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Integrating biological and chemical information is one key task in drug discovery, and one approach to
attaining this goal is via three-dimensional pharmacophore descriptors derived from protein binding sites.
The SitePrint program generates, aligns, scores, and classifies three-dimensional pharmacophore descriptors,
active site grids, and ligand surfaces. The descriptors are formed from molecular fragments that have been
docked, minimized, filtered, and clustered in protein active sites. The descriptors have geometric coordinates
derived from the fragment positions, and they capture the shape, electrostatics, locations, and angles of
entry into pockets of the recognition sites: they also provide a direct link to databases of organic molecules.
The descriptors have been shown to be robust with respect to small changes in protein structure observed
when multiple compounds are cocrystallized in a protein. Five aligned thrombin cocrystals with an average
coreR-carbon RMSD of 0.7 Å gave three-dimensional pharmacophore descriptors with an average RMSD
of 1.1 Å. On a larger test set, alignment and scoring of the descriptors using clique-based alignment, and
a best first search strategy with an adapted forward-looking Ullmann heuristic was able to select the global
minimum three-dimensional alignment in twenty-nine out of thirty cases in less than one CPU second on
a workstation. A protein family based analysis was then performed to demonstrate the usefulness of the
method in producing a correlation of active site pharmacophore descriptors to protein function. Each protein
in a test set of thirty was assigned membership to a family based on computed active site similarity to the
following families: kinases, nuclear receptors, the aspartyl, cysteine, serine, and metallo proteases. This
method of classifying proteins is complementary to approaches based on sequence or fold homology. The
values within protein families for correctly assigning membership of a protein to a family ranged from 25%
to 80%.

INTRODUCTION

One challenge in drug discovery projects is integrating
information from screening, biology, and perhaps biological
structure with classes of organic compounds.1-3 Often
different classes or series of compounds must be categorized
and prioritized for further optimization within a set or family
of targets. Given the advent of high throughput protein
crystallography and computational model building tech-
niques, information from protein structures and active sites
can be used as one way of linking biological data to
compound classes and prioritizing compounds. A computer
program (SitePrint) is described that bridges information

extracted from protein binding sites with small organic
molecules such as those in screening collections, focused
combinatorial libraries, and lead series. The primary objec-
tives in the approach described here are to derive 3D
pharmacophore descriptors from protein active sites and to
show an initial study in which families of proteins are
classified by comparing descriptors formed from their active
sites. This report is intended to describe the methodology
and algorithms used in the SitePrint approach.

Several methods have been described in the literature to
characterize protein active sites, while several other programs
have been described to create 3D pharmacophore descriptors
from aligned ligands. The program GRID characterizes active
sites by embedding the protein in a three-dimensional grid
and mapping physiochemical properties of the atoms onto
the grid points.4 The volume of the box used to designate
the boundaries of the site is often manually defined based
on known function or ligand coordinates. LIGSITE also
detects binding sites using a grid,5 while the method in
CavBase6 combines the LIGSITE grid with potential hydro-
gen bonding, hydrophobic, and aromatic interaction loca-
tions7 to create a descriptor that includes shape and binding
properties. SPHGEN generates a set of spheres in cavities
on a protein surface that map the points in space that ligand
atoms can occupy.8 The R-shapes method automatically
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detects cavities in a given protein structure using Delaunay
complexes derived from Voronoi diagrams, giving a readily
visualized surface.9 Analysis of protein surface properties
and curvature has been used to characterize binding and
interaction sites10 and to identify conserved patches with
functional importance.11 Functionally related binding sites
have been classified using solvent-accessible surface patches
that have been assigned physicochemical properties using a
self-organizing neural net.12 Protein similarity searches have
been conducted using critical points assigned to areas of local
curvature on a Connolly surface of the protein.13,14 The
methods ASSAM and TESS use clique detection and
geometric hashing, respectively, to retrieve matches in
proteins to predefined amino acid templates.15,16 These
descriptions allow protein-to-protein comparisons based on
important residue locations and types.

