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Restricted Nonlinear Approximation

A. Cohen, R. A. DeVore, and R. Hochmuth

Abstract. We introduce a new form of nonlinear approximation calestricted ap-
proximation It is a generalization afi-term wavelet approximation in which a weight
function is used to control the terms in the wavelet expansion of the approximant. This
form of approximation occurs in statistical estimation and in the characterization of
interpolation spaces for certain pairslgf and Besov spaces. We characterize, both in
terms of their wavelet coefficients and also in terms of their smoothness, the functions
which are approximated with a specified rate by restricted approximation. We also show
the relation of this form of approximation with certain types of thresholding of wavelet
coefficients.

1. Introduction

Approximation by a linear combination afwavelets is a form of nonlinear approxima-
tion that occurs in several applications including image processing, statistical estimation,
and the numerical solution of differential equations. In this paper, we shall consider vari-
ants ofn-term approximation which we catkestricted approximationAs explained
further, we are motivated by certain applications in statistics and by the interpolation of
Besov spaces.

To describe our results, we recall the usual setting of multivariate wavelet analysis.
Let D be the set of dyadic cubes Rf' and fork € Z, we letDy denote the set of those
cubes e D atdyadic levek, i.e.,|| | = 27%9, where we uséK | to denote the Euclidean
measure of a séf C RY. We denote by := [0, 1] the unit cube irRY. Each cube
| € Dy is of the forml = 27K(j + Q) with j € Z%. We identify | with (j, k). If g is
any function defined oRY, we define

91 p(X) 1= 2%VPg(2*x — ).

Inthe casey € Lp, then| g, pllL, = lI9]lL,- Here and throughout this paper all function
spaces and all norms are taken oR8runless explicitly stated otherwise. In order to
streamline notation, we shall often simply wrige in place ofg, ,. However, it will
always be clear from the text what is the valuepah the normalization.

Wavelet theory generates a setc L, of 29 — 1 functions whose shifted dilates
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form a Riesz basis fok, as follows. We begin with univariate scaling functiprand
an associated univariate wavelet functiprand definey® := ¢ andy! := . Let E
denote the set of nonzero verticesoind define

d
(1.1) Yo, ... xa) =] [ve(x). eeE.

i=1
Then,¥ := {®: e € E} is such a set.

We shallrestrict ourselvesin this paper to the case of compactly supported biorthogonal
wavelets. This means that the family of functioh® e € E, are assumed to have been
generated by a compactly supported scaling funcgionith a dual scaling function
¢ which also has compact support. The wavelet functioalso has compact support
and has associated to it a compactly supported dual wayelgee [CDF] or [Da,
Chap. 8] for the definition and properties of biorthogonal wavelets). We remark that all
of our theorems hold in more generality. In particular, compact support can be replaced
by suitable decay conditions. However, by imposing these additional assumptions, our
development will be more simple and hopefully more clear.

The set of functions given in (1.1) generates by shifts and dyadic dilates a Riesz basis
for L,. This means that each functidne L, has the unique expansion

(1.2) fF=Y AhH, A=) al(hHyf,

1D ecE

with the wavelet functiong | = x/fﬁz normalized inL,(R?). Moreover, we have

1/2
(1.3) 12, ey =< D@ (P2 a(f) = (Zla?(fﬂz) :

leD ecE

The set of function$y 7} <p.eck is also an unconditional basis fbrp(Rd), l<p<
oo, and for many other function spaces such as the Hardy spaces and the Besov spaces.
We shall discuss this in more detail in the following section. For now, we want to turn
to the formulation of the nonlinear approximation problem that we shall study in this
paper.

Let —oco < o < 1 and define for each sét C D,

D(A) 1= Dy(A) = Zu o
leA

Thus,® is a measure defined on the subsets of the discrete $hdear eaclht > 0, we
define the spacg; as the set of all

(1.4) S=) A9, @)=t

leA

Since the sef\ is possibly infinite, some sense of convergence must be attached to the
series in (1.4). We postpone a discussion of this until Section 2 when we formulate the
restricted approximation problem in more detail. One should note in any casetisat

not a linear space. For example, the sum of two elements Epi® generally not inz;
although itis inXy.
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We shall consider approximation in the Hardy splige0 < p < oo, by the elements
of ;. We recall thatH, = L, 1 < p < oo. Given f we define

(1.5) o(f,0p = o (f,On, = Inf | — Sl,.

We remark that we do not necessarily assume that H, in the definition (1.5);
however, this situation will only appear in our results when dealing with theccasé@.
In this case, it can happen that (1.5) is finite even whésinotin Hp. In the caser = 0
andt = nis a positive integer, the spa& consists of all function§ which are a linear
combination ofn wavelets. Then, (1.5) is the error fterm approximation irH,.

We shall be interested in this paper in describing the functfdios whicho ( f, t), has
a prescribed asymptotic behaviortas> co andt — 0. ForO< p < 00,0 < q < o0,
andy > 0, we define the approximation cladg (Hp) to be the set of alf such that

[} 1/q
[tYo(f, 1) ]th/t> , 0<qg< oo,
(1.6) | lazchy = </0 P
supt’o (f, t)p, g = oo.

t>0

From the monotonicity of (f, t),, it follow that (1.6) is equivalent to a discrete norm

1/q
(Z[Z“’a(f, 2j)p]q) , 0<(g< oo,
(1.7) | flazmy =< \lez. _
sup2”o (f,2))p, g = oo.

jez

Inthe case < 0, one can actually restritin (1.6) tobe> 1 (j in (1.7) to be> 0) without
changing the spacé{, (Hp). However, in order to treat all casescofimultaneously we
need the full range df > 0.

Our main results characterize the spadgsH,) in several ways: in terms of interpo-
lation spaces; in terms of wavelet coefficients; and in terms of smoothness spaces (Besov
spaces). Consider, for example, the case i < coanda < Oandletf :=1— « so
thatg > 1. Fors > 0, let Bg(L,) denote the Besov space of smoothness adien ,
and auxiliary parametey (a fuller discussion of Besov spaces is given in Section 2). For
spacesX, Y we also denote byX, Y) 4 the interpolation spaces generated by the real
method of interpolationk -functional) with parameters & 6 < 1, 0 < q < oo (see
Section 2). We show that for each<l p < co andq > 0, we have

(1.8) Al (Lp) = (L, BZ(L:))y/sq O<y<s, 0<q<oo,

for a certain range of which depends on the wavelets ¥ and with r defined by

s = Bd(1/t — 1/p). It is well known that for each sucp and forq defined byy =
Bd(1/g — 1/p), the interpolation space on the right side of (1.8) is the Besov space
B{ (Lq). This has a simple geometrical description given in Figure 1. In this figure, the
X-axis corresponds thq spaces withx identified with 1/q. The y-axis corresponds to
the smoothness order. Thus, the pdibtg, y) corresponds to the smoothness space
B{ (Lg). Then, (1.8) says that the approximation spdgéL ,) corresponds to the point
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Slope = fBd

(177, s) ~ B3 (L

(1/9,7) ~ BY(Lg)

"~
(1/p.0) ~ Ly

Fig. 1

(1/9, y) on the line segment connectiri@/p, 0) (corresponding td_p) to (1/7,s)
(corresponding tdS(L-)). This line segment has slopel.

