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1 Introduction

This paper proposes a new model based on the commonly used fractional Gaussian

noise model extended to the case in which the long-memory parameter is time-

varying and varies smoothly according to a variable that cause regime shifts. Our

model is a particular type of generalized autoregressive models with time-varying

coefficients that have become popular in the econometrics literature. Consider the

following infinite AR representation of a process Xt with time-varying coefficients:

Xt =
∞

∑
i=1

β itXt−i+ ε t , ε t ∼ NID(0,σ2) (1)

The coefficients β it are allowed to have different values for different t and

we denote X∗t the equilibrium trajectory of Xt when t → ∞. This general equa-

tion has given rise to several models in the econometrics literature : Kalman filter

models (Anderson and Moore (1979)), models based on simulated method of mo-

ments (Gallant et al. (1997)), Importance sampling models (Durbin and Koopman

(2002)), particle filtering and particle MCMC models (Kitagawa (1996)), Markov

Chain Monte Carlo based on Bayesian models (de Jong and Shepard (1995)).

Several modelling options for the time-varying coefficients are the follow-

ing: breaks (with different β it in different pre-defined periods), Markov-switching

structures, deterministic functions of exogenous variables, stochastic functions of

time.

Here, we consider the behavior of Xt when the following structure is im-

posed on the coefficients. We define a function dt = F(zt) where zt is an exogenous

variable. The autoregressive coefficients obey the following structure:

β 1t =−dt , β 2t =
1

2
dt(1−dt), ...,β it =

1

i
β i−1,t(i−1−dt), i≥ 3 (2)

Under these assumptions, the infinite AR process (1) can be written as a

time-varying long-memory model:

(1−L)dt Xt = ε t, dt = F(zt) (3)

This process is an extension of the standard ARFIMA model with constant

long-memory parameter. The formulation (3) has several advantages over the clas-

sical model (d constant).

Indeed, from an economic point of view, it is useful to model phenomena

that are characterized by changing memory. In other words, it is important to spec-

ify models able to take into account the possibility of time-varying persistence. In
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previous papers, it has been suggested that the degree of integration of macroeco-

nomic and financial time series is not necessarily constant over time. Instead, it

may vary if the economic structure itself changes over time, or if markets are per-

manently hit by different shocks. Authors in the literature have formalized this idea

in several ways : multi-scale or multi-fractal processes (Alvarez-Martinez et al.

(2010), Engelen et al. (2011), Pasquini and Serva (1999)), support-vector machine

processes (Gravishchaka and Ganguli (2003)) long-memory models with threshold

transition dynamics (Boutahar et al. (2008), Dufrénot et al. (2005a, 2005b, 2008)),

fractional models with regime shifts (Aloy et al. (2010)).

From an econometric point of view, Equation (3) has also some advantages

in terms of better specification. Firstly, this time-varying parameter model can help

hedging against misspecification when one considers time series models. Secondly,

assuming that the long-memory parameter is not constant, our model allows to find

which economic variable causes the changes in memory. Thirdly, in contrast to

other models proposed in the literature on time-varying ARFIMA models (for in-

stance seasonal and periodic ARFIMA models as in Koopman et al. (2007)), we

do not consider that d varies at a regular frequency, but evolves smoothly with a

dynamics described by a logistic function; this function has several attractive prop-

erties. We apply this model to the unemployment rate in the United States from

1948 to 2012.

The remainder of the paper is organized as follows. Section 2 presents the

model and its main characteristics. Section 3 contains some properties of the model.

Section 4 deals with statistical inference (estimation and test). Section 5 presents

an empirical illustration. Finally Section 6 concludes.

2 A long-memory model with smooth transition dy-

namics

The model we propose can be used to describe any phenomenon for which the

long-memory dynamics is subject to regime switches or smooth structural changes.

Consider for instance two variables: Xt is the endogenous variable and zt is a transi-

tion variable. Assume that the latter describes two extreme regimes corresponding

to times of crises and normal periods. As is known, in times of crisis it takes more

time for shocks to dissipate in the markets than during calm periods. This implies

that the series show a more persistent dynamics when markets become more turbu-

lent. A crisis can be more or less deep, thereby implying that the changes occurring

in the variable zt are not abrupt but smooth. Therefore, the degree of persistence of
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Xt may vary smoothly according to the dynamics of the variable zt as follows:

Φ(L)(1−L)d(zt)Xt =Θ(L)ε t , (4)

with

d(zt) =


d(1) i f zt ∈ R(1)
d(2) i f zt ∈ R(2)

...
...

...

d(S) i f zt ∈ R(S)

, (5)

Φ(L) =


Φ(1)(L) i f zt ∈ R(1)
Φ(2)(L) i f zt ∈ R(2)

...
...

