
Hybrid CPU/FPGA Performance Models

Angshuman Parashar⋆ Michael Adler⋆ Michael Pellauer† Joel Emer⋆†

⋆ VSSAD † CSAIL
Intel Corporation Massachusetts Institute of Technology

Hudson, MA 01749 Cambridge, MA 02139
{angshuman.parashar, michael.adler, joel.emer}@intel.com {pellauer, emer}@csail.mit.edu

Introduction
Pipeline parallelism is an inherent characteristic of structural per-
formance models, which makes them well-suited for mapping onto
FPGA substrates. This observation, along with the increasing dif-
ficulty being faced by traditional software performance models in
simulating future processor designs at reasonable speeds,has fu-
eled a flurry of research activity in recent years on FPGA-based
emulation and performance modeling [6, 4, 5, 1].

Implementing detailed industry-grade FPGA-based models and
deploying them on simulation farms, however, is a non-trivial task.
Such models typically require hundreds of man-hours of develop-
ment effort, and deploying the models involves providing them
access to network-mounted benchmark traces and analysis tools.
These tasks are harder to accomplish for FPGA-based designsdue
to the absence of standardized abstractions that have traditionally
been available to software programmers, such as file systems, de-
vice drivers and communication protocols.

Due to these reasons,hybridperformance models – with the sim-
ulator application partitioned between hardware implemented on an
FPGA and software running on a host CPU – are more interesting
for real-world applications [4, 5, 1]. The host software cannot only
handle tasks such as loading the benchmark and printing statistics,
but also assist in performance modeling by simulating uncommon
events like disk accesses. Regular server systems can be augmented
with off-the-shelf add-on FPGA boards to create platforms where
such hybrid infrastructures can be hosted.

We present in this paper a new framework for building hybrid
performance models, with a focus on providing an adaptable and
easy-to-use interface to the end user (the model developer). The
key component of this framework is a layered protocol stack used
for communicating between the FPGA and the host CPU, which ex-
poses a client-server request-response interface to the user. We pro-
vide tools to automatically generate typed client and server stubs
based on user-specified service interfaces. These stubs provide a
convenient abstraction to model writers, enabling them to commu-
nicate between the FPGA and the CPU without having to concern
themselves with the details of the underlying physical platform.
The layers in our protocol stack have been carefully designed to
maximize code reuse across multiple FPGA/CPU physical plat-
forms while exposing the same uniform interface to the end user.

Remote Request/Response
Overview
We propose a protocol calledRemote Request/Response(RRR) that
model developers can use to communicate between the FPGA and
CPU partitions of a hybrid performance model. RRR is similarto
Remote Procedure Calls (RPC) [2] in thatserversexport their func-

tionalities to the outside world in the form ofservicesthat clients
can connect to and make use of. In our RRR paradigm, a client
addresses a server using a static, well-known service name.The
client makes a request to the server by calling a method that is part
of the service interface exported the server. The server processes
the request, and can optionally send a response back to the client.

Specification Language
RRR service interfaces are described by the model developerusing
a custom specification language. An example service specification
is shown in Figure 1. In this example, we define a service called
ISA_EMULATOR, which has a server each on the CPU and on the
FPGA. The“fpga” server exports the methodUpdateRegisterand
allows the“cpu” client to make requests to it. The“cpu” server ex-
ports the methodsSyncandEmulate, and allows the“fpga” client
to make requests to it.

service ISA_EMULATOR
{

server fpga <- cpu {
method UpdateRegister(in REGINFO rinfo);

};

server cpu <- fpga {
method Sync(in REGINFO rinfo);
method Emulate(in IINFO iinfo,

out IADDR newPc);
};

};

Figure 1: An Example RRR Service Specification.

Stub Generation
The set of RRR service specifications belonging to a hybrid model
are collected together during the model’s build process andparsed
by a script which generates (a) a set of unique serviceIDs, one for
each service in the model, and (b) a set of client and serverstubs,
which abstract away the details of the communication channels in
the RRR runtime subsystem and provide convenient typed inter-
faces to the end-user client and server code. A sample FPGA-side
client stub interface generated in Bluespec System Verilog(BSV)
[3] is shown in Figure 2. Invoking the methodmakeRequest_
Emulate() in this example will result in the generation of a mes-
sage that travels through the RRR communication layers (described
in the next section), culminating in the invocation of a method in
the corresponding software server stub on the CPU.

