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ABSTRACT

Numerical methods for design sensitivity analysis of multibody dynamics are
presented. An analysis of the index-3 adjoint differential-algebraic equations is con-
ducted and stability of the integration of the adjoint differential-algebraic equations
in the backward direction is proven.

Stabilized index-1 formulations are presented and convergence of backward
differentiation formulas is shown for the stabilized index-1 forms of the differential-
algebraic equations of motion, the direct differentiation differential-algebraic equa-
tions, and the adjoint differential-algebraic equations for Cartesian non-centroidal
multibody systems with Euler parameters. Convergence of backward differentia-
tion formulas applied to these formulations is proven, by showing that the resulting
differential-algebraic equations are uniform index-1.

A novel numerical algorithm is presented, the Piecewise Adjoint method, which
formulates the coordinate partitioning underlying ordinary differential equations, re-
sulting from the adjoint sensitivity analysis, as a multiple shooting boundary value
problem. The columns of the fundamental matrix and the particular solution of
the coordinate partitioning underlying ordinary differential equations are evaluated
independently.

Numerical experiments with the Direct Differentiation method, the Adjoint
method, and the Piecewise Adjoint method and efficiency analysis are presented for

two multibody system models: a four bodies spatial slider-crank and a thirteen bod-



ies High Mobility Multipurpose Wheeled Vehicle. Sequential and parallel numerical
experiments validate the correctness of the implementation. The predictions of the
number of floating-point operations are confirmed by the sequential results. The
predicted speed-up of the parallel numerical experiments is shown for multibody sys-
tems with small degrees of freedom and potential speed-ups are discussed for larger

problems on architectures with adequate numbers of processors.
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ies High Mobility Multipurpose Wheeled Vehicle. Sequential and parallel numerical
experiments validate the correctness of the implementation. The predictions of the
number of floating-point operations are confirmed by the sequential results. The
predicted speed-up of the parallel numerical experiments is shown for multibody sys-
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CHAPTER 1
INTRODUCTION

The continuous development of computation power and cost decrease of com-
puter hardware, especially of internal memory and microprocessor, account for in-
creasing accuracy of mathematical models being used to represent physical phenom-
ena, such as the dynamics of a mechanical system. The computation power currently
available benefits from microprocessor performances and number of memory accesses
per time unit that have increased almost exponentially since the mid 1980s [29].
However, the variety of computer architectures currently available, especially multi-
processors architectures, present special challenges for the modeler; e.g., interprocess
communication and synchronization, process and thread management and model for-
mulation differing from the uniprocessor model formulation.

The modeling of mechanical systems often requires the study of dependency
of a model on parameters whose values cannot be accurately known. Among the pur-
poses of modeling a multibody system are those of model optimization, parameter
estimation, model simplification, data assimilation, optimal control, process sensitiv-
ity, and making a design less sensitive to variation occurring due to the manufacturing
process. All of these goals imply computation, over a finite time-interval, of the evo-
lution of the multibody system generalized coordinate vector and its derivatives with
respect to model parameters. The goal of this thesis is to develop new ways of us-
ing modern multiprocessor architectures to solve the various aspects of the design

sensitivity analysis of multibody systems. Although efficient ways of solving for sen-



sitivities of multibody system response have been defined [26] and well-established
computer software is in a stable and mature phase [37], there are still design sen-
sitivity analysis aspects that remain unsolved or algorithms that do not exploit the
benefits of multiprocessor architectures.

The Direct Differentiation formulation of design sensitivity analysis of multi-
body systems [26] is well-suited for parallel computation, but it requires the integra-
tion of a number of differential-algebraic equations (DAE), the Direct Differentiation
DAE, equal to the number of model parameters plus one (for integrating the DAE
of motion). Although each such system can be solved on a different processor, the
number of necessary processors is as large as the number of model parameters, which
can be substantial.

In the Adjoint formulation [26] derivatives of generalized coordinates with
respect to model parameters are not computed directly. Rather, all the terms required
for assembling the gradients of functionals that typically occur in design sensitivity
analysis, optimization, or optimal control are computed by solving only one DAE,
the Adjoint DAE [26], in addition to the DAE of motion.

One of the disadvantages of the Adjoint method is the necessity of backward
integration of the Adjoint DAE, which must be started at the end of the integration of
the DAE of motion. As a result, generalized coordinates of the equations of motion
must be stored during integration of the DAE of motion, in order to be used for
constructing and integrating the Adjoint DAE backward in time, after the final time is

reached. By doing so, a heavy load is imposed on memory resources of the computing



system. Furthermore, there is a potential loss in accuracy, due to the fact that the
generalized coordinates cannot be stored at each step of the integration of the DAE
of motion, and therefore have to be interpolated between the storage steps. Also,
the Adjoint method does not take full advantage of a parallel architecture, since the
computation flow has an inherently sequential structure, due to the fact that the
initial time for the Adjoint DAE coincides with final time for the DAE of motion.

A modified Adjoint method is presented, in which computation can be dis-
tributed to 2d + 2 processors, where d is the number of degrees of freedom of the
multibody system, and the Adjoint backward initial value problem (IVP) is replaced
by a boundary value problem (BVP), which is solved through a backward multiple
shooting algorithm [4]. In the equivalent BVP formulation, each time-step is solved
in the backward direction, but time-steps advance in the forward direction. As a
result, the memory load for storing generalized coordinates during integration of the

DAE of motion, is minimized.

1.1 Parallel Granularity

The efficiency of parallel methods depend on the amount of data communi-
cation and synchronization between parallel modules, compared with the amount of
computation in each module. The dependency between the amount of work and the
amount of synchronization in parallel modules is measured by the granularity of the
parallelism [49].

Coarse and fine granularity are relative measures that depend on the size of



the problem to be solved, the multiprocessor architecture, and the operating system’s
process management and interprocess communication primitives [54], [15], [45]. In
this thesis, coarse-grained parallel routines are considered those routines that solve for
at least one step of a differential system of equations, routines that compute solutions
of linear systems of equations, or routines that iteratively solve non-linear systems of
equations as part of the numerical integration of a system of differential equations.
Fine-grained parallel methods have a substantial amount of data communica-
tion and synchronization between parallel modules, compared to the average amount
of actual computation that is done by the modules. In order to be efficient, fine-
grained parallelism may require a computing model; e.g., cellular automata, different
from the Turing computing model [10] or they may require solving the problem using
languages [12] especially designed to make fine-grained parallelism efficient. Efficient
fine-grained parallelism is an ongoing Computer Science research problem and is not

a research goal of this thesis.

1.2 Thesis Objectives

The overall objective of this thesis is to reformulate the Adjoint method [26] of
design sensitivity analysis such that the numerical algorithm of the new formulation
preserves the major advantage of the Adjoint method; i.e., the number of DAE, that
the numerical algorithm must integrate, does not depend on the number of design

parameters; and has the following advantages of the Direct Differentiation method

[26]:



1. The numerical algorithm advances forward in time.

2. The numerical algorithm can be executed by independent threads of computa-

tion.

In addition, the new formulation must minimize the memory load required by back-
ward integration of the Adjoint method.

The specific objectives of the thesis are as follows:

1. To prove backward stability of the Adjoint method for the index-3 DAE of
motion of a non-centroidal spatial multibody system in which orientation is
defined by Euler parameters. In order to develop numerical algorithms for the
Adjoint method applied to index-3 DAE, stability of the analytic solution of the
Adjoint index-3 DAE [26] in the backward direction must be proven. Backward
stability of the analytic solution of the Adjoint DAE has been shown [16] for
Adjoint DAE of index-0, index-1, and index-2 in Hessenberg form. The Adjoint
DAE of the index-3 DAE of motion of a non-centroidal multibody system with
Euler parameters is an index-3 DAE [26] that cannot be brought to Hessenberg
form [13], because the highest derivative coefficient, the mass matrix, is singular

[52].

2. To prove convergence of the Hiller-Anantharaman [2] stabilized index-1 formu-
lation. Stabilized index-1 DAE formulations are obtained for the index-3 DAE
of motion [27], the index-3 Direct Differentiation DAE, and the index-3 Ad-

joint DAE [26], which are integrated using the Lawrence Livermore National



Laboratory’s Implicit Differential-Algebraic (IDA) solver [31].

3. To develop a new method, called the Piecewise Adjoint method, that (1) requires
the integration of a number of DAE that does not depend on the number of
design parameters; (2) has a parallel computational structure; (3) progresses
forward in time; and (4) minimizes the memory load required by the backward

integration of the Adjoint DAE.

1.3 Thesis Structure

The thesis is organized as follows: Chapter 2 is a review of literature on com-
putational aspects of design sensitivity analysis of multibody systems. Chapter 3
presents a stability analysis of backward integration of the Adjoint DAE. Chapter
4 presents the Hiller-Anantharaman index-1 formulations of the the index-3 DAE of
motion, the index-3 Direct Differentiation DAE, and the index-3 Adjoint DAE and
shows convergence results for backward differentiation formulas (BDF) applied to the
stabilized index-1 formulations. Chapter 5 presents the Piecewise Adjoint method
and efficiency and memory load analysis. Chapter 6 presents results of sequential
and parallel numerical experiments and methods of error control. The Appendix
presents algorithms for efficiently evaluating the time-derivatives of a matrix; orien-
tation matrices; kinematic matrices required for solving the Adjoint coordinate par-
titioning underlying ODE of Chapter 5; and partial derivatives of kinematic matrices

and force elements. The bibliography ends the thesis.



CHAPTER 2
LITERATURE REVIEW

Numerical methods for multibody system modeling are based on the formula-
tion of differential-algebraic equations (DAE). Because differential-algebraic equations
cannot be treated as ordinary differential equations [46], they require a more complex
numerical approach.

Conditions for existence and uniqueness of the solution of DAE have been
established [13], starting from the analysis of linear time invariant DAE using the
matrix-pencil theory, and extending to nonlinear higher index DAE in Hessenberg
form (the equations of motion for a multibody system are an example of index-3
DAE in Hessenberg form). Several ways have been investigated to define numerical
algorithms for solving DAE. Projection methods work by integrating the differential
equations of the corresponding index two or one DAE, and then projecting the solu-
tion onto the manifold defined by the constraint equations [35]. State-space methods
reduce the DAE to an underlying ODE. By integrating the underlying ODE, only a
subset of the generalized coordinates are integrated, the remaining generalized coor-
dinates being recovered from the constraint equations. Examples of such methods are
the generalized coordinate partitioning method [58]. Based on the implicit function
theorem, a partitioning of the generalized coordinates into independent and depen-
dent coordinates is defined and a corresponding underlying ODE is obtained. Another
example of a state-space method is the differential-geometric approach [47], in which

the DAE are formulated as differential equations on manifolds. Other approaches to



solving DAE consider an overdetermined system, consisting of the original DAE and
one or more of the derivatives of the constraint equations. Examples of such methods
are presented by Fuhrer and Leimkuhler [22], where the solution is obtained by the
use of a special pseudo-inverse, and Jay [33], where a special Runge-Kutta method
is defined to integrate the differential equations of motion of a multibody system,
satisfying position, velocity, and acceleration constraints. A different formulation,
due to Rabier and Rheinboldt [48] defines the DAE for a multibody system based
on the Gauss principle of least constraint. Stiff mechanical systems bring additional
complexity to the numerical integration of the DAE, requiring implicit integration
methods [42].

Collocation methods can also be used to solve both initial value problems DAE
and boundary value problems DAE. Collocation methods based on a regularized
boundary value problem approximate the solution by a continuous piecewise poly-
nomial and represent consistent approximations at mesh points by applying Radau
schemes to linear variable coefficient DAE of any index [53]. Under weak assump-
tions, the collocation problems are uniquely and stably solvable and, if the solution is
sufficiently smooth, super-convergence at mesh points is shown. Asher and Spiteri [7]
describe methods and implementation of a general-purpose code, COLDAE, that can
solve boundary value problems for nonlinear systems of semi-explicit DAE of index at
most 2 and fully implicit index-1 DAE. The method implemented is piecewise poly-
nomial collocation at Gaussian points, extended as needed by the projection method

of Ascher-Petzold [3].



Current implementations of DAE methods such as projection, state-space,
differential-geometric, coordinate-partitioning, Runge-Kutta and collocation gener-
ally have a formulation in which the computation flow is sequential. Therefore, cur-
rently available software packages have a high degree of data dependency that makes

them unsuitable for parallel computing architectures.

2.1 Numerical Methods for Design Sensitivity
Analysis

Numerical methods and software for sensitivity analysis of DAE [37] have been
defined by investigating three approaches to solving the system obtained by combin-
ing the original DAE and the sensitivity analysis DAE. The resulting Jacobian can
be approximated by a block-diagonal matrix, while retaining rapid Newton conver-
gence and a block-diagonal pre-conditioner is highly effective. Three new codes have
been introduced; DASSLSO, DASPKSO, and SENSD. The first two are modifica-
tions to the ODE/DAE solvers DASSL and DASPK, respectively. The third code
is an auxiliary routine that allows a user to perform sensitivity analysis of a derived
quantity; e.g., the L2 norm of the solution vector. The resulting simultaneous cor-
rector method combines the DAE and sensitivities to form a system that is solved
using a BDF method at each step. The nonlinear system obtained is then solved by
applying Newton’s method to the corrector equation, where the Jacobian is approxi-
mated by its block diagonal part. This method achieves 2-step quadratic convergence

for nonlinear problems, allowing the factored corrector matrix to be reused for mul-
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tiple steps. As a result, this method is a significant improvement over the staggered
direct method [17], because the need for additional matrix factorizations to solve the
sensitivity system has been eliminated.

