functions defined on a bounded domain, using the
scalesk ≥ 0 together with a layer of scaling functions at the coarsest resolution.

2. Wavelet Decompositions and Characterization of Function Spaces

We shall describe in this section the properties of wavelet decompositions which we shall
use in this paper. LetE be the nonzero vertices ofÄ as introduced earlier and letψe

I ,
e∈ D, I ∈ D, be the biorthogonal wavelet basis obtained from the compactly supported
scaling functionϕ and compactly supported univariate waveletψ as described in (1.1).
This basis will be fixed throughout this paper. We denote byψ̃e

I the functions in the dual
basis. If f is a tempered distribution, the wavelet coefficients

ae
I ,p( f ) := 〈 f, ψ̃e

I ,p′ 〉, I ∈ D, e∈ E,(2.1)

with the dual wavelets̃ψe
I normalized inL p′ , 1/p+ 1/p′ = 1, are defined whenever the

order of f is sufficiently small compared to the smoothness ofϕ̃, ψ̃ . For example, they
are defined ifϕ̃ andψ̃ are inCr with r exceeding the order of the distributionf . Thus,
for example, they are defined wheneverf ∈ L p, 1 ≤ p ≤ ∞, and wheneverf ∈ Hp,
0< p ≤ 1, provided the dual wavelets are inCr with r ≥ [d(1/p− 1)+].

We continue with the notation of the Introduction and, in particular, define

aI ,p( f ) :=
(∑

e∈E

ae
I ,p( f )2

)1/2

, I ∈ E.(2.2)

We shall frequently use the following formula for changing between normalizations:

|I |−1/pae
I ,p( f ) = |I |−1/qae

I ,q( f ), |I |−1/paI ,p( f ) = |I |−1/qaI ,q( f ),(2.3)

which holds for any 0< p,q ≤ ∞.
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It is well known (see [Da]) that(ψe
I )I∈D,e∈E is an unconditional basis forL p, 1 <

p <∞. Each f ∈ L p has a unique decomposition

f =
∑
I∈D

AI ( f ), AI ( f ) :=
∑
e∈E

ae
I ( f )ψI .(2.4)

We can computeL p-norms of functionsf from their wavelet decompositions using the
square function which is defined by

S( f ) :=
(∑

I∈D
aI ,2( f )2|I |−1χ

I

)1/2

=
(∑

I∈D
aI ,p( f )2|I |−2/pχ

I

)1/2

.(2.5)

Namely, for 1< p <∞,

‖ f ‖L p ³ ‖S( f )‖L p .(2.6a)

The equivalence (2.6a) follows from general results in Littlewood–Paley theory (see
[Me] or [FJ]).

When p ≤ 1, the right side of (2.6a) gives the norm in the real Hardy spaceHp (see
[FS] for the definition and properties ofHp) for a certain range ofp which depends on
the univariate waveletsψ , ψ̃ . We shall say thatp ≤ 1 isadmissibleif

‖ f ‖Hp ³ ‖S( f )‖L p .(2.6b)

Wavelet coefficients also can be used to characterize smoothness spaces. We shall use
wavelet coefficients to define a class of spacesBs

q,p for 0< p,q ≤ ∞, s ≥ 0. For certain
values of these parameters, these spaces will coincide with the Besov spaces as we shall
explain. If p is admissible then the spaceBs

q,p is defined as the set of all distributions in
Hp for which the following (quasi-semi-)norm is finite:

| f |Bs
q,p

:= ‖(2ks‖(aI ,p( f ))I∈Dk‖`p(Dk))k∈Z‖`q(Z).(2.7)

There are many other forms for the right side of (2.7) obtained by using different nor-
malization of the waveletsψI and the fact that|I | = 2−kd for I ∈ Dk. For example,
whenq = p, we can rewrite (2.7) as

| f |Bs
p,p

:= ‖(|I |−s/daI ,p( f ))I∈D‖`p(D).(2.8)

We shall use the abbreviated notationBs
p := Bs

p,p throughout. The cases = 0 in (2.8)
will be important in this paper. We shall denoteB0

p simply asBp. Thus,

| f |Bp := ‖(aI ,p( f ))I∈D‖`p(D).(2.9)

The spaceBp can be viewed as a substitute forL p; it has a simpler structure in terms of
its wavelet decomposition.

The spacesBs
q,p are the same as Besov spaces for a certain range ofs which depends

on the smoothness ofψ and the number of vanishing moments ofψ̃ as we shall now
describe. Consider first the case 1≤ p ≤ ∞ in which case theBs

q,p are related to the
Besov spacesBs

q(L p) defined by moduli of smoothness inL p (see [DJP]). Letr (p) be a
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real number such thatψ is in Br (p)
p (L p) and all moments of̃ψ of order< r (p) vanish.

Then,Bs
q,p is the same as the Besov spaceBs

q(L p) for all 0< q ≤ ∞ and 0< s< r (p).
When 0< p < 1, we use the Besov spacesBs

q(Hp) which can be defined in several
ways (Fourier transforms, Littlewood–Paley theory, orHp moduli of smoothness) as is
thoroughly discussed in [K]. Ifp is admissible andr (p) is defined as before (withHp

in place ofL p), thenBs
q,p = Bs

q(Hp), for all 0< s < r (p), and 0< q ≤ ∞. Finally, it
is known thatBs

q(L p) = Bs
q(Hp) whenevers > d(1/p− 1)+ (see [K])), in which case

these spaces are embedded inL1.
In summary, the spacesBs

q,p are defined by the size properties of wavelet coefficients
for the full ranges ≥ 0, whereas the Besov spaces are characterized by these wavelet
coefficients for a smaller range ofs.

3. K -Functionals and Interpolation Spaces

Approximation spaces and interpolation spaces are intimately connected; each can be
characterized in terms of the other. In this section, we wish to recall some of these
connections and add a little to this theory.

Let X,Y be a pair of spaces that are embedded in some Hausdorff spaceX . Then,
one can form the spaceX+Y which consists of all functionsf which can be written as
h+ g with h ∈ X, g ∈ Y. We define the norm onX + Y by

‖ f ‖X+Y := inf
f=h+g

‖h‖X + ‖g‖Y.

More generally, for anyt > 0, we define theK -functional

K ( f, t) := K ( f, t; X,Y) := inf
f=h+g

‖h‖X + t‖g‖Y.(3.1)

In this definition, we may also replace norms by seminorms.
K -functionals have many uses. They were originally introduced as a means of gen-

erating interpolation spaces. We recall that if 0< θ < 1 and 0< q ≤ ∞, then the
interpolation space(X,Y)θ,q is defined as the set of all functionsf ∈ X + Y such that

| f |(X,Y)θ,q :=


(∫ ∞

0
[t−θK ( f, t)]q dt/t

)1/q

, 0< q <∞,
sup
t>0

t−θK ( f, t), q = ∞,
(3.2)

is finite.
We next describe the usual vehicle for characterizing approximation spaces and con-

necting them to interpolation spaces as described in DeVore and Lorentz [DL, §9 of
Chap. 7]. We suppose thatX andY are as above and for eacht > 0, Xt is a (possi-
bly nonlinear) subspace ofX + Y. The usual setting for approximation takest = n,
n = 1,2, . . . , andY ⊂ X but the results are the same (and the proofs almost identical)
in this more general setting. We let

σ( f, t)X := inf
S∈Xt

‖ f − S‖X
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measure the approximation error for this family and define the approximation spaces
Aγq (X) as in (1.6) withHp replaced byX.