Implementation
The RRR communication subsystem is implemented as a set of lay-
ered interfaces that were designed to maximize portabilityand code



interface ClientStub_ISA_EMULATOR;
method Action makeRequest_Emulate(IINFO iinfo);
method ActionValue#(IADDR) getResponse_Emulate();

endinterface

Figure 2: An Example Auto-generated Client Stub.

reuse across different physical platforms on which FPGAs could
be used as compute nodes. This layered hierarchy is shown in Fig-
ure 3. The protocol operates as follows:

Fetch Decode Execute

FUNCPControl

Stub Stub Stub Stub Stub Stub Stub Stub

Control

Server Manager Client Manager Server Manager Client Manager

Hardware Platform

Low Level Drivers Kernel Drivers

CSR DMA Interrupts

Physical Channel

CSR Interrupts

Physical Channel

Load/Store

F
P

G
A

H
o

st

Decode

Virtual Channel Mux Virtual Channel Mux

Figure 3: RRR Protocol Stack.

1. The lowest layer in the hierarchy comprises of the low-level
drivers used to drive the physical medium (such as a bus) that
can be used to communicate between the FPGA and the host
processor.

2. Using these drivers, we build a full-duplex ordered FIFO ab-
straction between the two compute nodes. We call this the
Physical Channel. This abstraction can be implemented in
multiple ways using the functionalities provided by the set
of platform device drivers. For example, our current imple-
mentation uses a set of coherent CSRs to create a pair of
circular FIFOs. The drivers and the Physical Channel are the
only platform-dependent layers in the hierarchy.

3. Next, we multiplex the Physical Channel into multiple full-
duplex Virtual Channels. Messages traversing each virtual
channel are ordered with respect to other messages in the
same channel, but no ordering is guaranteed across channels.

4. The next layer is occupied by a Client Manager (which is
responsible for arbitrating between multiple client requests,
and dispatching responses to the appropriate client) and a
Server Manager (which dispatches requests to the appropri-
ate server, and arbitrates responses). An RRR call path is
established by connecting a client manager one end of vir-
tual channel and a server manager to the other end.

5. Automatically-generated RRR stubs talk to the client and
server managers to handle requests and responses.

Applications: HAsim Hybrid Modules
We developed the RRR framework as a part of the HAsim [6] simu-
lation infrastructure. For hybrid HAsim models, we partition logic
between the CPU and the FPGA at the granularity of amodule.
Models are created from a collection of pure-software (CPU), pure-
hardware (FPGA) and hybrid hardware/software modules. A pure

software module interacts with the software side of a hybridmod-
ule and a pure hardware module interacts with its hardware side.
Internally, the hybrid module communicates with its counterpart
residing on the opposite compute node via RRR, using an interface
that it declares in an RRR specification file. Figure 4 shows an
example.

FPGA Host

BSV
FPGA Module

FPGA Module

BSV C++

C++

C++BSV

Hybrid Module

Host Module

Host Module

Hybrid Module RRR

Figure 4: A HAsim Hybrid Module.

RRR has been used extensively in several hybrid HAsim per-
formance models. CPU-to-FPGA RRR services are generally used
for controlling the state of the simulation and for invalidating or up-
dating stale state cached on the FPGA. FPGA-to-CPU servicesare
used for printing events and statistics, triggering assertions when
the FPGA encounters an error, emulating system calls, and obtain-
ing access to host system memory. Several of these functionalities
(such as control, assertions and memory access) could proveuseful
for general-purpose hybrid applications as well.

Concluding Remarks
We presented a general, flexible, cross-platform infrastructure for
building hybrid CPU/FPGA applications. Taking inspiration from
Remote Procedure Calls, our communication framework allows de-
velopers to create modules that communicate using user-defined
interfaces and types via automatically-generated client and server
stubs. We are actively using the infrastructure for the development
of hybrid performance models as part of the HAsim project, but we
believe our tools and techniques are general enough to be useful for
a wider variety of FPGA-based applications.

References
[1] Arvind, K. Asanovic, D. Chiou, J. C. Hoe, C. Kozyrakis, S.-L. Lu,

M. Oskin, D. Patterson, J. Rabaey, and J. Wawrzynek. Ramp:
Research accelerator for multiple processors - a communityvision for
a shared experimental parallel hw/sw platform. Technical report, 2005.

[2] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls.
ACM Trans. Comput. Syst., 2(1):39–59, 1984.

[3] Bluespec, Inc. Bluespec system verilog reference guide.
http://www.bluespec.com/, 2007.

[4] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E.Johnson,
J. Keefe, and H. Angepat. Fpga-accelerated simulation technologies
(fast): Fast, full-system, cycle-accurate simulators. InMICRO ’07:
Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, 2007.

[5] E. S. Chung, E. Nurvitadhi, J. C. Hoe, B. Falsafi, and K. Mai. A
complexity-effective architecture for accelerating full-system
multiprocessor simulations using fpgas. InFPGA ’08: Proceedings of
the 16th international ACM/SIGDA symposium on Field
programmable gate arrays, 2008.

[6] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J.Emer. Quick
performance models quickly: Timing-directed simulation on fpgas. In
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), 2008.