Feehery et al. [21] have developed a novel corrector method (called the stag-
gered corrector sensitivity method) for solving DAE and sensitivities, which exhibits
a smaller computational cost. They use two corrector iteration loops at each step,
one for the DAE and the second for sensitivities. Computational savings result from
fewer Jacobian updates, in order to evaluate residuals of the sensitivity equations.
The staggered corrector sensitivity method is an improvement on the simultaneous
corrector method, because the later requires the system Jacobian to be updated at
each corrector iteration. Although this cost is minor compared with matrix factor-
ization, it may become significant for large problems.

Error, convergence, and stability analysis play an important role, not only as
overall measures of the properties of the algorithm, but also as tools for step-size
control, in order to avoid under-solving or over-solving, especially in implicit meth-
ods, which require simplified Newton iterations [32]. Stability analysis is necessary
to establish whether a given formulation or algorithm is well posed. It has been
studied for Adjoint DAE of index-0, index-1, and index-2 [16], in Hessenberg form.
Error, convergence, and stability analysis remain to be done for index three DAE
problems, since design sensitivity analysis for multibody systems require an index-3

DAE formulation.
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2.2 Parallel Methods for Design Sensitivity
Analysis of Multibody Systems

Parallel computation of multibody systems can bring several benefits to the
task of numerical integration of the corresponding DAE. If the goal is real-time simu-
lation or reduction of the design cycle, pipelining different stages of computation is a
way of decreasing computation time. A re-formulation of multibody system equations
of motion might generate a system with high data independency, therefore enabling
several parts of the computation to be done simultaneously and decreasing computa-
tion time. Another motivation of parallel computation is the desire for a more robust
and reliable code; i.e., obtaining reliable error estimates and accurate dense output
20].

In order to take advantage of parallel computing capabilities, the multibody
system might require a special formulation [11]. Different parallel architectures and
operating systems may also require different formulations of the same problem [49];
e.g., implicit Runge-Kutta methods can be redefined by using a pre-conditioner, in
order to obtain a parallel structure of the algorithm [34].

The waveform relaxation technique (WR) is an efficient tool for solving large
systems of ODE and DAE in multiprocessor environments. The basic idea is to
decouple a system of ODE by integrating one equation (or a subset of equations) for
one unknown (or a subset of unknowns), with all the other unknowns taken from

previous steps. Under mild assumptions, the iterative application of this algorithm
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to all unknowns (or subsets of unknowns) will converge to the solution [59].
Waveform relaxation methods for DAE have been investigated by van der
Houwen and van der Veen [55]. Three families of algorithms have been defined, as

follows:

1. A method suitable for higher index DAE (up to index-3), which does not take

advantage of the structure of the system.

2. A partitioned DAE method that can be applied to semi-explicit DAE with faster

convergence.

3. A method that can be applied only to index-1 DAE with even faster convergence

and enhanced parallelism.

Other waveform relaxation techniques for DAE are based on Runge-Kutta
methods and the application of an iterative method that is independent of the num-
ber of stages, when implemented on a multiprocessor environment [56]. However,
the number of iterations required to achieve convergence is generally substantial.
Therefore special algorithms, such as Krylov-subspace acceleration, are necessary to
achieve faster convergence, especially for large systems of equations that are typically
stiff [36].

Design sensitivity analysis of a multibody system also implies a DAE formu-
lation. Two approaches have been defined for calculating gradients of functionals
required in mechanical design, the Direct Differentiation method and the Adjoint

method [26]. The Direct Differentiation method requires integrating the multibody
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system equations of motion and as many additional independent DAE as the number
of model parameters. As a result, although suitable for a parallel computation ap-
proach, it may still result in a difficult computation task when the number of model
parameters is much larger than the number of available parallel processors. There-
fore, the Adjoint method formulation, which requires solving only one additional
DAE, might be the only reasonable choice.

However, the Adjoint method requires backward numerical integration and
storage of the generalized coordinate vector and its first order derivative at many, if
not all integration steps for the multibody system equation of motion [26]. Although
computing power is considered orthogonal to storage capability; i.e., one cannot be
increased without decreasing the other, multiprocessing can provide a solution for
minimizing the storage load and retaining computational efficiency in existing formu-
lations of the Adjoint method. In order to obtain an algorithm suitable for parallelism,
a new mathematical formulation must be defined for the problem being modeled. The
goal is to minimize data dependency between parallel threads, therefore minimizing
the overhead due to interprocess communication and synchronization. An application
of the principle of a more complex mathematical formulation of a problem in order to
achieve a parallel algorithm is a parallel version of the modified Gram-Schmidt algo-
rithm [57]. A reformulation of the Adjoint method, that can reduce or eliminate data
dependency between modules, by independently solving sets of differential equations,
is considered a coarse-grained parallel method.

Design sensitivity analysis requires the calculation of multibody system kine-
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matic expressions and their derivatives with respect to generalized coordinates and
model parameters. In a multibody system Cartesian formulation with Euler parame-
ters, basic identities have been developed for efficient computation of such derivatives

[51).
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CHAPTER 3
STABILITY OF THE ADJOINT DIFFERENTIAL-ALGEBRAIC
EQUATIONS OF INDEX-3 MULTIBODY EQUATIONS OF MOTION

Stability criteria for quasi-linear differential-algebraic equations (DAE), of in-
dex up to three have been established [39], based on information about the real part
of the spectrum of the matrix coefficient of the highest order derivative term. How-
ever, such information is not directly available for the adjoint DAE of the DAE of
dynamics. Stability analysis of the analytic solution of a linearized index-m DAE
in Hessenberg form has been studied [5], but the adjoint equation of a multibody
DAE of motion is not in Hessenberg form, since the coefficient matrix of the highest
order derivative term can be singular. Moreover, analysis performed by Ascher and
Petzold [5] is not extended to the adjoint equation corresponding to a given DAE, or
to the adjoint equation stability properties with respect to those of the given DAE.
The relation between stability properties of a given DAE and its adjoint equation is
studied in Ref. [16], for DAE of index not greater than two in Hessenberg form.

The purpose of this chapter is to establish stability results for adjoint equations
corresponding to semi-explicit index-3 DAE that have a more general form than
Hessenberg, particularly index-3 DAE that arise in the study of multibody dynamics.
In such index-3 DAE, the highest derivative term has a coefficient matrix that is

singular, if Euler parameters are used for body orientation [52].
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3.1 Adjoint Equations of Multibody Equations
of Motion

Consider a multibody system of n; rigid bodies, between which there are my
joint constraint equations. The position of body i, i = 1,2,...,ny, is defined in a
global Cartesian coordinate frame by a 3 x 1 vector r;, and orientation of the body
is defined by a 4 x 1 Euler parameter vector p;. Therefore, the configuration of a
multibody system is described by a vector of n = 7 x n; generalized coordinates,

T T

Gnx1 = < a' o gy ) , in which the 7 x 1 vector ¢; is ¢; = ( L ) ;1=
1,2,...,np. The multibody system has a number m = mg+n,, of algebraic constraints;
i.e., the mg joint constraint equations plus the n, Euler parameter normalization
constraints, p;'p; — 1 = 0, i = 1,2,...,m5. The equations of motion of such a

constrained multibody system are [27]

M(q, 3,t)d" — L(q,q, B,t) — Q(q, ¢, B, t) + D, ' A =0 (3.1)

®(q,3,t) =0 (3.2)

in which ' denotes the time derivative, ¢(8,t), ., is the vector of generalized co-
ordinates, depending on time ¢ and ng time independent model parameters (3,;x1;

A(B, 1), is the vector of Lagrange multipliers; M(q, 3,t),,,, is the system mass ma-

nxn
trix; L(q, ¢, 8,t),,,., contains Coriolis and related terms; Q(q, ¢, 3,1),, ., is the vector
of applied forces; and ®(q, 3,1),,., is the constraint function vector. Equations (3.1)

and (3.2) represent an index-3 system of differential-algebraic equations [13]. The

multibody system described by Egs. (3.1) and (3.2) has d = n — m degrees of free-
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dom. The constraint Jacobian ®, is assumed to be twice continuously differentiable
with respect to time, ®, € C*(Z), t € Z = [t},t?], and bounded ||®,]] < K,. The
mass matrix M is assumed to be symmetric and positive definite on the null space
of the constraint Jacobian, and vectors ¢ and r are assumed to be twice continuously
differentiable with respect to time and bounded.

As a result of linearization of Egs. (3.1) and (3.2), the following index-3 DAE

is obtained [26]:

2

M¢" = > Ajzj+BA+s (3.3)
j=1

0 = Cq+r (3.4)

in which z;(3,t) = % represents the (7 — 1)-th derivative of the generalized

coordinate vector ¢ with respect to time, B = —<I>qT, C=-9, Ay =L, +Q,—

(@4 N), — (Mq")

4 and Ay = Ly + Qy. In order to obtain an essential underlying

ordinary differential equation, Ascher and Petzold show [5] that the change of variable
u= Rq (3.5)
may be performed, in which the time and model parameter dependent matrix

R(ﬁ’ t)dxn
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has the properties

IR <K (3.6)
R €C*I),tcT=][tt (3.7)
rank (R) =d (3.8)
RB =0 (3.9)

Provided that the following assumptions are valid:
1 A;(8,1),5 =1,2; B,C € CX(T)

2. Matrix C(f,t) has full row-rank for any ¢t € Z. As a result, C(0,t)B(f3,t) =

CIDqCI)qT is nonsingular for any ¢t € 7

3. 14, < M,j = 1,2 |[B®|| < M, |CP|| < M,k =0,1,2

the matrix f is invertible [5], with inverse
C
-1
R
(s ) (3.10)
C

in which matrix S,,«4 is constructed such that

RS = I (3.11)

csS = 0 (3.12)

and F,x,, is defined [5] as

F=B(CB)™ (3.13)
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Due to boundedness of the constraint Jacobian ®,, matrix F' is also bounded. With
the additional assumptions that ||R|| > kr > 0 and non-singular matrix RR" is well-
conditioned; i.e, its condition number is bounded, x(RR") < Kzpr < oo, matrix
S is bounded. This result follows from properties defined by Egs. (3.11) and (3.12),

according to Theorem A.3 in the Appendix.

R u
Since q= , q is obtained as
C —r
-1
R u u
q= Z(S F) = Su— Fr (3.14)
C —-Tr —7r

Differentiating Eq. (3.14) twice with respect to time yields

q" = Su" + i ’ Sy ) — (Fr)” (3.15)
=0\
in which parenthesized superscript notation, ) denotes index j of differentiation. Pre-
multiplying Eq. (3.15) with the product RM; pre-multiplying Eq. (3.3) with matrix
R, accounting for the property that RB = 0; and subtracting term by term the two
equations thus obtained, the essential underlying ODE (EUODE) of the index-3 DAE

defined by Egs. (3.3) and (3.4) is

RMSu" = (RAyS —2RMS" )W/

in which # = Rg+ RM(Fr)" — RA,Fr — RAy(Fr)'.
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In order for Eq. (3.16) to be an ODE, its coefficient matrix must be non-
singular. Since matrix M is assumed to be positive definite on the null-space N (C)

of matrix C, the following theorem holds:

Theorem 3.1. Consider matrices T (4xny and Ts(,xq) having the following properties:
1. TiT5 1s a non-singular matrix
2. C'Ty =0, where C = ®, is the constraint Jacobian matrix
3. T'B =0, where B=CT = (IDqT

With assumptions 1 through 3, if the mass matrix M of Eq. (3.3) is positive definite
on N(C); ie., n" Mn > 0, for any n # 0 such that Cn = 0, then matriz TyMT; is

non-singular.