Our results also serve to prove theorems about the interpolation of Besov spaces on the
line with slopegd in Figure 1. While these interpolation theorems are known, wavelet
methods provide simple proofs and also allow ways to realiz&tfienctional between
Hp and one of these Besov spaces.

Another way to describe the spadg (Hp) is through thresholding and wavelet coef-
ficients. It turns out that restricted approximation is intimately connected to thresholding
coefficients in the_,-norm withr := p/B. Leta, (f) be defined as in (1.3), except we
now take the wavelets normalizedlin. We can create a good approximationftérom
At by a sum of the form

S= > A

leAe, )

with A(e, f) :={l: a;(f) > €}. The proper choice of gives an element af;. Using
these ideas, we can characterize the approximation siade,) as the set of alf for
which the sequenc@, (f)) ep is in the weighted Lorentz spaég q(w) with u related
toy byy = gd(1/u —1/p), andw(l) :=[1]%, | € D.

The study of the_P error resulting from a thresholding of the wavelet expansion in
the L"-norm withr # p is motivated by problems of statistical estimation: in a white
noise model, one is required to threshold the noisy signaPireven when interested
by minimizing the estimation error ibP for p # 2 (see [DJKP] for a general review of
wavelet thresholding techniques for statistical estimation and [CDKP] for the application
of our results in this context).

In order to prove our main results, we shall introduce new techniques for nonlinear
wavelet approximation which apply even to the casa-¢érm approximation. These
new proofs forn-term wavelet approximation are somewhat simpler than those given
in [DJP].
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Anoutline of this paper is as follows. In Section 2, we discuss wavelet characterizations
of spaces and define the smoothness spaces (in terms of wavelet coefficients), which
we shall use in the characterization of approximation order. In Section 3, we discuss
certain fundamental relations between approximation spaces and interpolation spaces
which we shall use in our characterization of approximation spaces. In particular, we
discuss the role of Jackson and Bernstein inequalities in these matters. We also prove
some general results on when approximation methods can realike-ttvectional for
a pair of spaces. In Section 4, we consideerm wavelet approximation corresponding
to the particular choicee = 0. Most results of this section are already known (see,
e.g., [DJP]), but the way of proof is somehow simpler than in the existing literature.

In Section 5, we consider the general case of restricted nonlinear approximation as
described above, and prove the corresponding Jackson and Bernstein inequalities for
this type of approximation. In Section 6, we characterize the approximation spaces for
restricted nonlinear approximation as noted above. In Section 7, we show that restricted
approximation can be achieved through the simple thresholding procedure of the wavelet
expansion. For the sake of simplicity, all our results are stated for spaces of functions
defined on the whole oRY, using the whole range of scal&se Z in the wavelet
decomposition. In Section 8, we make some concluding remarks on the adaptation of
our results to the approximation of functions defined on a bounded domain, using the
scalesk > 0 together with a layer of scaling functions at the coarsest resolution.

2. Wavelet Decompositions and Characterization of Function Spaces

We shall describe in this section the properties of wavelet decompositions which we shall
use in this paper. LeE be the nonzero vertices 6f as introduced earlier and lgt’,

ee D, | € D, be the biorthogonal wavelet basis obtained from the compactly supported
scaling functionp and compactly supported univariate waveleas described in (1.1).

This basis will be fixed throughout this paper. We denotéfﬁyhe functions in the dual
basis. If f is a tempered distribution, the wavelet coefficients

(2.1) ar ,(f) == (f.9f ). |l eD, eckE,

with the dual wavelet:;?le normalized inLy, 1/p+1/p’ = 1, are defined whenever the
order of f is sufficiently small compared to the smoothnes§ ofr. For example, they
are defined ify andy are inC" with r exceeding the order of the distributidn Thus,
for example, they are defined wheneviee Lj, 1 < p < oo, and wheneverf € Hy,
0 < p < 1, provided the dual wavelets are@ withr > [d(1/p—1),].

We continue with the notation of the Introduction and, in particular, define

1/2
(2.2) a p(f) = (Zaﬁp(f)2> , | € E.

ecE

We shall frequently use the following formula for changing between normalizations:
(2.3) [1[7YPaf o(f) = [17Y9%af o (f),  [1]7Pay p(f) = (1|79 4(f),

which holds for any O< p, q < oco.
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It is well known (see [Da]) thaty{) ep ece iS an unconditional basis fdrp, 1 <
p < oo. Eachf e L, has a unigue decomposition

(2.4) f= A, A=) afHy.

leD ecE

We can computé ,-norms of functionsf from their wavelet decompositions using the
square function which is defined by

1/2 1/2
(2.5) S(f):=(Za.,z(f>2|l|1x,> =<Za.,p<f>2|l|2/”x,> :

1eD 1eD
Namely, for 1< p < oo,
(2.6a) I, =< ISCHIL,.
The equivalence (2.6a) follows from general results in Littlewood—Paley theory (see
[Me] or [FJ)).
Whenp < 1, the right side of (2.6a) gives the norm in the real Hardy spécésee

[FS] for the definition and properties ¢f,) for a certain range op which depends on
the univariate wavelets, . We shall say thap < 1 is admissibldf

(2.6b) I f i, =< ISCEIL,.-

Wavelet coefficients also can be used to characterize smoothness spaces. We shall use
wavelet coefficients to define a class of spaggg for 0 < p, g < oo, s > 0. For certain
values of these parameters, these spaces will coincide with the Besov spaces as we shall
explain. If p is admissible then the s:pa@,p is defined as the set of all distributions in
Hp, for which the following (quasi-semi-)norm is finite:

(2.7) [ fles, == 12l@.p(F)1enyllepDi)kez lleg@)-

There are many other forms for the right side of (2.7) obtained by using different nor-
malization of the waveletg,, and the fact thatl | = 279 for | e Dy. For example,
wheng = p, we can rewrite (2.7) as

(2.8) [ fles, == 10117 p(F)1eplleym)-

We shall use the abbreviated notatiBf := B , throughout. The case= 0 in (2.8)
will be important in this paper. We shall dencB@ simply asBy. Thus,

(2.9) [ fle, == ll@1.p(FNieplleym)-

The spacd,, can be viewed as a substitute tog; it has a simpler structure in terms of
its wavelet decomposition.

The space8; , are the same as Besov spaces for a certain range/bich depends
on the smoothness @f and the number of vanishing momentsyofas we shall now
describe. Consider first the case<lp < oo in which case thés; , are related to the
Besov spaceBg (L p) defined by moduli of smoothnesslin, (see [DJP]). Let (p) be a
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real number such that is in B,r)(p)(Lp) and all moments ofy of order< r (p) vanish.
Then,B;  is the same as the Besov sp&3L ) forall0 < g < coand0< s <r(p).
When O0< p < 1, we use the Besov spacBé(Hp) which can be defined in several
ways (Fourier transforms, Littlewood—Paley theoryHy moduli of smoothness) as is
thoroughly discussed in [K]. Ip is admissible and(p) is defined as before (with,,
in place ofLp), thenBg , = Bj(Hp), forall0 < s <r(p), and 0< g < co. Finally, it
is known thatBj(L p) = B3(Hp) whenevers > d(1/p — 1), (see [K])), in which case
these spaces are embedded in

In summary, the spacég; , are defined by the size properties of wavelet coefficients
for the full ranges > 0, whereas the Besov spaces are characterized by these wavelet
coefficients for a smaller range sf

3. K-Functionals and Interpolation Spaces

Approximation spaces and interpolation spaces are intimately connected; each can be
characterized in terms of the other. In this section, we wish to recall some of these
connections and add a little to this theory.

