Hybrid CPU/FPGA Performance Models

Angshuman Parasharx

* VSSAD
Intel Corporation
Hudson, MA 01749

{angshuman.parashar, michael.adler, joel.emer}@intel.com

Introduction

Pipeline parallelism is an inherent characteristic of ctrtal per-
formance models, which makes them well-suited for mappirtg o
FPGA substrates. This observation, along with the incnegdif-
ficulty being faced by traditional software performance eledn
simulating future processor designs at reasonable sphad<su-
eled a flurry of research activity in recent years on FPGAetlas
emulation and performance modeling [6, 4, 5, 1].

Implementing detailed industry-grade FPGA-based modsads a
deploying them on simulation farms, however, is a non-titask.
Such models typically require hundreds of man-hours of ldgve
ment effort, and deploying the models involves providingnth
access to network-mounted benchmark traces and analydss to
These tasks are harder to accomplish for FPGA-based detigns
to the absence of standardized abstractions that havéidrediy
been available to software programmers, such as file systésns
vice drivers and communication protocols.

Due to these reasonsybrid performance models — with the sim-
ulator application partitioned between hardware implet@@on an

FPGA and software running on a host CPU — are more interesting

for real-world applications [4, 5, 1]. The host software cahonly
handle tasks such as loading the benchmark and printirigtstst
but also assist in performance modeling by simulating unoom
events like disk accesses. Regular server systems canineatagl
with off-the-shelf add-on FPGA boards to create platfornhere
such hybrid infrastructures can be hosted.

Michael Adlerx

Michael Pellauer; Joel Emerxt
1 CSAIL
Massachusetts Institute of Technology
Cambridge, MA 02139
{pellauer, emer}@csail.mit.edu

tionalities to the outside world in the form skrviceshat clients
can connect to and make use of. In our RRR paradigm, a client
addresses a server using a static, well-known service ndre.
client makes a request to the server by calling a method shgri
of the service interface exported the server. The servaregses
the request, and can optionally send a response back ta¢hé cl

Specification Language

RRR service interfaces are described by the model develsirey

a custom specification language. An example service speiific

is shown in Figure 1. In this example, we define a service dalle
ISA_EMULATOR, which has a server each on the CPU and on the
FPGA. The'fpga” server exports the methddpdateRegisteand
allows thecpu” client to make requests to it. Thepu” server ex-
ports the methodSyncandEmulate and allows théfpga” client

to make requests to it.

servi ce | SA EMULATOR

server fpga <- cpu {
met hod Updat eRegi ster(in REA NFO rinfo);

server cpu <- fpga {
met hod Sync(in REG NFO rinfo);
met hod Emul ate(in II NFO iinfo,
out | ADDR newPc) ;

b

We present in this paper a new framework for building hybrid b

performance models, with a focus on providing an adaptabte a
easy-to-use interface to the end user (the model develofjér
key component of this framework is a layered protocol stassdu

Figure 1: An Example RRR Service Specification.

for communicating between the FPGA and the host CPU, which ex Stub Generation

poses a client-server request-response interface toéneWs pro-
vide tools to automatically generate typed client and gestigbs
based on user-specified service interfaces. These stubisi@r
convenient abstraction to model writers, enabling thenotarou-

nicate between the FPGA and the CPU without having to concern

themselves with the details of the underlying physical fptat.
The layers in our protocol stack have been carefully designe

maximize code reuse across multiple FPGA/CPU physical plat

forms while exposing the same uniform interface to the erdl. us

Remote Request/Response
Overview
We propose a protocol calléemote Request/RespofR&R) that

model developers can use to communicate between the FPGA an

CPU partitions of a hybrid performance model. RRR is simtitar
Remote Procedure Calls (RPC) [2] in tlsarversexport their func-

The set of RRR service specifications belonging to a hybrideho
are collected together during the model’s build processpanged
by a script which generates (a) a set of unique servicelDs fan
each service in the model, and (b) a set of client and setwds
which abstract away the details of the communication chiarine
the RRR runtime subsystem and provide convenient typed-inte
faces to the end-user client and server code. A sample FRE2A-s
client stub interface generated in Bluespec System Ve(B®)V)

[3] is shown in Figure 2. Invoking the methathkeRequest _
Enul at e() in this example will result in the generation of a mes-
sage that travels through the RRR communication layers(itbesi

in the next section), culminating in the invocation of a nogthn
the corresponding software server stub on the CPU.

Jmplementation

The RRR communication subsystem is implemented as a sat-of la
ered interfaces that were designed to maximize portabititycode

interface dientStub_| SA EMILATOR,
met hod Action makeRequest _Emul ate(l I NFO iinfo);
met hod Acti onVal ue#(1 ADDR) get Response_Emul ate();
endi nterface

Figure 2: An Example Auto-generated Client Stub.

reuse across different physical platforms on which FPGAddco
be used as compute nodes. This layered hierarchy is showg-in F
ure 3. The protocol operates as follows:

| Fetch | |Decode | Execute

BE EE

Server Manager

HE

Virtual Channel Mux

EE

Physical Channel

FPGA
1m
[T

Host

EE

EE

Virtual Channel Mux

EE

Physical Channel

{

J

icsw iDMA i Interrupts. Load/Store icsw i Interrupts.