Proof. Assume that matrix (77 MT5)gxq is singular. Then, there is a vector
€ € RY € # 0, such that TIMTh¢ = 0. Letting n = 1€, then On = CTy¢ = 0.
Therefore, n € N(C). If vector n is zero, then Tin = T1T2¢ = 0, but since 1175 is
non-singular, vector £ must also be zero, which contradicts the assumption £ # 0.
Therefore, n is a non-zero vector. Let ¢ = Mn. Vector ( is also a non-zero vector,
because ' ¢ =n" Mn # 0, since M is positive definite on N'(C)), and non-zero vector
n belongs to the null-space N (C') of matrix C'. Using the vectors n and ¢ defined

above, T1MT5¢ = 0 is re-written as

TIMT2 =T1Mn=T(=0
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Matrix (C'T) is

nxm

(e ) (3.17)

Since C has full row-rank, its rows {c;},_,

i=1.2....m» Which are columns of C'T, are linearly

independent. Let B, = {c¢1,...,¢m,¢1,...,¢} be a basis in R". Therefore, vector

¢ € R™ can be written as a linear combination of vectors in the basis B,

m d
¢ = Zajcj + Zpk@ =CTa+Cp (3.18)
j=1 k=1

T T
inwhichénxdE(c‘l c‘d)w:(m pd) »ando‘:(oq am) :

Assume that there is at least one py, # 0, for some k € {1,2,...,d}; ie., pis anon-
zero vector. Pre-multiplying Eq. (3.18) with matrix 7} and accounting for the fact
that TlB = TlCT = 0,

Consider each column s;, 7 = 1,2,...,n, of matrix 7, = ( S1 ... Sg ),

re-written as a linear combination of the vectors in the basis B,

m d
S = ZTl’jCj + Z Vi,kCrx = CTTZ + é% (320)
j=1 k=1
T T
By defining matrices T,,xq = ( o Ty ) and [yg = ( Yo Ya ), matrix

T, may be re-written as

T, =C'"T+CT (3.21)
Pre-multiplying Eq. (3.21) with 7} and accounting for the property that

T.,C"=T\B=0
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the following identity is obtained:
Ty, = T,CT (3.22)

As a result, matrix T1CT is non-singular. Applying the Sylvester inequality [23];

according to which for two matrices M (,,xpn) and Ma(,xp),
rank(M;Msy) < min(rank(My), rank(Ms))

to the matrix product 7T;C - I', the rank of matrix product 73CT cannot exceed the

rank of T1C; i.e., d = rank(TyCT) < rank(T;C). As a result, matrix T1C' is also
non-singular. Therefore, in Eq. (3.19), vector p must be zero. Consequently, vector
¢ in Eq. (3.18) is rewritten as ( = C'Ta. Pre-multiplying vector ¢ with 75", the

following identity is obtained:
T ¢C=T,"Mnp=T,"CToo = (CT) v = 0 (3.23)
where C'T; = 0 is used. Therefore,
n"Mn=¢"T,"Mn=0 (3.24)

Since 7 is a non-zero vector belonging to the null-space of matrix C, Eq. (3.24)
contradicts the hypothesis that M is positive definite in N (C). Therefore, £ # 0

cannot be true, and matrix 77 M'T; is non-singular. [ |

Corollary 3.2. Matrix RMS' is non-singular, where M 1s the mass matriz, R has
the properties of Eqs. (3.6) through (3.9), and S was constructed such that RS = I

and CS = 0.
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Proof. Matrices R and S have the properties of T} and T, respectively, since
RS =1, RB =0, and C'S = 0 and the mass matrix is positive definite on the null-
space of the constraint Jacobian. Therefore matrix RM S, according to Theorem 3.1,

is non-singular. [ |

3.2 Stability Analysis of the Adjoint DAE of the
DAE of Motion
Consider the formulation of a system of ordinary differential or differential -

algebraic equations

F(a' x,t,6) =0 (3.25)

The Jacobian F,. is non-singular if the system of Eq. (3.25) is an ODE, and singular
if the system is a DAE. The adjoint system corresponding to Eq. (3.25) that is used

for computing sensitivity % of an objective function

G(T, B) = / 9(2(8,1), B, 1)t (3.26)

in which function ¢ is assumed to be twice continuously differentiable and bounded,
is [16]

(W' Fo) —w' Fy = —g, (3.27)
where w is the adjoint variable.

Re-writing Eq. (3.16) as a first order ODE;, in the form given by Eq. (3.25),

'y — T
F(x' x,t,0) = =0 (3.28)
RMSLEIQ - UQLUQ - Ul.CL’l —7
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-
in which 1 = u, 29 =/, v = ( o7 o ) , Ul = RALS — RMS" + RA5S’, and

Uy = RA3S — 2RM S’ ; matrices F,» and F, are, respectively

I 0

Fy = (3.29)
0 RMS
0 -I

Fp = (3.30)
—U, —Us,

Let the adjoint variable w in Eq. (3.27), corresponding to state vector x in
T
Eq. (3.28), be w = ( w, T wy T > . Then, the adjoint equation that corresponds to

Eq. (3.28), re-written in the form given by Eq. (3.27), is

/
I 0
(o o)

0 RMS
0 -1
( wlT w2T ) = — ( Gr1 Ga» ) (331)
-U; —U,
which is written component-wise as
w'" +ws (RALS — RMS" + RA,S') = —g,, (3.32)
wyTRMS +w," (RMS) + RA,S — 2RMS') +w," = —gs, (3.33)

By differentiating Eq. (3.33) with respect to time and subtracting the result
from Eq. (3.32), the following differential equation is obtained:
wTRMS + wy'T (2(RM)’S + RA25>
+owT ((RAQS _9RMS"Y + (RMS)' — RA,S  (3.34)

+ RMS"— RAQS') = Gor — Gn’
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in which the matrix coefficient of the ws " term,
Uy = (RA3S —2RMS"Y + (RMS)" — RA,S + RMS" — RA,S’
is re-written, by expanding and simplifying terms, as
Up= R AS+ RAS+ R'MS + RM"S +2R'M'S — RA,S

Replacing the matrix coefficient Uy in Eq. (3.34) and transposing the equation, the

following differential equation is obtained:

(RMS)Tw," + (25TM’TRT +2STMTRT + STAJRT)@UQ'
+ (STATRT +S5TA TR+ STMTRT
v STM"TRT 425 M TRT - STAJRT>w2 (3.35)
= (go — =)'
This is an ODE, according to Theorem 3.1, since matrix RMS' is non-singular.

In order to re-write the linearized index-3 equation of motion defined by Eqgs.
(3.3) and (3.4) in the implicit first-order form of Eq. (3.25), consider vector v defined
as v = ( 01T vyl wsl )T = ( g ¢ AT )T, in which v; = ¢, v = ¢, and
v3 = A. As a result, the linearized index-3 equation of motion of Egs. (3.3) and (3.4)
is re-written as
v’ — Vg
F(' v,t,0) = Muvy — Ajvy — Agvy — Bus —s | =0 (3.36)

Cvy +r
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Consequently, the adjoint equation of Eq. (3.36), obtained by applying the procedure

defined in Eq. (3.27), is

- .
I 0 0
(,UlT pa" M3T> 0 M 0
0 0 0
0 —I 0
- (MT 11" M3T> ~A, —-A, -B (3.37)
C 0 0

- _<gv1 Gus gv3>

-
in which pu = < T T ) is the adjoint variable. By expanding terms, Eq.

(3.37) is re-written component-wise as

MllT + NZTAl - ,U3TC = —Ou (3.38)
o "M+ M A T e Ay = — g, (3.39)
pe' B = —gu, (3.40)

By differentiating Eq. (3.39) with respect to time, subtracting the result from
Eq. (3.38), applying the conjugate-transpose operator, and grouping terms; the index-

3 adjoint DAE is obtained,

MTM2”+<2M/T+A2T)M2/+(M/,T+A2/T _AIT),U2+CTM3 —§ (341)

0=DB"uy+7 (3.42)

A~ T A
where § = ¢,," — g,,’ and 7 = g,,' are bounded, as a result of smoothness and
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boundedness properties of function g. In order to obtain an underlying ODE for
the DAE of Eqgs. (3.41) and (3.42), the change of variable w = ST s is performed,
after pre-multiplying Eq. (3.41) with matrix ST. Since 0 = CS = STC", the term
containing the algebraic variable p3 vanishes, yielding the ODE

STMTMQH + ST(QM/T + AQT)[I,Q/ + ;S’—l—(]\4”—r + AQ/T — AlT),ug == ST§ (343)

-
Because of the identity of Eq. (3.10), the inverse of matrix ( S F ) is explicitly

obtained as

(s #)

-
Using the expression of Eq. (3.13) for matrix F', the matrix-vector product ( S F ) L2

-1 T

- ST R
FT C

1S
ST w w w
[ty = = § = § (3.45)
FT FT ((CB)™) BT s —((cB)™) 7

As a result, s may be defined as a linear expression in variable w through the identity
~1

ST w
M2 = .
FT —((cB)™) 7
— (RT CT) v =R'w—CT(BTCT) '+ (3.46)
—((CB)™) 7

By differentiating Eq. (3.46) once and twice with respect to time, expressions for first

and second derivatives of py are obtained,
py' = RTw+ RTw' — (CT(BTCT) ™ '7) (3.47)

,u2” _ R//Tw + ZR/TU/ + R‘I’w// _ (CT(BTCT)flf)” (348)
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As a result of replacing the adjoint variable us and its first and second deriva-
tives with respect to time with the corresponding expressions of Eqgs. (3.46), (3.47),
and (3.48) in Eq. (3.43), the following underlying ODE is obtained for the index-3

adjoint DAE:

(RMS) w" + (2STM'TRT +2STMTRT + STAQTRT>U/
+ (STATRT +STA TR 4 STMTR 4+ STMTRT
+ 25TM TR - STATR Ju
= ST+ STMT(CT(BTCT) )" (3.49)
+@STMT 4+ STA)(CT(BTOT) )
+ (STMT 4+ STAT - 5TAT)CT(BTCT)
The homogeneous parts of Egs. (3.35) and (3.49) are identical. Therefore, the
ODE of Eq. (3.49), which is the essential underlying ODE of the adjoint index-3 DAE
of Egs. (3.41) and (3.42) corresponding to the linearized index-3 DAE of motion, has
the same stability properties as the ODE of Eq. (3.35). The ODE of Eq. (3.35) is the
adjoint equation of the ODE of Eq. (3.16), which is the essential underlying ODE of
the linearized index-3 DAE of motion. As a result, the following theorem establishes

stability properties of the adjoint index-3 DAE that corresponds to the index-3 DAE

of motion defined in Egs. (3.1) and (3.2):

Theorem 3.3. With the assumptions of theorem 3.1 regarding the mass matriz and
constraint Jacobian, if the index-3 DAE of motion defined by Eqs. (3.1) and (3.2) is

stable in the forward direction, then the corresponding adjoint index-3 DAE is stable
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in the backward direction.

Proof. The linearized index-3 DAE of motion of Egs. (3.3) and (3.4) has locally
the same solution as the original non-linear (quasi-linear) index-3 DAE of motion of
Egs. (3.1) and (3.2), which is assumed stable in the forward direction. Therefore,
the linearized index-3 DAE of motion is also stable in the forward direction. Since
the solution of the ODE of Eq. (3.16) is obtained from that of the linearized index-3
DAE of motion by the linear change of variable of Eq. (3.5), in which matrix R is
bounded, it follows that the ODE of Eq. (3.16) is stable in the forward direction.
Hence, the ODE of Eq. (3.28), which is the ODE of Eq. (3.16) written as a first order
ODE, is stable in the forward direction.

The ODE of Eq. (3.35) is stable in the backward direction because [16] it
is the adjoint equation of the ODE of Eq. (3.28), which is stable in the forward
direction. Since, as shown above, the underlying ODE defined in Eq. (3.49) has the
same homogeneous part as the ODE of Eq. (3.35), the ODE of Eq. (3.49) is also
stable in the backward direction. The ODE of Eq. (3.49) is obtained from the adjoint
index-3 DAE of Eqs. (3.41) and (3.42) by applying the linear change of coordinates
of Eq. (3.46), in which matrices R, C, and B and vector 7 are bounded. Therefore,
the adjoint index-3 DAE of Eqgs. (3.41) and (3.42) has the same stability properties
as the underlying ODE of Eq. (3.49). As a result, the adjoint index-3 DAE of Egs.
(3.41) and (3.42) is also stable in the backward direction.

It should be noted that the mass matrix is not assumed to be non-singular. The

mass matrix may be singular, but positive-definite on the null-space of the constraint
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Jacobian [52]. |

3.3 The Adjoint Coordinate Partitioning Under-
lying ODE
-

Consider a partitioning ¢ = < Upsel | Vgxi | ) of the generalized coordinate
vector ¢ into dependent part u and independent part v, such that the multibody
system constraint Jacobian ®, is correspondingly partitioned as ( o, @, ) with &,
non-singular. Since the constraint Jacobian is assumed to have full row-rank at all
times, such a partition always exists. In general, ®, = P, < o, @, > P..;, in which
Prowmxm and Pe.oi, 5, are permutation matrices, and such foregoing partitioning is only
locally valid in an open neighborhood of a solution [58]. For simplicity, permutation
matrix P, is assumed to be the m x m identity matrix, and P,, is assumed to be
the n x n identity matrix.

Since the index-3 adjoint DAE of Eqgs. (3.41) and (3.42) has the constraint

Jacobian B' = C' = —®,, the index-3 adjoint DAE is re-written as
My + Dy + Dopi+ @, v = 3 (3.50)

0=o,u—r (3.51)

-
in which p(t) = ( pT () T (t) ) is the adjoint differential variable uo(t) of Eq.
(3.41), v(t) = —us(t) is the new adjoint algebraic variable, D; = 2M’" + A, ", and
Dy=M"" + AT — AT,

The index-3 adjoint DAE, in its new form of Eqgs. (3.50) and (3.51), has the
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same constraint Jacobian as the linearized DAE of motion of Egs. (3.3) and (3.4).
Therefore, the same foregoing partitioning, which was applied to the generalized
coordinate vector ¢, is applied to the adjoint differential variable p. As a result, the

partitioned form of the index-3 adjoint DAE is

Muu Muv ,uull Dluu Dl’uv Mul
+
Mvu MUU M’ul/ Dlvu Dlvv v/
Dzuu Dqu luu (I)u—r su
+ + V= (3.52)
D2vu ngv Iuv (I)UT gv
0= Ouu® + dop’ — 7 (3.53)

where the right-side term s = — gq/’T, the term 7 is 7 = ¢» ', and

g is the objective function defined in Eq. (3.26).
As a result of the constraint equation of Eq. (3.53) and matrix &, being

non-singular, dependent partition p" can be expressed as a function of independent

partition p*, as follows:

pto= =0, e + 2,7 g,
= Uyp' +1 (3.54)
in which matrix Wq; and vector v, are
Uy = —9,7'9, (3.55)
o= 9,7 g, (3.56)

Consider a m X n continuously

differentiable matrix function A(q, 3,t) =
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o1

with row vector functions 0;14,(q,3,t), i = 1,2,...,m. Then, for n x 1

Om
column vector functions p(3,t) and (3, t), not depending on g,

01 o1p (51,0)q
(Ap),y = el v= : V= : gt (3.57)
Om Omp (6mp),
q q
Since, for any ¢ = 1,2,...,m, the gradient (5ip)q is a row-vector,
(d1p),Y
(Ap),y = : (3.58)
(0mp) Y

For an arbitrary scalar function 6(q, 5,t) and vectors p and « that do not
depend on ¢, the product (dp) ;) can be re-written as (pTé") ;7 since the product of
row-vector 0 with column-vector p is also a scalar. Vector p does not depend on gq.