We assume in addition thatXt ⊂ Xu if t ≤ u and that the nonlinearity of the familyXt

is controlled in the following sense: there exists a constanta such thatXt+Xu ⊂ Xa(t+u).
We can characterize the approximation spaces if for somer > 0, we can establish the

following two inequalities:

Jackson inequality: σ( f, t)X ≤ Ct−r ‖ f ‖Y, f ∈ Y, t > 0.

Bernstein inequality: ‖S‖Y ≤ Ctr ‖S‖X, S∈ Xt , t > 0.

From the Jackson inequality, one can derive a comparison betweenσ andK as follows.
Let ε > 0 be arbitrary and letg be such that the decompositionf = f − g+ g gives
the K -functional to withinε:

‖ f − g‖X + t−r ‖g‖Y = K ( f, t−r )+ ε.
If S is a best approximation tog from Xt (when best approximation is not known to exist
then one adds anotherε in the following derivation with the same end result), then

σ( f, t)X ≤ ‖ f − S‖X ≤ ‖ f − g‖X + ‖g− S‖X

≤ K ( f, t−r )+ ε + Ct−r ‖g‖Y ≤ C K( f, t−r )+ ε.
Sinceε is arbitrary, we have

σ( f, t)X ≤ C K( f, t−r ).(3.3)

The Bernstein inequality provides a weak inverse inequality to (3.3) which we do not
give (see Theorem 5.1 of Chap. 7 in [DL]). From this, one derives the following relation
between approximation spaces and interpolation spaces:

Theorem 3.1. If the Jackson and Bernstein inequalities are valid, then for each0 <
γ < r and0< q ≤ ∞ the following relation holds between approximation spaces and
interpolation spaces

Aγq (X) = (X,Y)γ/r,q,(3.4)

with equivalent norms.

Proof. See Theorem 9.1 of Chapter 7 in [DL] where the theorem is proved under the
additional assumption thatY is embedded inX: a simple modification of that proof gives
(3.4) in the general case.

There is a further connection between approximation and interpolation. In certain
cases, we can realize theK -functional by an approximation process. We continue with
the above setting. We say a family(At ), t > 0, of (possibly nonlinear) operators, with
At mappingX into Xt , providesnear best approximationif there is an absolute constant
C > 0 such that

‖ f − At f ‖X ≤ Cσ( f, t)X, t > 0.(3.5)
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We say this family isstableonY if

‖At f ‖Y ≤ C‖ f ‖Y, t > 0,

with an absolute constantC > 0.

Theorem 3.2. Let X, Y, Xt be as above and suppose that Xt satisfies the Jackson and
Bernstein inequalities. Suppose further that the family of operators At , t > 0, provides
near best approximation and is stable on Y, then At realizes the K-functional, in the
sense that

‖ f − At f ‖X + t−r ‖At f ‖Y ≤ C K( f, t−r , X,Y),(3.6)

with an absolute constant C.

Proof. We fix t > 0 and letg ∈ Y be a function which realizesK ( f, t−r ), i.e.,

‖ f − g‖X + t−r ‖g‖Y ≤ K ( f, t−r ).(3.7)

Wheng is not known to exist, we add anε > 0 as above. From the near best assumption,
we have

‖ f − At f ‖X ≤ Cσ( f, t)X(3.8)

≤ C‖ f − At g‖X

≤ C(‖ f − g‖X + ‖g− At g‖X)

≤ C(‖ f − g‖X + σ(g, t)X)

≤ C(‖ f − g‖X + t−r ‖g‖Y)
≤ C K( f, t−r ),

where we have used the Jackson inequality.
Moreover, using theY-stability of At and the Bernstein inequality, we obtain

t−r ‖At f ‖Y ≤ Ct−r (‖At f − At g‖Y + ‖At g‖Y)
≤ C(‖At f − At g‖X + t−r ‖g‖Y)
≤ C(‖ f − At f ‖X + ‖g− At g‖X + ‖ f − g‖X + t−r ‖g‖Y)
≤ C(‖ f − At f ‖X + ‖ f − g‖X + t−r ‖g‖Y)
≤ C(‖ f − At f ‖X + K ( f, t−r )),

where we used the fact that‖g − At g‖X ≤ Cσ(g, t)X ≤ Ct−r ‖g‖Y. This combined
with (3.8) shows thatAt f realizes theK -functional.

Remark 3.1. If in place of near best approximation we assume only that

‖ f − At f ‖X ≤ Cσ( f,at)X,

with absolute constanta ≤ 1, then (3.6) is still valid.
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Indeed, the same proof gives (3.6) witht−r replaced by(at)−r and the remark follows
because

K ( f, (at)−r ) ≤ a−r K ( f, t−r ).

In practice, the stability of an approximation operatorBt mappingX to Xt is not
always easy to check directly, but it can be derived from the stability of one particular
approximation operatorAt combined with Jackson and Bernstein estimates, as shown
by the following result. We say thatAt provides a Jackson inequality if

‖g− At g‖X ≤ Ct−r ‖g‖Y(3.9)

holds for allg ∈ Y with an absolute constantC.

Theorem 3.3. Let X, Y, Xt be as above and suppose that Xt satisfies the Jackson and
Bernstein inequalities. Let At , Bt provide the Jackson inequality and suppose that At is
stable on Y. Then, Bt is also stable on Y.

Proof. Let g ∈ Y. Then,

‖Bt g‖Y ≤ C(‖At g− Bt g‖Y + ‖At g‖Y) ≤ C(tr ‖At g− Bt g‖X + ‖g‖Y)
≤ C(tr ‖g− At g‖X + tr ‖g− Bt g‖X + ‖g‖Y) ≤ C‖g‖Y.

4. n-Term Wavelet Approximation in Hp, 0< p <∞

In this section, we shall treat the caseα = 0 in restricted nonlinear approximation.
This case corresponds to the standardn-term wavelet approximation. While the results
of this section are for the most part known (see [DJP], [T1], [T2]), we shall give new
and simpler techniques for their proof. We shall later use these same ideas to obtain the
corresponding theory for restricted nonlinear approximation. The main new ingredient
here is the use of the intervalI (x) defined below for a set3 of intervals and a point
x ∈ Rd. The intervalI (x) can be used to replace the role of maximal functions used
in the original proofs of Jackson and Bernstein inequalities forn-term approximation
given in [DJP].

We takeα = 0 throughout this section. In this case, it is enough to consider ap-
proximation from6t only in the caset = n with n a natural number. We shall use the
notation

σn( f )p := σ( f,n)p

in this section.
Let 3 be any finite set of dyadic intervals. For eachx ∈ ⋃I∈3 I , we defineI (x)

to be the smallest interval in3 which containsx. We use the notation for wavelet
decompositions given in Sections 1 and 2. We shall frequently make use of the following
observation of Temlyakov [T1] which holds for any finite set3 ⊂ D:

Lemma 4.1. Let0< p <∞ be admissible and let3 be a finite subset ofD. If f has
the wavelet decomposition

f =
∑
I∈3

AI ( f )(4.1)
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with aI ,p( f ) ≤ M , for all I ∈ 3, then

‖ f ‖Hp ≤ C1M#31/p(4.2a)

with C1 depending only on p. Similarly, if aI ,p( f ) ≥ M , for all I ∈ 3, then

‖ f ‖Hp ≥ C2M#31/p(4.2b)

with C2 depending only on p.

Remark 4.1. Recall thatHp = L p with equivalent norms whenp > 1.