...

Φ(S)(L) i f zt ∈ R(S)

, (6)

and

Θ(L) =


Θ(1)(L) i f zt ∈ R(1)
Θ(2)(L) i f zt ∈ R(2)
...

...
...

Θ(S)(L) i f zt ∈ R(S)

; (7)

ε t is a zero mean Gaussian noise with finite variance σ2, L is the backward shift

operator defined by L jXt = Xt− j, Φ( j)(L) and Θ( j)(L) are stable polynomials, i.e.

their roots are strictly outside the unit circle. The R( j) are sub-intervals of variation

of zt and the d( j), j = 1, ...S, are real numbers with −0.5 < d(1) < d(2) < .. . <
d(S) < 0.5. The lowest value of the long-memory parameter is higher than −0.5 in

order to have invertibility. The highest value is less than 0.5 in order to have local

stationarity (see Section 3). The long-memory coefficient d(zt) is time-varying

because it takes different values according to the regime R( j).

Equation (4) can also be written as follows:

Φ(L)
∞

∑
j=0

(
d(zt)

j

)
(−1) jXt− j =Θ(L)ε t . (8)

The model given by (5), (6), (7) and (8) is similar to previous models pro-

posed in the literature. For instance, Haldrup and Nielsen (2006a and 2006b) con-

sider the case in which zt is an observable Markov-chain. Aloy et al. (2010), Bouta-

har et al. (2008), Dufrénot et al. (2005a, 2005b and 2008), Goldman and Tsurumi

(2006), Lahiani and Scaillet (2009) consider the case in which zt is a random vari-

able. These models however present some limitations when the number of regimes

becomes very high because of computational problems. They require very long
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time series for providing reliable estimates of all the parameters. Further, the be-

havior of the coefficient estimates when the number of regimes becomes very high

is unknown.

In this paper, we assume the number of regimes S "visited" by d(zt) tends to

infinity. In this case, d(zt) can be replaced by a continuous function. We consider a

sigmoid function to model smooth transition between the different regimes:

d(zt) = d(1)+(d(S)−d(1))F(zt), (9)

where F is a function characterized by F : R→ [0,1]. F must be general enough

to capture different situations: there may be few regimes or an infinity between

the two extreme values d(1) and d(S). The occurrence of these different cases can

be captured by a parameter giving the smoothness of the "transition" between d(1)
and d(S). The higher the number of regimes "visited" by d(zt), the smoother the

transition between the extreme values of the long-memory parameter. Though there

are several functions that can be candidates, we consider here a logistic function:

F(zt) = [1+ exp(−γzt)]
−1 , γ > 0. (10)

F(zt) describes the deterministic process generating the sequence of time-varying

long-memory parameter d(zt). Therefore, we have

d(zt) ∈
[
d(1),d(S)

]
. (11)

The variable zt may or may not be stationary. This does not matter here

because the function F maps zt into a bounded interval, here the unit interval [0,1].
We do not consider the case where zt is a lagged value of the endogenous variable

since it makes the testing problem more cumbersome.

This new model is compatible with a variety of shapes of time series, some

indicating regime switches and others not. Figure 1 provides some illustrations for

different values of the parameters for the fractional Gaussian noise.

To simplify the exposition, we consider the simpler model with no short-

term components (Φ( j)(L) =Θ( j)(L) = 1, ∀ j):

(1−L)d(zt)Xt = ε t . (12)

The extension of our arguments to the general case is straightforward in the case

where ε t is a stationary ARMA process. In what follows, we assume that Xt is a

zero-mean process.
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3 Properties of the model: issues and problems

3.1 Local stationarity

Before presenting the estimation and test of our model, we briefly discuss some

of its properties and some problems raised by such a model. The stationarity as-

sumption is important for identification, estimation and forecast. In our case, it

is important to distinguish between local and global stationarity. Global stationar-

ity (or equivalently strict stationarity) implies that the distribution of Xt1,Xt2, ...,Xtk

(where t1, t2, ..., tk is a collection of k positive integers) is invariant under time shifts.

This is not the case here, since the distribution is a function of F(zt) which takes

different values in time according to the observations of zt . In a standard ARFIMA

model with d constant, global stationarity also implies that the process is ergodic or

satisfies mixing conditions in the sense that observations sufficiently far from each

others are almost uncorrelated. Once we assume that d is time-varying, this is no

longer true.

When global stationarity fails, the stationarity of a process like ours is de-

fined only locally.