Therefore,
.
(P 6y =p" 00 y=2"(0"),) » (3.59)
since p' (97),7 is a scalar. As a result,

YT ((6:7),) (61 1),)

(Ap),y = : - : P (3.60)

-
According to the partitioning ¢ = ( Uil | Vgt | ) , matrix A and vector p
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-
are re-written as A = ( A% AY ) and p = < ol prT ) , respectively. Therefore,

pu
( A" AY ) 7= (A" + A%") v
p'U
q
5y 5,°
N O e S A (3.61)
Sy O
q q
u T v T
y((5"),) Y ((6:°1),)
Pt + I
u T v T
(6" T),) (6" ),)

Assume the constraint function vector ®(q,,t) has the form ®(q,[,t) =

( v1(q, 8, t)

result,

in which

and

-
©om(q, B,1) ) and consider A = ®,, p = pu, and v = ¢. As a

o' =

= (Ap),y = Op (3.62)
¢ (1))
(3.63)
¢ (#mg"),)"
¢ ((pr."),)
(3.64)
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¢ ((p1,7),)"

eV = : (3.65)

¢ (m)y)

In order to obtain the first derivative of adjoint variable p, Eq. (3.51) is

differentiated once with respect to time,

d

= = (9,") (3.66)

Dypt’ + Ly up + (qu,u)qq/

With the notation defined in Eqgs. (3.63) through (3.65), and the identity of Eq.

(3.62), Eq. (3.66) is re-written as

d
Pupt + @t + Byt + Dy + O + O = — (g, ") (3.67)

Therefore, the first derivative of the adjoint variable dependent partition is

qu/ — _(I)u—lcpvluv/ - (I)u_l(q)u,t + @u)luu

L (3.68)

_ (I)u—l q)v OV Y q)u—l
(Pyr +O") " + 7

= ‘1’22llvl + Worp” + 1y

in which matrices W5y and Wy, and vector 1, are

\1122 - \Ijll (369)

Uy = -0, '(—(P,, +6")0,7'®, + P, +OY) (3.70)
d

¢2 = _q)uil(cbu,t + @u)¢1 + q)uila(gy—r) (371)

Differentiating Eq.(3.66) with respect to time, the second order adjoint con-
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straint equation is obtained as

in which

Qop” + 20 up + (Pg') 4 + Pypent

@ d + (@), 0) = (0, (372
(@) ) = - (On) = O+ O + (O + ©p)ya’ (3T
(©n)y = (®0),0), = (@u10), (3.74)

Applying the identity of Eq. (3.60) to (Opu),q', in which A = ©, p = p, and

where 0;, 1 =

, T
¢ ((6:7),)
(On),d" = : p="Tp (3.75)
, T
q T((em—r)q)
1,2,...,m are the rows of matrix ©,,, and
, T
q T((QlT)q)
, T
¢ ("),

-
Applying the partition ¢ = < U1 | Vg1 | ) toeachrow 0;,7=1,2,...,m,

the m x n matrix T is partitioned as

t= (1 1) (3.77)
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in which
¢T(6:°T),)"
T sem = : (3.78)
T(0n ),
and
/T((elvT)q)T
T xm = : (3.79)
/T((emvT)q)T

Applying the identity of Eq. (3.60) to terms (®qu') q', (Pqupt) ¢’ and (Op) ,¢" =

(®qﬂ)qq//7
()4 = On (3.80)
¢ ((prg01),)
(Pge1), 4" = : p=Tp= ( T TV ) p (3.81)
¢ (Pmgs’),)
¢ (1))
T = : (3.82)
¢ (Pmge'),)
¢ ((prae"),)"
T = : (3.83)



¢ (1,07,
T =

¢ (Pmod"),)
¢ ((p1,),)"

((I)QN)qq” = n= ZM = ( gu  gv ),U

¢ ((pmg"),)"

¢ ((p1,),)"

7 =

" ((pmg"),)"

" ((er.7)y)
Z" = :

¢" ((ema")y)"

" ((pr,7)y)"
7" = :

¢" ((pma")y)
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(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

-
After applying the partitions ¢ = < ul o7 ) and p = < T ) to

Eq. (3.72) and using identities of Eqs. (3.73) through (3.88), the second derivative
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of the adjoint variable constraint equation is

Dy 4 Dy 4 2+ 20y
+ 20" + 2071 4+ By it + Dy pept”

+ TUu"+Tp" + 0 u" + ey’ (3.89)
2
+ TU/LU+TUMU+Zu/,Lu—|—ZU v:@(gyT)

As a result, p"” can be expressed as a linear function of the independent

adjoint variable p¥ and its first and second derivatives,

qu// — _(I)u—l <(I)U,uvl/ + 2(®u7t + (__)u)( _ (Du—lq)vluvl
+ (P (Puy + 01D, — BT (D + O7))p

— — d v v
+ @ (=P gy 2 (gy))) + 2o + O (3.90)

dt
+ (P + T+ O + T 4 Z9) (=0, Dy’ + @, g, ")

d2
+ (Pou +T"+0O7 + T+ 2%’ — @(gyT))

W + Waou” + W p® + 13

in which matrices W3 ;, ¢ = 1,2, 3 and vector 13 are

Uy = Uy, (3.91)
\1132 = 2\1121 (392)
g = =0, 2Py + O Wy + (B + T + O} + T + 20y,

+ (o +T"+ O] +T"+ Z7)) (3.93)
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Uy = =07 (2P0 + 0"
02
+ (Rua+ T+ O]+ T+ 2 — —5(9,7)) (3.94)
Expanding the upper-block equation in Eq. (3.52),

MUt 4 M " 4 Dyt + Dy pt + Dy pt + Dyt + @, v = 8% (3.95)
the Lagrange multiplier v is expressed as a function of p*”, p*”, u*', p¥’, p*, and p*,
Y= (I)ufl—réu _ 9 flT(Muu WA

4 DM 4 D
4+ Dyt 4 Dy ) (3.96)
Substituting for " by expression of Eq. (3.90), for ' by expression of Eq. (3.68),
and for " by expression of Eq. (3.54) in Eq. (3.96),
vo= B, (8% — MU (Waap®” + Ugopt® + Uy gt + ) — M "
— D" (Woop” + W p? + o) — Dy (3.97)

— D" (Up” + 1) — D" p?)

Collecting terms,

V=W + Upou® + Uygu’ + 1y (3.98)
where
Uy = —@, 1 (M™ Ty + M™) (3.99)
U = —®, ' (M"™ Wy + D" Vgy + D;™) (3.100)
Uy = =B, " (M"™ Wy + D"y + D"y + Dy*) (3.101)

by = ®,7 (8% = M by — Dy — Dy ) (3.102)
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Expanding the lower-block equation in Eq. (3.52),
Mvu,uu/l _|_ Mvvluv// + Dlvuluu/ + Dlvvluv/ _|_ nguﬂu _|_ Dzvvﬂv + (I)UTV — §v (3103)

Substituting for p*” by expression of Eq. (3.90), for u* by expression of Eq. (3.68),
for p* by expression of Eq. (3.54), and for v by expression of Eq. (3.98) in Eq.

(3.103),

Mvu(\lfggluv// —+ ‘1’32;}/”’ + \IISIHU + ¢3) + Mfuv'uv/l
+ Dlvu(\IjQQ,UU/ —+ \Ijglluv + ¢2) + Dlvvluv/
+ D" (Wyap’ 4+ 1) + D"

+ (I)vT(\I’43,U/v” + \1142/ij/ + ‘1141,uv + w4> =3 (3104)

and collecting terms, the coordinate partitioning underlying ODE of the adjoint vari-
able DAE is obtained,

BL[LU“ + BQ,UU/ + Bg/,bv = b4 (3105)

where d x d matrices B;, i = 1,2,3, and d x 1 vector by are

B = M"Ws+ M" +®, Uy

By = M"Us+ D" Way + D" + @, Wy

By = M"“Us + D" Wy + D" Wyy + D" + @, Uy
by = 8" — Mg — Di""hy — Dy""hy — @, "¢y

After re-arranging and factoring terms, matrices B;, ¢ = 1,2, 3 are re-written as

By = X, MX, (3.106)
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By=X," <2M“(—<I>u‘1)K21 + D1>X0 (3.107)

By — XOT(MU(_cpu—l)@K;l(—q)u—l)K21+K31)

n Dl“(—éu‘l)K21+D2>X0 (3.108)
where
Muu
MY =
MUU
Dluu
Dlu —
Dlvu
_Cbu_lq)v
XOnXd
Iy

Kn = <K;1 Kgl)z(@u,t‘i‘@u q)v,t+@v):q)q’t+®
Kz = <q>u,tt+TU+@g+TU+2u @v,tt+TU+@g+Tv+ZU)

- (I)q,tt+T+@t+T+Z

and I is the d x d identity matrix. In order for Eq. (3.105) to be a second order

ODE, matrix B; must be nonsingular.

Corollary 3.4. Matriz X, M X, is non-singular, where M is the mass matriz and

_(I)uilq)v

Iq
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Proof. Matrix Xy = Xo' Xo = (QDU_IQDU)T(I)U_IQDU + I, is positive definite

because, for an arbitrary d x 1 non-zero vector &, &7 X¢ = ||€]|* + Hq)u_lQJfHQ >

_(I)u_lq)v
3,0, 0, + ®, =0,

€] > 0. Moreover, ®,X, = ( o, P, )
Iq
S0

Xo'®," =0 (3.109)

Therefore, matrices X' and X, have the properties of T} and T5, respectively, from
Theorem 3.1. Since X,' X, is nonsingular, Xo' B = —XOT(PqT =0 and CX, =
—®,X( = 0 and the mass matrix is positive definite on the null-space of the constraint
Jacobian. Therefore, matrix X, M X, is non-singular, according to Theorem 3.1 .
|
As aresult, Eq. (3.105) represents the coordinate partitioning underlying ODE
of the adjoint index-3 DAE of Eqgs. (3.50) and (3.51). The coordinate partitioning
[58] underlying ODE (CPUODE) can also be obtained through a procedure similar
to the one used for obtaining the adjoint EUODE of Eq. (3.49), only using a different
pre-multiplying matrix and different changes of variables. With the partitioning p =
( et et )T, in which the dependent variable p* is replaced by the expression of

Eq. (3.54), the adjoint variable p is re-written as

—®, ' o,u’ + 0,7 g, T o, t

I 0
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P —1
in which X; = , = gyT7 and
0
P = ( 0 I )u (3.111)
T
Given an arbitrary non-zero vector £ = ( a1 &7 ) , consider now the
product
&
Xo'€ = ( (0,7, L1>
3}

A bound on the norm of X, ¢ is

§
1xoTel = ||(_(q>u—1q>vf Id) al
&9

— T 1T
= = (@.7'0) &+ &l <12 12" [lIS] + llg2]

Since the constraint Jacobian is bounded, ||®,|| < K, matrix @, is also bounded,
1D, < ||®4]| < K, Also, since matrix ®, is bounded and invertible, there is a

positive constant K, such that ||®, || < K,. Hence,
IXo €l < KoKull&i]l + llg2]l < KoK llEll + 118l = (1 + K Ko) €]

As a result, matrix X, is bounded, with

1Xo €]
€11

1 X0 || = sup <1+ K,K,
40

Since constraint Jacobian ®, is twice continuously differentiable with respect
to time, so is matrix X' . The rank of Xo' is d, because I, is the largest square

block with a non-zero determinant. In addition, X' B = XOTCDQT = 0, as shown by
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Eq. (3.109) in Corollary 3.4. Therefore, matrix X' has the properties of Egs. (3.6)

through (3.9). As a result, matrix R can be selected as

R=X," (3.112)
Let matrix S be defined as
- T 0
G- ( 0 1, ) _ (3.113)
Iy
N 0 N N N
Note that, although RS = X" =14, CS = —®,5 # 0. Therefore, matrix S
Iy

is different from matrix S of Egs. (3.11) and (3.12).

In order to obtain an underlying ODE of the adjoint index-3 DAE of Eqgs.
(3.50) and (3.51), through a procedure similar to that used for obtaining the EUODE
of Eq. (3.16), the differential equation of Eq. (3.50) is pre-multiplied by R = X '.
Accounting for the property that XOTCDqT = 0, the following differential equation is

obtained:

Xo "My 4+ Xo " Dypl! + Xo " Dopt = Xo' 3 (3.114)

where D; = 2M’ + A," and Dy = M” + Az/T — A;". Then, the change of variable
p’ = STy of Eq. (3.111) is performed, in which matrix S is defined by Eq. (3.113).
Differentiating Eq. (3.110) with respect to time once and twice, ' and p” are obtained

as functions of p”,u"’, and u*”,

1= Xop" 4+ Xo' 1’ + (X17) = Xop®' + XoXop® + (X17) (3.115)
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M/, — XO/,I/UII + 2X0,/,Lv/ _'_ X(]///,l/v + (XITA)//

= X()/IJUH + QXQXOILLW + X3X0,Ltv + (X1f>,/ (3116)

where Xy, Xo”, Xy, and X3 are defined by Eqs. (A.55), (A.60), (A.56), and (A.61)
in the Appendix. Replacing p by the expression of Eq. (3.110); p/, and u” by
expressions of Egs. (3.115) and (3.116); replacing expressions for matrices D; and Dy

in Eq. (3.114); and factoring terms, an underlying ODE is obtained,

Xo M Xout"
+ Xo (2M Xy 4+ 2M' + Ay Xop¥’
+ Xo (MXs42M' Xy + Ay Xy + M" + AT — A D) Xou”  (3.117)

= Xo'5— Xo M(X,7)" — Xo Di(X17) — Xo " Do X7

Equation (3.117) is an ODE, because X' M X is nonsingular, according to Corollary

3.4.