Let X, Y be a pair of spaces that are embedded in some Hausdorff &hatikeen,
one can form the spacé+ Y which consists of all function$ which can be written as
h + gwith h € X, g € Y. We define the norm oX + Y by

I fllxay = inf IRl + llglv.
=h+g

More generally, for any > 0, we define thé -functional

(3.1) K(f. 1) = K(f, X, Y) == inf [hlx +tiglly.
f=h+g

In this definition, we may also replace norms by seminorms.

K -functionals have many uses. They were originally introduced as a means of gen-
erating interpolation spaces. We recall that ik00 < 1 and O0< g < oo, then the
interpolation spacéX, Y)y q is defined as the set of all functiorise X 4 Y such that

00 1/q
</ [tK(f,1)]° dt/t) , 0<q<oo,
0

supt K (f, 1), q =00,
t>0

(3.2) [l Y)q ==

is finite.

We next describe the usual vehicle for characterizing approximation spaces and con-
necting them to interpolation spaces as described in DeVore and Lorentz [DL, 89 of
Chap. 7]. We suppose that andY are as above and for eath> 0, X; is a (possi-
bly nonlinear) subspace of + Y. The usual setting for approximation takes= n,
n=1,2,...,andY C X but the results are the same (and the proofs almost identical)
in this more general setting. We let

o(f.Ox = inf T — S
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measure the approximation error for this family and define the approximation spaces
A4 (X) as in (1.6) withH,, replaced byX.

We assume in addition that; c X, if t < uand that the nonlinearity of the famib
is controlled in the following sense: there exists a constanich that; + Xy C Xat+u)-

We can characterize the approximation spaces if for soméd, we can establish the
following two inequalities:

Jackson inequality: o (f,t)x < Ct™"| f|lv, feY, t>0.
Bernstein inequality:  ||S|ly < Ct"[|S||x, Se X, t>0.

From the Jackson inequality, one can derive a comparison betnaeaK as follows.
Lete > O be arbitrary and leg be such that the decompositidn= f — g + g gives
the K-functional to withine:

I —glix +t7lglly = K(f, t™) +e.

If Sis abestapproximation gpfrom X; (when best approximation is not known to exist
then one adds anotheiin the following derivation with the same end result), then

o(f,)x = If =Slx =IIf —glix + 19— Slx

<

< K(f,tT) +e+Ct"|glly <CK(f,t™") +e.
Sincee is arbitrary, we have

(3.3) o(f,t)x < CK(f,t™).

The Bernstein inequality provides a weak inverse inequality to (3.3) which we do not
give (see Theorem 5.1 of Chap. 7 in [DL]). From this, one derives the following relation
between approximation spaces and interpolation spaces:

Theorem 3.1. If the Jackson and Bernstein inequalities are vatiten for eactD <
y <rand0 < g < oo the following relation holds between approximation spaces and
interpolation spaces

(3-4) Ag(X) = (X7 Y)y/r,q7
with equivalent norms

Proof. See Theorem 9.1 of Chapter 7 in [DL] where the theorem is proved under the
additional assumption thatis embedded itX: a simple modification of that proof gives
(3.4) in the general case. ]

There is a further connection between approximation and interpolation. In certain
cases, we can realize tie-functional by an approximation process. We continue with
the above setting. We say a famil;), t > 0, of (possibly nonlinear) operators, with
A; mappingX into X;, providesnear best approximatioifithere is an absolute constant
C > 0O such that

(3.5) [f—Aflix <Co(f, ), t>0.
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We say this family istableon Y if
IAFIy <Cll flly, t>0,
with an absolute constaft > 0.

Theorem 3.2. Let X, Y, X; be as above and suppose thatsétisfies the Jackson and
Bernstein inequalitiesSuppose further that the family of operatorg A= 0, provides
near best approximation and is stable ontkiien A realizes the K-functionain the
sense that

(3.6) I —Afllx +tTIIAflly < CK(f, t77, X, Y),

with an absolute constant.C
Proof. We fixt > 0 and letg € Y be a function which realizel€ (f,t™"), i.e.,

(3.7) If—gllx +t7"lglly < K(f, t™").

Wheng is not known to exist, we add an> 0 as above. From the near best assumption,
we have

(3.8) I[f—Aflx < Co(f,t)x
< ClIf — Adglix
< CUf —glx+ g — Adgllx)
< CdIf —dlx +0(g,t)x)
< CUf—glx+t"lgly)
< CK(f,t™)),

where we have used the Jackson inequality.
Moreover, using th&'-stability of A; and the Bernstein inequality, we obtain

Ay = CUTUIACR — Aglly + TAGIY)

CUAT = Aglix +t"lIgllv)

CUIT = Acflix + 19— Aglix + I f —glix +t7llgllv)
CUT = Aflix+ 11T —glx +t7"lglly)

CUf = Acfllx + K(f, t™),

INIA TN TA IA

where we used the fact thig — Agllx < Co(g,t)x < Ct~"|g|ly. This combined
with (3.8) shows that\; f realizes theK -functional. ]

Remark 3.1. Ifin place of near best approximation we assume only that
I f —Aflix < Co(f,at)x,

with absolute constar < 1, then (3.6) is still valid.
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Indeed, the same proof gives (3.6) with replaced byat) ™" and the remark follows
because

K(f, @)™ <a'K(f,t™").
In practice, the stability of an approximation operaBrmappingX to X; is not
always easy to check directly, but it can be derived from the stability of one particular

approximation operatof; combined with Jackson and Bernstein estimates, as shown
by the following result. We say tha; provides a Jackson inequality if

(3.9) lg— Aglix < Ct™"lglly
holds for allg € Y with an absolute constaft.

Theorem 3.3. Let X, Y, X; be as above and suppose thatsatisfies the Jackson and
Bernstein inequalitied_et A, B; provide the Jackson inequality and suppose thaisA
stable on Y Then B; is also stable on Y

Proof. Letg e Y. Then,

IBglly < CUIAQG— Bgly + IAQllv) < C"|Ag — Biglix + lIgllv)
< C(t"llg— Aglix +t'llg — Bglix + llglly) < Cliglly. u

4. n-Term Wavelet Approximation in Hy, 0 < p < oo

In this section, we shall treat the cage= 0 in restricted nonlinear approximation.
This case corresponds to the standaitérm wavelet approximation. While the results
of this section are for the most part known (see [DJP], [T1], [T2]), we shall give new
and simpler techniques for their proof. We shall later use these same ideas to obtain the
corresponding theory for restricted nonlinear approximation. The main new ingredient
here is the use of the intervalx) defined below for a seA of intervals and a point
x € RY. The intervall (x) can be used to replace the role of maximal functions used
in the original proofs of Jackson and Bernstein inequalitiesftegrm approximation
given in [DJP].