Rewriting (12) using the infinite autoregressive representation of Xt yields:

Xt =−
∞

∑
j=1

a jtXt− j+ ε t , a jt =
Γ[ j−d(zt)]

Γ( j+1)Γ[−d(zt)]
, (13)

where Γ is the Euler gamma function. The local stationarity of the process implies

that, for a given zt , a jt is square summable ( ∑
∞
j=0 a2

jt < ∞ for a given zt). For

examples of local stationary ARFIMA models with a time-varying parameter, the

reader can refer to Beran, Bhansali and Ocker (1998), Vesilo and Chan (1996),

Lavielle and Ludena (2000). This is the case if we assume that d(S), the highest

value of d(zt), is less than 0.5.

Our model encompasses several cases of locally stationary processes. With

the representation (5) d(zt) is partitioned into stationary sub-intervals. The process

may be subject to abrupt changes during the transition between the different regimes,

but stationary within each segment of variation of d(zt). An extreme illustration is

the case where γ → ∞ in Equation (10). In this case we simply have two regimes

with the long-memory parameter defined by two values d(1) and d(S). However,

when γ < ∞ and is small enough so that the slope of the logistic function becomes

smooth, the process is an evolutionary process in the sense that its probabilistic

characteristics (spectral density function and autocovariance functions) smoothly

change over time.

ha
ls

hs
-0

07
93

68
0,

 v
er

si
on

 1
 - 

22
 F

eb
 2

01
3



Figure 1. Examples of time series Xt , t = 1, ...,1000, generated by the smooth

transition long-memory model

Note:

d(1) = 0.1,d(S) = 0.4,γ = 10: dt as a function of zt (left upper panel), dt as a

function of time (right upper panel)

d(1) = 0.1,d(S) = 0.4,γ = 0.5: dt as a function of zt (left bottom panel),dt as

a function of time (right bottom panel)

This leads us to consider another definition of locally stationary process

based on the evolutionary spectrum, proposed by Dalhaus (1996). One considers

the generalized Cramer representation of a stationary process in which Xt is mod-

elled as a white noise excited time-variant shaping filter:

Xt =
∫

π

−π

exp(iωt)A0
t (ω)dε(ω), (14)
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where ε(ω) is a white noise with orthogonal increments on [−π,π] with ε(ω) =
ε(−ω). A0

t (ω) is the modulation function also called transfer function. Our process

is considered to be locally stationary in the Dalhaus sense if the following two

conditions hold:

i) There exists a constant K and a 2π-periodic function A : [0,1]×R→ C

with A(x,ω) = A(−x,ω) such that

sup
t,ω

∣∣A0
t (ω)−A(d(zt),ω))

∣∣< KT−1, ∀t (15)

and A(x,ω) is continuous in x. T is the number of observation of the sample.

ii) A(x,ω) is differentiable in x with uniformly bounded derivative ∂ 2A
∂x∂ω

.

In this definition, it is the smoothness of the modulation function A with re-

spect to x that ensures the local stationarity. In our case, this implies that the modu-

lation function must be a smooth function of zt , which depends upon the smoothness

of the function F(zt). The problem is then to compute the analytical expression of

the transfer function, which is usually done by first writing the infinite MA repre-

sentation of the process and taking the Fourier transform of the coefficients. An

important point here is that, in our case, the solution is not

Xt =
∞

∑
j=0

b jtε t− j (16)

with

b jt =
Γ[ j+d(zt)]

Γ( j+1)Γ[d(zt)]

but has the following more complicated formulation:

Xt =
∞

∑
i=0

α itε t−i (17)

with 

α0t = 1

α1t = d(zt)

α2t = α1t−1+
d(zt)(1−d(zt))

2

α3t = d(zt)α2t−1+
d(zt)(1−d(zt))

2
α1t−2+

d(zt)(1−d(zt))(2−d(zt))
3!

α4t = d(zt)α3t−1+
d(zt)(1−d(zt))

2
α2t−2+

d(zt)(1−d(zt))(2−d(zt))
3!

α1t−3

+d(zt)(1−d(zt))(2−d(zt))(3−d(zt))
4!

...

Equation (16) is the inverse of (13) only when d is constant. Usually, papers dealing

with a time-varying parameter d assume that X̃t is the inverse of (13), which is not
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exact. To cope with this problem Philippe et al. (2008) introduce new classes of

time-varying linear filters. However, the latter are not considered here since they do

not match our Equation (13).

