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Abstract

In this paper a method to extract curvilinear structures
and their widths from digital images is presented. The ap-
proach is based on differential geometric properties of the
image function. For each pixel, the second order Taylor
polynomial is computed by convolving the image with the
derivatives of a Gaussian smoothing kernel. Line pointsare
required to have a vanishing gradient and a high curvature
in the direction perpendicular to the line. The resulting
filter generates a single response for each line. The line
position can be determined with sub-pixel accuracy and the
algorithm scalesto lines of arbitrary width. A procedure to
determine the width of the linesis described. It isbased on
locating the corresponding edge points of each line point in
the direction perpendicular to the line with sub-pixel accu-

racy.

1. Introduction

Extracting lines in digital images is an important |ow-
level operation in computer vision that has many applica
tions, especially in photogrammetric and remote sensing
tasks. There it can be used to extract linear features, like
roads, railroads, or rivers, from satellite or low resolution
aerial imagery. For some of these mapping tasks the extrac-
tion of the line width can be quite important.

The published schemesto line detection can be classified
into three categories. The first approach detects lines by
only considering the gray values of the image [3, 6]. Line
points are extracted by using purely local criteria, e.g., lo-
cal gray value differences. Since this will generate a lot
of false hypotheses for line points, elaborate and computa-
tionally expensive perceptual grouping schemes have to be
used to select salient lines in the image [2, 6]. These ap-
proaches usually assume lines to have a certain maximum
width. Therefore, the line width is not extracted. Further-
more, lines cannot be extracted with sub-pixel accuracy.

The second approach is to regard lines as objects having
parallel edges [7, 9]. In a first step, the local direction
of aline is determined for each pixel. Then two tuned
edge detection filters are used to extract the edges of the
line and combined non-linearily [7]. The advantage of this
approach is that since the edge detection filters are based
on the derivatives of Gaussian kernels, the procedure can
be iterated over the scale-space parameter o to detect lines
of arbitrary widths. By maximizing the response in scale-
space, a rough estimate of the line width can be obtained.
However, because special directional edge detection filters
have to be constructed that are not separable, the approach
is computationally expensive.

In the third approach, theimage isregarded asafunction
z(x,y) and lines are detected as ridges and ravines in this
function by locally approximating the image by its second
or third order Taylor polynomial. The coefficients of this
polynomial are usually determined by using thefacet mode,
i.e., by aleast squaresfit of the polynomial to theimage data
over awindow of a certain size [4, 1, 5]. The direction of
theline is determined from the Hessian matrix of the Taylor
polynomial. Line points are then found by selecting pixels
that have a high second directional derivative, i.e., a high
curvature, perpendicular to thelinedirection. Theadvantage
of this approach is that lines can be detected with sub-pixel
accuracy without constructing specialized directiona filters.
However, this approach usually leads to multiple responses
toasingleline, especialy when maskslarger than 5 x 5 are
used to suppressnoise[8, 1]. Furthermore, these approaches
do not attempt to extract the line width.

In this paper an approach to line detection that uses the
differential geometric approach of the third category of op-
erators will be presented. In contrast to those, the coeffi-
cients of a second order Taylor polynomial are determined
by convolving the image with the derivatives of a Gaussian
smoothing kernel. Because of this, the algorithm can be
scaled to lines of arbitrary width. Additionally, an ago-
rithm to determine the width of the line for each line point
is presented.



2. Detection of Line Points
2.1. Modelsfor Linesin 1D

Many approaches to line detection consider lines in 1D
to be bar-shaped, i.e., theideal line of width 2w and height
h isassumed to have a profile given by

h, |z|<w

fb(f”):{ 0, |a|>w .

However, dueto sampling effects of the sensor lines usually
do not have this profile (see [8]). Therefore, in this paper
linesare assumed to have an approximately parabolic profile.
Theidea line of width 2w and height & isthen given by
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Theline detection algorithm will be developed for thistype
of profile, but the implications of applying it to bar-shaped
lineswill be considered later on.

2.2. Detection of Linesin 1D

In order to detect lines with a profile given by (2) in
an image z(x) without noise, it is sufficient to determine
the points where z'(x) vanishes. However, it is usualy
convenient to select only salient lines. A useful criterion
for salient lines is the magnitude of the second derivative
2" (x) in the point where 2’'(x) = 0. Bright lines on a dark
background will have " (x) < 0 while dark lines on a
bright background will have 2"’ (z) > 0.