Proof. We letaI := aI ,p( f ). Then, for (4.2a), we use the square function (2.5)–(2.6)
to find

‖ f ‖Hp ≤ C‖S( f )‖L p = C

∥∥∥∥∥∥
(∑

I∈3
a2

I |I |−2/pχI

)1/2
∥∥∥∥∥∥

L p

≤ C M

∥∥∥∥∥∥
(∑

I∈3
|I |−2/pχI

)1/2
∥∥∥∥∥∥

L p

≤ C M‖|I (x)|−1/p‖L p,

where |I (x)|−1 is defined to be 0 whenx /∈ ⋃I∈3 I . If J ∈ 3, then the setJ̃ :=
{x: I (x) = J} is a subset ofJ, and we have

⋃
I∈3 I =⋃J∈3 J̃. It follows that

‖ f ‖p
Hp
≤ C Mp

∫
Rd

|I (x)|−1 dx ≤ C Mp
∑
J∈3

∫
J̃
|J|−1 ≤ C Mp#3,

which proves (4.2a).
For the proof of (4.2b), we have

S( f, x) ≥ M

(∑
I∈3
|I |−2/pχI (x)

)1/2

≥ M |I (x)|−1/p.

Also, |I (x)|−1 ≥ C
∑

I∈3 |I |−1χI (x). Hence,

‖ f ‖p
Hp
≥ C‖S( f )‖p

L p
≥ C Mp

∫
Rd

∑
I∈3
|I |−1χI (x) = C Mp#3.

As a consequence of the lemma we will prove the following interesting theorem of
Temlyakov [T1]. We fix an admissible value ofp with 0< p <∞ and let

Bn f =
∑
I∈3b

∑
e∈E

be
Iψ

e
I , #3b ≤ n,

be a bestHp-approximation tof from6n (the existence of bestm-term approximations
was proved in [Ba]). We modifyBn f by replacingbe

I by ae
I ( f ) to getB̃n f which is also
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in 6n. It follows thatS( f − B̃n f ) ≤ S( f − Bn f ) with S the square function of (2.5).
Therefore, from (2.6b) we obtain

‖ f − B̃n f ‖Hp ≤ C‖ f − Bn f ‖Hp ≤ Cσn( f )p.

We also introduce the thresholding operatorTn f :=∑I∈3t
AI ( f ) where3t consists of

then cubesI for whichaI ,p( f ) is largest (with ties handled in an arbitrary way).

Theorem 4.1. For any admissible p with0 < p < ∞ and for all n= 1,2, . . . , Tn f
is a near best approximation to f from6n, i.e.,

‖ f − Tn f ‖Hp ≤ Cσn( f )p.

Proof. It is enough to estimate

B̃n f − Tn f = −
∑

I∈3t\3b

AI ( f )+
∑

I∈3b\3t

AI ( f ) =: f0+ f1.

Using the square function, we have

‖ f0‖Hp ≤ C‖ f − B̃n f ‖Hp ≤ Cσn( f )p.

If M is the smallest of the valuesaI ,p( f ), I ∈ 3t , then for all I ∈ 3b\3t we have
aI ,p( f ) ≤ M . Hence, from Lemma 4.1, we have

‖ f1‖Hp ≤ C M#(3b\3t )
1/p.

On the other hand, for allI ∈ 3t\3b we haveaI ,p( f ) ≥ M and hence

‖ f0‖Hp ≥ C M#(3t\3b)
1/p.

Since #(3t\3b) = #(3b\3t ), we have‖ f1‖Hp ≤ C‖ f0‖Hp ≤ Cσn( f )p which com-
pletes the proof.

4.1. The Jackson Inequality for n-Term Wavelet Approximation

Recall that for 0< τ < ∞, a sequence(an) of real numbers is in the Lorentz space
w`τ := `τ,∞ (called weak̀ τ ) if

#{n: |an| > ε} ≤ Mτ ε−τ ,(4.3)

for all ε > 0. The norm‖(an)‖w`τ is the smallest value ofM such that (4.3) holds. Also,

‖(an)‖w`τ ≤ ‖(an)‖`τ .

Theorem 4.2(see §5 of [T2]).Let p be admissible with0 < p < ∞, and s> 0, and
let f ∈ Hp and aI := aI ( f ) := aI ,p( f ), I ∈ D, be such that(aI )I∈D is in w`τ ,
1/τ = s+ 1/p. Then, we have

σn( f )p ≤ Cn−s‖(aI ( f ))‖w`τ ,
with the constant C depending only on p and s.
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Proof. We have

#{I : aI > ε} ≤ Mτ ε−τ ,(4.4)

for all ε > 0 with M := ‖(aI )‖w`τ . Let3j := {I : 2− j < aI ≤ 2− j+1}. Then, for each
k = 1,2, . . . , we have

k∑
j=−∞

#3j ≤ C Mτ2kτ ,

with C depending only onτ .
Let Sj := ∑I∈3j

AI ( f ) andTk := ∑k
j=−∞ Sj . ThenTk ∈ 6N with N = C Mτ2kτ .

We finish the proof in the case 1≤ p ≤ ∞ (the case 0< p < 1 is handled similarly but
with ‖ · ‖p

Hp
used in place of‖ · ‖Hp). We have

‖ f − Tk‖Hp ≤
∞∑

j=k+1

‖Sj ‖Hp .(4.5)

We fix j > k and estimate‖Sj ‖Hp . SinceaI ≤ 2− j+1 for all I ∈ 3j , we have from
Lemma 4.1 and (4.4),

‖Sj ‖Hp ≤ C2− j #31/p
j ≤ C Mτ/p2 j (τ/p−1).

We therefore conclude from (4.5) that

‖ f − Tk‖Hp ≤ C Mτ/p
∞∑

j=k+1

2 j (τ/p−1) ≤ C M(M2k)τ/p−1,

becauseτ/p− 1< 0. In other words, forN ³ Mτ2kτ , we have

σN( f )p ≤ C M N1/p−1/τ = C M N−s.

From the monotonicity ofσn it follows that the last inequality holds for allN ≥ 1.

Corollary 4.1. Let p be admissible with0 < p < ∞, let s > 0, and let f ∈ Bs
τ ,

1/τ = s/d + 1/p, with τ admissible. Then,

σn( f )p ≤ C| f |Bs
τ
n−s/d,(4.6)

with C depending only on p and s.

Proof. We haveaI ,τ = aI ,p|I |1/τ−1/p = aI ,p|I |s/d. Thus, from the definition (2.8) we
find

| f |Bs
τ,τ
= ‖(aI )‖`τ ≥ ‖(aI )‖w`τ .(4.7)

Hence (4.6) follows from Theorem 4.2 withs replaced bys/d.

Remark 4.2. As noted in Section 2, the spaceBs
τ coincides with the Besov space

Bs
τ (Hτ ) for a certain range ofs and this space coincides withBs

τ (Lτ ) if s> d/τ − d.

Remark 4.3. Theorem 4.2 also holds withHp replaced byBp with a simpler proof.
This is proved for restricted nonlinear approximation in Section 5.4.
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4.2. The Bernstein Inequality for n-Term Wavelet Approximation

We shall next prove the Bernstein inequality which is the companion to (4.6).

Theorem 4.3. Let p be admissible with0 < p < ∞, and let s > 0. If f =∑
I∈3 AI ( f ) with #3 ≤ n, we have

| f |Bs
τ
≤ Cns/d‖ f ‖L p,

with 1/τ = s/d + 1/p wheneverτ is admissible.

Proof. Case 1:p ≥ 2. With aI := aI ,p( f ), we have from (4.7)

| f |Bs
τ
=
(∑

I∈3
aτI

)1/τ

≤ n1/τ−1/p

(∑
I∈3

ap
I

)1/p

.