3.2 Long-memory properties

To sum up, the long-memory behavior of ARFIMA models is usually apprehended

by looking at the behavior of the autocovariance function and the spectral density

function. A standard approach is to consider the Wold representation (infinite mov-

ing average) of the process (1− L)dXt = ε t and to compute the spectral density

using the transfer function. Then the autocovariance function is found using the

Wiener-Kitchine representation theorem. In our case, we cannot use Equation (16)

to compute the spectral density of (13), since the solution is given by Equation

(17). Computing the transfer function and spectral density from the latter is quite

cumbersome. The autocovariance function of Xt can be obtained by looking at the

limit behavior of the sequence {d(zt)}. As shown in other papers (for examples,

see Surgailis (2008), Philippe et al. (2008), Whitcher and Jensen (2000)) studying

ARFIMA models with a time-varying d, the autocovariance function verifies:

ACF(t, t− τ)∝ τ
2d̃−1 as τ → ∞ (18)

where d̃ is a constant that depends upon the limit behavior of the sequence {d(zt)}.
This function decays at an hyperbolic rate towards 0.

Now, to define the long-memory properties of our process in terms of the be-

havior of the spectral density, we would need an equivalent of the Wiener-Kitchine

theorem for long-memory processes with a constant d parameter. The theorem

states that for a stationary process the power spectrum is equal to the Fourier trans-

form of the autocorrelation function. However, for processes that are locally (but

not globally) stationary, this connection between the ACF and the spectrum does no

longer hold. Indeed, as shown by Mark (1970), Priestley (1971), Rao (1979), Rees

(1972), Tsao (1984), the spectral density of processes that are globally nonstation-

ary is not the simple inverse Fourier transform of the autocovariance function. A

locally hyperbolic decay of the autocovariance function does not necessarily im-

ply an explosion of the evolutionary spectrum at the origin. The easiest way to

describe the long memory properties of our model is thus to examine the behavior

of the autocovariance function. The latter has a common feature with a standard

ARFIMA model with an ACF decaying at an hyperbolic rate. However, since d

is time-varying, the rate of decay depends upon the limit behavior of the sequence

{dt}. It is thus important that this sequence converges and the limit needs not be

defined by a singleton.
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4 Statistical inference: estimation and tests

4.1 Estimation by nonlinear least squares

We consider a conditional sum-of-squares residual estimator which minimizes

RSS(X,Θ) = T−1
T

∑
t=1

[Xt−Mt(Θ)]
2

(19)

with

Mt(Θ) =−
t−1

∑
j=1

a∗jtXt− j and a∗jt =
Γ[ j−d(zt)]

Γ( j+1)Γ[−d(zt)]

where d(zt) is defined by (9) and (10), and Θ= (d(1),d(S),γ). X is the sample which

consists of T observations. The initial infinite autoregressive process is truncated

by assuming that X0 = X−1 = X−2 = ... = 0. The first-order conditions do not

lead to an explicit solution for Θ. The value of Θ which minimizes RSS(X,Θ) is

found using numerical methods (for instance, the Gauss-Newton algorithm). This

is a standard nonlinear minimization problem. However, we need some regularity

conditions in order to be able to apply a uniform law of large number to RSS(X,Θ).
Firstly, the model is asymptotically identified if γ > 0 and d(1) 6= d(S). Secondly,

we assume that Xt = Mt(Θ)+ ε t is non-explosive for any value of zt . This yields

to impose restrictions on d(1) and d(S) since F(zt) is bounded. We assume that

−0.5 < d(1) < d(S) < 0.5. Therefore, for a given zt , the characteristic polynomial

of finite order T obtained using the coefficient a∗jt has all its roots outside the unit

circle and the variance of Xt is bounded. Using standard arguments, we know that,

when the long-memory parameter is less than 0.5, the expectation of the process is

uniformly bounded.

Simulations of the nonlinear least-squares (NLS) estimator. In order to get

insight into the distribution of the estimator and its properties, we conduct Monte

Carlo simulations. We first generate zt , the transition variable, as an AR(2) process:

zt = 1.45zt−1−0.5zt−2+υ t , υ t ≈ iid.N(0,1). (20)

With these parameters, zt has an almost periodic behavior. In this case, the sequence

{d(zt)} is bounded and averageable with a mean value

d̃ = lim
t−s→+∞

1

t− s

t

∑
u=s

du. (21)

We compute d(zt), for values of d(1) corresponding to −0.4 and 0.1, d(S) corre-

sponding to 0.3 and 0.4, γ corresponding to 2 and 10. The simulations are based
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on 1000 replications. For each replication, the parameters d(1), d(S), and γ are esti-

mated by NLS method. We consider different sample sizes T = 200,500,1000,2000.

In order to reduce the effect of initial values, the first 200 observations are discarded.