Three-dimensional pharmacophore similarity searching
methods recover useful and potent molecules.17-22 Additional
methods have been developed with the goal of augmenting
the accuracy of three-dimensional similarity searches by
reducing potential sources of error, and the method reported
here builds on a substantial body of work in attempting to
formulate a set of descriptors with complementary attributes.
Potential sources of inaccuracy in 3D pharmacophore
searches include those in generating bioactive conformations,
in alignment, absence of explicit representation of molecular
shape, absence of explicitly represented excluded volume,
the lack of precision in the scoring function used to calculate
similarity, and an inherent error because similarity to an
active molecule is used to estimate free energy of binding
to a biological target. Additional approaches that influenced
the work reported here include COMFA23 and the receptor
surface models in Catalyst24 which form three-dimensional
inverse representations of putative binding sites from en-
sembles of aligned ligands. Both programs create a visual-
izable hypothesis of the volume and properties required for
activity. Excluded volume can also be used as a constraint
in search queries to improve the orientations of conformations
to pharmacophores.22 Other methods have been examined
that use the overall surface,12,25or skin,26 of active molecules
as a similarity search query, which several other representa-
tions of molecular shape27 or scaffold vectors28 have also
been used to perform similarity searches. All of the 3D
representations discussed capture information in a different
way than 2D methods such as Daylight fingerprints,29 and
one of the strengths of the 3D methods is that they facilitate
structure jumping. The 2D and 3D methods are complemen-
tary, and they have been combined to enhance search
coverage and accuracy.30 Higher-order descriptors31,32 and
pharmacophore descriptor fingerprints33 have also been used
to improve the precision and amount of information present
in pharmacophore searches. The structures of known drugs
have been shown to reduce to a subset of small organic
fragments,34 and binding sites have been characterized by
clustering small molecular fragments that have been placed
in the sites.35-37 3D descriptors derived from protein active
sites have been used in pharmacophore searching31 and
docking.38,39

The SitePrint method was developed to create a direct link
between protein structures and organic molecules. In building
on the work described above, it was desired that this method
should enable comparisons between protein active sites,

classification based on active site features, visualization of
surfaces and properties, be used directly in ligand-based and
structure-based searches, and be amenable to high throughput
computation. The six point pharmacophore descriptors
discussed in this paper also provide information about
pockets and “scaffold locations” in active sites, where a
“scaffold location” is a sitepoint from which R groups on
an organic scaffold can access pockets in the site. Sitepoints
in this work that are connected to only one other sitepoint
are generally in pockets, while those connected to more than
one other sitepoint are generally in scaffold locations.
Information about scaffold locations and relative orientations
of pockets in protein subfamilies has been shown to be useful
in lead generation.40-43

METHODS

The algorithm described here produces 3D descriptors
from protein binding sites where the proteins are not
prealigned. One module of the program creates sitepoints,
grids, and molecular surfaces from molecular fragments that
have been docked, minimized, and clustered in protein
binding sites.4,18-27 A second module aligns and computes
similarities between the descriptors. A third module assigns
set membership of a given pharmacophore descriptor based
on similarity to a group of descriptors where the function or
activity is known. Set membership is used to predict the
function of protein structures as a positive control for the
accuracy of the descriptors and similarity scoring methods.
The six-point descriptors used in these studies capture the
rough shape of the binding sites, the scaffold-to-pocket
relationships between regions of a site, and they allow for
rapid alignment and scoring of descriptors. The grids allow
for more detailed calculations of the van der Waals and
electrostatic contributions to binding in the given site, and
the surfaces facilitate visualization of the sites and how
ligands may bind within them. Figure 1 shows a descriptor
formed for thrombin in the context of the entire protein and
the active site.44 The terminal node in the S1 pocket of
thrombin is shown at the bottom of Figure 1c: Asp 189 and
Ser 195 are shown for reference with the Asp being at the
bottom of the figure. The method for producing the descrip-
tors is described below.