On the other hand,

‖S( f )‖L p =
∥∥∥∥∥∥
(∑

I∈3
a2

I |I |−2/pχI

)1/2
∥∥∥∥∥∥

L p

≥
∥∥∥∥∥∥
(∑

I∈3
ap

I |I |−1χI

)1/p
∥∥∥∥∥∥

L p

=
(∑

I∈3
ap

I

)1/p

,

which in view of (2.6b) completes the proof in this case.

Case 2:p ≤ 2. With I (x) defined as the smallest interval in3 that containsx, we
have

| f |τBs
τ
=
∫

Rd

∑
I∈3

aτI |I |−1χI =
∫

Rd

∑
I∈3

aτI |I |−τ/pχ
I
|I |−1+τ/pχI

≤ C
∫

Rd

S( f, x)τ |I (x)|−1+τ/p ≤ C

(∫
Rd

S( f, x)p

)τ/p(∫
Rd

|I (x)|−1

)1−τ/p

≤ Cn1−τ/p‖S( f )‖τL p
≤ Cn1−τ/p‖ f ‖τHp

,

where the second to last inequality follows as in the proof of Lemma 4.1.

Remark 4.4. The Bernstein inequality of Theorem 4.3 also holds withHp replaced by
Bp. The proof is simply H¨older’s inequality (as in the first line of the above proof).

4.3. Approximation Spaces for n-Term Wavelet Approximation

In this section, we state without much elaboration the conclusions that can be drawn
from the Jackson and Bernstein inequalities forn-term approximation, vis-`a-vis the
characterization of approximation spaces. A similar development with more details is
given in Section 6 for restricted nonlinear approximation (which includes the results of
this section as a particular case).

Let p be admissible with 0< p < ∞. Let s > 0 and let 1/τ := s/d + 1/p with τ
admissible. We denote byK ( f, t) theK -functional for the pairHp, Bs

τ with the seminorm
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of Bs
τ used in the definition ofK . It follows (see Theorem 3.1) from the Jackson and

Bernstein inequalities that for any 0< γ < s and any 0< q ≤ ∞,

Aγ /dq (Hp) = (Hp, Bs
τ )γ /s,q,

Aγ /dq (Bp) = (Bp, Bs
τ )γ /s,q.

(4.8)

The interpolation spaces on the right side of (4.8) are in fact identical and can be
described in two ways. First of all they can be described by a condition on the wavelet
coefficients. Namely, a function is in this space if and only if(aI ,p( f ))I∈D is in the
Lorentz spacèµ,q where 1/µ := γ /d + 1/p and, in fact, we have

| f |Aγ /d
q (Hp)

³ ‖(aI ,p( f ))‖`µ,q .(4.9)

Second, in the case thatq = µ, thenAγ /dµ (Hp) = Bγµ with equivalent norms. Thus, as
noted before, for a certain range ofγ these spaces are the Besov spacesBγµ(Hµ).

There is a further connection betweenn-term approximation and interpolation that
we wish to bring out. Letp, s, andτ have the same meaning as above. We recall the
thresholding operatorTn of Theorem 4.1. It follows from Theorems 4.1 and 3.2 that for
eachn = 1,2, . . . , we have

K ( f,n−s, Hp, Bs
τ ) ³ ‖ f − Tn f ‖Hp + n−s|Tn f |Bs

τ
.

In other words,Tn f realizes theK -functional att = n−s.

5. Restricted Approximation in Hp

For the remainder of this paper, we shall consider the general problem of restricted
nonlinear approximation. Since we have already treated the caseα = 0 (the case of
n-term approximation) in the previous section, for convenience, we shall exclude that
case in the following development. We fixα and let8 := 8α throughout this section.

We fix an admissible value ofp with 0 < p < ∞ and a value ofs > 0 and letτ be
defined by the equations= dβ(1/τ − 1/p) whereβ := 1− α. We shall prove Jackson
and Bernstein inequalities for restricted nonlinear approximation inHp using forY (as
in Section 3) the space

Bs
τ := Bs

τ,τ ,

in the case thatτ is admissible. This scale of spaces is depicted in Figure 1. They lie
on the line with slopeβd which passes through the point(1/p,0) corresponding to the
spaceHp.

For eacht > 0, we define the space6t as the set of allS∈ Hp + Bs
τ for which (1.4)

holds. In particular, the wavelet coefficients ofS are defined and (1.4) converges in the
sense ofHp + Hτ .

If f ∈ Hp + Bs
τ , we define

σ( f, t)p := inf
S∈6t

‖ f − S‖Hp .

It will follow from the discussion in Section 5.1 thatσ( f, t)p is finite for eacht > 0.
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The caseβ = 1 is the usual case of nonlinear approximation. Ifβ > 1, the restricted
nonlinear approximation will follow the same lines as the usual nonlinear approximation
sinceBs

τ is embedded inHp. However, in the caseβ < 1 (i.e., 0< α < 1) several new
ingredients appear. First of all, the spaceBs

τ is not embedded inHp. This means that
in the theory ofK -functionals we need to consider the full range oft > 0 (not just
0< t ≤ 1). Correspondingly, we need the full range oft in σ( f, t)p, not justt ≥ 1.

As we have seen in Section 4, a near bestn-term wavelet approximation inHp can
be obtained by thresholding theL p normalized wavelet coefficients. We shall see in
Section 7 that restricted approximation is intimately connected with thresholding the
normalized wavelet coefficientsaI ,r ( f ) with r := p/β.

The development given below is similar to that in Section 4 except that we use8 := 8α

to count the number of cubes and we use the different thresholding. Let3 ⊂ D be a
set of cubes for which8(3) is finite. As earlier, we defineI (x) as the smallest interval
from 3 which containsx. In the case 0< α < 1, for certainx, there may not be a
smallestI (x) since there may be cubes of arbitrary small measure in3. However, it is
easy to see that the setE of suchx has measure zero. Indeed, ifEk := 3 ∩ Dk, then
E ⊂⋃k≥m

⋃
I∈Ek

I for eachm> 0. Hence,

|E| ≤
∑
k≥m

∑
I∈Ek

|I | =
∑
k≥m

∑
I∈Ek

|I |α|I |1−α ≤ 8(3)
∑
k≥m

2(α−1)dk ≤ C8(3)2(α−1)dm,

and the right side tends to zero asm→∞.
We shall use the following analogue of Lemma 4.1:

Lemma 5.1. Let p, s, τ, r be as above. If f ∈ Hp+ Bs
τ has the wavelet decomposition

f =
∑
I∈3

AI ( f ),(5.1)

with8(3) finite and if aI ,r ( f ) ≤ M , for all I ∈ 3, then

‖ f ‖Hp ≤ C1M8(3)1/p,(5.2a)

with C1 depending only on p. Similarly, if aI ,r ( f ) ≥ M , for all I ∈ 3, then

‖ f ‖Hp ≥ C2M8(3)1/p,(5.2b)

with C2 depending only on p.

Proof. We first note that the square function (2.5) satisfies

S( f, x)2 =
∑
I∈3
|I |−2/r aI ,r ( f )2χI (x) ≤ C M2|I (x)|−2/r , a.e. x ∈ Rd,

where we define|I (x)|−2/r := 0 if x /∈⋃I∈3 I . Hence

‖ f ‖p
Hp
≤ C‖S( f )‖p

L p
≤ C Mp‖|I (x)|−1/r ‖p

L p
≤ C Mp

∑
I∈3
|I |1−p/r = C Mp8(3),

which is (5.2a).