Theorem 3.5. If R = X, ', then the underlying ODE of Eq. (3.117) of the adjoint
index-3 DAE of Egs. (3.50) and (3.51), obtained as a result of pre-multiplying the
differential equation of Eq. (3.50) by R and performing the change of variable u* =

ST, with S defined in Eq. (3.113), is the CPUODE of Eq. (3.105).

Proof.
The second derivative coefficient matrix of Eq. (3.117) is U; = X' M X,
which is equal to matrix By of Eq. (3.106), which in turn is the second derivative

coefficient matrix in Eq. (3.105). The first derivative coefficient matrix of Eq. (3.117)
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is Uy = Xo' (2M X, +2M' + Ay ") X,. Replacing the expression for X5, defined in Eq.
(A.56) and using the identity of Eq. (A.55) in the Appendix, U, is re-written as

T / _®u71%(®q) T
UQ == Xo (QM + 2M + A2 )XO
0

Using the identity of Eq. (A.46) in the Appendix, according to which Ky =
oM'" + A" in Eq. (3.107), the first

dt
derivative coefficient matrix By in Eq. (3.105), is

4(d,), and replacing the expression D,

By = X0T<2M“(—<I>u‘1)%(<bq)+2M’+A2T)X0

_®u_1%(®q>
= X0T<2M'~|—2( M* MV ) +A2T>Xo

0

—®, 14 (d,)
dt q + AQT)XO — U2
0

Therefore, first derivative coefficient matrices Uy and By of Egs. (3.117) and (3.105)

, respectively, are equal.

The coefficient matrix of the undifferentiated term in Eq. (3.117) is
Us=Xo (MX542M' Xy + Ay Xo+ M" + A" — A1) X,

Replacing expressions for X, and Xj3; using the identities of Eqs. (A.46) and (A.47)

and the expression for X, defined in Eq. (A.60) in the Appendix, matrix Us is
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re-written as a sum of three matrices Uz = Us; + Usy + Uss, where

U31 = XOTMX?,X()

— XOTMXOHT

_q)u—li(q) ) .
(~20,7) (@) T e (@)
= XOT ( MY MY > 0 Xo
0
—-14d
u .od -, E(q)q) u L d?
= X' (M"(—29, 1)%@«1) + M (-2 1@(%))))(0
0
T (e -1 d ‘ 1 4 d?

= XN (-0, (00)) (00T L (@) + o (2) X

= Xo' (M"(=®, ") (2K5 (=™ Kar + K31)) Xo
U32 = 2X0TM,X2X0+X0TA2TX2X0

= Xo'(2M' + A1) Xy

T u v _(I)U71%(q)q)
= XO (QM/+A2T) (QM/—FAQT) XO
0

= Xo M+ AN (=, Ky) X,

U33 = XOTMHXO + XOTAQITXO - XOTAlTXO

= X (M"+ A" — A )X,

The matrix Bz defined in Eq. (3.108) is also written as a sum of three matrices,
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Bg = Bgl + B32 + ng7 where

By = Xo'(M"“(—®, N (2KY (—®, 1)Ky + Ks1) X,
Bz = Xo (Di"(—®, ") Kn)Xo
Bss = XOTD2X0

After replacing expressions for D = oM'" + A" and Dy = M7 + AQ’T — AT,
matrices Us; and Bs;, Uss and Bss, and Uss and Bss, respectively, are equal.
Therefore, U3 = Bs, hence the homogeneous parts of the underlying ODE of Eq.
(3.117) and the CPUODE of Eq. (3.105) are identical. As a result, the two ordinary
differential equations have the same stability properties.

Substituting for ¢4 by the expression in Eq. (3.102) and factoring matrix X, ',

the right-side by of Eq. (3.105) is re-written as
by o= Xo's— (M™ =@, 0, Yy — (D1 — 2,70, )y

— (D™ @, 0, )y (3.118)

= Xo'8§—Xo M"¢3 — Xo D12 — X' Doty
After replacing expressions for v;, 1 = 1,2, 3, and using expressions for matrices Ko
and K3; defined by Egs. (A.46) and (A.47) in the Appendix, by is written as a sum
of three matrices, by = by1 + bss + byz, where

by = XoT8— Xo T MU(—d,) (2((I>q’)”( — B, (D, + OY)D, 7
@)+ (@), - (7))

biy — —XOTD1“<I>U‘1< (D, + OB, N+ w)
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by = —Xo' Do"®, 7

Note that for an arbitrary n x n matrix A = ( Av AV ), in which block A" is a

-1

n X m matrix and block A" is a n x d matrix, the product A“®, " can be written

o,
as Av®, ! = < A AY ) = AXj, in which matrix X; is defined by Eq.

0
(A.51) in the Appendix. As a result, vectors by, i = 1,2, 3, are

by = XoTs+ XoTMX, (2(c1>q’)“( — 3,71 (D,)) D,

)+ ((2,)) 2 - (7)) (3.119)
b = —Xo Dy X = (@0 + )2, 717 + (7)) (3.120)
bis = —Xo ' Dy X7 (3.121)

After arranging terms by time derivative order of vector 7, by is re-written as

by = Xo i+ XOTMxl((((q>q”)“)q>u*1 —2(0,)) D, (B, D, )7
+ 2(0))" e — (7))
= X5+ Xy MX, ((cbq”X1 — 20, X, D,/ X, )7 (3.122)
+ 20X, (7) ~ (7))

The right-side of Eq. (3.117) is

Xo'5— Xo"M(X1#)" — Xo " Dy(X17) — Xo Dy X7

Uy

= Ugy + Ugo + U43
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in which

Ugy1 = X0T§ - XOTM(le')” (3123)
g = —Xo Di(Xi7) (3.124)
Ug3 — —AXFOTIDQAXH?2 (3125)

Vectors ug3 and by are equal. Expanding the expression for vector uyo in Eq. (3.124),
Ug2 = —XOTDlel’f — XOTDlef,

replacing the derivative of matrix X, defined by Eq. (A.66) in the Appendix, and
using the expression for the first derivative of the Jacobian, ®," defined in Eq. (A.46)

in the Appendix, vector us is re-written as

U = —Xo Di(—=X19,/X))7 — Xo" D X7
= X' DX, (—®,/ X7+ )
= X' DXy (—(®,))"®, 7+ )

= X DX (—(®yy +0M)D, 1+ )

which is equal to vector byy of Eq. (3.120). Vector wuy; is similarly expanded, us-

ing expressions for matrix X; and its derivatives of Eqs. (A.66) and (A.69) in the



Appendix, as

Ug =

+
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Xo's— Xo " M(X\"7 +2X,'% + X1#")

Xo'5— XOTM<(—X1<I>Q”X1 +2X,8,/X,®,/X))7

2X, B, X17 + le”>

X, 5 — XOTMX1< — (@) D, + 2(c1>q’)“<1>u*1(<1>q’)“<1>u*1)f
2(0,) @, + 7

XoTs+ X TMX, ((cpq”x1 — 2B, X, B, X, )7

2B,/ X7 — 7")

which is equal to vector by of Eq. (3.122). Since uy; = by, 1 = 1,2, 3, the right-sides

of Egs. (3.117) and (3.105) are equal. As a result, Eqs. (3.117) and (3.105) are

identical.

Stability of the CPUODE of Eq. (3.105) is shown by proving that its homoge-

neous ODE is the same as the homogeneous adjoint differential equation of a certain

underlying ODE of the DAE of motion. In order to obtain this underlying ODE of

the linearized index-3 DAE of Eqs. (3.3) and (3.4), the change of variable w = S'q

is performed, instead of the EUODE change of variable u = Rq, defined by Ascher

et. al. [5]. Therefore, using an identity similar to the identity of Eq. (3.45),

(3.126)
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-1

= ( RT C7 ), as shown in Eq. (3.44), ¢ is a linear

-
and since [( S F)

function of w,

q= < RT CT ) ‘ =R'w— OT((CB)‘l)Tr (3.127)
—(cB) ™ 'r

Differentiating Eq. (3.127) twice with respect to time,

2

! "
q// — RTw" + Z (RT)(Q*J)w(j) _ <CT((CB)_1)TT> (3.128)
=0

J
Pre-multiplying the result by matrix RM, the following identity is obtained:

2

"

1
RMq" = RMR w/+Y RM(RT)* w0~ rM(cT((€B) ) 7)) (3.129)

=0\
Pre-multiplying Eq. (3.3) by matrix R, accounting for the property that RB =
0, and subtracting the result from the identity of Eq. (3.129), the following underlying

ODE of the linearized index-3 DAE is obtained:

RMR™w" = (RAyR" —2RMR'")u'

+ (RAR" + RA,R'" — RMR"w (3.130)

"

+ Rg+RM(CT((CB)™Y)'r)

This is an ODE, because the second derivative coefficient matrix is nonsingular, ac-

cording to Corollary 3.4. Note that the underlying ODE of Eq. (3.130) is of similar

form with the EUODE of Eq. (3.16), in which matrix S is replaced by matrix R.
The adjoint differential equation corresponding to the underlying ODE of Eq.

(3.130) is similarly obtained as the adjoint differential equation of Eq. (3.35). Using
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a formulation analogous to that of Egs. (3.27) through (3.34), in which matrix S is
replaced by matrix R" and matrix ST is replaced by matrix R, the adjoint equation

of the underlying ODE of Eq. (3.130) is obtained as

(RMR™ )" + <2RM'RT +2RMRT + RAJRT>U/
n <RA2TR’T + RATRT + RMR"T + RM"RT  (3.131)

+ 2RM'R' — RAlTRT)v = (g — 9a)"

By choosing matrix R as R = X, ', using the expressions of matrix X, first
and second derivatives defined by Egs.(A.55) and (A.60), respectively, in the Ap-
pendix, and factoring terms, the homogeneous differential equation corresponding to

Eq. (3.131) is

Xo"TMXp" + Xo'(2MX, +2M' + Ay ) X'
+ Xo ' (MX3+2M'Xs + Ay Xy (3.132)

+ M// + AQIT — AlT)XQU =0

which is the same as the homogeneous ODE corresponding to the CPUODE of Eq.
(3.117). Since the index-3 DAE of motion is stable in the forward direction, the
linearized index-3 DAE of motion is also stable in the forward direction. Therefore,
its underlying ODE of Eq. (3.130) is stable in the forward direction, since the solution
of the underlying ODE, w = S'¢, is a linear function of the DAE solution ¢, in which
matrix S is bounded. Then, the adjoint ODE of Eq. (3.131) is stable in the backward

direction [16]. Therefore, the CPUODE of Eq. (3.105), whose homogeneous part
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coincides with that of the adjoint ODE of Eq. (3.131), is stable in the backward

direction. As a result, the theorem that follows has been proved.

Theorem 3.6. The CPUODE of Eq. (3.105) of the adjoint indez-3 DAFE of Eqs.(3.50)
and (3.51) is stable in the backward direction, provided that the multibody system

indez-3 DAE of motion of Eqs. (3.1) and (3.2) is stable in the forward direction.
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CHAPTER 4
IMPLICIT INTEGRATION OF MULTIBODY SYSTEM
DIFFERENTIAL ALGEBRAIC EQUATIONS

The differential-algebraic equations of motion and the adjoint differential-
algebraic equations of multibody dynamics are index-3 DAE. The DAE that result
from the direct differentiation formulation [26] of design sensitivity analysis of multi-
body systems are also index-3 DAE. Differential-algebraic equations of index-3 must
have a special structure [13]; i.e., they must be in Hessenberg form, in order for
numerical integration methods to converge when they are directly applied to such
higher-index DAE. The equations of motion, adjoint equations, and direct differen-
tiation equations for a multibody system in which orientation of bodies is expressed
using Euler parameters [27], cannot be brought in Hessenberg form, because the
highest derivative coefficient matrices are singular [26, 52]. Direct discretization of
an index-3 DAE introduces numerical stability difficulties; e.g., a BDF integration
method applied to an index-3 DAE requires constant step-size for convergence [13].
As a result, the original index-3 DAE must be transformed into an equivalent lower
index DAE or ODE; i.e., a DAE or ODE that has a numerical solution from which
the solution of the original formulation can be recovered through linear changes of
variables, of the form of Eq. (3.14) in Chapter 3, or by retaining only certain compo-
nents of the lower index DAE solution. A lower index DAE formulation is obtained
through index reduction methods [13]. Such methods are used to transform the origi-

nal index-3 DAE into a lower index equivalent DAE (typically index-1, for multibody
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systems [22]) or an underlying ODE [58]. After each integration step, the solution of
the original system is recovered from the solution of the lower index system.

In some DAE formulations it may be possible [25] that not all the constraints
can be enforced simultaneously. Appending the velocity and acceleration constraints,
obtained by differentiating the multibody system position constraint once and twice,
respectively, may result in an overdetermined system. Therefore, there are DAE
formulations; e.g., index-2 equivalent formulations of index-3 DAE [25] that can only
enforce a subset of the position, velocity, and acceleration constraints. As a result, the
missing constraints require projection [25, 35] of the generalized coordinate vector, or
its first or second derivatives, onto the corresponding constraint manifold [25].