Each protein is automatically prepared for docking using
a Perl script developed in the Kuntz laboratory at UCSF
called AutoMolPrep. The script writes the protein, ligand,
and water molecules to separate files. It adds hydrogens to
the protein at pH 7 and assigns AMBER95 charges using
the BioPolymer module of Sybyl.45 SPHGEN is run over
the entire protein and spheres within 10 Å of a manually
specified central residue in the active site are saved for
docking.8 The final step in the script is to call grid to generate
a 0.3 Å grid around the protein active site. The SitePrint
method uses a set of eighteen fragments that are roughly
based on those used in MCSS,35 the drug frameworks derived
by Bemis and Murcko,34 and a reduced alphabet of the amino
acids, as shown in Figure 2. Karplus and co-workers have
shown the use of probing binding sites by performing
dynamics on fragments in the sites.35 The method reported
here reuses the C++ docking code libraries of Makino and
Ewing46 to rapidly probe a site with fragments before
generating descriptors. This has been done to allow the
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method to be scaled up to operate on large numbers of
biological structures. Each docked configuration of a given
fragment is minimized, using the simplex implementation
by Makino, to a gradient of 1.0 DOCK force field units.
The DOCK force field scores are the sum of grid-based
intermolecular van der Waals and electrostatic terms between
the protein and the fragment configuration.47,48Configurations
with DOCK force field scores more favorable than zero are
retained. The resulting ensemble is smoothed using a greedy
algorithm (sometimes called best-first clustering) that selects
the best scoring fragment and removes all within 0.5 Å
RMSD of it. The algorithm then continues to select the next
best scoring fragment from those remaining and remove those
close to it, until it has examined all of the fragments. This
procedure removes unusually dense collections of fragments
that are due to phenomena such as ionic interactions at the
base of well defined pockets. This permits less dense
collections of fragments, such as those bound in poorly
defined hydrophobic pockets, to be counted on the same scale
as the ionic collections, and it causes the resulting pharma-
cophore descriptors to be based more on shape and pocket
location than on electrostatics. The electrostatic contributions
are accounted for in grids after the descriptors have been
formed.

The entire configuration of the smoothed fragments is
clustered 10 different times using an implementation of the
k-medoid algorithm49 to produce 10 pharmacophore descrip-
tors of between five and fifteen sitepoints. Each of the 10
separate descriptors contains between five and fifteen nodes
where each node is a centroid of a cluster of fragment

positions: six-point descriptors have been used in the studies
reported here. The k-medoid algorithm was selected to
perform the clustering because it is known to be tolerant of
small variations in data. An example of a variation is the
difference in the active site of a protein cocrystallized with
two different ligands where one or more side chains are in
different conformations due to small differences between the
bound ligands. Each set of clustered nodes is then connected
into both a tree and a graph. The trees are generated by an
implementation of Kruskal’s minimal spanning tree algo-
rithm50 which initially sorts all possible edges by distances
between their nodes. The graphs are composed by starting
with all possible edges and removing those that penetrate a
wall of the protein or that are longer than 9.0 Å. Grids of
the binding sites are created that consist of all grid points
(in a grid of 0.3 Å resolution) that are within 1.5 Å of a
heavy atom in the probe ensemble. The van der Waals and
electrostatic information calculated from the protein is stored
along with the grid point coordinates. Connolly surfaces are
generated over the probe ensemble by saving the grid points
as atoms and passing that molecule to the MOLCAD module
of Sybyl.21 The clusters, graphs, trees, grids, and surfaces
for an individual active site are generated in less than a CPU
minute on a workstation.

PROGRAM DESIGN

A modular program was built from the system level
architecture design shown in Figure 3. The implementation
is based on the C++ libraries that had been encoded by
Makino.46 Assessing the algorithmic choices, the simplex

Figure 1. (a) The molecular surface of thrombin from the PDB structure 1dwb44 is shown in white with the surface of the ensemble of
fragments that map the binding site shown in red. (b) A schematic of the graph, grid, and surface that is generated for each binding site by
the SitePrint algorithm. (c) The surface and a six-point pharmacophore descriptor generated for the binding site of thrombin is shown in a
perspective shifted ninety degrees from that ofa, with the S1 pocket of the site shown at the bottom.

Figure 2. Fragments used to probe protein active sites.
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method is used to minimize fragments before clustering, and
it is known to converge effectively on problems containing
this number of degrees of freedom. The k-medoid algorithm49

is of order O(n3), but it is known to be tolerant of outliers,
and in our hands it has proven to be robust against small
conformational changes in protein structure and also given
changes in the fragment set. The docked and minimized
ensembles of fragments number on average less than 10 000,
so the accuracy of the clustering algorithm is more important
than its algorithmic efficiency. The clique-based alignment
implementation of Ewing and Makino46 has been previously
used to efficiently and accurately dock a given molecule to
a set of spheres formed by SPHGEN.8 The methods have
been reused here to create multiple alignments of one
pharmacophore onto another. Finally, Willett had suggested
using the Ullmann heuristic51,52 in conjunction with known
tree searching algorithms53 to accomplish graph isomorphism.
The method has been extended to 3D pharmacophores to
rapidly obtain one-to-one mappings of sitepoints in aligned
pharmacophores prior to scoring the alignments.