We takea = 0 throughout this section. In this case, it is enough to consider ap-
proximation fromX; only in the casé¢ = n with n a natural number. We shall use the
notation

on(F)p i=0a(f,n)y
in this section.
Let A be any finite set of dyadic intervals. For eache | J,_, |, we definel (x)
to be the smallest interval il which containsx. We use the notation for wavelet
decompositions given in Sections 1 and 2. We shall frequently make use of the following
observation of Temlyakov [T1] which holds for any finite getc D:

Lemma4.1. LetO < p < oo be admissible and lek be a finite subset @. If f has
the wavelet decomposition

(4.1) f=> A(hH)

leA
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witha p(f) < M, forall | € A, then

(4.2a) I fll4, < C1M#AYP

with C; depending only on .Similarly, if a; ,(f) > M, forall | € A, then

(4.2b) I flln, = CoM#AYP

with C, depending only on .p

Remark 4.1. Recall thatH, = L, with equivalent norms whep > 1.

Proof. We leta, :=a, p(f). Then, for (4.2a), we use the square function (2.5)—(2.6)

to find
1/2
i, < ClIS(F)lI,,=C (Za|2|||_2/pX|>
leA
LP
1/2
= CM <ZIII‘2”’X|> < CMII[1OOI"YPl,,
leA
LP

where|l (x)|! is defined to be 0 whem ¢ Uiea l. If J € A, then the set] =
{x: 1(x) = J} is a subset o8, and we havg J,_, | = J;., J. It follows that

i1f15, =cm [ oo tax<cme Y [ a1t < cmua,
P Rd JeA J

which proves (4.2a).
For the proof of (4.2b), we have

1/2
S(f,x) = M (Zn |—2/px|(x)> > M1 (0P

leA

Also, [ (x)[7 > C Y, ., I1171x (). Hence,

115, = CISHIP, ZCMP/dZHrlxl(x):cw#A. m
RY 1ea

As a consequence of the lemma we will prove the following interesting theorem of
Temlyakov [T1]. We fix an admissible value pfwith 0 < p < oo and let

Baf = Y bfyf,  #Ap<n,

leAp ecE

be a best-approximation tof from X, (the existence of best-term approximations
was proved in [Ba]). We modiffB, f by replacingo} by aP(f) to getB, f which is also
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in . It follows thatS(f — B, f) < S(f — B, f) with Sthe square function of (2.5).
Therefore, from (2.6b) we obtain

If —Bafln, <CIf—Bnfln, <Con(f)p.

We also introduce the thresholding operafpf =), ea, A1 (F) whereA. consists of
then cubesl for whicha, () is largest (with ties handled in an arbitrary way).

Theorem 4.1. For any admissible pwith < p < occandforalln=1,2,..., 7,f
is a near best approximation to f from,, i.e,

I'f —Znflln, < Con(f)p.

Proof. Itis enough to estimate

Bof —Tnf=— > AH+ ) A= fo+fo

I eAt\Ap e Ap\At
Using the square function, we have
I folln, < CIl'f — Bnfllu, < Con(f)p.

If M is the smallest of the values ,(f), | € Ay, then for alll € Ap\A; we have
ay p(f) < M. Hence, from Lemma 4.1, we have

Il fall, < CMH#AR\ADYP.
On the other hand, for all e A¢\Ap we havea, p(f) > M and hence
Il foll 1, > CM#A\Ap)YP.

Since #A¢\Ap) = #(Ap\Ar), we have| fi|ly, < C| folln, < Con(f)p which com-
pletes the proof. ]

4.1. The Jackson Inequality for n-Term Wavelet Approximation

Recall that for O< t < o0, a sequencéa,) of real numbers is in the Lorentz space
wl, = l;  (called weake,) if

4.3) #{n: lap] > e} < M%7,
forall e > 0. The norml|(an)|.¢, is the smallest value d¥l such that (4.3) holds. Also,
@) lwe, < @), -

Theorem 4.2(see 85 of [T2]).Let p be admissible with < p < oo, and s> 0, and
let f € Hyand g = & (f) := a p(f), | € D, be such thaia),ep is in wl.,
1/t = s+ 1/p. Then we have

on(Fp = Cn*ll @1 (), »

with the constant C depending only on p and s
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Proof. We have

(4.4) #l:a >¢e) <M,
for all e > O with M := [|(@)lwe,. LEtAj = {I: 27} < @ < 271+1}. Then, for each
k=12,...,wehave

k
> #A; <CMT2C,
j=—00
with C depending only onr.
Let§ = 3., Al(F) andTy = Z:‘:_w S. ThenT € =y with N = CM72¢,
We finish the proof in the cased p < oo (the case O< p < 1is handled similarly but
with || - ||,‘_’|p used in place of - ||n,). We have

(4.5) = Tlln, < > IS ln,
j=k+1

We fix j > k and estimate|§ ||, Sincea; < 27+l forall | € Aj, we have from
Lemma 4.1 and (4.4),

ISlu, < Cz—i#Ajl/p < CM™/P2i/p=D)

We therefore conclude from (4.5) that
If = Tilln, < CM7P Y~ 206/PD < CMM29T/PH,
j=k+1
because/p — 1 < 0. In other words, foN < M?2%", we have
on(f)p < CMNYPYT = CMNS.

From the monotonicity of, it follows that the last inequality holds foral > 1. =
Corollary 4.1. Let p be admissible with < p < oo, lets > 0, and let f € B,
1/t = s/d + 1/p, with t admissibleThen
(4.6) on(f)p =< C| flgen™4,
with C depending only on p and s
Proof. We havea, , = a p|l |Y*YP = a, ,|I[¥9. Thus, from the definition (2.8) we
find
(4.7) [ fles, = ll@)Ie, = @) e, -
Hence (4.6) follows from Theorem 4.2 wiireplaced bys/d. ]

Remark 4.2. As noted in Section 2, the spa®&? coincides with the Besov space
BS(H,) for a certain range of and this space coincides wiBf(L.) if s > d/7 — d.

Remark 4.3. Theorem 4.2 also holds witH, replaced byB, with a simpler proof.
This is proved for restricted nonlinear approximation in Section 5.4.
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4.2. The Bernstein Inequality for n-Term Wavelet Approximation

We shall next prove the Bernstein inequality which is the companion to (4.6).

Theorem 4.3. Let p be admissible witl) < p < oo, and let s> 0. If f =
D o1ea A () with#A < n, we have

|flgs < Cn¥9 fll,,

with 1/t = s/d + 1/ p whenevet is admissible

Proof. Case l:p>2 Witha :=a p(f), we have from (4.7)

1/t 1/p
|flgs = (Z af) < nYTup <Z af) )

leA leA

On the other hand,
1/2 1/p 1/p
IS()I, = (Zaﬂl |‘2/px.> > (Za.”u |-1x.) = (Za.”) :
leA leA leA
LP LP
which in view of (2.6b) completes the proof in this case.

Case 2:p < 2. With | (x) defined as the smallest interval snthat containx, we
have

flo. = arlfl — arlfr/p |71+r/p
15 fRdZ.Hx. fRdZMI X 7Py,

leA leA

T/p 1-7/p
C/ S(f,x)f|l(x>|1+f/"sc<f S<f,x)p) ( |I(x>|1)
Rd Rd Rd

T PIS(HIE, < CntTPYf I

IA

IA

where the second to last inequality follows as in the proof of Lemma 4.1. ]

Remark 4.4. The Bernstein inequality of Theorem 4.3 also holds withreplaced by
Bp. The proof is simply lélder’s inequality (as in the first line of the above proof).