Restricted Nonlinear Approximation 101

For the proof of (5.2b), we have

S( f, x)2 ≥ M2
∑
I∈3
|I |−2/rχI (x) ≥ M2|I (x)|−2/r .

Also, |I (x)|−p/r ≥ C
∑

I∈3 |I |−p/rχI (x). Hence,

‖ f ‖p
Hp
≥ C‖S( f )‖p

L p
≥ C Mp

∫
Rd

|I (x)|−p/r dx ≥ C Mp
∑
I∈3
|I |1−p/r

= C Mp
∑
I∈3
|I |α = C Mp8(3).

5.1. A Jackson Inequality for Restricted Nonlinear Approximation

We fix f ∈ Bs
τ and letaI := aI ( f ) := aI ,r ( f ), I ∈ D, and for j ∈ Z define

3j := 3j ( f ) := {I : 2− j ≤ aI ,r ( f ) < 2− j+1},

and the operators

Sj f :=
∑

I∈3j ( f )

AI ( f ),

and

Tk f :=
k∑

j=−∞
Sj .

Theorem 5.1. Let s> 0, and let p andτ be admissible, 0< τ < p <∞, and satisfy
s= βd(1/τ − 1/p). If f ∈ Bs

τ , then for each j, k ∈ Z, we have:

(i) 8(3j ) ≤ C| f |τBs
τ
2 j τ ;

(ii) 8(
⋃

j≤k3j ) ≤ C| f |τBs
τ
2kτ ; and

(iii) ‖ f − Tk f ‖Hp ≤ C2k(τ/p−1)| f |τ/p
Bs
τ
.

In addition, for each real number t> 0, we have

σ( f, t)p ≤ C| f |Bs
τ
t−s/βd.(5.3)

Proof. The proof is similar to that in Section 4.1.
(i) SinceaI ,τ ( f ) = |I |1/τ−1/r aI ,r ( f ), the assumptionf ∈ Bs

τ implies that

| f |τBs
τ
=
∑
j∈Z

∑
I∈3j

[|I |−s/daI ,τ ( f )]τ =
∑
j∈Z

∑
I∈3j

[|I |−s/d+1/τ−1/r aI ,r ( f )]τ

=
∑
j∈Z

∑
I∈3j

[|I |β(1/p−1/τ)+1/τ−β/paI ,r ( f )]τ ≥ C
∑
j∈Z

2− j τ
∑
I∈3j

|I |α

= C
∑
j∈Z

2− j τ8(3j ).
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It follows therefore that

8(3j ) ≤ C| f |τBs
τ
2 j τ ,

which is (i).
(ii) We obtain (ii) by summing the inequalities in (i).
(iii) From Lemma 5.1, we have

‖Sj ‖p
Hp
≤ C2− j p8(3j ) ≤ C2− j (p−τ)| f |τBs

τ
, j = 1,2, . . . .

We complete the proof in the casep ≤ 1 (the casep > 1 being handled in a similar
way). We have

‖ f − Tk‖p
Hp
≤
∑
j>k

‖Sj ‖p
Hp
≤ C

∑
j>k

2− j (p−τ)| f |τBs
τ
≤ C2−k(p−τ)| f |τBs

τ

which is (iii).
From (ii) and (iii), we have that fort ³ | f |τBs

τ
2kτ ,

σ( f, t)p ≤ C| f |Bs
τ
(| f |τBs

τ
2kτ )1/p−1/τ = C| f |Bs

τ
t−s/βd.

From the monotonicity ofσ( f, t)p we obtain (5.3) for all real numberst > 0 which
is (5.3).

Corollary 5.1. For each t> 0, we have

σ( f, t)p ≤ K ( f, t−s/βd),

where K is the K-functional for the pair Hp and Bs
τ .

Proof. This follows from the Jackson inequality and (3.3) for the pairX = Hp,Y = Bs
τ .

5.2. The Bernstein Inequality for Restricted Approximation

We shall prove next the Bernstein inequality which is the companion of the Jackson
inequality in Section 5.1. We continue with the notation of Section 5.1.

Theorem 5.2. Let s> 0,and let p andτ be admissible and satisfy s= βd(1/τ−1/p).
If f ∈ Hp has the wavelet expansion f=∑I∈3 AI ( f ) with8(3) ≤ t , then

| f |Bs
τ
≤ Cts/βd‖ f ‖Hp,

with C depending only on p and s.

Proof. Case 1:p ≥ 2. We have

| f |τBs
τ
=
∑
I∈3
|I |−sτ/daI ,τ ( f )τ =

∑
I∈3

aI ,p( f )τ |I |−sτ/d+1−τ/p =
∑
I∈3

aI ,p( f )τ |I |α(1−τ/p)

≤
(∑

I∈3
aI ,p( f )p

)τ/p(∑
I∈3
|I |α

)1−τ/p

≤ tsτ/βd

(∑
I∈3

aI ,p( f )p

)τ/p

.
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On the other hand, as in the proof of Theorem 4.3, we have

‖S( f )‖L p ≥
∥∥∥∥∥∥
(∑

I∈3
aI ,p( f )2|I |−2/pχI

)1/2
∥∥∥∥∥∥

L p

≥
(∑

I∈3
aI ,p( f )p

)1/p

,

which completes the proof in this case.

Case 2:p ≤ 2. With I (x) defined as the smallest interval in3 that containsx, we
have with 1/µ := 1− τ/p,

| f |τBs
τ
=
∑
I∈3
|I |−sτ/daI ,τ ( f )τ =

∫
Rd

∑
I∈3

aI ,τ ( f )τ |I |−1−sτ/dχI

≤ C
∫

Rd

S( f, x)τ |I (x)|−sτ/d dx

≤ C

(∫
Rd

S( f, x)p dx

)τ/p(∫
Rd

|I (x)|−sτµ/d dx

)1/µ

≤ C

(∫
Rd

S( f, x)p dx

)τ/p
(∑

I∈3
|I |1−sτµ/d

)1/µ

= C‖S( f )‖τL p
8(3)1/µ

≤ Ct1−τ/p‖ f ‖τHp
= Ctτs/βd‖ f ‖τHp

,

because 1− sτµ/d = α.

5.3. An Analogue of Temlyakov’s Result for Restricted Approximation

We shall prove an analogue of the theorem of Temlyakov for restricted approximation.
We assume thatβ 6= 1 (α 6= 0) since the caseβ = 1 is already covered in Section 4. We
continue with the same notation as in the previous sections on restricted approximation.
Let f ∈ Hp + Bs

τ and fort > 0, let Bt f =∑I∈3t
AI (Bt ) ∈ 6t satisfy

‖ f − Bt‖Hp ≤ 2σ( f, t)p.(5.4)

The set3t thus satisfies8(3t ) ≤ t . By adding small (in the caseα > 0) or large (in the
caseα < 0) cubes to3t (and putting coefficients equal to 0 for the new cubes), we can
assume that8(3t ) = t

We modify Bt f by replacingAI (Bt ) by the exact componentsAI ( f ) of f to get
B∗t f :=∑I∈3t

AI ( f ) which is also in6t . We also introduce operators associated with

thresholding. Givenε > 0, let 3̃ε := {I : aI ,r ( f ) > ε} where, as before, 1/r := β/p.
We lett := tε := 8(3̃ε) and defineB̃t f :=∑I∈3̃ε AI ( f ).

While the results that follow in this section include statements forB̃t , they are not
completely satisfactory becauseB̃t f is not necessarily defined for a given value oft > 0.
We shall discuss thresholding operators in more detail in Section 7.