ANALYSIS OF FEATURES OF DESCRIPTORS

The SitePrint program was applied to HIV protease and
thrombin in early validation studies before being used to
characterize proteins in the kinase, nuclear receptor, aspartyl,
serine, cysteine, and metallo protease families. A binding
site descriptor formed from HIV protease complexed with
the Merck inhibitor L70041754 is shown in Figure 4 to
illustrate the attributes of these descriptors. Aromatic groups
of the ligand occupy the four pockets of the site, and those
pockets are also described by sitepoints in the pharmacophore
descriptor, where each sitepoint represents the location of a
cluster of fragments that has been positioned in the site. The
four terminal nodes in the graph are positioned in the pockets
of the site. Each connection from one of the central,
nonterminal nodes to one of the terminal nodes defines a
possible approach into that pocket that might be engineered
into a combinatorial library designed from a central scaffold.
Connecting the pharmacophore points with a minimal
spanning tree structure causes the topology of the graphs to
contain information about pocket locations because bases of
the pockets are at terminal positions in the tree. The overall
position and connectivity of the sitepoints shows the rough
shape of the active site. This aspartyl protease descriptor has
a roughly linear shape with pockets staggered on either side

of the site, which is characteristic of theâ-sheet the protein
has evolved to recognize. One deficiency found in the
descriptor shown in Figure 4 is that the node in the upper
left corner is not deep enough into the hydrophobic pocket
because many of the fragments in the ensemble are posi-
tioned close to the mouth of the active site near the familiar
salt bridge between Arg 8 and Asp 29. The DOCK force
field is used as a scoring function in positioning the
fragments, and it is known to overemphasize electrostatic
interactions within some active sites. It is expected that a
more accurate representation of solvation55 effects would
diminish the value of the ionic interaction and enhance the
relative population of fragments binding in the hydrophobic
pocket.

In contrast to the HIV protease example in Figure 4, the
thrombin descriptor shown in Figure 1c demonstrates an
example of a pocket of a protein occupied by a terminal node
that indicates a possible warhead position. Awarheadis a
molecular fragment that binds to a recognition feature in a
protein where often the pocket is deep, strong binding
contacts are made, and a limited number of R-group
substitution patterns from the fragment are possible because
it is deeply bound within the pocket. An example of a
warhead bound to a protein is benzamidine complexed in

Figure 3. The architecture level design of two C++ programs and modules is shown. On the left side of the hierarchy is the program that
generates the binding site descriptors. On the right is the program that compares the descriptors.

Figure 4. The top view of the active site of HIV protease with a
six point pharmacophore descriptor shown in yellow, the surface
mapped out by the probe ensemble in transparent red, and also the
Merck inhibitor L700417 and side chains of residues in the site.54

The terminal nodes of the graph are located in pockets, while the
nonterminal nodes represent positions that might be occupied by
scaffolds.
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the S1 pocket of thrombin.40,44Alternately, multivalent nodes
such as those shown in Figure 4 correspond to scaffold
positions of a combinatorial library from which multiple
R-group substitution patterns are possible. The sitepoint
descriptors may correspond to molecular design strategies
that might be pursued for a given active site. The pharma-
cophore sitepoints can be used to search databases by
programs such as the pharmacophore search module in
MOE22 or in work by Mason31 or by de novo design
programs56 such as SPROUT57 or INVENTON.58 Protein
pharmacophores have also been shown to be useful in the
docking process by Joseph-McCarthy and Alvarez.38,39

TESTING ROBUSTNESS TO SMALL CHANGES IN
PROTEIN STRUCTURE

It is important that the descriptors are consistently similar
when they are produced from active sites that are different
by very small amounts; i.e., the methods of generating and
comparing site descriptors should be robust with respect to
small changes in the positions of side chains in an active
site. This was shown using a training set of five thrombin
structures in which four different ligands were bound in
protein cocrystals and the resolution of the structures ranged
from 1.9 Å to 3.3 Å.44 The average RMSD difference of the
R carbons of the aligned thrombin structures was 1.5 Å. The
loop regions of the proteins were then excluded from the
computation because they can be disordered or can take
different conformations due to changes in the packing forces
imparted by different space groups in the crystals. The
RMSD of only theR carbons of the protein cores differed
by an average of 0.7 Å.