4.3. Approximation Spaces for n-Term Wavelet Approximation

In this section, we state without much elaboration the conclusions that can be drawn
from the Jackson and Bernstein inequalities fieterm approximation, vig-Vvis the
characterization of approximation spaces. A similar development with more details is
given in Section 6 for restricted nonlinear approximation (which includes the results of
this section as a particular case).

Let p be admissible with O< p < co. Lets > 0 and let ¥t := s/d + 1/p with =
admissible. We denote lg( f, t) theK -functional for the paiH,,, B with the seminorm
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of B? used in the definition oK. It follows (see Theorem 3.1) from the Jackson and
Bernstein inequalities that for any© y < sand any O< q < oo,

AL (Hp) = (Hp. BY), sq-

4.8
(48) A{/4(By) = (By, B, e,

The interpolation spaces on the right side of (4.8) are in fact identical and can be
described in two ways. First of all they can be described by a condition on the wavelet
coefficients. Namely, a function is in this space if and onlyaf ,(f))ep is in the
Lorentz spacé,, q where Y := y/d + 1/p and, in fact, we have

(49) | f |Ag/d(Hp) = ||(al,p(f))||€u,q~

Second, in the case that= u, thenAZ/d(Hp) = B}, with equivalent norms. Thus, as
noted before, for a certain rangejpthese spaces are the Besov spdgeeH,,).

There is a further connection betwemsierm approximation and interpolation that
we wish to bring out. Lefp, s, andzr have the same meaning as above. We recall the
thresholding operatdf, of Theorem 4.1. It follows from Theorems 4.1 and 3.2 that for
eachn =1, 2, ..., we have

K(f,n™% Hp, BY) < I f = Znflln, + 070 fles.

In other wordsZ,, f realizes theK -functional att = n—S.

5. Restricted Approximation in Hy

For the remainder of this paper, we shall consider the general problem of restricted
nonlinear approximation. Since we have already treated theccase0 (the case of
n-term approximation) in the previous section, for convenience, we shall exclude that
case in the following development. We fixand let® := &, throughout this section.

We fix an admissible value g with 0 < p < oo and a value o§ > 0 and letr be
defined by the equation= dg(1/t — 1/p) whereg := 1 — «. We shall prove Jackson
and Bernstein inequalities for restricted nonlinear approximatidinising forY (as
in Section 3) the space

B =B

T,7°

in the case that is admissible. This scale of spaces is depicted in Figure 1. They lie
on the line with slopggd which passes through the poiit/ p, 0) corresponding to the
spaceH,.

For eaclt > 0, we define the space; as the set of al6 € H, + B? for which (1.4)
holds. In particular, the wavelet coefficients®re defined and (1.4) converges in the
sense oHp, + H;.

If f e Hp+ B, we define

o (1.0 = Inf IIf = Sl

It will follow from the discussion in Section 5.1 that(f, t), is finite for eactt > 0.
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The case8 = 1 is the usual case of nonlinear approximatiorg i 1, the restricted
nonlinear approximation will follow the same lines as the usual nonlinear approximation
sinceB? is embedded irH,. However, in the casg < 1 (i.e., 0< o < 1) several new
ingredients appear. First of all, the spaBgis not embedded ifd,. This means that
in the theory ofK -functionals we need to consider the full rangetof 0 (not just
0 <t < 1). Correspondingly, we need the full rangetaf o (f, t),, not justt > 1.

As we have seen in Section 4, a near bestrm wavelet approximation ifl, can
be obtained by thresholding the, normalized wavelet coefficients. We shall see in
Section 7 that restricted approximation is intimately connected with thresholding the
normalized wavelet coefficients , (f) withr := p/B.

The development given below s similar to that in Section 4 except that we used,,
to count the number of cubes and we use the different thresholding\ LetD be a
set of cubes for whicld (A) is finite. As earlier, we defingé(x) as the smallest interval
from A which containsx. In the case O< « < 1, for certainx, there may not be a
smallestl (x) since there may be cubes of arbitrary small measure. iHowever, it is
easy to see that the sEtof suchx has measure zero. IndeedHf := A N Dy, then
E C UkemUieg, ! for eachm > 0. Hence,

El<) D =) Y NI @) ) 20 V% < co(ay2ebam,

k>m | eEx k>m | eEx k>m

and the right side tends to zeroms— oc.
We shall use the following analogue of Lemma 4.1:

Lemmab.1. Letps, 7,r beasabovdf f € H,+ B? has the wavelet decomposition

(5.1) f=> A

leA

with ®(A) finite and if g, (f) < M, forall I € A, then

(5.2a) I Fllu, < CIM(A)YP,

with C; depending only on [Similarly, if a,  (f) > M, forall | € A, then
(5.2b) I fll, = C2MP (AP,

with C, depending only on p

Proof. We first note that the square function (2.5) satisfies

S(F0% =Y 17 ()20 00 <CMIL 07", ae. xeR,

leA

where we defingl (x)|=?" := 0if x ¢ J,., | . Hence

IF1E, < ISP, < CMPIITEOI YT IP < CMP Y [111PF = CMPa(A),

leA

which is (5.2a).
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For the proof of (5.2b), we have

S(F, 0% = M2 1727500 = M2|1oo| 72"

leA

Also, [1 (X)[7P" > C Y, 4 117" x1(X). Hence,

\

115, = CUS(HIP zCMp/ 1OOI™P"dx = CMP Y " [1[1Prr
P P Rd

leA

= CMP Y |I|“ =CMPO(A). ]

leA

5.1. A Jackson Inequality for Restricted Nonlinear Approximation
We fix f € BS and leta; :=a,(f) :=a,,(f), | € D, andforj € Z define

Aj=Aj(F) i={1: 270 <a, (f) <27+,

and the operators

§f= ) A,
leAj(f)
and
k
Tf:= ) §.
j=—00

Theorem 5.1. Lets> 0,and let p andr be admissible0 < 7 < p < oo, and satisfy
s=pd(1/r — 1/p).If f € BS, then for each jk € Z, we have

(i) @A) < CIf[E:21T
(") (D(Ujgk Aj) =< C| f |TB$2kf; and
(iii) |If = Ticflln, < C2</P=D|fLLP,

In addition, for each real number t- 0, we have

(5.3) o(f,t)p < C|f|gst™%/P9.
Proof. The proofis similar to that in Section 4.1.
(i) Sinceay . (f) = |1 |Y*=Y"q , (f), the assumptiorf € BS implies that
[Flee = DD I (O] =Y Y [ Yra  (f)]
J€Z 1A JeZ leA;
= D Y NPy ()] = C Y27 Y I
jEZ |€Ai jEZ |€Aj
— cZz—ifoD(Aj).

jeZ
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It follows therefore that
®(A)) < C|f[5:2)7,

which is (i).
(i) We obtain (ii) by summing the inequalities in (i).
(iif) From Lemma 5.1, we have

ISIE, <C27Po(A) <C2 1P Dflg,  j=12...