Low Level Drivers Kernel Drivers

Y

Hardware Platform

Figure 3: RRR Protocol Stack.

. The lowest layer in the hierarchy comprises of the lovelev
drivers used to drive the physical medium (such as a bus) that

software module interacts with the software side of a hybrati-

ule and a pure hardware module interacts with its hardwate. si
Internally, the hybrid module communicates with its coupaet
residing on the opposite compute node via RRR, using arfacier
that it declares in an RRR specification file. Figure 4 shows an
example.

FPGA Host

N i

Hybrid Module RRR Hybrid Module
BSvV C++

i N

Figure 4: A HAsim Hybrid Module.

FPGA Module
BSV

Host Module
C++

FPGA Module
BSvV

Host Module
C++

RRR has been used extensively in several hybrid HAsim per-
formance models. CPU-to-FPGA RRR services are generadlg us
for controlling the state of the simulation and for invalidg or up-
dating stale state cached on the FPGA. FPGA-to-CPU seraiees
used for printing events and statistics, triggering agsestwhen
the FPGA encounters an error, emulating system calls, araineb
ing access to host system memory. Several of these funtitiesa
(such as control, assertions and memory access) could psefel
for general-purpose hybrid applications as well.

can be used to communicate between the FPGA and the hostConC|uding Remarks

processor.

We presented a general, flexible, cross-platform infrastre for

2. Using these drivers, we build a full-duplex ordered FIE©@ a building hybrid CPU/FPGA applications. Taking inspiratifsom
straction between the two compute nodes. We call this the Remote Procedure Calls, our communication framework alldey
Physical Channel. This abstraction can be implemented in velopers to create modules that communicate using useredefi
multiple ways using the functionalities provided by the set interfaces and types via automatically-generated clindtserver
of platform device drivers. For example, our current imple- stubs. We are actively using the infrastructure for the bpraent
mentation uses a set of coherent CSRs to create a pair ofof hybrid performance models as part of the HAsim project vz
circular FIFOs. The drivers and the Physical Channel are the believe our tools and techniques are general enough to b tme
only platform-dependent layers in the hierarchy. a wider variety of FPGA-based applications.

3. Next, we multiplex the Physical Channel mtq multlplel-fyl References
duplex Virtual Channels. Messages traversing each virtual))))
channel are ordered with respect to other messages in theltl Arvind, K. Asanovic, D. Chiou, J. C. Hoe, C. Kozyrakis:B.Lu,
same channel, but no ordering is guaranteed across channels M- Oskin, D. Patterson, J. Rabaey, and J. Wawrzynek. Ramp:

Research accelerator for multiple processors - a commuisigyn for

4. The next layer is occupied by a Client Manager (which is ashare_d experimental parallel hw/sw plgtform. Techniepbrt, 2005.

responsible for arbitrating between multiple client resjge 2] A.D. Birrell and B. J. Nelson. .Implementmg remote prduee calls.

. . . . ACM Trans. Comput. Sys2(1):39-59, 1984.
and dispatching responses to the appropriate client) and a - .
. - . [3] Bluespec, Inc. Bluespec system verilog reference guide

Server Manager (whlch dispatches requests to the appropri-""" - /awww. bluespec.com2007.

ate server, and arbitrates responses). An RRR call path IS[4] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. Ehnson,

established by connecting a client manager one end of vir- J. Keefe, and H. Angepat. Fpga-accelerated simulatiomtsabies

tual channel and a server manager to the other end. (fast): Fast, full-system, cycle-accurate simulatorgMI€RO '07:
Proceedings of the 40th Annual IEEE/ACM International Sgsiym

5. Automatically-generated RRR stubs talk to the client and on Microarchitecture 2007.
server managers to handle requests and responses. [5] E.S. Chung, E. Nurvitadhi, J. C. Hoe, B. Falsafi, and K. Mai
. . . . complexity-effective architecture for accelerating {fsjistem

Applications: HAsim Hybrid Modules multiprocessor simulations using fogas ARGA '08: Proceedings of
W(_a de_veloped the RRR frame_work asa part of the HAsir_n_ [6]_simu- Lﬁggﬁgﬁg{ﬂga&;ga;ﬁggﬁg DA symposium on Field
lation infrastructure. For hybrid HAsim models, we paditilogic [6] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, andEimer. Quick

between the CPU and the FPGA at the granularity oficdule
Models are created from a collection of pure-software (CRude-
hardware (FPGA) and hybrid hardware/software modules. v& pu

performance models quickly: Timing-directed simulationfpgas. In
IEEE International Symposium on Performance Analysis sfeBys
and Software (ISPASS)008.