The study shown in Figure 5 examines the effect of
fragment minimization and the RMSD smoothing parameter
on the robustness of the resulting descriptors to induced fit
changes in the protein. Pharmacophore descriptors were

generated for each of the five thrombin structures where the
docked fragment ensemble was either minimized or not, and
the centroid smoothing parameter was systematically varied
in five steps from 0.0 to 2.0 Å. This produced 10 descriptors
for each active site where five fragment ensembles had been
minimized before smoothing and five had not. The descrip-
tors generated for each of the five proteins under a given
parameter setting were then compared to each other in a five
by five matrix, leaving the diagonal out. For example, five
descriptors that were generated with minimization and the
smoothing parameter set to 0.5 Å were aligned to each other,
and RMSD of their mapped sitepoints was calculated for
the resulting matrix. Each bar in the graph in Figure 5
represents the average value from twenty comparisons as
only the scores above the diagonal in the matrix were used.
An average similarity of 1.1 Å was achieved when the probe
ensemble was minimized, and a smoothing filter of 0.5 Å
was used. This is the parameter setting used to generate all
descriptors discussed in later sections. The SitePrint method
is robust in the thrombin system with respect to resolution
of the structures and small conformational changes in active
site side chains induced by different ligands bound in the
cocrystal.

METHODS APPLIED TO A DATA SET OF PROTEIN
FAMILIES

A larger data set for binding site classification was formed.
It contains six families of proteins that have been actively
pursued as drug design targets. In each family there are many
structures available that are of high resolution, and each
structure contains a bound ligand. Apo structures were not
examined in this study given the increasing number of
cocrystals that are being generated due to high throughput
crystallography. The protein families and individual struc-
tures are listed in Table 1.

Figure 5. Consistently similar pharmacophore descriptors have been generated, aligned, and scored for RMSD similarity in this data set
of five thrombin cocrystals. The yellow bars indicate that each configuration in the ensemble was minimized before smoothing was performed,
while the green bars indicate no minimization was used. Thex axis shows the different centroid smoothing parameters used on the fragment
ensembles before the ensembles were clustered. They axis reports the value of the averaged similarity for each five by five matrix of
thrombin binding site descriptors.
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The primary objective in examining many protein struc-
tures and multiple protein families is to confirm that the
methods of comparing binding sites are accurate and operate
quickly enough to be used on a large scale. The keys to
comparing descriptors are rapidly generating a group of
alignments and finding an isomorphic relationship between
nodes in the aligned graphs so that nodes can be compared
for scoring. The clique-based alignment technique used in
this module has previously been validated by Makino and
Ewing. Isomorphisms between graphs oriented in three-
dimensional space are discovered using tree search algo-
rithms that are guided by an adapted Ullmann heuristic.51

The implementation of the tree search algorithms permits
depth-first, best-first, and exhaustive methods to be easily
compared.53

The efficiencies of the three tree searching methods were
tested in the data set given in Table 1, and they are shown
in Figure 6. In this study, all pairs of sitepoint descriptors
for the thirty proteins in the training set have been aligned,
and one to one isomorphisms have been generated for each
alignment using the Ullmann matrix, and the RMSD score
for the mapping is calculated. This procedure was repeated
four times with the clique matching tolerance for the
alignments varied systematically from 1 to 4 Å for each of
the three tree searching algorithms. The average time required
to align, map, and score all pairs of sitepoint descriptors in
the training set is plotted. Increasing the clique matching
tolerance increases the number of alignments examined. An
average of five hundred alignments is produced for each
protein pair when using a matching tolerance of 4 Å. This
tolerance was required to generate the global minimum
alignment in all cases.

In this study, the exhaustive search always generated the
global optimum solution. However, it is also the least

efficient. The best-first search, guided by the Ullmann
heuristic adapted to 3D, is approximately 10 times more
efficient. It also generates the global optimum alignment and
mapping for 29 out of the 30 binding site descriptors. The
Ullmann heuristic uses a look-ahead in the search, and it is
critical to making this method fast and accurate enough to
be used on a large scale. The Ullmann method is used to
identify isomorphisms for the 3D alignments in the study
shown in Figure 7.