We complete the proof in the cage< 1 (the casep > 1 being handled in a similar
way). We have

—i(p— —k(p—
I =Tllf, < D ISR, <CY 2717 f|p < C27HP9| f |,
j>k j>k

which is (iii).

From (ii) and (iii), we have that for < | f |g?2kf,

o (f,1)p < Clflps (| f[5:29) P77 = C| f |gst >/
From the monotonicity o& (f, t), we obtain (5.3) for all real numbets> 0 which
is (5.3). [ |
Corollary 5.1. Foreacht> 0,we have
o (f,t)p < K(f, 17979,

where K is the K-functional for the pair Hand B.

Proof. This follows fromthe Jackson inequality and (3.3) for the pai= H,, Y = B?.
[ |
5.2. The Bernstein Inequality for Restricted Approximation

We shall prove next the Bernstein inequality which is the companion of the Jackson
inequality in Section 5.1. We continue with the notation of Section 5.1.

Theorem 5.2. Lets> 0,andlet p and be admissible and satisfy=s gd(1/t—1/p).
If f € Hp has the wavelet expansion=f >, _, A, (f) with ®(A) <'t, then

| fles < Ct¥P9) |,

with C depending only on p and s

Proof. Case 1:p> 2. We have
DIy ()T =D Sy p(H)T|HS/HH/P = Py p(F) 1« /P

leA leA leA

T/p 1-7/p T/p
(Zal,p(f)p) (ZIH“) < to/pd (Za|.p(f)p) :

leA leA leA

| fI6s

IA
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On the other hand, as in the proof of Theorem 4.3, we have

12 1p
(Zal,p(f)2|||2/p)(|> > (Zal,p(f)p> ,

leA leA

IS(Hlle, =

Lp

which completes the proof in this case.

Case 2:p < 2. With | (x) defined as the smallest interval snthat containx, we
have with Yu :=1—1t/p,

flo, = |—S1:/d . f t=/ . f tl—l—sr/d
1fles = D 117 () RdZa.,()H X

leA leA

IA

c/ S(f, x)7|1 (x)| 7579 dx
Rd

T/p 1u
C( S(f, x)de) (/ I (x)|‘s”‘/ddx)
Rd Rd

o/p Y
C (/ S(f, x)pdx) (Z I |1-Sw/d) = ClIS(H)IIf, @ (A)"
Rd

leA
Ct/PIfII, = CEPIYfIIg,

IA

IA

IA

because + stu/d = «a. [ ]

5.3. An Analogue of Temlyakov’s Result for Restricted Approximation

We shall prove an analogue of the theorem of Temlyakov for restricted approximation.
We assume that # 1 (¢ # 0) since the casg = 1 is already covered in Section 4. We
continue with the same notation as in the previous sections on restricted approximation.
Let f € Hy+ B andfort > O, letB; f = Zm\t Al (By) € % satisfy

(5.4) I'f = Btlln, < 20(f, )p.

The setA; thus satisfie® (A¢) < t. By adding small (in the case > 0) or large (in the
casex < 0) cubes taA; (and putting coefficients equal to O for the new cubes), we can
assume thab (A;) =t

We modify B; f by replacingA, (B;) by the exact component&, (f) of f to get
B f := >, Ai(f) whichis also inX;. We also introduce operators associated with
thresholding. Giver > 0, letA, := {I: a;,(f) > ¢} where, as before,/t := 8/p.
We lett :=t, := ®(A,) and defineB, f := ", .z Ai(f).

While the results that follow in this section include statements&orthey are not
completely satisfactory becauBef is not necessarily defined for a given value of 0.
We shall discuss thresholding operators in more detail in Section 7.

Theorem 5.3. Lets> 0,andlet p and be admissible and satisfy=s gd(1/t—1/p).
Foreacht > O and f € H, + B} the functions Bf and B f are near best ij
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approximations to f fronX. Similarly, for each t for whichB f is definedit is also a
near best approximation to f from,. In other words

(5.5) I —Aflln, <Co(f,t)p,

for Af =B forBf,andfor Af = B f when the latter is definesvith a constant
C > 1depending only on p

Proof. The conclusions of the theorem f& f are obvious in view of its definition
(5.4). ForB; f, we have from the square function
If =B flln, <ClIf —Bfln, <2Co(f,t)p.

Finally, we prove the theorem fds; f. Let A, be the set associated wiBh f and let
A¢ be the set associated wiBj. It is enough to show that

(56) IBf f — Biflln, < Co(f.t)p.
We have

Bif —Bif= Y A+ > A= fo+fu.

leA:\Aq leA\A,
Using the square function, we see that
I follw, < Cllf — B flln, < Co(f,)p.
Now, for all | € A¢\A, we havea, ; (f) < e. Hence, from Lemma 5.1, we have
[ f1lln, < Ce®@(A\A)YP.

On the other hand, for all € A,\A; we haves, ; (f) > ¢ and hence

Il foll, > Ce®@(A\ADYP.

completes the proof. ]

Since (A \A)) = ®(A{\A,), we have| filly, < Clfolln, < Co(f,t), which

Corollary 5.2. Lets> 0,andlet pand be admissible and satisfy=s gd(1/t—1/p).
For each fe Hp + B? and each t> 0, the function B f realizes the K-functional.e.,

I — By flln, + P9 By flgs < CK(f,t7%P9 Hy, BY),

with the constant C depending only on 9 and 8. The same result holds folB,
whenevemB; f is defined

Proof. This follows from Theorem 3.2. Indeed, both operaIBtfsandEt provide near
best approximations as was shown in Theorem 5.3 and boB{astable (with stability
constanC = 1 since we use the wavelet definition of these spaces). ]
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5.4. Jackson and Bernstein Inequalities for Restricted Approximatiorpin B

The proofs of the Jackson and Bernstein inequalities for restricted approximatign in
are somewhat simpler than H, and all follow simply by analyzing the sequence of
wavelet coefficients. We shall continue to use the sp&esheres = dg(1/r — 1/p)
and the parameter:= p/g.

To prove the Jackson inequality, we use the notation of Section 5.1.

Theorem 5.4. Lets> 0,and let p andr be admissible and such thats gd(1/r —
1/p). If f € B?, then for each jk € Z, we have

(i) (AW < C|f|E:2;
(i) ®(Uj—Aj) < Clflp:27; and
(ii)y |If —Teflg, < Czk(r/p—1>|f|g/tsp'

In addition, for each t> 0, we have

(5.7) o(f, ), < C|f|gst>/Pd.

Proof. Parts (i) and (ii) were proved in Theorem 5.1. For the proof of (iii), we have

1/p-1, —j 1-
”S”gp — Zaﬁr“w(/p /N < C2 JDZ||| p/r

leA; I €A

= C27P@(Aj) < C27IPDf|L,,

where we used (i). Therefore, assumipg> 1 (a simple modification applies when
p < 1), we have

—j(— —k(1—
If—Tlls, <C Y _ISlls, < Y271 UP P < co7kA/P £ P,
j>k j>k

which is (iii).
From (ii) and (iii), we have that for < | f |,T332kf,

o(f.t)g, < C|fles(|flp:20)YP " < C|f|gst P9,

which is (5.7). n

We shall prove next the Bernstein inequality which is the companion of the Jackson
inequality for B,. We continue with the previous notation.