Theorem 5.3. Let s> 0,and let p andτ be admissible and satisfy s= βd(1/τ−1/p).
For each t > 0 and f ∈ Hp + Bs

τ the functions Bt f and B∗t f are near best Hp
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approximations to f from6t . Similarly, for each t for whichB̃t f is defined, it is also a
near best approximation to f from6n. In other words,

‖ f − At f ‖Hp ≤ Cσ( f, t)p,(5.5)

for At f = Bt f or B∗t f , and for At f = B̃t f when the latter is defined, with a constant
C ≥ 1 depending only on p.

Proof. The conclusions of the theorem forBt f are obvious in view of its definition
(5.4). ForB∗t f , we have from the square function

‖ f − B∗t f ‖Hp ≤ C‖ f − Bt f ‖Hp ≤ 2Cσ( f, t)p.

Finally, we prove the theorem for̃Bt f . Let 3̃ε be the set associated with̃Bt f and let
3t be the set associated withB∗t . It is enough to show that

‖B∗t f − B̃t f ‖Hp ≤ Cσ( f, t)p.(5.6)

We have

B∗t f − B̃t f =
∑

I∈3̃ε\3t

AI ( f )+
∑

I∈3t\3̃ε
AI ( f ) =: f0+ f1.

Using the square function, we see that

‖ f0‖Hp ≤ C‖ f − B∗t f ‖Hp ≤ Cσ( f, t)p.

Now, for all I ∈ 3t\3̃ε we haveaI ,r ( f ) ≤ ε. Hence, from Lemma 5.1, we have

‖ f1‖Hp ≤ Cε8(3t\3̃ε)
1/p.

On the other hand, for allI ∈ 3̃ε\3t we haveaI ,r ( f ) ≥ ε and hence

‖ f0‖Hp ≥ Cε8(3̃ε\3t )
1/p.

Since8(3̃ε\3t ) = 8(3t\3̃ε), we have‖ f1‖Hp ≤ C‖ f0‖Hp ≤ Cσ( f, t)p which
completes the proof.

Corollary 5.2. Let s> 0,and let p andτ be admissible and satisfy s= βd(1/τ−1/p).
For each f ∈ Hp+ Bs

τ and each t> 0, the function B∗t f realizes the K-functional, i.e.,

‖ f − B∗t f ‖Hp + t−s/βd|B∗t f |Bs
τ
≤ C K( f, t−s/βd, Hp, Bs

τ ),

with the constant C depending only on p, s, and β. The same result holds for̃Bt f
wheneverB̃t f is defined.

Proof. This follows from Theorem 3.2. Indeed, both operatorsB∗t andB̃t provide near
best approximations as was shown in Theorem 5.3 and both areBs

τ stable (with stability
constantC = 1 since we use the wavelet definition of these spaces).
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5.4. Jackson and Bernstein Inequalities for Restricted Approximation in Bp

The proofs of the Jackson and Bernstein inequalities for restricted approximation inBp

are somewhat simpler than inHp and all follow simply by analyzing the sequence of
wavelet coefficients. We shall continue to use the spacesBs

τ wheres= dβ(1/τ − 1/p)
and the parameterr := p/β.

To prove the Jackson inequality, we use the notation of Section 5.1.

Theorem 5.4. Let s> 0, and let p andτ be admissible and such that s= βd(1/τ −
1/p). If f ∈ Bs

τ , then for each j, k ∈ Z, we have:

(i) 8(3k) ≤ C| f |τBs
τ
2kτ ;

(ii) 8(
⋃

j≤k3j ) ≤ C| f |τBs
τ
2kτ ; and

(iii) ‖ f − Tk f ‖Bp ≤ C2k(τ/p−1)| f |τ/p
Bs
τ
.

In addition, for each t> 0, we have

σ( f, t)Bp ≤ C| f |Bs
τ
t−s/βd.(5.7)

Proof. Parts (i) and (ii) were proved in Theorem 5.1. For the proof of (iii), we have

‖Sj ‖p
Bp
=

∑
I∈3j

ap
I ,r |I |p(1/p−1/r ) ≤ C2− j p

∑
I∈3j

|I |1−p/r

= C2− j p8(3j ) ≤ C2− j (p−τ)| f |τBs
τ
,

where we used (i). Therefore, assumingp ≥ 1 (a simple modification applies when
p < 1), we have

‖ f − Tk‖Bp ≤ C
∑
j>k

‖Sj ‖Bp ≤
∑
j>k

2− j (1−q/p)| f |τ/p
Bs
τ
≤ C2−k(1−τ/p)| f |τ/p

Bs
τ
,

which is (iii).
From (ii) and (iii), we have that fort ³ | f |τBs

τ
2kτ ,

σ( f, t)Bp ≤ C| f |Bs
τ
(| f |τBs

τ
2kτ )1/p−1/τ ≤ C| f |Bs

τ
t−s/βd,

which is (5.7).

We shall prove next the Bernstein inequality which is the companion of the Jackson
inequality forBp. We continue with the previous notation.

Theorem 5.5. Let s> 0,and let p andτ be admissible and satisfy s= βd(1/τ−1/p).
If f ∈ Bp + Bs

τ has the wavelet expansion f=∑I∈3 AI ( f ) with8(3) ≤ t , then

| f |Bs
τ
≤ Cts/βd‖ f ‖Bp .
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Proof. We have

| f |τBs
τ
=
∑
I∈3
|I |−sτ/daI ,τ ( f )τ =

∑
I∈3

aτI ,p|I |1−τ/p−sτ/d =
∑
I∈3

aI ,p( f )τ |I |α(1−τ/p)

≤
(∑

I∈3
ap

I ,p

)τ/p(∑
I∈3
|I |α

)1−τ/p

≤ tsτ/βd

(∑
I∈3

aI ,p( f )p

)τ/p

.

6. Approximation Spaces for Restricted Approximation

The following discussion applies to both the case of restricted approximation and the
case of ordinaryn-term wavelet approximation (the caseβ = 1, α = 0). We fix an
admissiblep with 0< p <∞. Further, we lets, τ be parameters for which the Jackson
and Bernstein inequalities hold in Section 5 and which satisfys= dβ(1/τ − 1/p) with
τ admissible. We fixs andτ throughout. We shall use frequently in this section without
further mention the fact that the Jackson and Bernstein inequalities also hold for any
0< γ < s andµ := µ(γ ) defined by the relationγ = βd(1/µ− 1/p).

For any 0< γ and 0< q ≤ ∞, we define the approximation spaceAγq (Hp) by
using the quasi-semi-norm| f |Aγ

q (Hp)
of (1.6) or the equivalent quasi-semi-norm (1.7).

We add‖ f ‖Hp+Bs
τ

to | f |Aγ
q (Hp)

to obtain the norm‖ f ‖Aγ
q (Hp)

. We remark that in the
caseβ ≥ 1, we have thatBs

q is embedded inHp and thereforef ∈ Hp. It follows that
σ( f, t)Hp ≤ ‖ f ‖Hp . Therefore, the indices in (1.7) can be taken overk ≥ 0 with an
equivalent norm. However, we shall not make any use of this fact in what follows.

The spacesAγq (Bp) and their seminorms and norms are defined in the same way with
Hp replaced byBp.

We shall show how the spacesAγq (Hp) and Aγq (Bp) can be characterized by wavelet
coefficients. We use the abbreviated notationaI := aI ( f ) := aI ,r ( f ) throughout this
section withr = p/β as introduced and used earlier.