We report the graphs of the distributions of the parameters. We also compute the

average of the 1000 estimates (MEAN), the bias (BIAS), the root mean squared

error (RMSE) and an indicator of the distance between the true value of d(zt) and

d̂(i)(zt), the value of d(zt) obtained at the i− th replication, i= 1, ...,N, given by

DIST =
1

NT

N

∑
i=1

T

∑
t=1

(
d̂(i)(zt)−d(zt)

)2

. (22)

Simulation results are shown in Table 1. We can observe the convergence

of the parameters as T increases. Indeed, as is seen, the cases corresponding to T =
2000 produces the least biases. Therefore the number of observations should be as

large as possible in order to minimize the distance between the true observations of

d(zt) and their estimated values. We also see that the rate of convergence of d(1) and

γ increases as the difference between d(1) and d(S) becomes wider (compare the case

where d(1) = 0.1 and d(S) = 0.4 with the case where d(1) = −0.4 and d(S) = 0.3).

This means that when the difference
∣∣d(S)−d(1)

∣∣ is less than a given value, say η ,

the long-memory estimator converges at a rate lower than the usual rate of
√

T in

one of the two extreme regimes. This happens for the following reason. When d(1)
and d(S) are "close", our model behaves like an ARFIMA model with a constant d

parameter. Therefore it becomes weakly identified since γ and either d(1) or d(S)
are nuisance parameters. In this case, several combinations of (d(1),d(S),γ) can

yield the same minimum of the nonlinear least squares functions if the number of

observations is not large enough.

Figure 2 reports the distributions of d(1) and d(S). We see that they are

asymptotically normal.ha
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Figure 2. Simulated distributions of d(1) (upper panel) and d(s)(bottom panel)
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Table 1. Simulation results of the NLS estimator

d(1) = 0.1, d(s) = 0.4, γ = 2

T MEAN BIAS RMSE DIST

200 d(1) 0.0463 −0.0537 0.1254 0.0060

d(s) 0.4308 0.0308 0.0948

γ 19.3356 17.3356 121.3511

500 d(1) 0.0687 −0.0313 0.0888 0.0026

d(s) 0.4189 0.0189 0.0803

γ 16.5262 14.5262 99.4681

1000 d(1) 0.0713 −0.0287 0.0789 0.0016

d(s) 0.4189 0.0189 0.0722

γ 9.0458 7.0458 58.5246

2000 d(1) 0.0802 −0.0198 0.0652 0.0008

d(s) 0.4166 0.0166 0.0613

γ 5.9641 3.9641 59.2108

d(1) = 0.1, d(s) = 0.4, γ = 10

T MEAN BIAS RMSE DIST

200 d(1) 0.0620 −0.0380 0.0947 0.0063

d(s) 0.4107 0.0107 0.0906

γ 63.3535 53.3535 262.7986

500 d(1) 0.0812 −0.0188 0.0602 0.0029

d(s) 0.4123 0.0123 0.0594

γ 33.4306 23.4306 100.4333

1000 d(1) 0.0876 −0.0124 0.0439 0.0017

d(s) 0.4049 0.0049 0.0447

γ 60.4828 50.4828 443.5719

2000 d(1) 0.0935 −0.0065 0.0291 0.0009

d(s) 0.4041 0.0041 0.0318

γ 35.0520 25.0520 222.5527
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d(1) =−0.4, d(s) = 0.3, γ = 2

T MEAN BIAS RMSE DIST

200 d(1) −0.4151 −0.0151 0.0864 0.0062

d(s) 0.2906 −0.0094 0.1264

γ 12.2564 10.2564 111.6332

500 d(1) −0.4118 −0.0118 0.0734 0.0026

d(s) 0.3048 0.0048 0.0983

γ 2.8777 0.8777 4.5415

1000 d(1) −0.4143 −0.0143 0.0621 0.0013

d(s) 0.3080 0.0080 0.0749

γ 2.2451 0.2451 1.2811

2000 d(1) −0.4092 −0.0092 0.0496 0.0006

d(s) 0.3050 0.0050 0.0536

γ 2.0881 0.0881 0.6042

d(1) =−0.4, d(s) = 0.3, γ = 10

T MEAN BIAS RMSE DIST

200 d(1) −0.4121 −0.0121 0.0499 0.0063

d(s) 0.2942 −0.0058 0.1059

γ 35.9725 25.9725 173.6601

500 d(1) −0.4030 −0.0030 0.0330 0.0025

d(s) 0.3021 0.0021 0.0561

γ 14.9033 4.9033 48.0806

1000 d(1) −0.4034 −0.0034 0.0206 0.0012

d(s) 0.2988 −0.0012 0.0410

γ 10.8948 0.8948 5.1950

2000 d(1) −0.4019 −0.0019 0.0146 0.0005

d(s) 0.2986 −0.0014 0.0269

γ 10.4179 0.4179 2.6047

Note: The number of observations is T ; the number of replications N is

1000. MEAN is the mean, BIAS is the parameter bias and RMSE is the root

mean squared error. DIST is an indicator of the distance between the true value

of dt and d̂
(i)
t , the value of dt obtained at the i− th replication, i = 1, ...,N, given

by DIST = 1
NT ∑

N
i=1 ∑

T
t=1

(
d̂
(i)
t −dt

)2

. zt is generated as a AR(2) process: zt =

1.45zt−1−0.5zt−2+ν t , ν t ∼ IIN(0,1); ε t ∼ IIN(0,σ2
ε), σ2

ε = 0.01.
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4.2 Testing the constancy of the long-memory parameter