Theorem 5.5. Lets> 0,andlet p and be admissible and satisfy=s gd(1/t—1/p).
If f € Bp + B} has the wavelet expansion=f } , _, A (f) with ®(A) <t, then

| flgs < CtP9 |,
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Proof. We have

[flge = DI (D) =) ay I[P/ 9 =3 Zay p(F)T[1*@/P

leA leA leA
T/p 1-7/p /P
p a 7/8d
“(zen) (zor) s (gaer)
leA leA leA

6. Approximation Spaces for Restricted Approximation

The following discussion applies to both the case of restricted approximation and the
case of ordinarn-term wavelet approximation (the cage= 1, « = 0). We fix an
admissiblep with 0 < p < oco. Further, we les, T be parameters for which the Jackson
and Bernstein inequalities hold in Section 5 and which satisfydg(1/7 — 1/p) with
T admissible. We fixs andr throughout. We shall use frequently in this section without
further mention the fact that the Jackson and Bernstein inequalities also hold for any
0 <y <sandu := u(y) defined by the relatiop = gd(1/u — 1/p).

Forany O< y and 0 < g < oo, we define the approximation spagg (H,) by
using the quasi-semi-norif |z Hy) of (1.6) or the equivalent quasi-semi-norm (1.7).
We add|| f||n,+8s tO IfIAg(Hp> to obtain the normj| f 4z (hy)- We remark that in the
casef > 1, we have thaBg is embedded irH, and thereforef € Hy. It follows that
o(f,t)n, < [Iflln,. Therefore, the indices in (1.7) can be taken dver O with an
equivalent norm. However, we shall not make any use of this fact in what follows.

The spacest} (Bp) and their seminorms and norms are defined in the same way with
Hp replaced byB,,.

We shall show how the spacég (Hp) and A} (B,,) can be characterized by wavelet
coefficients. We use the abbreviated notapn= a, (f) := a,,(f) throughout this
section withr = p/B as introduced and used earlier.

6.1. Approximation in B

We shall first consider approximation By, which is somewhat simpler than approxi-
mation inH,. We first note that

6.1) Il = ap(HP =Y a(HPIMP =Y a(h)PF,

1eD 1eD 1eD

Similarly, for each O< y < s, andu := u(y) defined byy = dg(1/u — 1/p), we have

(6.2) [flay = D [N, ()]
leD
= Y a(Fy I =3 "y ()]
leD leD

For 0 < A < oo, we lete; (w) denote the space of all sequen¢gs, «p with the norm

1/
(6.3) 1), = (Z 1% |*> ,

leD
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corresponding to the weighit (1) := [I|*. We similarly define the weighted Lorentz
spaced, q(w) (see Chap. 1, p. 8, of [BL]).

The identities (6.1) and (6.2) say that the linear mapping which thket® its wavelet
coefficients is an isometry betwe®3 and¢,(w) and betweerB? and?, (w). It follows
therefore that this mapping also gives an isometry between the interpolation spaces
(Bp, BY)s,q and the interpolation spaces,(w), €. (w))e q. The latter are well known to
be weighted Lorentz spacés q(w) with 1/u = (1—-0)/p+ 6/t (see Chap. 5, p. 109,
of [BL]). Therefore,f € (Bp, BY)gq, 0< 6 < 1,0< q < oo, ifand only if

1 1-6 6
(6.4) @ (f)iep € £, q(w), " 5 + o
and||(a (f))ll,, is an equivalent norm faBp, B;)s g
In particular, (6.4) (withg = u) and (6.2) give that forany & 6 < 1

(6.5) (Bp, Bo = B!,  yi=0s,

wherep andy are related as before py= gd(1/u — 1/p). More generally, lef; and
v; be related by; = gd(1/u; —1/p), j = 1, 2. Then, from the reiteration theorem for
interpolation, we obtain
1 1-6 6
6.6 B, B”2), , = B, — = + —,
(6.6) (B Bido.n 0 y n V2

where agairnu andy are related by = dg(1/u — 1/p).

Theorem 6.1. Let p be admissible with < p < co and let s> 0 andt be defined by
s = Bd(1/t — 1/p) with T admissibleFor eachO < y < s/8d, 0 < q < oo, we have

(6.7) AL (Bp) = (Bp, B)s.qs 6 1= ypd/s,

with equivalent norms

Proof. This follows from the Jackson and Bernstein inequalities of Section 5.4 and
Theorem 3.1. ]

Corollary 6.1. Let p be admissible with < p < oo and let s> 0 andt be defined
by s= gd(1/t — 1/p) with r admissibleFor eachO < y < s, andu := u(y) defined
by the equatiory = gd(1/u — 1/p), we have

(6.8) Al/Fd(By) = BY,

with equivalent norms

Proof. This follows from Theorem 6.1 and (6.5). ]

Corollary 6.2. Let p be admissible with < p < oo and let s> 0 andr be defined
by s = gd(1/r — 1/p) with T admissibleLet0 < y < s and letu be defined by
the relationy = Bd(1/u — 1/p). Then for each0 < q < oo, f € A}/**(B,) if and
only if (& (f))iep € £,.q(w), and the two normg f ||A§“”(Bp> and [ (f)l,, are
equivalent
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Proof. This follows by using (6.4) to characterize the interpolation space. ]

Finally, we observe that, in view of our results, Corollary 5.2 also holds ®jttn
place ofH,.
6.2. Characterization of A(H,) by Interpolation

We can carry out an analysis similar to that of Section 6.1 to show that restricted approx-
imation in H, can also be characterized by interpolation. We use the same notation as in
Section 6.1 except that not¢ denotes the&K -functional for the pair of spaced, and

B?. Using the Jackson and Bernstein inequalities for restricted approximatidy) ime

derive the following analogue of Theorem 6.1:

Theorem 6.2. Let p be admissible with < p < co and let s> 0 andt be defined by
s = Bd(1/t — 1/p) with r admissibleFor eachO < y < s/8d, 0 < q < oo, We have

(6.9) Aa(Hp) = (Hp, Bf)e.q, 0 :=ypd/s,
with equivalent norms

At present, Theorem 6.2 is not quite satisfactory because we still do not know the
interpolation spaces appearing on the right side of (6.9). However, the next theorem will
show that these interpolation spaces are the same as those for tBg,@jrwhich we
have already characterized.

Theorem 6.3. Let p be admissible with < p < co and let s> 0 andz be defined by
s = Bd(1/t — 1/p) with  admissibleFor eachO < y < s and0 < g < oo, we have

(6.10) ALPA(Hp) = AL/PY(By).

Proof. We first note the embeddings

(6.11) AP (HY) € B € AP (Hp),

which hold for any O< y < s, u = u(y) satisfyingy = gd(1/u — p) andpi :=

min{1, u}. Indeed, the right embedding in (6.11) follows from (5.3) wstreplaced by

y. To prove the left embedding in (6.11), we lete A/#(H,) and letS, € S satisfy
If—Sdn, <0 (f,29,,  keZ.