In this chapter an index reduction method is selected for solving the equations
of motion, the adjoint DAE, and the direct differentiation DAE, for a non-centroidal
formulation of multibody system equations of motion. Equivalent index-1 formu-
lations are presented for the three DAE systems, an implicit numerical integration
package is chosen for solving the DAE, and reasons for the selected formulation and

numerical integration method are explained.
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4.1 Numerical Integration of Index-1
Differential-Algebraic = Equations  Using
Backward Differentiation Formulas

Since numerical integration of DAE has similar stability properties to the nu-
merical integration of stiff ODE [6] and because multibody systems can include stiff
elements [41], implicit numerical integration methods; e.g., BDF methods are of-
ten used for integration of the multibody system DAE. In this thesis, the Implicit
Differential-Algebraic solver (IDA) [31], is used for numerical integration of a multi-
body system DAE of motion index-1 equivalent formulation. Developed at Lawrence
Livermore National Laboratory (LLNL) for solving ODE and index-1 DAE, IDA is a
component of the LLNL’s Suite of Non-linear Differential-Algebraic Solvers (SUNDI-
ALS) package [30]. The implicit numerical integration method that is used in IDA is
a BDF method of variable step-size and variable order up to five. In addition to its
robustness, the IDA package has the advantages of implementing a complex step-size
and order control algorithm based on the fixed leading coefficient method [13] and not
requiring the user to start the integration; i.e., to provide the first s steps. In general,
the first s steps of an s order multi-step integration method are supplied by the user,
who must use a one-step integration method in the beginning and perform step-size
and order control. This is internally done by the IDA integrator and is transparent
to the user.

Consider the general form of an implicit index-0 ODE or index-1 DAE initial
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value problem,

F(y,y',t)=0 (4.1)

together with consistent initial conditions

y'(to) =¥/ (4.3)

where y is the state vector and 3/ its derivative. In the fixed leading coefficient BDF
method of order s, calculation of the state vector y(tx,1) at time-step tx 1 proceeds

as follows [13]:

1. Using approximations of the state vector y,_;, at time-steps tp_;, 2 =0,1,...,s,
a solution at time-step ;. is predicted by evaluating the predictor polynomial
and its derivative at ¢441. The predictor polynomial wy,,(t) interpolates yx_;

at time-steps tx_;, ¢ =0,1,...,5; i.e.,
WP (tei) = Yrii=0,1,...s (4.4)

The predicted values of y and y’ at ;1 are, respectively

0
u = Wb () (4.5)

0 P
Vil = Wi (tie) (4.6)

2. The corrector polynomial w, () is constructed such that it satisfies the DAE

at tgy1, and interpolates the predictor polynomial wi’ 1(t) at s equally spaced
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points before t; 1,

ch+1<tk+1 —ihyy1) = Wlf+1(tk+1 —ihg),t=1,2,...s (4.7)

F(wngrl(thrl)aw/ngl(thrl)u trt1) =0 (4.8)
where hk+1 = tk+1 — tk.

. The corrected solution yxy1 = wgﬂ(tkﬂ), implicitly defined by conditions of

Eqgs. (4.7) and (4.8), is obtained by solving the nonlinear equation [13]

0 Qs 0
F(Yrta, y/l(c+)1 ) — (Y1 — y/iJZJvtkH) =0 (4.9)
k+1
with the unknown yy41, where ay = =377, % and ¢, is given by the BDF

integration method as

0 Qg
y/k+1 = y/;(gJL )

o (Yrg1 — yfﬁﬁl) (4.10)

The solution of the nonlinear system of Eq. (4.9) is obtained by applying a

modified Newton iteration,

y(erl) = y(p) — CJ71F<y(p)7 Oély(p) + Qa, thrl) (411)
where
Qg
_ 4.12
“ P41 412
(19

¢ is a scalar constant chosen to accelerate the rate of convergence of Newton
iterations [13], and

J = F, 4+ aF, (4.14)
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is the Jacobian of nonlinear equation of Eq. (4.9).

The steps in the procedure presented above are transparent to the user of
the integrator. The only function evaluators that the user must provide to the IDA
integrator are [31] an evaluator of function F'(y,7/,t) of Eq. (4.1) and an evaluator of
Jacobian J of Eq. (4.14). In addition, the user must compute the initial conditions
for an index-1 DAE initial value problem in which the state vector y cannot be

partitioned into algebraic and differential variables [31].

4.2 An Index-1 Formulation of the Non-
Centroidal DAE of Motion

Consider the non-centroidal formulation presented in Section A.6 of the Ap-

pendix. The resulting index-3 DAE of Eqgs. (A.134) and (A.135), is

M(q, 3, t)d" +®,' A = S'(q.q,5,1) (4.15)
where
S'=L+Q (4.17)

is the sum of Coriolis force L and applied force ). Given a consistent set of initial
conditions; i.e., generalized coordinate vector ¢, generalized velocity vector v = ¢/,
generalized acceleration vector a = ¢”, and Lagrange multiplier vector A\ that satisfy

at initial time to the index-3 DAE of motion [27] of Eqgs. (4.15) and (4.16), the velocity
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constraint equation

®,q + B, =0 (4.18)

obtained by differentiation of the position constraint equation of Eq. (4.16), and the

acceleration constraint equation
Dyq" + (94q),0 + 2Pgsq + Py =0 (4.19)

obtained by differentiation of the velocity constraint equation of Eq. (4.18); the DAE
of motion has a unique solution [27, 48] at all times.
An index-1 DAE that is equivalent to the DAE of motion of Egs. (4.15) and
(4.16) is obtained [2] by applying a stabilized index reduction method [24] to the DAE
of motion and introducing differential variables y and 1),
¢ —v+o, Y
Mv' + &,y — St

F(y,y't) = =0 (4.20)
q)qv + ¢t

®(q, )

where

y = (4.21)

q
The DAE of Eq. (4.20) has the advantage of satisfying both the position constraint

equation of Eq. (4.16) and the velocity constraint equation of Eq. (4.18). As a result,

after a numerical integration step applied to Eq. (4.20), projections of position and
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velocity vectors onto position constraint and velocity constraint manifolds, respec-

tively, are not necessary. A s-step variable step-size BDF method, s < 6, applied to

the fully implicit index-1 DAE [2] of Eq. (4.20) converges with order s, as shown in

Section 4.5. The Jacobian J of Eq. (4.14) that corresponds to the index-1 DAE of

motion of Eq. (4.20) is

Fy—FOéle/
00 —I (quTX/>q

00 =S, (Mv+o, 0 —5h,

00 o, (®gq'), + Py
00 0 D,
®," 0 0 I
0o &' M 0
+ o
0 0 0 0
0 0 0 0
a®," 0 ~1
0 a1 P,
) 0 0 o,
0 0 0

((I)qTX/)q + arl

(M —SYH (M + &,V — SY),

(éqq/>q + é%t

o

q

(4.22)

(4.23)

Since the state vector y in the index-1 DAE equivalent formulation of Eq. (4.20)

cannot be partitioned into separate differential and algebraic parts, consistent initial

conditions cannot be directly evaluated by the IDA integrator. Therefore, calculation
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of consistent initial conditions, together with evaluators of function F' of Eq. (4.20)
and Jacobian J of Eq. (4.22) must be provided separately. These evaluations require

computation of the following derivatives:

1. Position constraint Jacobian @, and its first and second derivatives, ®," and ®,".
Although the second derivative of the Jacobian is not used in implicit integration
of the DAE of motion, its evaluation is required, as shown in Sections 4.3 and
4.4, for implicit integration of the DAE resulting from the direct differentiation

and adjoint formulations.

2. Derivatives of terms of the form <I>qT'y with respect to the generalized coordinate

vector ¢, where 7 is a constant vector.

3. Derivatives of terms of the form M~ with respect to the generalized coordinate

vector ¢, where 7 is a constant vector.

4. Derivatives of vector S' = L + @Q with respect to the generalized coordinate

vector ¢ and its time derivative v.

4.2.1 Consistent Initial Conditions

Calculation of consistent initial conditions for the IVP of Eq. (4.20) starts
with a given initial configuration of the multibody system; i.e., given initial positions
and orientations of the bodies in the system, which define the initial generalized
coordinate vector qy. The process of obtaining a consistent initial configuration; i.e.,

an initial generalized coordinate vector gy that satisfies the position constraint of
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Eq. (4.16), within a given tolerance, is known as assembly of the system. Numerical
algorithms for multibody system assembly are presented by Haug [27]. Next, a set
of initial velocities; i.e., the initial time derivative vy of the generalized coordinate
vector must be given. In order to enforce the velocity constraint equation, an initial
projection step [35] is performed using the generalized coordinate vector gy resulting
from the assembly process. If the multibody system is assumed to start from a rest
configuration, then the initial velocity is zero.

After consistent initial position gg and velocity vy vectors have been obtained,
the equation of motion of Eq. (4.15) and the acceleration constraint of Eq. (4.19), at

initial time ¢y, define a linear system,

MO P T ao Sl
0 - ’ (4.24)
®q0 O )\0 —((@qq')qv —|— 2®q7t?} + (bt,t>0

where ag, the initial acceleration vector, and \g, the initial vector of Lagrange multi-

pliers, are unknowns and

Moy = M(qo, B, to)
Pgy = P4(q0, 3, %0)
So = (g0, vo, B, t0)
((24q) v 4 2Pg0 + Prp), = ((Pgq') v + 2Pg0 + D) (g0, vo, B, to)

Since the multibody system mass matrix is positive definite on the null-space of the

constraint Jacobian [27], the coefficient matrix M* of the linear system of Eq. (4.24),
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known as the Schur-complement and defined by

M @,
M*(q, B,t) = (4.25)
o, 0
is non-singular [52]. Therefore, initial accelerations and Lagrange multipliers are

uniquely obtained by solving the linear system of Eq. (4.24). As a result, initial

conditions yo and ¢/, for the index-1 DAE of Eq. (4.20) are

X0 0
Yo 0
Yo = = (4.26)
Vo Vo
do qo
and
X/o 0
A Ao
Yo = = (4.27)
Qg Qg
Vo Vo

4.2.2  Analytic Evaluation of the Position Constraint Ja-
cobian and its First and Second Derivatives
For a multibody system consisting of n;, bodies, the generalized coordinate

vector ¢ is

-
q= (q1T .. .qan) (4.28)
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The position and orientation of body i are defined by the seven-dimensional vector
G = ( T opT >T, where r; is the three-dimensional vector that defines the position
of the origin of a body i non-centroidal body frame with respect to a Cartesian
coordinate global coordinate frame and p; is the four-dimensional normalized vector
comprising the Euler parameters eq, €1, €5, and e3 that define the orientation of body ¢
with respect to the global coordinate frame [27]. Matrix A; [27] is the 3 x 3 orientation
matrix that defines the orientation of body ¢ in terms of Euler parameter vector p;.
Vector ¢ f is the three-dimensional vector that defines the position of a point P on
body ¢ with respect to body ¢’s body fixed coordinate frame.

The first derivative of the constraint Jacobian, as shown in Eq. (A.23) of the
Appendix, is

D) = (P4q"), + Py (4.29)
Using differential operator © introduced in Eq. (3.63) of Chapter 3,
6(@,7) = (@), (4:30)
where 7y is a vector not depending on ¢, Eq. (4.29) is re-written as
D,/ =0(D,¢)+ Py, (4.31)

The second derivative of the constraint Jacobian, as shown in Eq. (A.39) of the

Appendix, is

o = Pyt (q)q,tq/)q + (qq")

q,t

+ ((®q),4), + (240"), (4.32)
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Using differential operators © and T introduced in Eq. (3.76) of Chapter 3,

T(®,71,72) = ((Pgm1),72), = (O(2,71))72), (4.33)

where y,and 7, are vectors that do not depend on ¢, Eq. (4.32) is re-written as

o = Py + (q)q,tq/)q + (qq")

q,t

+ Y(®,d.¢)+06(2,q") (4.34)

The position constraint function ® consists of (1) algebraic constraints intro-

duced by joints between bodies and (2) Euler parameter normalization constraints,

)
d = (4.35)
CI)P

Joint constraints are a combination of one or more of the following basic kinematic

constraints [27]:
1. Spherical constraint ®° = 0
2. Dot-1 constraint &% = (
3. Dot-2 constraint 92 = (
4. Distance constraint ® = 0

Since none of the four basic kinematic constraint functions depend explictly on time,
first and second derivative of their Jacobian are expressed only in terms of operators
O and T, as follows:

oK = 0(oF ¢ (4.36)

q
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and

X" = 1(@",¢,¢) + 6(3,¢") (4.37)

where K € {S,dy,dy, D}. Therefore, for a joint consisting of any combination of
the four basic constraints, in addition to evaluating its Jacobian, calculating corre-
sponding © and Y operators is sufficient for computing the Jacobian first and second
derivatives.