Real images will contain a significant amount of noise.
Therefore, the scheme described above is not sufficient. In
this case, the first and second derivatives of z(z) should be
estimated by convolving the image with the derivatives of
the Gaussian smoothing kernel
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Theresponses, i.e., the estimated derivatives, are:

TP(I‘/U‘/w‘/ h) = go(x) * fp(fp) (4)
o h) = () fyln) ©)
rp(zo,w h) = gy(z)* fp(z) (6)

The detailed equations can be found in [8].

Equations (4)—(6) give a complete scale-space descrip-
tion of the ided line profile f, when it is convolved with
the derivatives of Gaussian kernels. It is apparent from
these equationsthat 7, (z, 0, w,h) = 0 < = = Oforal o.
Furthermore, r))(z, o, w, h) takes on its maximum negative

valueat x = Ofor al 0. Henceit is possible to determine
the precise location of thelinefor al o.

For a bar profile without noise no simple criterion that
depends only on z'(z) and 2" (z) can be given since z'(x)
and z''(z) vanish in the interval [—w, w]. However, if the
bar profileis convolved with the derivatives of the Gaussian
kernel, a smooth function is obtained. The responses are:

h(¢o(x + w) - ¢0—(5E - w)) (7)
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h(g,(x +w) — gh(x —w)) . (9)

It can be seen that bar profile gradually becomes“round” at
its corners the larger o is chosen. The first derivative will
vanishonly at z = Oforal o > 0becauseof theinfinitesup-
portof g, (). However, thesecond derivativer; (z, o, w, h)
will not take on its maximum negative value for small o.
Furthermore, there will be two distinct minimain the inter-
val [-w, w]. Itis, however, desirable for ) (z, 0, w, h) to
exhibitaclearly defined minimumat = = 0. It can be shown
that
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has to hold for this. Furthermore, it can be shown that
ry(z,0,w, h) will have its maximum negative response in
scale-space for o = w/+/3. This means that the same
scheme as described above can be used to detect bar-shaped
lines as well. However, the restriction on o must be ob-
served. The same analysis could be carried out for other
types of lines as well, e.g., roof-shaped lines. However, it
is expected that no fundamentally different results will be
obtained. For al o above a certain value that depends on
the line type the responses will show the desired behaviour
of 2/(0) = 0and 2"'(0) < O with 2" (z) having a distinct
minimum.

2.3.Linesin 1D, Discrete Case

The analysis so far has been carried out for analytical
functions z(z). For discrete signals only two modifications
haveto be made. Thefirst oneisthe choice of how toimple-
ment the convolution in discrete space. |ntegrated Gaussian
kernelswere chosen as convol utions masks, mainly because
they give automatic normalization of the masks and a direct
criterion on how many coefficients are needed for a given
approximation error. Theintegrated Gaussian is obtained if
one regards the discrete image z,, as a piecewise constant
function z(z) = 2z, forz € (n—%, n+1] andintegrating the
continuous Gaussian kernel over thisarea. The convolution
masks will be given by:

In,oc = ¢a(n+%)_¢a(n_%) (11)
9o = Yoln+3)—go(n—3) (12)
Gno = gon+3)—ghn—1%) (13)



The approximation error is set to 10~* in each case.

The second problem that hasto be solved ishow to deter-
minethelocation of alinein the discrete case. In principle,
one could use a zero crossing detector for this task. How-
ever, thiswould yield the position of theline only with pixel
accuracy. In order to overcome this, the second order Tay-
lor polynomial of z,, isexamined. Let r, »', and r"" be the
locally estimated derivativesat point n of theimage that are
obtained by convolvingtheimagewith g,,, g,,, and g//. Then
the Taylor polynomial is given by

1
plx) =r+r'z+ 51“”332 . (14)

The position of theline, i.e., the point where p’(z) = Ois

,r,l

(15)

Thepoint n isdeclaredalinepoint if thispositionfallswithin
the pixel’s boundaries, i.e., if z € [—1, 1] and the second
derivativer” islarger than auser-specified threshold. Please
notethat in order to extract lines, theresponse r, whichisthe
smoothed local imageintensity, isunnecessary and therefore

does not need to be computed.
2.4. Detection of Linesin 2D

Curvilinear structures in 2D can be modeled as curves
s(t) that exhibit acharacteristic 1D lineprofile (e.g., f,, or f)
in the direction perpendicular to the line, i.e., perpendicular
to s'(¢). Let thisdirection be n(¢). This meansthat the first
directional derivativein thedirection n(t) should vanish and
the second directional derivative should be of large absolute
value. No assumption can be made about the derivativesin
the direction of s'(t). For example, let z(z, y) be an image
that resultsfrom sweeping theprofile f, longacircle s(t) of
radiusr. The second directional derivative perpendicular to
s'(t) will have alarge negative value, as desired. However,
the second directiona derivative along s'(t) will aso be
non-zero.