Then, we havef =Y "° (S — S—1) and therefore

00 o0
| flléf" < Z IS — S(_ﬂ’éK <C Z ZKWL/ﬂd”S( — Sl llfhD
Ke—o0 k=—o00
~ ) N _
< Z KVl (g (£, 2k)p +o(f, 2k_1)p)“ <Ci|f |l;y/ﬁd'

k=—o00
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Here, we have used the subadditivity |of|"yﬁ in the first inequality, the Bernstein

inequality of Theorem 5.2 (witls replaced byy) in the second inequality, and the
discrete norm (1.7) in the last inequality.

Let 0 < y; < sandp; be related by; = d(1/u; —1/p), j = 1, 2. We assume
thaty; < y,. We recall that both thetl}j(Hp) andA,ﬁ(Bp) are interpolation families.
Therefore, the reiteration theorem for interpolation together with the embeddings (6.10)
and (6.11) give that for each9 6 < 1 and O< g < oo, we have
(6.12)  (AMPU(Hp), AZPY(Hp))eq = (BJL, B2)gq

(Am/ﬂd ( Bp) Ayz/ﬁd ( Bp))@,q )

The left side of (6.12) is the approximation spatig”® (H,), y = (1—6)y1 + 6y, and
the right side of (6.12) is the approximation spaxgéﬂd(Bp) with the same parameters.
Sinced andq are arbitrary angi; can be chosen arbitrarily close to 0 amdarbitrarily
close tos, (6.9) follows. [ ]

Corollary 6.3. Let p be admissible with < p < oo and let s> 0 andt be defined
by s= gd(1/t — 1/p) with r admissibleFor eachO < y < s, andu := u(y) defined
by the equatiory = gd(1/u — 1/p), we have

(6.13) AP (Hp) = BY,

with equivalent norms
Proof. This follows from Theorem 6.3 and Corollary 6.1. [ ]

Corollary 6.4. Let p be admissible with < p < oo and let s> 0 andt be defined
by s = gd(1/r — 1/p) with T admissibleLet0 < y < s, and Ietu be defined by
the relationy = gd(1/u — 1/p). Then for eacld < q < oo, f € Ag (H ) if and
only if (& (f))iep € £,,q(w), and the two normg f [N and ||(a|(f))||gwq re
equivalent

Proof. This follows from Theorem 6.3 and Corollary 6.2. ]

7. Thresholding

One of the most frequently used numerical methods for generating adaptive wavelet ap-
proximations consists in thresholding the coefficients of the function to be approximated.
In this section, we shall look more closely at thresholding for restricted approximation.
We fix an admissibl@ with 0 < p < oo. Further, we les, T be parameters which satisfy
s = dB(1/r — 1/p) with r admissible. We fi>s and throughout. Forf € H, + B,
we leta) :=a,(f) := a,,(f) withr = p/g throughout this section.

For eache > 0, we let

A, fy={l:a/(f)>¢}
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and let
Tf:= Y  A(h.

leA(e, f)

The next theorem characterizes functidnfor which || f — T, f ||, has a certain decay.

We recall the weighted Lorentz spacgsq(w), w(l) = |I|* which appeared in the
characterization of the approximation spaces for restricted approximation. We shall be
especially interested in the cage= oc.

Theorem 7.1. Let p be admissible with < p < oo and let s> 0 and r be defined
by s= d(1/t — 1/p) with r admissibleFor eacht < u < p, a function f satisfies

(7.1) If =T flln, < M#/Pel-r/P

if and only if (& (f))iep € £,,00(w) and the smallest M satisfyin@.1)is equivalent
to [@i (F)le, o)

Proof. First assume thal) € £, o (w) and letM = |(a)ll¢, ..w)- L€te > 0 and
definek e Z such that 2%~ < ¢ < 27%. We define the set&; and the functior§ f as
in Theorem 5.1. Then, from the definition of thg .. (w) norm, we have

d(Aj) < MH21H jez.
From Lemma 5.1, we have
”S f”Hp < CZ_jCI)(Aj)l/p < C2—i M#A/Pin/p < CMM/Dz—i(l—/t/D).

We continue with the casp > 1 (a similar argument applies when0 p < 1). We
have

o o0
I =Teflu, < Y 1Sln, <CMW/P Y~ 2710w/P
j=k+1 j=k+1

C M#/ P2=kA=1/P) < MM/ Pg=1/P)

IA

This proves one of the implications in the theorem.
Conversely, we assume that for eack 0,

If =T flln, < M#/Pelr/P,
With § as above, and using the square function, we find
IS, < CIlf = To-i flln, < CM#/P27IA=1/P),
Hence, using Lemma 5.1 again, we find

O(ADYP27] < C|I§ flw, < CMH/P21A=1/P),
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That is,
®(Aj) < CMH2IE,
Therefore, with 2k~ < ¢ < 27k we have

k+1
d(Ae, ) < Z CMH2it < CMHg™,

j=—00

which proves the other implication in the theorem. ]

8. Adaptation to a Bounded Domain

Most practical applications of restricted approximation arise in the context of bounded
domains, i.e., the functiorf to be approximated is defined on an open connected set
Q c R

With a little more work (see, e.g., [D] or [C]) and some reasonable assumptions on
the geometry of2, multiscale decompositions into wavelet bases can be adapted to such
bounded domains. In such decompositions, the range of scalesiken; 1,2, ...,
i.e., functions o2 are decomposed according to

(8.1) f=>" A,

leD,

with D = (U0 Di(€2), andDy () a subset oDy that describes the wavelets adapted
to Q at scalek. The basis functions in the coarsest lag&(Q2) are scaling functions
which do not not oscillate (their integrals differ from zero), since they are meant to
describe a coarse approximation fof

We want to discuss here the adaptation of our results to this slightly different setting. A
firstremark is that all the results of this paper will also hold in this setting, if we formulate
them in terms o6equence spacese definen, andbg’ p consisting, repectively, of those
sequencea = (a)|ep, Such that

p/2 1/p
. 21111
(8.2) Ialln, = fRd<Z|al||l| x,) :

leD,

and
(8.3) lalles, = 1222V @) epyelle, kol ea

are finite. Replacingi, by h, andBg ; by by ,, we can utilize the same method of proof
and characterize restricted approximation intlgenetric.

Accordingly, we thus obtain similar results for restricted approximation if we define
Hp(2) and Bg’p(Q) to be spaces of distribution in 2 such that for a fixed wavelet
basis, the sequence of coefficieaf$f) = a »(f) exists and belongs to the spdzge

andbg ,, with corresponding norms given by (8.2) and (8.3).
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In general, the above-definét) (€2) and B; p(R2) will depend on the particular choice
of the wavelet basis, unless we can identify them as classical function spaces. In [C],
it is proved that, under general smoothness assumptions on the wavelet-hasis,
coincides with the usual Lebesgue spagg€2) for 1 < p < oo and ngp(sz) with the
usual Besov spadBj(L(€2)) if s > d/p — d (under minimal smoothness assumptions
on the boundary of the domain, the latter can be defined equivalently by restriction of the
Besov spaces defined & or by their inner description using moduli of smoothness
in Q).

Our results can thus be applied to these classical spaces for this range of sratices
p. For more general indices, we can accept$2) and Bg, p(2)asa definition of Hardy
and Besov spaces on domains, having in mind the possible dependence of these spaces
upon the choice of the wavelet basis.
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