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Abstract

In this paper a method to extract curvilinear structures
and their widths from digital images is presented. The ap-
proach is based on differential geometric properties of the
image function. For each pixel, the second order Taylor
polynomial is computed by convolving the image with the
derivatives of a Gaussian smoothing kernel. Line points are
required to have a vanishing gradient and a high curvature
in the direction perpendicular to the line. The resulting
filter generates a single response for each line. The line
position can be determined with sub-pixel accuracy and the
algorithm scales to lines of arbitrary width. A procedure to
determine the width of the lines is described. It is based on
locating the corresponding edge points of each line point in
the direction perpendicular to the line with sub-pixel accu-
racy.

1. Introduction

Extracting lines in digital images is an important low-
level operation in computer vision that has many applica-
tions, especially in photogrammetric and remote sensing
tasks. There it can be used to extract linear features, like
roads, railroads, or rivers, from satellite or low resolution
aerial imagery. For some of these mapping tasks the extrac-
tion of the line width can be quite important.

The published schemes to line detection can be classified
into three categories. The first approach detects lines by
only considering the gray values of the image [3, 6]. Line
points are extracted by using purely local criteria, e.g., lo-
cal gray value differences. Since this will generate a lot
of false hypotheses for line points, elaborate and computa-
tionally expensive perceptual grouping schemes have to be
used to select salient lines in the image [2, 6]. These ap-
proaches usually assume lines to have a certain maximum
width. Therefore, the line width is not extracted. Further-
more, lines cannot be extracted with sub-pixel accuracy.

The second approach is to regard lines as objects having
parallel edges [7, 9]. In a first step, the local direction
of a line is determined for each pixel. Then two tuned
edge detection filters are used to extract the edges of the
line and combined non-linearily [7]. The advantage of this
approach is that since the edge detection filters are based
on the derivatives of Gaussian kernels, the procedure can
be iterated over the scale-space parameter � to detect lines
of arbitrary widths. By maximizing the response in scale-
space, a rough estimate of the line width can be obtained.
However, because special directional edge detection filters
have to be constructed that are not separable, the approach
is computationally expensive.

In the third approach, the image is regarded as a functionz(x; y) and lines are detected as ridges and ravines in this
function by locally approximating the image by its second
or third order Taylor polynomial. The coefficients of this
polynomial are usually determined by using the facet model,
i.e., by a least squares fit of the polynomial to the image data
over a window of a certain size [4, 1, 5]. The direction of
the line is determined from the Hessian matrix of the Taylor
polynomial. Line points are then found by selecting pixels
that have a high second directional derivative, i.e., a high
curvature, perpendicular to the line direction. The advantage
of this approach is that lines can be detected with sub-pixel
accuracy without constructing specialized directional filters.
However, this approach usually leads to multiple responses
to a single line, especially when masks larger than 5� 5 are
used to suppress noise [8, 1]. Furthermore, these approaches
do not attempt to extract the line width.

In this paper an approach to line detection that uses the
differential geometric approach of the third category of op-
erators will be presented. In contrast to those, the coeffi-
cients of a second order Taylor polynomial are determined
by convolving the image with the derivatives of a Gaussian
smoothing kernel. Because of this, the algorithm can be
scaled to lines of arbitrary width. Additionally, an algo-
rithm to determine the width of the line for each line point
is presented.
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2. Detection of Line Points

2.1. Models for Lines in 1D

Many approaches to line detection consider lines in 1D
to be bar-shaped, i.e., the ideal line of width 2w and heighth is assumed to have a profile given byfb(x) = � h; jxj � w0; jxj > w : (1)

However, due to sampling effects of the sensor lines usually
do not have this profile (see [8]). Therefore, in this paper
lines are assumed to have an approximately parabolic profile.
The ideal line of width 2w and height h is then given byfp(x) = � h�1� (x=w)2�; jxj � w0; jxj > w : (2)

The line detection algorithm will be developed for this type
of profile, but the implications of applying it to bar-shaped
lines will be considered later on.

2.2. Detection of Lines in 1D

In order to detect lines with a profile given by (2) in
an image z(x) without noise, it is sufficient to determine
the points where z0(x) vanishes. However, it is usually
convenient to select only salient lines. A useful criterion
for salient lines is the magnitude of the second derivativez00(x) in the point where z0(x) = 0. Bright lines on a dark
background will have z00(x) � 0 while dark lines on a
bright background will have z00(x)� 0.