6.1. Approximation in Bp

We shall first consider approximation inBp which is somewhat simpler than approxi-
mation inHp. We first note that

‖ f ‖p
Bp

:=
∑
I∈D

aI ,p( f )p =
∑
I∈D

aI ( f )p|I |1−p/r =
∑
I∈D

aI ( f )p|I |α.(6.1)

Similarly, for each 0< γ ≤ s, andµ := µ(γ ) defined byγ = dβ(1/µ−1/p), we have

| f |µ
Bγµ

:=
∑
I∈D

[|I |−γ /daI ,µ( f )]µ(6.2)

=
∑
I∈D

aI ( f )µ|I |1−γµ/d−µ/r =
∑
I∈D

aI ( f )µ|I |α.

For 0< λ <∞, we let`λ(w) denote the space of all sequences(cI )I∈D with the norm

‖(cI )‖`λ(w) :=
(∑

I∈D
|I |α|cI |λ

)1/λ

,(6.3)
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corresponding to the weightw(I ) := |I |α. We similarly define the weighted Lorentz
spaces̀ λ,q(w) (see Chap. 1, p. 8, of [BL]).

The identities (6.1) and (6.2) say that the linear mapping which takesf into its wavelet
coefficients is an isometry betweenBp and`p(w) and betweenBs

τ and`τ (w). It follows
therefore that this mapping also gives an isometry between the interpolation spaces
(Bp, Bs

τ )θ,q and the interpolation spaces(`p(w), `τ (w))θ,q. The latter are well known to
be weighted Lorentz spaces`µ,q(w) with 1/µ = (1− θ)/p+ θ/τ (see Chap. 5, p. 109,
of [BL]). Therefore, f ∈ (Bp, Bs

τ )θ,q, 0< θ < 1, 0< q ≤ ∞, if and only if

(aI ( f ))I∈D ∈ `µ,q(w), 1

µ
= 1− θ

p
+ θ
τ
,(6.4)

and‖(aI ( f ))‖`µ,q is an equivalent norm for(Bp, Bs
τ )θ,q.

In particular, (6.4) (withq = µ) and (6.2) give that for any 0< θ < 1

(Bp, Bs
τ )θ,µ = Bγµ, γ := θs,(6.5)

whereµ andγ are related as before byγ = βd(1/µ−1/p). More generally, letµj and
γj be related byγj = βd(1/µj − 1/p), j = 1,2. Then, from the reiteration theorem for
interpolation, we obtain

(Bγ1
µ1
, Bγ2

µ2
)θ,µ = Bγµ,

1

γ
= 1− θ

γ1
+ θ

γ2
,(6.6)

where againµ andγ are related byγ = dβ(1/µ− 1/p).

Theorem 6.1. Let p be admissible with0< p <∞ and let s> 0 andτ be defined by
s= βd(1/τ − 1/p) with τ admissible. For each0< γ < s/βd, 0< q ≤ ∞, we have

Aγq (Bp) = (Bp, Bs
τ )θ,q, θ := γβd/s,(6.7)

with equivalent norms.

Proof. This follows from the Jackson and Bernstein inequalities of Section 5.4 and
Theorem 3.1.

Corollary 6.1. Let p be admissible with0 < p < ∞ and let s> 0 andτ be defined
by s= βd(1/τ − 1/p) with τ admissible. For each0< γ < s, andµ := µ(γ ) defined
by the equationγ = βd(1/µ− 1/p), we have

Aγ /βd
µ (Bp) = Bγµ,(6.8)

with equivalent norms.

Proof. This follows from Theorem 6.1 and (6.5).

Corollary 6.2. Let p be admissible with0 < p < ∞ and let s> 0 andτ be defined
by s = βd(1/τ − 1/p) with τ admissible. Let 0 < γ < s and letµ be defined by
the relationγ = βd(1/µ − 1/p). Then, for each0 < q ≤ ∞, f ∈ Aγ /βd

q (Bp) if and
only if (aI ( f ))I∈D ∈ `µ,q(w), and the two norms‖ f ‖Aγ /βd

q (Bp)
and ‖(aI ( f ))‖`µ,q are

equivalent.
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Proof. This follows by using (6.4) to characterize the interpolation space.

Finally, we observe that, in view of our results, Corollary 5.2 also holds withBp in
place ofHp.

6.2. Characterization of Aγq (Hp) by Interpolation

We can carry out an analysis similar to that of Section 6.1 to show that restricted approx-
imation inHp can also be characterized by interpolation. We use the same notation as in
Section 6.1 except that nowK denotes theK -functional for the pair of spacesHp and
Bs
τ . Using the Jackson and Bernstein inequalities for restricted approximation inHp, we

derive the following analogue of Theorem 6.1:

Theorem 6.2. Let p be admissible with0< p <∞ and let s> 0 andτ be defined by
s= βd(1/τ − 1/p) with τ admissible. For each0< γ < s/βd, 0< q ≤ ∞, we have

Aγq (Hp) = (Hp, Bs
τ )θ,q, θ := γβd/s,(6.9)

with equivalent norms.

At present, Theorem 6.2 is not quite satisfactory because we still do not know the
interpolation spaces appearing on the right side of (6.9). However, the next theorem will
show that these interpolation spaces are the same as those for the pairBp, Bs

τ which we
have already characterized.

Theorem 6.3. Let p be admissible with0< p <∞ and let s> 0 andτ be defined by
s= βd(1/τ − 1/p) with τ admissible. For each0< γ < s and0< q ≤ ∞, we have

Aγ /βd
q (Hp) = Aγ /βd

q (Bp).(6.10)

Proof. We first note the embeddings

Aγ /βd
µ̃

(Hp) ⊂ Bγµ ⊂ Aγ /βd
∞ (Hp),(6.11)

which hold for any 0< γ < s, µ = µ(γ ) satisfyingγ = βd(1/µ − p) and µ̃ :=
min{1, µ}. Indeed, the right embedding in (6.11) follows from (5.3) withs replaced by
γ . To prove the left embedding in (6.11), we letf ∈ Aγ /βd

µ (Hp) and letSk ∈ 62k satisfy

‖ f − Sk‖Hp ≤ σ( f,2k)p, k ∈ Z.

Then, we havef =∑∞k=−∞(Sk − Sk−1) and therefore

| f |µ̃
Bγµ
≤

∞∑
k=−∞

|Sk − Sk−1|µ̃Bγµ ≤ C
∞∑

k=−∞
2kγ µ̃/βd‖Sk − Sk−1‖µ̃Hp

≤
∞∑

k=−∞
2kγ µ̃/βd(σ ( f,2k)p + σ( f,2k−1)p)

µ̃ ≤ C| f |µ̃
Aγ /βd
µ

.
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Here, we have used the subadditivity of| · |µ̃
Bγβµ

in the first inequality, the Bernstein

inequality of Theorem 5.2 (withs replaced byγ ) in the second inequality, and the
discrete norm (1.7) in the last inequality.

Let 0 < γj < s andµj be related byγj = βd(1/µj − 1/p), j = 1,2. We assume
that γ1 < γ2. We recall that both theAγµ(Hp) andAγµ(Bp) are interpolation families.
Therefore, the reiteration theorem for interpolation together with the embeddings (6.10)
and (6.11) give that for each 0< θ < 1 and 0< q ≤ ∞, we have

(Aγ1/βd
µ1

(Hp),Aγ2/βd
µ2

(Hp))θ,q = (Bγ1
µ1
, Bγ2

µ2
)θ,q(6.12)

= (Aγ1/βd
µ1

(Bp),Aγ2/βd
µ2

(Bp))θ,q.