The spherical constraint between bodies ¢ and j is defined [27] as
(I)S =7+ 141'8,5D — (’I"j + A]’S,f) =0 (438)

The Jacobian of the spherical constraint; i.e., the derivative of ®° with respect to g
and ¢; is [51]

(I)f;-,qj = ( I B(pi,s’f) —1I —B(pj,s’f) ) (4.39)
where three-dimensional vector s’ f is the position of a point fixed in body ¢, with

P

; 1s the position of a point fixed in

respect to the body i coordinate frame, and s’
body j, with respect to body j coordinate frame. Matrix B(p,7), where p is a
normalized four-dimensional vector and 7 a three-dimensional vector, is the derivative

with respect to vector p of the product of the orientation matrix A(p) and a vector =y

and is defined in Ref. [51]. Operator © for the spherical constraint is

0%(2%,7) = (P, ¢, Vawas = ( 0 B(y*,sF) 0 —B(y? %) ) (4.40)

i J

where v is a fourteen-dimensional vector partitioned into seven-dimensional compo-
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nents 7' and 7,

v = (4.41)
f}/j

and each seven-dimensional component k is partitioned into a three-dimensional com-

ponent v*" and a four-dimensional component ",
7= k=1,j (4.42)

Since vectors v, s’ f , and s’ f do not depend on the generalized coordinate vector ¢, it
follows that ©%(®°, v) is constant. As a result, operator T for the spherical constraint
is

(%, m,%) = (0°(®%,m)%), , =0 (4.43)

a5

In addition to operators © and T, let operator A~y be defined as

Ay=®;,7 = 7"+ Bpi, ST =" = Blpj, s

— PSS S j
= .0 =P, (4.44)
where « is a fourteen-dimensional constant vector of the form of Eq. (4.41) and @9

is the constraint Jacobian of the spherical constraint. The derivative of operator A~y

with respect to generalized coordinate components ¢; and g; is

AVgigs = ( 0 B(y?,sT) 0 —B(*, s7) ) (4.45)

@ J
The dot-1 constraint between bodies i and j is defined [27] as

o = (AN A (4.46)
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where 1/; is a unit vector fixed with respect to the body i coordinate frame, and A/,
is a unit vector fixed with respect to the body j coordinate frame. The Jacobian of

the dot-1 constraint is [51]

q)?iqj:(o (Ajh') B(pi 1) 0 <Amz>TB<pj,h'j>) (4.47)

-
A fourteen-dimensional vector v = ( inT i T ) is re-written, using Eq. (4.42), as
T
_ i\ T i\ T ol PN T
Y= ( () ) () () ) (4.48)

Consider post-multiplication of the dot-1 Jacobian by vector 7,

2,

v

yhP - . . .
o = (A;0;) B(pi, Wi)y"? + (Ash's) B(pj, W)y

A

,yj,p

= P BT (i, WA+~ BT (py, W) ARy (4.49)

Since the product of the dot-1 Jacobian and vector v does not depend on position

vectors r; and 7, it follows that

(@4, Vrir; =0 (4.50)

Differentiating the product of the dot-1 Jacobian and vector v with respect to Euler

parameter vectors p; and p;, the following matrices are obtained:

i ip |
(®5 Vs = (A315) BB W) + 7% BT (pg, W) Bpi ) (451)
ip T j
(@8, V)p, =7 B (pi, i) B(pj, W) + (Aib') B(7, 1)) (4.52)
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As a result of Egs. (4.50), (4.51), and (4.52), operator © for the dot-1 constraint is

@dl@d%v):(o (®L, 7)p, 0 (D )pj> (4.53)

fIz'#ijy

Next, consider post-multiplying matrix ©% (®,v) by a fourteen-dimensional constant
vector (. Differentiating with respect to position vectors r; and r; and Euler parameter

vectors p; and p;, the following matrices are obtained:

(O (2", 7)C),,,, =0 (4.54)

(O (@4,7)C),, = ¥ BT (pj, W) B, 1)+ PP BT (py, W) By, 1)

4 <j’pTBT<’)/j’p,h/j)B(pi,h/i) (4.55)
ipT i ipl j
(©1 (2", 7)Q),, = ¢ B (Y 1)B(p; I5) + ¢ B (pi, i) B(Y, ;)
+ A" B (p B H) (4.56)

Therefore, operator T for the dot-1 constraint is
di (G _
@20 = (0 (@@, 0 @@, ) @D
The dot-2 constraint between bodies i and j is defined [27] as
q)dz - (Alhlz>—rdz] - O (458)

where h/; is a three-dimensional unit vector fixed in the body 4 coordinate frame and

the three-dimensional vector

dz‘j =T; + AjS/]P — T, — AZ'S,ZP = —CI)S (459)
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is the vector between a point fixed on body 7, whose position with respect to its body
coordinate frame is s’f, and a point fixed on body ¢, whose position with respect to
its body coordinate frame is s f . Since d;; = —®° the derivative of d;; with respect
to ¢; and g; is

= (4.60)

(dij)%qj' B 9i,95

The Jacobian of the dot-2 constraint is [51]
T
Oy, = —(Al) @y +diy! ( 0 B(p, ;) 0 0 ) (4.61)
Multiplying the Jacobian by the constant vector ~y

(‘Dgf,qﬂ) = —(Az‘h/z‘)TAV+dijTB(pi,h/z‘)7i’p

= —(Aih/i)TA*Y + ’}/i’pTBT(pZ‘, hlz)dzj (462)

and differentiating with respect to position and orientation vectors

ip |
(q)Ziz,qj‘ry)Ti =7 P BT(pia hlz) (463)
ip |
(@42, 7)r; =7 B (pis 1) (4.64)
@)Zf,qﬂ)pi = —AY'B(p, ;) — (Aih,i)TB(")/i’p,S/f)

+ dijTB(,y’Apa hll) - fprTBT(pi) h,Z)B(pla S/?) (465)

@dQ — Ah/ TB 30 P i,pTBT ) h/_ B P 4 66
( %Qj’}/)pj _( ? Z) (7 ’Sj)—'—/y (ph Z) (pj7sj) ( : )

The dot-2 © operator is

d d _
@ 2((P 277) o ( (®2227qu>/>7‘z (®g7(2,q]fy)pz (q)giqu)/)r] (®gf7q‘77>pj > (467)
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Multiplying ©% by a constant fourteen-dimensional vector ¢ and differentiating with

respect to position and orientation vectors,

(©%(3%,79)¢),, = —¢'*' BT (v, 1)) (4.68)
(©% (0% 4)(),, = ¢ BT ("7, 1)) (4.69)
(O%(D%,7)C),, = —C B(?, ) — AyTB(C, )

— ¢ BT(p W)BOW, ) = ¢ BT (7, $T)Blpi, )
- Ci’pTBT(’Yi’pa W) B(pi,s'%) — ’Yi’pTBT(pz’, R)B(CP, sh)
— ¢ BT (py, sT)B(L ) + T By W) (4.70)
+ BT ) Bl 1) + 7 BT (0,8 5B

(0%(0%,7)C),, = ¢ BT (v, W) B(p;,s"%) + 7 BT (pi, W) B(CP?, 8

+ ¢ BT (i, W) By, 8") (4.71)

the dot-2 YT operator is

(0%(D%,7)C),,

0% (P, P;
pog e oy | @@ .
(O% (0%, 4)(),, "

(©%(2%,7)C)y,

T

T

The distance constraint between bodies i and j is defined [27] as

P =d;;"dyj — =0 (4.73)
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where d;; is the distance vector introduced by Eq. (4.59) and c is a scalar. The

Jacobian of the distance constraint is [51]

D TS T
Coqy = —2dij Py g, = —2di ( I3 B(pi,s’f) —1I3 —B(ijg/f) > (4.74)

The distance © operator is

.
@D((I)D7'7) = _27T<¢;,Qj dij)Qi7Qj
T
= 2y'®) @5 —2di; T (Avyg,) (4.75)

Multiplying ©F by a constant fourteen-dimensional vector (,
T
OP(®”, )¢ =2¢T05 Ay — 20T (Avy,,) dy (4.76)

and differentiating with respect to generalized coordinate components ¢; and g;, the

distance constraint Y operator is

-
TD((DD7% ()= (@D((I)Da'V)Oqi,qj = QCTq)ci,qj A%uq]' +2A7TAqu,qj+2CT(A%nqj)TQ)S

qi>9;

(4.77)

The Euler parameter normalization constraint for body i is defined [27] as
o =p;'pi—1 (4.78)
The Jacobian of the Euler parameter normalization constraint is [27]

O = ( 0 29,7 0 0 ) (4.79)

Multiplying the Jacobian by the constant vector + and differentiating with respect

to generalized coordinate components g; and g;, operator © for the Euler parameter
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normalization constraint is obtained

07 (P;,7) = (D] 4, o, Vavg; = (20" V"P)gig; = ( 0 29" 0 0 > (4.80)

which is a constant matrix. As a result, operator T for the Euler parameters normal-

1zation constraint is

T (@7,7,¢) = (07(2],7))gig, = 0 (4.81)

4.2.3 Derivatives of the Product of the Transpose of Po-
sition Constraint Jacobian with a Vector

Consider the product
;' ¢
where ( does not depend on ¢, and let u; be the unit vector with 1 in the i-th position

and all the other elements zero. The product
&= UiT((I)qTOq

is the i-th row of the matrix (®,' ¢ )q. Since u; is a constant vector, &; is re-written as
& = (UiT(I)qTOq

Since uiTCI)qTQ is a scalar,

)T

uiTcI)qTC - (uiT(I)qTC = CT(I)qui

Since ¢ does not depend on ¢, the i-th row of the matrix (cqug)q is

& = (¢ Pqui), = ¢ (Dgus), = (' O(P, ;) (4.82)
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Therefore, the matrix (®,' ¢ ), 18

CTO(P,uy)
@0~ | (483
CTO(P,uy,)

where each row is computed independently.

4.2.4 Derivatives of the Product of the Mass Matrix

with a Vector

For a multibody system comprised of n, bodies, in which orientation of bod-
ies is defined using Euler parameters and body-fixed coordinate frames are non-

centroidal, the mass matrix is a singular block-diagonal symmetric matrix, as shown

in Eq. (A.131) of the Appendix,
M = diag(M;,i =1,2,...,1n)

where the 7 x 7 matrix block M; is given by Eq. (A.126) of the Appendix,

QmiGiTs’i AiT 4G1TJ,ZGZ
where m; is the mass of body i, I3 is the 3 x 3 identity matrix; A;(p;) is the body
i orientation matrix [27], G; = G(p;) is an Euler parameter dependent matrix [27],
§’Z~C is the matrix obtained by applying the ~ operator [27] to the i-th body center of

mass position vector s’ zc with respect to the body-fixed coordinate frame, and J'; is

the inertia tensor of body ¢ with respect to its body-fixed coordinate frame.
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The derivative of the product of matrix M; and a constant vector

‘ T
'yz = ( ,yi,r—l— ,.yi,pT )

with respect to ¢;, defined by Eq. (A.146) of the Appendix, is

‘ 0 M,
0 My,
where
5C A i 56 A i
Ml,i = —2mZB(pZ, Sli GZ’)/ ,p) + QmiAis’i G(’}/ ,p)

MQJ = 2mi(§/icAiT’)/i’r>_ + QmZGng/ZCC'(pl, "}/i’r) + 4(J/7;Gi’yi’p)_ — 4G1TJ/ZG<’}/Z’p)

Operator ()~ is defined in Ref. [43] and matrix C(p;, §), depending on Euler parameter

vector p; and vector &, is defined in Ref. [50]. As a result, the matrix (M) 4+ Where

T

(M~), = dz'ag((Mﬁi)qi,i =1,2,...,m) (4.86)

and blocks (M;~*) . are computed independently.

4.2.5 Derivatives of Applied Force and Coriolis Related
Terms

The Coriolis force relative to a non-centroidal reference frame, defined in Eq.

(A.132) of the Appendix, is
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where component L;, defined in Eq. (A.128) of the Appendix, is

4ml~EZ-Gi'TG/GiTS’iC
L, = (4.87)
—8G{ TG/
where matrix F;, which depends on the body ¢ Euler parameter vector p;, is defined in
Ref. [27]. The vector function L; depends only on the body ¢ Euler parameter vector

-
and its derivative. Therefore, the derivative of L; with respect to ¢; = ( o opil ) ,

defined by Eq. (A.153) of the Appendix, is

0 —4m¢E(G/TG/G¢T8'iC) + 4miEiGi,TGi/(5/ic)_
Ly = (4.88)
0 8G, JGY

and the derivative of L; with respect to ¢’ is

0 4miEi(G/GiTs’ic)_ — 4m1EZGZ,TG<GZTS/ZC)

Ly = (4.89)
0 —8(J":Gip)” — 8G/ TG,
As a result, matrices L, and L, are
Ly = diag(Lig,, i =1,2,...,n)
Lq/ = dZCLg(quZ/Z = 1, 2, e ,nb)
where matrix blocks L;, and L;, are computed independently.
Generalized force @); acting on body 7 is of the form [50]
FA
Qi= + QP+ QP (4.90)
2G; n'4

where applied force FA is given and torque n/? is defined in Eq. (A.110) of the

Appendix as a function of F/A. The term Q7°P4 represents the force produced by a
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translational spring-damper-actuator (T'SDA) that connects bodies i and j and has

the form [27]

TSP — (k(l — ) + ' + f(1, z')) dij (4.01)

l AT d;
where d;;, defined by Eq. (4.59), is the vector between points s’ f and s’f on bodies
i and j, respectively; [ = ||d;;|| is the distance between the two points; Iy is the given
distance at the spring rest position; k is the given spring stiffness; ¢ is the given
damping constant; and f(I,1’) is the known actuator force function, depending on [
and its derivative I'. The term QFP4 represents the force produced by a rotational

spring-damper-actuator (RSDA) that connects bodies ¢ and j and has the form [27]

QZRSDA = (kg(e + 2nrev7r) + Cgel + n(e + 2nrev777 9/)) (492>
h;

where h'; is a unit vector fixed with respect to the body i coordinate frame, @ is the
angle between the rotational spring rest position and current position 0 < 6 < 27,
Nrey 18 the integer number of revolutions of the rotational spring relative to its rest
position, kg is the given rotational spring stiffness constant, ¢y is the rotational damper
constant, and n(6, ') is the rotational actuator known torque, depending on 6 and
its derivative €'.