Real images will contain a significant amount of noise.
Therefore, the scheme described above is not sufficient. In
this case, the first and second derivatives of z(x) should be
estimated by convolving the image with the derivatives of
the Gaussian smoothing kernelg�(x) = 1p2�� e� x22�2 : (3)

The responses, i.e., the estimated derivatives, are:rp(x; �; w; h) = g�(x) � fp(x) (4)r0p(x; �; w; h) = g0�(x) � fp(x) (5)r00p (x; �; w; h) = g00�(x) � fp(x) : (6)

The detailed equations can be found in [8].
Equations (4)–(6) give a complete scale-space descrip-

tion of the ideal line profile fp when it is convolved with
the derivatives of Gaussian kernels. It is apparent from
these equations that r0p(x; �; w; h) = 0 , x = 0 for all �.
Furthermore, r00p (x; �; w; h) takes on its maximum negative

value at x = 0 for all �. Hence it is possible to determine
the precise location of the line for all �.

For a bar profile without noise no simple criterion that
depends only on z0(x) and z00(x) can be given since z0(x)
and z00(x) vanish in the interval [�w;w]. However, if the
bar profile is convolved with the derivatives of the Gaussian
kernel, a smooth function is obtained. The responses are:rb(x; �; w; h) = h���(x+ w) � ��(x� w)� (7)r0b(x; �; w; h) = h�g�(x + w)� g�(x � w)� (8)r00b (x; �; w; h) = h�g0�(x + w)� g0�(x � w)� : (9)

It can be seen that bar profile gradually becomes “round” at
its corners the larger � is chosen. The first derivative will
vanish only atx = 0 for all � > 0 because of the infinite sup-
port of g�(x). However, the second derivative r00b (x; �; w; h)
will not take on its maximum negative value for small �.
Furthermore, there will be two distinct minima in the inter-
val [�w;w]. It is, however, desirable for r00b (x; �; w; h) to
exhibit a clearly defined minimum at x = 0. It can be shown
that � � w=p3 (10)

has to hold for this. Furthermore, it can be shown thatr00b (x; �; w; h) will have its maximum negative response in
scale-space for � = w=p3. This means that the same
scheme as described above can be used to detect bar-shaped
lines as well. However, the restriction on � must be ob-
served. The same analysis could be carried out for other
types of lines as well, e.g., roof-shaped lines. However, it
is expected that no fundamentally different results will be
obtained. For all � above a certain value that depends on
the line type the responses will show the desired behaviour
of z0(0) = 0 and z00(0) � 0 with z00(x) having a distinct
minimum.

2.3. Lines in 1D, Discrete Case

The analysis so far has been carried out for analytical
functions z(x). For discrete signals only two modifications
have to be made. The first one is the choice of how to imple-
ment the convolution in discrete space. Integrated Gaussian
kernels were chosen as convolutions masks, mainly because
they give automatic normalization of the masks and a direct
criterion on how many coefficients are needed for a given
approximation error. The integrated Gaussian is obtained if
one regards the discrete image zn as a piecewise constant
function z(x) = zn for x 2 (n� 12 ; n+ 12 ] and integrating the
continuous Gaussian kernel over this area. The convolution
masks will be given by:gn;� = ��(n+ 12 )� ��(n� 12 ) (11)g0n;� = g�(n+ 12 )� g�(n� 12 ) (12)g00n;� = g0�(n+ 12 )� g0�(n� 12 ) : (13)
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The approximation error is set to 10�4 in each case.
The second problem that has to be solved is how to deter-

mine the location of a line in the discrete case. In principle,
one could use a zero crossing detector for this task. How-
ever, this would yield the position of the line only with pixel
accuracy. In order to overcome this, the second order Tay-
lor polynomial of zn is examined. Let r, r0, and r00 be the
locally estimated derivatives at point n of the image that are
obtained by convolving the image with gn, g0n, and g00n. Then
the Taylor polynomial is given byp(x) = r + r0x+ 12r00x2 : (14)

The position of the line, i.e., the point where p0(x) = 0 isx = � r0r00 : (15)

The pointn is declared a line point if this position falls within
the pixel’s boundaries, i.e., if x 2 [� 12 ; 12 ] and the second
derivative r00 is larger than a user-specified threshold. Please
note that in order to extract lines, the response r, which is the
smoothed local image intensity, is unnecessary and therefore
does not need to be computed.