The only problem that remains is to compute the direc-
tion of the line locally for each image point. In order to do
this, the partial derivativesr,, ry, 74z, 72y, @nd r,, of the
image will have to be estimated. This can be done by con-
volving theimagewith the appropriate 2D Gaussian kernels.
The direction in which the second directional derivative of
z(x,y) takes on its maximum absolute value will be used
as the direction n(t). This direction can be determined by
calculating the eigenvalues and eigenvectors of the Hessian
matrix

_ wa Tacy
e = (7 ) (19)
The calculation can be donein anumerically stable and effi-
cient way by using one Jacobi rotation to annihilate the r,,,

term. Let the eigenvector corresponding to the eigenvalue
of maximum absolutevalue, i.e., the direction perpendicul ar
to theline, be given by (n.,n,) with |[(n,,ny)l[, = 1. As
inthe 1D case, aquadratic polynomial will be used to deter-
mine whether the first directional derivativealong (n,, ny)
vanishes within the current pixel. This point will be given
by

(e, Py) = (tna, tny) | a7)
where
TeNg + TyNy

t=— - = .
TeaN2 + 2Tgy Mgy + Tyyn?

(18)

Again, (p..py) € [—1,3] x [-1, 3] isrequired in order
for a point to be declared a line point. Asin the 1D case,
the second directional derivative along (n,,n,), i.e., the

maximum eigenval ue, can be used to select salient lines.
2.5. Examples

Figure 1 gives an example of the results obtainable with
the presented approach. Here, bright lines were extracted
from an image of an ideal parabolic line (Fig. 1(a)) and
a bar-shaped line (Fig. 1(b)) and were linked into contours
usingthealgorithm givenin [8]. Inboth casesthelinewidth
is 6 pixels (w = 3) and the angle of the line is 30°. The
true position of the line is indicated by the medium gray
line. It isevident that the detected lineisin exactly theright
position, except at the borders of the image, where in this
implementation the pixel valueswere mirrored.

(a) Ideal Parabolic Line

(b) Bar-Shaped Line

Figure 1. Lines detected in images of an ideal
parabolic line (a) and a bar-shaped line (b)
(0 =1.8)

w

. Determination of the Line Width

In many applicationsit is entirely sufficient to know the
exact position of the line in an image. However, ofteniit is



also very important to know the width of the line for each
line point. Therefore, this section will present an approach
to solve this problem.

According to (1) and (2), both the parabolic line and
the bar-shaped line will exhibit a maximum in the absolute
value of the gradient at the edges of the line. Hence, to
detect the width of the line, for each line point the closest
points in the image (to the left and to the right of the line
point) where the absolute value of the gradient takes on its
maximum value need to be determined. Of course, these
points should be searched for exclusively along alinein the
direction perpendicular to the current line. Only a trivial
modification of the Bresenham line drawing algorithm is
necessary to yield all pixelsthat thislinewill intersect. The
analysisin Sect. 2.2 shows that it is sensible to search for
edgesonly in arestricted neighbourhood of theline. Ideally,
the line to search would have a length of v/3c. In order to
ensure that most of the edge points are detected, the current
implementation uses a dlightly larger line length of 2.5¢.

In an image of the absolute value of the gradient of the
image the desired edges will appear as bright lines. Hence,
the algorithm to detect line points described Sect. 2 could in
principlebeused onthe gradient imageto detect the edges of
theline with sub-pixel accuracy. However, thiswould mean
that some additional smoothing would be applied to the
gradient image. Thisis undesireable since it would destroy
the correlation between the location of the line points and
the location of the corresponding edge points. Therefore,
the edge points in the gradient image are extracted with a
facet model line detector which uses the same principles as
described in Sect. 2 but uses different convolution masks
to determine the partial derivatives of the image [1, 4, §].
The smallest possible mask size (3 x 3) is used since this
will result in the most accurate localization of the edge
points while yielding as little of the problems mentioned
in Sect. 1 as possible. It has the additional benefit that the
computational costs are relatively low.