We consider the test of the null hypothesis of the constancy of the long memory

parameter dt :

H0 : γ = 0 (23)

in the model: 
(1−L)d(zt)Xt = ε t

d (zt) = d(1)+(d(S)−d(1))F(zt)

F(zt) = [1+ exp(−γzt)]
−1−1/2.

(24)

Under H0, we thus have F (zt) = 0, then dt = d(1) and the model is a standard

fractional Gaussian model:

(1−L)d(1)Xt = ε t . (25)

Under H0, d(S) is not identified. As has become common practice in the literature

on smooth autoregressive models (see for instance Luukkonen et al. (1988) and

Teräsvirta (1994)), we replace F (zt) by its third-order Taylor approximation around

γ = 0, i.e.

F̃3 (zt) =
zt

4
γ− z3

t

48
γ

3. (26)

Replacing F (zt) by F̃3 (zt) and reparametrizing the model, we obtain the approxi-

mated model under the alternative hypothesis:{
(1−L)dt Xt = ε t

dt = ω+δ zt+φz3
t

. (27)

with 
ω = d(1)
δ =

(
d(S)−d(1)

)
γ

4

φ =−
(
d(S)−d(1)

)
γ3

48
.

(28)

The null hypothesis of the constancy of dt can be written as:

H ′0 : δ = φ = 0. (29)

From (28), it is clear that δ and φ are colinear, so that φ = 0 automatically implies

that δ = 0 (we only have one constraint under the null hypothesis). Therefore testing

H ′0 : δ = φ = 0 is equivalent to testing

H
′′
0 : φ = 0. (30)
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Under H
′′
0 , we thus have the standard Gaussian fractional model

(1−L)ωXt = ε t . (31)

To test H
′′
0 , we use a likelihood ratio testing procedure. The test statistics is

equal to the difference between the unconstrained and constrained maximum values

of the log-likelihood function, say

LR= 2
(

LT

(
θ̂ , σ̂

)
−LT

(
θ̃ , σ̃

))
; (32)

LT (θ ,σ) is the log-likelihood function of the model (27) defined by

LT (θ ,σ) =−
T

2
log
(
2πσ

2
)
− 1

2σ2

T

∑
t=1

[
(1−L)dt Xt

]2

(33)

with dt = ω+δ zt +φz3
t . θ is given by θ = (ω,δ ,φ)′ and σ2 is the variance of ε t .

Moreover,

θ̂ =
(

ω̂, δ̂ , φ̂
)′

and θ̃ = (ω̃,0,0)′

(resp. σ̂ and σ̃ ) denote the unrestricted and restricted maximum likelihood esti-

mates of θ (resp. σ ).

The LR statistic can also be written is terms of σ̂
2
and σ̃

2
the unrestricted

and restricted estimates of σ2:

LR= T log

(
σ̃

2

σ̂
2

)
= T log

(
1+

σ̃
2− σ̂

2

σ̂
2

)
. (34)

Defining ε̂ t = (1−L)d̂t Xt with d̂t = ω̂+ δ̂ zt+ φ̂z3
t , we have the consistency

σ̂
2 =

1

T

T

∑
t=1

ε̂
2
t

p→ σ
2 (35)

under H0 : γ = 0 which corresponds to a standard I(d) process. The existence of a

distribution for LR under H0 means that LR and

LR0 =
T

σ2

(
σ̃

2− σ̂
2
)

(36)

have the same nondegenerate distribution.

From the standard analysis of nonlinear models, the statistic LR is asymp-

totically distributed as a χ2
1 under H

′′
0 : φ = 0. As stated before, the assumption
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φ = 0 implies that δ = 0. Thus, we only have one constraint under the null (it is

equivalent to test H
′
0 : δ = φ = 0 or H

′′

0 : φ = 0).The parameters are estimated in

the models under the null or the alternative hypothesis using the NLS estimator de-

scribed in the preceding section. Tables 2 and 3 contain the results of simulations

of the test1. The nominal size of the test is 5%. It is seen that it behaves well both

in terms of power and size.