The Ullmann heuristic speeds and directs the search
process by pruning the breadth of the search tree. We have
adapted it to operate on three-dimensional graphs aligned in
space. It functions by examining two aligned graphs and
creating a distance matrix for each pair of nodes in the
graphs. Only nodes within a certain distance (8.0 Å) of a

Table 1. Protein Structures in the Data Set Used To Test Family
Based Analysis Using Active Site Pharmacophore Descriptors

family protein PDB resolution (Å)

kinase cyclic dependent (CDK2) 1atp59 2.2
kinase transforming growth factorâ 1b6c60 2.6
kinase cyclin dependent 1hck61 1.9
kinase insulin receptor 1ir362 1.9
kinase NAD dependent 2nad63 2.0
NR estrogenR 3erd64 2.0
NR PPARγ 2prg65 2.3
NR thyroidâ 1bsx66 3.7
asp renin 1rne67 2.4
asp pepsin 1pso68 2.0
asp cathepsin D 1lyb69 2.5
asp HIV protease 4phv55 2.1
asp endothiapepsin 4er270 2.0
cys cruzain 1aim71 2.0
cys cathepsin B 1csb72 2.1
cys papain 1pip73 1.7
cys interleukin converting enzyme 1bmq74 2.5
ser trypsin 1tps75 1.9
ser trypsin 1trn76 2.2
ser elastase 1fle77 1.9
ser thrombin 1dwb44 3.3
ser thrombin 1dwc44 3.3
ser thrombin 1dwd44 3.3
ser thrombin 1ppb78 1.9
met aminopeptidase 1igb79 2.0
met stromelysin 1sln80 2.3
met thermolysin 4tmn81 1.7
met collagenase-3 830c82 1.6
met carboxypeptidase 8cpa83 2.0

Figure 6. A comparison of the efficiency of exhaustive, depth-
first, and best-first tree searching methods for performing graph
isomorphism on SitePoint descriptors.

Figure 7. Evaluation of the effect of changing the distance cutoff
for the Ullmann heuristic51,52 on the speed and accuracy of using
best-first search to perform graph isomorphism on aligned, three-
dimensional, SitePoint descriptors is shown. The solid line shows
the change in the RMSD of the best alignment as the distance cutoff
is extended to include more sitepoints. The dashed line shows the
cost in CPU time for including more potential alignments. At 7.5
Å the Ullmann directed best-first search achieves almost perfect
accuracy: reproducing the global minimum in twenty-nine of thirty
cases.
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given node receive a value in the matrix that indicates they
might map to the given node. A row or column of 0’s
indicates that one of the graph nodes cannot be mapped.
Those alignments cannot succeed and are removed without
attempting a searchswhich is a form of look ahead. The
tree searching methods use the matrix to reduce the branching
factor of the trees by only creating members of a new breadth
when there is a 1 between two nodes being considered.
Comparing all possible orientations between two pharma-
cophore descriptors (typically greater than 300) is ac-
complished in less than a CPU second on an SGI workstation.
Using the Ullmann matrix as a heuristic speeds execution
of a best-first search with very little loss of accuracy.

CORRELATING ACTIVE SITE PHARMACOPHORE
DESCRIPTORS WITH ACTIVITY OR FUNCTION

A leave-one-out validation study was performed for each
protein in the test set in order to evaluate the accuracy of
the methodology in correlating the descriptors with function
or activity. In this case protein function is defined based on
activity, and the most representative pharmacophore descrip-
tor for each family is called thegatekeeper. Gatekeepers were
defined as being closest to the centroid of descriptors for
that family. Hypothetical protein families and gatekeepers
are shown in Figure 8. In the study, the descriptor that was
left out was not included in defining the gatekeeper descriptor
for the family. Similarity of the descriptor that was left out
to all of the family gatekeepers was calculated, and family
membership was assigned as that of the most similar
gatekeeper. In the absence of a large amount of screening
data this positive control study shows how accurately
assigned set membership for 3D pharmacophore descriptors
(based on a cluster centroids) relates to known function. This
measurement of protein family membership is made based
on active site descriptors, and it is complementary to methods
that are based on sequence similarity or fold homology.

Metrics were defined based on aspects of cluster member-
ship. Thetightnessof the protein families is the averaged
sum of the RMSD distances between the descriptors derived
from the family members. Familyinterpenetrationis the
fraction of members that are closer to gatekeepers from other
families than to their own.Function was assigned to the
protein that has been left out by measuring its similarity to
that of the gatekeepers and assigning its function as that of
the most similar gatekeeper. The protein that was most often
predicted to be the gatekeeper for a given family in the leave
one out study is reported in Table 2.