Figure 2 shows the result of applying this approach to
the images of Fig. 1. The detected lines are shown as dark
contoursin the image, while the corresponding edge points
are displayed as light contours. Thelinein Fig. 2(a) isan
parabolic linewith w = 3. The algorithm estimates the line
width to be ~ 2.46. For the bar-shaped line with w = 3
shown in Fig. 2(b) the estimated line width is ~ 3.08. In
both cases thisis avery good approximation of the real line
width, especialy when the discrete nature of the image is
taken into account.

Considering (5) and (8) again, it is not surprising that
for the parabolic line the width is estimated too low. The
estimated width of the line strongly depends on the values
of ¢ and w. For values of ¢ lying in arange between 0 and
~ 0.85w thewidth will be estimated dlightly too low for this
type of profile, but never less than =~ 70% of the real line

(a) Ideal Parabolic Line

(b) Bar-Shaped Line

Figure 2. Lines and line widths in images of
an ideal parabolic line (a) and a bar-shaped
line (b) (c = 1.8)

width. For higher values of ¢ the estimated line width will
be higher than the real line width. For bar-shaped lines the
width of the line will never be estimated too low. Itswidth
will bevery closeto the actual linewidth in arange between
Oand~ w/+/3. Again, for largevaluesof o thewidthwill be
estimated too high. It will be interesting to see whether the
estimated line widths can be adjusted to the real line widths
by using (5) and (8). These equations give a prediction on
wherethe corresponding edges of alinewill be estimated as
afunction depending on o and w. In principle, the inverse
of this function could be used to correct the estimated line
widths to the true line widths. Further research will focus
on thistopic.

4. Further Examples

In this section two more examples of the versatility of the
proposed approach will begiven. Figures3(a) and 3(c) show
aerial images of different resolutions. The agorithm was
applied with thresholds based on the expected maximum
line width and minimum contrast, according to the scale-
space analysis given in [8]. It can be seen from Fig. 3(b)
and 3(d) that the algorithm is able to extract most of the
sdlient lines from the images. Asin Sect. 3, dark contours
are used to display the line position and light contours to
display the line width.

The locations of the detected lines in Fig. 3(b) are very
accurate, and the detected line width corresponds closely to
the real line width. The only problematic area is the lower
middle part of the image where nearby strong edges result
in the line width to be estimated to large. For the image
in Fig. 3(d) the locations of the lines are fairly accurate as
well, evenin those parts of theimagewheretreesare casting
shadows onto the roads. One exception is the bottommost
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(d) Detected lines

(c)- Inpt iage

Figure 3. Lines detected in aerial images

line in the image which is detected in a dightly shifted
location because it has strongly differing gray values on
each side of the line. This effect is to be expected and has
been analyzed in detail in [8]. Furthermore, it can be seen
that the algorithm is able to extract lines of varying width
without problems. The estimated widths are very close to
thereal widths of thelines. In some cases, however, an edge
point corresponding to aline point has not been found dueto
the fact that the line to search for edges had limited length.
Furthermore, some very strong edges again cause the line
width to be estimated too high in some places. The reason
for thisisthat inreal imagesthe strongest edge perpendicular
to the line direction does not always correspond to the true
line edge and therefore the witdh is wrongly estimated. If
the line width is assumed to have some regularity an outlier
detection mechanism might be useful to detect and correct
such cases.

5. Conclusions

In this paper a low-level approach to the extraction of
curvilinear structures and their widthsfrom imageswas pre-
sented. The advantages of this approach are that line ex-
traction is done using only the first and second directional
derivatives of the image. In contrast to [7], no specialized
directional filtersare needed. Thismakesthe approach com-

putationally efficient. Furthermore, sincethe derivativesare
estimated by convolving theimage with the derivatives of a
Gaussian smoothing kernel, only asingle responseis gener-
ated for each line.

An algorithm has been presented to extract the width of
thelinefor eachlinepoint. Thealgorithmiscomputationally
efficient since it looks for the edge points of a line starting
at the line points aready found and using a search space
of fixed size. Again, no specialized directiona filters are
needed. The algorithm yields the sub-pixel position of the
left and right edges. For bar-shaped linesthe estimate of the
width is very precise, while for parabolic shaped lines the
widths are dightly underestimated in some cases. Further
research will focus on whether it is possible to correct the
estimate in such cases.
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