2.4. Detection of Lines in 2D

Curvilinear structures in 2D can be modeled as curvess(t) that exhibit a characteristic 1D line profile (e.g.,fp or fb)
in the direction perpendicular to the line, i.e., perpendicular
to s0(t). Let this direction be n(t). This means that the first
directional derivative in the direction n(t) should vanish and
the second directional derivative should be of large absolute
value. No assumption can be made about the derivatives in
the direction of s0(t). For example, let z(x; y) be an image
that results from sweeping the profile fp along a circle s(t) of
radius r. The second directional derivative perpendicular tos0(t) will have a large negative value, as desired. However,
the second directional derivative along s0(t) will also be
non-zero.

The only problem that remains is to compute the direc-
tion of the line locally for each image point. In order to do
this, the partial derivatives rx, ry, rxx, rxy, and ryy of the
image will have to be estimated. This can be done by con-
volving the image with the appropriate 2D Gaussian kernels.
The direction in which the second directional derivative ofz(x; y) takes on its maximum absolute value will be used
as the direction n(t). This direction can be determined by
calculating the eigenvalues and eigenvectors of the Hessian
matrix H(x; y) = � rxx rxyrxy ryy � : (16)

The calculation can be done in a numerically stable and effi-
cient way by using one Jacobi rotation to annihilate the rxy

term. Let the eigenvector corresponding to the eigenvalue
of maximum absolute value, i.e., the direction perpendicular
to the line, be given by (nx; ny) with k(nx; ny)k2 = 1. As
in the 1D case, a quadratic polynomial will be used to deter-
mine whether the first directional derivative along (nx; ny)
vanishes within the current pixel. This point will be given
by (px; py) = (tnx; tny) ; (17)

where t = � rxnx + rynyrxxn2x + 2rxynxny + ryyn2y : (18)

Again, (px; py) 2 [� 12 ; 12 ] � [� 12 ; 12 ] is required in order
for a point to be declared a line point. As in the 1D case,
the second directional derivative along (nx; ny), i.e., the
maximum eigenvalue, can be used to select salient lines.

2.5. Examples

Figure 1 gives an example of the results obtainable with
the presented approach. Here, bright lines were extracted
from an image of an ideal parabolic line (Fig. 1(a)) and
a bar-shaped line (Fig. 1(b)) and were linked into contours
using the algorithm given in [8]. In both cases the line width
is 6 pixels (w = 3) and the angle of the line is 30�. The
true position of the line is indicated by the medium gray
line. It is evident that the detected line is in exactly the right
position, except at the borders of the image, where in this
implementation the pixel values were mirrored.

(a) Ideal Parabolic Line (b) Bar-Shaped Line

Figure 1. Lines detected in images of an ideal
parabolic line (a) and a bar-shaped line (b)
(� = 1.8)

3. Determination of the Line Width

In many applications it is entirely sufficient to know the
exact position of the line in an image. However, often it is
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also very important to know the width of the line for each
line point. Therefore, this section will present an approach
to solve this problem.

According to (1) and (2), both the parabolic line and
the bar-shaped line will exhibit a maximum in the absolute
value of the gradient at the edges of the line. Hence, to
detect the width of the line, for each line point the closest
points in the image (to the left and to the right of the line
point) where the absolute value of the gradient takes on its
maximum value need to be determined. Of course, these
points should be searched for exclusively along a line in the
direction perpendicular to the current line. Only a trivial
modification of the Bresenham line drawing algorithm is
necessary to yield all pixels that this line will intersect. The
analysis in Sect. 2.2 shows that it is sensible to search for
edges only in a restricted neighbourhood of the line. Ideally,
the line to search would have a length of

p
3�. In order to

ensure that most of the edge points are detected, the current
implementation uses a slightly larger line length of 2.5�.

In an image of the absolute value of the gradient of the
image the desired edges will appear as bright lines. Hence,
the algorithm to detect line points described Sect. 2 could in
principle be used on the gradient image to detect the edges of
the line with sub-pixel accuracy. However, this would mean
that some additional smoothing would be applied to the
gradient image. This is undesireable since it would destroy
the correlation between the location of the line points and
the location of the corresponding edge points. Therefore,
the edge points in the gradient image are extracted with a
facet model line detector which uses the same principles as
described in Sect. 2 but uses different convolution masks
to determine the partial derivatives of the image [1, 4, 8].
The smallest possible mask size (3 � 3) is used since this
will result in the most accurate localization of the edge
points while yielding as little of the problems mentioned
in Sect. 1 as possible. It has the additional benefit that the
computational costs are relatively low.