This initial study is intended to test the algorithms and
performance of the SitePrint approach in terms of character-

izing active sites and correlating the descriptors with biologi-
cal activity. Large-scale studies of protein active sites that
investigate the biology of the systems will also be undertaken.
The results in Table 2 and Figure 9 show that the centroid-
based family prediction gives better performance for tightly
grouped families.

The pharmacophore descriptors for the nuclear receptors
give a tight, highly correlated group. The estrogen and
peroxisome proliferator-activated receptor bind steroids and
are cocrystallized with estradiol and rosiglitazone, respec-
tively, while the thyroid receptor is cocrystallized with
triiodothyronine. There is similarity between the overall
shapes of the three binding sites. Conversely, interactions
with metals in the metalloprotease active sites are known to
be a distinguishing feature for ligands binding them. The
overall shape of the metalloprotease binding sites, in this
study, is a less useful feature in classifying the members of
that family. The primary result from the study shown in Table
2 is that the methods of forming, aligning, and calculating
similarity of the SitePrint descriptors have been used to
predict protein function in four out of the six families in the
study.

CONCLUSIONS

The SitePrint program creates 3D descriptors from en-
sembles of molecular fragments docked into protein active
sites. The descriptors have been formed in the volume
occupied by ligands with the goal of later using them in
database searches to augment screening collections and focus
combinatorial libraries with compounds biased either toward,
or away from, families of proteins. The method is robust
against small conformational changes such as those that can
be induced by different ligands binding to the same protein
or by different crystallization conditions. In a positive control
study using thrombin, consistently similar descriptors were
generated where the RMSD of aligned pharmacophores is

Figure 8. A schematic of three hypothetical protein families
organized by the similarity of pharmacophore descriptors generated
from their binding sites. Gatekeepers, which are the centroid of
each cluster, are drawn in bold.

Table 2. Values for the Metrics in the Analysis of the Protein
Binding Sites

protein
family tightness interpenetration

% correct
classification gatekeeper

kinase 1.9+- 1.3 0.40 60 c-AMP
NR 1.2+- 0.9 0.33 67 TRâ
Asp 1.5+- 0.8 0.20 80 pepsin
Ser 2.1+- 0.9 0.29 71 thrombin (1dwd)
Cys 2.6+- 1.6 0.75 25 cruzain
Met 2.2+- 1.3 0.60 40 collagenase 3

Figure 9. The covariance of cluster tightness and correct assign-
ment of function of the protein families used in this study. Superior
classification of function is seen for tighter clusters.
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0.4 Å greater than the RMSD ofR-carbons in the cores of
the aligned proteins. The proteins were not prealigned before
the descriptors were created, so the pharmacophore descrip-
tors were aligned, mapped, and scored as similar.

Both speed and accuracy of execution are issues in using
these methods on a large scale, such as studies where all
known proteins structures are evaluated. It has been dem-
onstrated that an efficient strategy for orienting and perform-
ing graph isomorphism on SitePoint descriptors overlaid in
three dimensions has been developed. This approach uses
clique-based alignment and a version of the Ullmann
heuristic adapted to 3D space in combination with a best-
first search. The speed of execution of the method is an order
of magnitude faster than an exhaustive search: comparing
all possible orientations between two descriptors is ac-
complished in less than a CPU second on an SGI Octane.
The method reproduces the globally optimal solution in
twenty-nine out of thirty cases and differs by 0.2 Å in the
other case. The adapted Ullmann heuristic is an effective
and accurate way of performing a three-dimensional similar-
ity search.

The methodology has been used to select representative
members from protein families based on structural features
of their active sites. Selecting gatekeepers imparts a hierarchy
to proteins based on both known functions and calculated
similarity of binding sites rather than on sequence similarity
or overall fold homology. Potential uses of the gatekeepers
include predicting function from structure and organizing
proteins so that ligand binding information for a family may
be obtained by screening against a limited number of
biological targets. This is a practical consideration for
screening groups working in protein families such as the
kinases that number greater than five hundred members
where primary and secondary screening can only be per-
formed on a subset of the family. The SitePrint descriptors
have been used to compare proteins based on their active
site features and predict the functions of therapeutically
significant classes of proteins. This demonstrates a correlation
between the binding site descriptors and biological classes
in a way that may have utility in family based drug discovery.
Further studies will be carried out to show enrichment rates
obtained from 3D pharmacophore searches with these
descriptors.
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