Table 2. Rejection frequencies in % of the null

hypothesis H0 : γ = 0 in the model generated

under the null (1−L)dXt = ε t

T = 500 T = 1000

d = 0.2 2.80 3.90

d = 0.4 2.50 3.20

d = 0.7 1.70 3.30

Note: The number of observations is T ; the number of replications N is

1000. zt is generated as a AR(1) process: zt = 0.8zt−1+ν t , ν t ∼ IIN(0,1); ε t ∼
IIN(0,1).

5 An empirical illustration

We model the feedback dynamics of the unemployment rate to its natural rate in

the United States from 1948 to 2012 using monthly data. As is known from the

labor economics literature, the dynamics of the unemployment can be character-

ized by strong hysteresis stemming from labor market imperfections (labor union

collective bargaining, unemployment benefits, firing restrictions and government

interventions in general). This implies that the NAIRU, the level of unemployment

rate consistent with stable inflation, is time-varying rather than fixed because distor-

tions in labor markets interact with disinflation. This has lead empirical economists

to propose reduced-form equations linking the current level of the NAIRU to past

unemployment rate (see, among others, Gordon (1997)). It is usually thought that

such an hysteresis was not observed in the US because the institutional rules in

the labor markets imply more flexibility than in Europe (see, for instance Di Tella

and MacCulloch (2006)). However, hysteresis in the unemployment rate can also

1The case d(1)> 0.5 and d(S)> 0.5 is examined, in addition to the stationarity case, in order to see

how the test behaves in the non-stationary case. From Table 3 we see that the rejection frequencies

compare well with the stationary case.
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be caused by economic shocks which have persistent effects (see Blanchard and

Summers (1987)). Deviations from natural rate die out more rapidly in times of

expansions, but are likely to be long-lived during strong recessions. Whether or not

unemployment exhibits a rapid mean-reverting dynamics of its long-run level has

been a matter of debate in the applied literature. Some authors respond positively

(Nelson and Plosser (1982), Perron (1988)), while others reject this view (Mitchell

(1993), Breitung (1994), Leon-Ledesma (2002)). In a recent paper, Cheng et al.

(2012) find evidence of long-lived mean-reverting dynamics with a half-lived point

estimate of 6 to 14 years, which is long compared to the typical duration of the

business cycle.

Table 3. Rejection frequencies in % of the null

hypothesis H0 : γ = 0 in the model generated

under the alternative, i.e. given by:
(1−L)dt Xt = ε t

dt = d(1)+
(
d(S)−d(1)

)
F (γ,zt)

F (γ,c,zt) = [1+ exp(−γzt)]
−1−1/2

T = 500 T = 1000

d(1) = 0.1, d(S) = 0.4, γ = 2.5 91.50 99.90

d(1) = 0.1, d(S) = 0.4, γ = 5 98.70 100.00

d(1) = 0.6, d(S) = 0.9, γ = 5 94.90 99.90

Note: The number of observations is T ; the number of replications N is

1000. zt is generated as a AR(1) process: zt = 0.8zt−1+ν t , ν t ∼ IIN(0,1); ε t ∼
IIN(0,1).

We want to contribute to the empirical literature on this topic as follows.

Papers testing the hysteresis of the unemployment rate in the US usually rely on

unit root models (using either aggregate or panel series based on US states). The

two polar hypothesis tested are, on the one side the stationarity of the series, and,

on the other side, the non-stationarity. Using here the framework of long-memory

processes yields a more parsimonious description of the mean-reverting dynamics

which can occur more or less rapidly. We introduce a time-dependent dynamics, in

the sense that we assume that the way in which the deviations of the unemployment

rate from their long-run level die out varies with firms’ expectations regarding the

future state of the economy.
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We estimate the following ARFIMA(1,dt ,1) model:

(1−φ 1L)(1−L)dt (ut−u∗t ) = (1+θ 1L)ε t , (37)

where

dt = d(1)+[d(S)−d(1)][1+ exp{−γ(zt−µ)}]−1; (38)

ut is the current unemployment rate (in logarithm), u∗t is its natural rate computed

using a HP filter. zt is the capacity utilization at time t− 1. L is the lag operator,

φ 1 and θ 1 are the AR and MA coefficients capturing the short-run mean-revertion

dynamics, µ is a constant capturing a threshold in the transition variable. Using the

NLS method to estimate all the parameters jointly, we obtain the results given in

Table 4. The series of capacity utilization is available from 1967 onwards with data

on the unemployment rate between 1948 and 1966 being used as presample for the

filter.

As is seen, the estimated model captures both short and long memory dy-

namics in the mean-reverting behavior of the unemployment rate to its long-run

value. Indeed, the ARMA coefficients are significant just as are d(1) and d(s). These

results hold for different values of γ above 100 (the sum of squared residuals re-

mains unchanged), so we fix this parameter to 100.