The left side of (6.12) is the approximation spaceAγ /βd
q (Hp), γ = (1− θ)γ1+ θγ2 and

the right side of (6.12) is the approximation spaceAγ /βd
q (Bp) with the same parameters.

Sinceθ andq are arbitrary andγ1 can be chosen arbitrarily close to 0 andγ2 arbitrarily
close tos, (6.9) follows.

Corollary 6.3. Let p be admissible with0 < p < ∞ and let s> 0 andτ be defined
by s= βd(1/τ − 1/p) with τ admissible. For each0< γ < s, andµ := µ(γ ) defined
by the equationγ = βd(1/µ− 1/p), we have

Aγ /βd
µ (Hp) = Bγµ,(6.13)

with equivalent norms.

Proof. This follows from Theorem 6.3 and Corollary 6.1.

Corollary 6.4. Let p be admissible with0 < p < ∞ and let s> 0 andτ be defined
by s = βd(1/τ − 1/p) with τ admissible. Let 0 < γ < s, and letµ be defined by
the relationγ = βd(1/µ − 1/p). Then for each0 < q ≤ ∞, f ∈ Aγ /βd

q (Hp) if and
only if (aI ( f ))I∈D ∈ `µ,q(w), and the two norms‖ f ‖Aγ /βd

q (Hp)
and ‖(aI ( f ))‖`µ,q are

equivalent.

Proof. This follows from Theorem 6.3 and Corollary 6.2.

7. Thresholding

One of the most frequently used numerical methods for generating adaptive wavelet ap-
proximations consists in thresholding the coefficients of the function to be approximated.
In this section, we shall look more closely at thresholding for restricted approximation.
We fix an admissiblep with 0< p <∞. Further, we lets, τ be parameters which satisfy
s = dβ(1/τ − 1/p) with τ admissible. We fixs andτ throughout. Forf ∈ Hp + Bs

τ ,
we letaI := aI ( f ) := aI ,r ( f ) with r = p/β throughout this section.

For eachε > 0, we let

3(ε, f ) = {I : aI ( f ) ≥ ε}
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and let

Tε f :=
∑

I∈3(ε, f )

AI ( f ).

The next theorem characterizes functionsf for which‖ f − Tε f ‖L p has a certain decay.
We recall the weighted Lorentz spaces`µ,q(w), w(I ) := |I |α which appeared in the
characterization of the approximation spaces for restricted approximation. We shall be
especially interested in the caseq = ∞.

Theorem 7.1. Let p be admissible with0 < p < ∞ and let s> 0 andτ be defined
by s= βd(1/τ − 1/p) with τ admissible. For eachτ < µ < p, a function f satisfies

‖ f − Tε f ‖Hp ≤ Mµ/pε1−µ/p(7.1)

if and only if (aI ( f ))I∈D ∈ `µ,∞(w) and the smallest M satisfying(7.1) is equivalent
to ‖(aI ( f ))‖`µ,∞(w).

Proof. First assume that(aI ) ∈ `µ,∞(w) and letM := ‖(aI )‖`µ,∞(w). Let ε > 0 and
definek ∈ Z such that 2−k−1 < ε ≤ 2−k. We define the sets3j and the functionSj f as
in Theorem 5.1. Then, from the definition of the`µ,∞(w) norm, we have

8(3j ) ≤ Mµ2 jµ, j ∈ Z.

From Lemma 5.1, we have

‖Sj f ‖Hp ≤ C2− j8(3j )
1/p ≤ C2− j Mµ/p2 jµ/p ≤ C Mµ/p2− j (1−µ/p).

We continue with the casep ≥ 1 (a similar argument applies when 0< p < 1). We
have

‖ f − Tε f ‖Hp ≤
∞∑

j=k+1

‖Sj ‖Hp ≤ C Mµ/p
∞∑

j=k+1

2− j (1−µ/p)

≤ C Mµ/p2−k(1−µ/p) ≤ C Mµ/pε(1−µ/p).

This proves one of the implications in the theorem.
Conversely, we assume that for eachε > 0,

‖ f − Tε f ‖Hp ≤ Mµ/pε1−µ/p.

With Sj as above, and using the square function, we find

‖Sj ‖Hp ≤ C‖ f − T2− j f ‖Hp ≤ C Mµ/p2− j (1−µ/p).

Hence, using Lemma 5.1 again, we find

8(3j )
1/p2− j ≤ C‖Sj f ‖Hp ≤ C Mµ/p2− j (1−µ/p).
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That is,

8(3j ) ≤ C Mµ2 jµ.

Therefore, with 2−k−1 < ε ≤ 2−k, we have

8(3(ε, f )) ≤
k+1∑

j=−∞
C Mµ2 jµ ≤ C Mµε−µ,

which proves the other implication in the theorem.

8. Adaptation to a Bounded Domain

Most practical applications of restricted approximation arise in the context of bounded
domains, i.e., the functionf to be approximated is defined on an open connected set
Ä ⊂ Rd.

With a little more work (see, e.g., [D] or [C]) and some reasonable assumptions on
the geometry ofÄ, multiscale decompositions into wavelet bases can be adapted to such
bounded domains. In such decompositions, the range of scales is onlyk = 0,1,2, . . . ,
i.e., functions onÄ are decomposed according to

f =
∑
I∈D+

AI ( f ),(8.1)

with D+ =
⋃

k≥0Dk(Ä), andDk(Ä) a subset ofDk that describes the wavelets adapted
to Ä at scalek. The basis functions in the coarsest layerD0(Ä) are scaling functions
which do not not oscillate (their integrals differ from zero), since they are meant to
describe a coarse approximation off .

We want to discuss here the adaptation of our results to this slightly different setting. A
first remark is that all the results of this paper will also hold in this setting, if we formulate
them in terms ofsequence spaces: we definehp andbs

q,p consisting, repectively, of those
sequencesa = (aI )I∈D+ such that

‖a‖hp :=
∫

Rd

(∑
I∈D+
|aI |2|I |−1χ

I

)p/2
1/p

,(8.2)

and

‖a‖bs
q,p

:= ‖(2ks2kd(1/2−1/p)‖(aI )I∈Dk(Ä)‖`p)k≥0‖`q(8.3)

are finite. ReplacingHp by hp andBs
q,p by bs

q,p, we can utilize the same method of proof
and characterize restricted approximation in thehp metric.

Accordingly, we thus obtain similar results for restricted approximation if we define
Hp(Ä) and Bs

q,p(Ä) to be spaces of distributionsf in Ä such that for a fixed wavelet
basis, the sequence of coefficientsaI ( f ) = aI ,2( f ) exists and belongs to the spacehp

andbs
q,p, with corresponding norms given by (8.2) and (8.3).
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In general, the above-definedHp(Ä) andBs
q,p(Ä)will depend on the particular choice

of the wavelet basis, unless we can identify them as classical function spaces. In [C],
it is proved that, under general smoothness assumptions on the wavelet basis,Hp(Ä)

coincides with the usual Lebesgue spaceL p(Ä) for 1 < p < ∞ andBs
q,p(Ä) with the

usual Besov spaceBs
q(L p(Ä)) if s> d/p− d (under minimal smoothness assumptions

on the boundary of the domain, the latter can be defined equivalently by restriction of the
Besov spaces defined onRd or by their inner description using moduli of smoothness
in Ä).

Our results can thus be applied to these classical spaces for this range of indicess and
p. For more general indices, we can acceptHp(Ä) andBs

q,p(Ä) as a definition of Hardy
and Besov spaces on domains, having in mind the possible dependence of these spaces
upon the choice of the wavelet basis.
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