Figure 2 shows the result of applying this approach to
the images of Fig. 1. The detected lines are shown as dark
contours in the image, while the corresponding edge points
are displayed as light contours. The line in Fig. 2(a) is an
parabolic line with w = 3. The algorithm estimates the line
width to be � 2.46. For the bar-shaped line with w = 3
shown in Fig. 2(b) the estimated line width is � 3.08. In
both cases this is a very good approximation of the real line
width, especially when the discrete nature of the image is
taken into account.

Considering (5) and (8) again, it is not surprising that
for the parabolic line the width is estimated too low. The
estimated width of the line strongly depends on the values
of � and w. For values of � lying in a range between 0 and� 0.85w the width will be estimated slightly too low for this
type of profile, but never less than � 70% of the real line

(a) Ideal Parabolic Line (b) Bar-Shaped Line

Figure 2. Lines and line widths in images of
an ideal parabolic line (a) and a bar-shaped
line (b) (� = 1.8)

width. For higher values of � the estimated line width will
be higher than the real line width. For bar-shaped lines the
width of the line will never be estimated too low. Its width
will be very close to the actual line width in a range between
0 and� w=p3. Again, for large values of � the width will be
estimated too high. It will be interesting to see whether the
estimated line widths can be adjusted to the real line widths
by using (5) and (8). These equations give a prediction on
where the corresponding edges of a line will be estimated as
a function depending on � and w. In principle, the inverse
of this function could be used to correct the estimated line
widths to the true line widths. Further research will focus
on this topic.

4. Further Examples

In this section two more examples of the versatility of the
proposed approach will be given. Figures 3(a) and 3(c) show
aerial images of different resolutions. The algorithm was
applied with thresholds based on the expected maximum
line width and minimum contrast, according to the scale-
space analysis given in [8]. It can be seen from Fig. 3(b)
and 3(d) that the algorithm is able to extract most of the
salient lines from the images. As in Sect. 3, dark contours
are used to display the line position and light contours to
display the line width.

The locations of the detected lines in Fig. 3(b) are very
accurate, and the detected line width corresponds closely to
the real line width. The only problematic area is the lower
middle part of the image where nearby strong edges result
in the line width to be estimated to large. For the image
in Fig. 3(d) the locations of the lines are fairly accurate as
well, even in those parts of the image where trees are casting
shadows onto the roads. One exception is the bottommost
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(a) Input image (b) Detected lines

(c) Input image (d) Detected lines

Figure 3. Lines detected in aerial images

line in the image which is detected in a slightly shifted
location because it has strongly differing gray values on
each side of the line. This effect is to be expected and has
been analyzed in detail in [8]. Furthermore, it can be seen
that the algorithm is able to extract lines of varying width
without problems. The estimated widths are very close to
the real widths of the lines. In some cases, however, an edge
point corresponding to a line point has not been found due to
the fact that the line to search for edges had limited length.
Furthermore, some very strong edges again cause the line
width to be estimated too high in some places. The reason
for this is that in real images the strongest edge perpendicular
to the line direction does not always correspond to the true
line edge and therefore the witdh is wrongly estimated. If
the line width is assumed to have some regularity an outlier
detection mechanism might be useful to detect and correct
such cases.

5. Conclusions

In this paper a low-level approach to the extraction of
curvilinear structures and their widths from images was pre-
sented. The advantages of this approach are that line ex-
traction is done using only the first and second directional
derivatives of the image. In contrast to [7], no specialized
directional filters are needed. This makes the approach com-

putationally efficient. Furthermore, since the derivatives are
estimated by convolving the image with the derivatives of a
Gaussian smoothing kernel, only a single response is gener-
ated for each line.

An algorithm has been presented to extract the width of
the line for each line point. The algorithm is computationally
efficient since it looks for the edge points of a line starting
at the line points already found and using a search space
of fixed size. Again, no specialized directional filters are
needed. The algorithm yields the sub-pixel position of the
left and right edges. For bar-shaped lines the estimate of the
width is very precise, while for parabolic shaped lines the
widths are slightly underestimated in some cases. Further
research will focus on whether it is possible to correct the
estimate in such cases.
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