Figure 3 displays the time variation of dt , while Figures 4 and 5 respec-

tively show dt as a function of the transition variable and the evolution of the

log-unemployment rate (along with its long-term component). The model shows

a regime in which the deviations of the unemployment rate from its long-run level

die out more rapidly than in the other one. Indeed, we obtain values for d(1) and

d(S) that are statistically different (see the LR test) and respectively equal to 0.26

and 0.45.
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Figure 3. Evolution of dt computed from our estimation

Figure 4. Scatterplot of dt as a function of zt
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Capacity utilization provides information about future inflation and has also

been found to be a leading indicator of the future stance of monetary policy in

the US. As the industry resource becomes increasingly near its maximum level,

enterprises anticipate a rise in future inflation. The expected rise in inflation tends

to provide information regarding the future strength of monetary policy. Indeed, the

FED has traditionally taken notes of changes in capacity utilization when trying to

determine its policy with regard to inflation. As far as the capacity utilization is also

a leading indicator of the business cycle and that the central bank policy is described

by a Taylor rule, a rise in the current usage of resources is a signal a future lower

output-gap and tension on prices, which may induce a reaction from the central

bank through a rise of the federal fund rate. If firms thinks that the central bank

could be concerned with the acceleration of inflation, then in their current hiring

decisions they take into account the negative effect of a restrictive monetary policy

on demand. The "pessimistic" view of the future stare of the economy can lead

them to reduce hiring, thereby implying that unemployed people spend more time

out of work. Our regression suggests that, if one agrees with this argument, then

it may happen when the capacity utilization rate evolves above a threshold around

86% (the estimated value of the parameter µ).

Table 4. NLS estimation of the

unemployment rate modeling

coeff. t-ratio

d̂(1) 0.26 3.04

d̂(S) 0.45 3.62

γ̂ 100 −
µ̂ 85.91 1386

φ̂ 1 0.90 41.23

θ̂ 1 −0.25 −2.97

LR 16.45 < 0.01∗

Note : t-ratio is the Student-t ratio of the estimated coefficient. "∗" is the

p− value associated with the LR statistic.

Figure 3 shows that, until the second oil shock the unemployment rate

changes (relative to its long-run value) in response to changes in the industry ca-

pacity utilization rate has been very sluggish with a local dynamics that was almost

non-stationary (the values of dt are near 0.5).

This finding of a local nonstationarity of the unemployment rate is in line

with the results of Leon-Ledesma (2002), Cheng et al. (2012), but in their paper the
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nonstationarity is caused by the presence of a unit root in the unemployment rate

series. In figure 5, the higher persistence in one regime relative to the other is illus-

trated by higher gap between the unemployment rate and its long-run component,

up until the mid 1980s.

Figure 5. Log-unemployment rate and its long-run component

6 Conclusions and possible extensions

In this paper, we explore an innovative model with a time-varying long-memory

parameter, evolving nonlinearly according to a transition variable through a logistic

function. We investigate the main properties of this model, including the local

stationarity and the specific infinite MA representation. Furthermore, we suggest

an estimation method and a test of constancy of the long memory parameter. Our

simulations show that the estimation method has good consistency properties in

finite samples, provided that the difference between d(1) and d(s) is large enough.

Moreover, our test exhibits good performances, both in terms of power and size in

finite samples.
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The model presented can be extended to any function describing a sigmoid

transition of the long-memory parameter. Such functions are widely used in eco-

nomics but also in the other sciences like physics, pharmacy, life sciences or agron-

omy, to describe a correlation between two variables featured by two plateau re-

gions and a transition region. The function d(zt) described by Equations (9) and

(10) corresponds to a particular case of situations where the memory dynamics of a

process show some accumulation points around two values or multiple accumula-

tion points around two polar values. Here are two examples:

(i) the typical five parameters logistic function with two polar values a and

b for d((zt):

d(zt) = a+
(b−a)[

1+
(

zt

zc

)m]n (39)

where a, b, m, n and zc are constant. zc is referred as the threshold value of z which

determines the convergence trend of d(zt) when m is negative and n is a small

positive number;

(ii) the generalized logistic function for which the polar values of the long-

memory parameter are described by piecewise functions g(zt) and h(zt):

d(zt) = g(zt)+
(h(zt)−g(zt))[

1+
(

zt

zc

)m]n (40)

where m and n serve to control the smoothness of the two functions g(zt) and h(zt).
Finally, the model can be generalized to the case where zt is not a centered

variable (the transition function would be zt− c, c being a constant).
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