The applied force ); depends on generalized coordinate components ¢; and g,
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-
and their derivatives ¢; and ¢;’. Its derivative with respect to ¢;; = ( e’ g ) is

(F), 0O 0 00

Qi‘]ij = +
2G; "n' 0 2™ 0 0

i gij

+ QA+ QPP (4.93)

J

-
and the derivative of the applied force with respect to ¢';; = ( q/iT q/jT ) is

FA
Qi = (£ )‘I’w' 4 QTSPA 4 hsDA (4.94)
iqy; = N 7 4 7 q;j '
T,/
where derivatives QT5P4 g QTP Aq, , QRSD Aqij, and QRSPA ... are defined by Egs.
J )

(A.172) through (A.202) of the Appendix. As a result, derivatives @), and @, of the

applied force
-
Qz(@T”.@J>

are obtained by independently computing blocks Q;, . and Qiqlij and assembling them

into matrices ), and Q.

4.3 An Index-1 Formulation of the Direct Dif-

ferentiation DAE
Differentiating the equation of motion of Eq. (4.15) with respect to design

parameter (3, [ € {1,2,...,ng}, where [ is the vector of design parameters,

ﬁz(@T”.mj>



81

the direct differentiation index-3 DAE is obtained as [26]

Mqﬁz” + CI)qT)‘ﬁl = (Lq + Qq - (Mq//)q - <¢QTA)Q>Q51 + (LQ’ + Qq’)qﬁl/
- (qu>ﬁl - (q)qu\>ﬁl + L/@z + Qﬁz (495)
<I>qq5l -+ (I)ﬂz =0 (496)

where Eq. (4.95) represents the differential sensitivity equation and Eq. (4.96) repre-
sents the position sensitivity constraint equation. Terms of the form (A(1)¢) , denote
that variable £ is held fixed during differentiation with respect to variable 7. Differ-
entiating the position sensitivity constraint equation (4.96), the velocity sensitivity

constraint equation is obtained as
Qeq5" + (2g) 45, + (P5,) =0 (4.97)

and differentiating the velocity sensitivity constraint equation of Eq. (4.97), the

acceleration sensitivity constraint equation is obtained as
405" + 2(Pg) 45 + (Pg) g5 + (P5)" =0 (4.98)

Defining variables

21(6,t) = qg, (8, 1) (4.99)
2"(6,t) = ¢5'(8,1) (4.100)
2(B,t) = Ag (B, 1) (4.101)

the direct differentiation DAE of Eqgs. (4.95) and (4.96) is re-written as

Mz" +®, 2 = s4+Q™a? + Q™" (4.102)

Q27 = 1y (4.103)
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where subscript d stands for direct differentiation method and functions sg, r4, Q%,

and Q™ are

~

sa= Sy — (Mds), — (2, N (4.104)
rg = —®p (4.105)
Q' =5 — (Mq"), — (9,7 \), (4.106)
Q"™ =S! (4.107)

The velocity sensitivity constraint equation of Eq. (4.97) is re-written as
D" + (D)2 =1, (4.108)

where

rd = _(Cbﬁl)/ = _(q)qé,)gl — Dy (4.109)

and the acceleration sensitivity constraint equation of Eq. (4.98) is re-written as

2" 4 2(D,) 2" + (@) 21 =1y (4.110)
where
,rd// — _(@ﬂl)//
= (P40, — (Bud")5, = 2Py, — P (4.111)

Defining the vector

Q" = Q™a" + Q™at (4.112)

the equivalent index-1 DAE formulation [2], obtained by applying a stabilized index

reduction [24] to the DAE of Eqs. (4.102) and (4.103), augmenting the resulting DAE
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with the constraint equation of Eq. (4.108), and introducing variables x4 and 14 is

Fd<y7 ylv t) =

29 — 2" + O,
Mz + q)qud/ — Q% — 54

¢ ,z¥ + (q)q)/xq —r4

D2t — 1y

(4.113)

-
where y = ( a| g avT oz’ ) . A variable step-size BDF integration method

of up to order six converges for the index-1 DAE of Eq. (4.113), as is shown in

Section 4.5. The Jacobian of the non-linear equation that results from applying a

BDF integration method to the index-1 DAE of Eq. (4.113) is

Ja=

ad,” 0 —I o[
0 a®," M — Q™ —Q%
0 0 ®, ((I)q)/
0 0 0 d,

(4.114)

Evaluations of function Fy, Jacobian .J;, functions r4 and r;”, and consistent initial

conditions require computation of the following derivatives:

1. The position constraint Jacobian ®, and derivatives of the form (®,'¢) , (M~) o

q7

S;, and S!. The analytic evaluation of these derivatives is shown in Section 4.2.

2. Partial derivatives of kinematic terms with respect to design parameters (3, ®g,

((I)qTC)ﬁ7 (M’V)ﬁv Sé: (CI)qu)ﬁ’ and ((‘qu)qoﬂ-
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4.3.1 Consistent Initial Conditions
Consistent initial conditions for the direct differentiation DAE of Eqs. (4.95)

and (4.96) are computed assuming one of the following hypothesis [50]:

1. The initial configuration of the multibody system depends explicitly upon the
design parameters [26]. As a result, initial conditions for the sensitivity equa-
tions are obtained by direct differentiation of the initial conditions of equations

of motion [26].

2. The generalized coordinate vector ¢ is partitioned into subvectors ¢* and ¢,

T
q = [quTqu]

, where ¢" has dimension equal to the number d of degrees of
freedom of the system. Also, the corresponding subvector ¢* of the generalized

velocities is given. As a result, the sensitivities ¢j and ¢g, and their derivatives

q5 and g are [50]

g = 0

g5 = —(P,) 'Oy

g5 = 0

g5 = —(®u) (P A (P40)5 + (Pgd + P1)gqs)

where the constraint Jacobian @, is partitioned into a nonsingular square block

(I)q:(@u @U)

3. The initial configuration is a static equilibrium configuration.

®, and block ®,,

Therefore, generalized velocities ¢’ and accelerations ¢” are zero, and the initial
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sensitivities are obtained [50] by solving the linear system
(q)qu‘)q - S; (I)q—r 4s Sé - (CDqT)‘)ﬁ
P, 0 g —dj
qs' =0
After consistent initial sensitivities for position gg, and velocity g5’ have been

obtained, the differential sensitivity equation of Eq. (4.96), together with the accel-

eration sensitivity constraint of Eq. (4.97), define the linear system
MZwd = bl (4.115)

where M is the Schur complement matrix, defined by Eq. (4.25), at initial time ¢,

wd is the vector of unknowns,

]
d
= (aa0)” A" )

and
pd ((Lq +Qq— (Mq")q — ((I)qT)‘)q)qﬁz + (Ly + Qq’)qﬁz/) (to)
0 =
( - 2<q)fI),qu/ - (CI)Q)HqﬁL - ((I)ﬂz)”) (tO)
As a result, initial conditions y, and ¢/, for the index-1 DAE of Eq. (4.113)
are
Xdo 0
¢H0 0
Yo = = (4.116)
qﬁlo qﬁlo

dpg 439



86

and
Xd/o 0
, wdlo )‘ﬁz (to)
Yo = = (4.117)
q5" (o) qs,” (to)
qﬁz/(to) qﬂl,(to)

4.3.2 Evaluation of Partial Derivatives of Kinematic

Terms with respect to Design Parameters

Partial derivatives of kinematic terms with respect to design parameters (3 are
obtained by using the chain rule of differentiation. For a kinematic term X (q,¢’, ¢”, A\, u(/3))
that depends on the generalized coordinate vector ¢, its first and second derivatives ¢’
and ¢”, Lagrange multipliers A, and a set of model parameters u(/3) that are functions
of design parameters 3, the partial derivative

0X _ 0X ou
98 ~ u B

has the following constituent parts:

1. The partial derivative of X with respect to model parameter u can be ana-
lytically evaluated, since, for a given topology, the multibody system depends
explicitly on model parameters; e.g., positions of points in bodies with respect
to corresponding body-fixed coordinate frame, inertia properties of a body, and

body fixed unit vectors.

2. The partial derivative of the vector of model parameter v with respect to design



87

parameter (3, which must be given, or evaluated through finite differences or the

complex-step method.

In this thesis, only evaluation of terms in the first part is provided, while all the nec-
essary terms in the second part are assumed to be explicitly given. Next, evaluation
of derivatives with respect to model parameters of the form ®,, (®,7),, (d>qT()u,
and (((I)‘ﬂ)qou’ where v and ( are constant known vectors, is presented for each
of the four basic constraints; spherical, dot-1, dot-2, and distance. Let constant
fourteen-dimensional vectors 7, 71, and v, have the form of Eq. (4.48), 73 be a
three-dimensional constant vector, and a be a constant scalar.

The spherical constraint function ®° of Eq. (4.38) depends on model parame-
ters s', and s’f. Derivatives ®°,, (®%,7),,, ((IDSQTC)U, and ((@qu)qou, where v and

¢ are constant known vectors and u € {5/ s’f}, are [50]

®op = A; (4.118)
o = —4 (4.119)
(@54, Ve = N(pi,7'?) (4.120)
(®5.4,7)sr = —N(pj,77) (4.121)

0

CT(P 73)

T 1)
(P54 78)gp = (4.122)

0

0
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0
s T 0
(5, 73y = (4.123)
0
—CT(pj/Y?,)
i, Py i, i, P i,
(25 g, aug12) yr = (B, 85)%" = BOP,85)1") o
= NG (4.124)
i, Py 4, i, P i,
((q’i,qﬂl)qi,qﬂz)slf = (BW", ¢ )" — B(A”", ¢ )7%”)8,5
= —N({"\5") (4.125)
Derivatives
; O(B(ps,a’i)y"P)
N(ps, 77y = 4.126
(pi, ¥"7) o, ( )
and
a BT 79 /’i
O (piy ) = LB @) (4.127)

od/;

are defined by Eqgs. (A.98) and (A.101), respectively, of the Appendix.
The dot-1 constraint function ®® of Eq. (4.46) depends on model parameters

W; and R';. Derivatives %, (&% ) , ((IDdquC)u, and (((I)dlq’y)qC)u, where v and ¢

are constant known vectors and u € {h’;, /';}, are [50]
ot =1 AT A (4.128)
O =N AT A (4.129)

((I)(c]h,y)h/i = (Ajh/j)TN(pia v + VPjTBTQ?j, h/j>Az‘ (4.130)
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(@59, = (Ails) ' N(pj,4%7) + 47 BT (pi, 1) A; (4.131)
0
CT(p“Ah/>
(@4 )y, = a Y (4.132)
0

BT (pj, ') A;

0
BT(p’L)h/Z)A
(@4 )y, = a ! (4.133)
0
CT(pjaAZh/1>
T i i, i T i,
(P M), 02),, = ((Ajh’j) By, Wi)vs” + " BT (p 1) B(pi, W)y
+ n’ BT(pi,h’i)B(pj,h’j)W%’“r(Aih’i)TB(V{’p,h’j)vé’p>h/_
ip i ip T i,
= (A1) NP, %" + 1" BT (s, M'5)N (pi,%7)
+ " B (pp, Wy)N(pi, ") +w? BRI A (4.134)
T i i, ip T i
(g 71) 002, = ((Ajh’j) By, Wi)w® +17 B (pj. 1) Bpi, 135"

’L' T .7 T .7 ,7
+ n? B (pi, W) B(pj, W) " + (A:h's) B(”Y{p7h/j)7%p>h,‘
ipl i ipl ,
= w’ B' (" W)A;+ " B (i, )N (pj, ")

+ A" B (pi, W)N(ps, %) + (Ail) ' N(4{",73")  (4.135)

The dot-2 constraint function ®%2 of Eq. (4.58) depends on model parameters

i w’

Wi, ¥ and s’f. Derivatives ®%,, (®% ~) (@quTC)u, and ((q)dzqy)qg)u, where 7y



and ¢ are constant known vectors and u € {I;, 5’7, s’f}, are [50]
T
o2 =d; ;" A,
O, = (Ahy) (= A) = =1
O, = (Al) (4))
il i ipl
((I)Zlf,qﬂ)h’i = =" (A) + di,jTN<pi7'7 P) — AP BT(pi,S/zP)Ai
+ A+ BT (p), 8 Ay

ip T i
(q)gf,qus/f = —"" BT (pi, W) A; — (Aih/z')TN(pi;V )

(‘I’Zf,qﬂ)s/f = ((Az‘h'i)TB(pw8'5)7“’)5,;+7’p BT(piah,i)di,js/;?

= (Aih/i)TN(pjv Vj’p) + Vi’pTBT(pz‘a h/i)Aj

90

(4.136)

(4.137)

(4.138)

(4.139)

(4.140)

(4.141)



((deqm(b',yl)qh

((®d2qi,qj’yl)qi7qu}/2)sll)

qj 72)

qi>q;

h';
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— A,
CT(pi, di,j) - BT(]%, S/f)Ai
A;
BT<pj, S’f)Ai
0
—CT(]% Aih/i) - BT(pz’, h/i)Ai
= (4.143)
0
0
0
BT(Pz‘, h,i)Aj
= (4.144)
0
CT (pj7 A’Lh/z)
ip i, il i, T i,
di; " N(",%") — %" Npon?®) — (@) 7)) Npi, ")
i,pTBT ip P A — z',pTBT - P N(p: ~iP
Y2 (’Y1 7Si) i~ V2 (pzasi) (pza% )
W N WP +37 BT (AP, 7)) A;
i BT PYN(p: ~P 4.145
72 (p]75]) (p1771 ) ( : )
ipl i
= —" B (pi, V)N (pi, ")
+ (Aih/i)TN(’Y%p, ’Y;’p) + 7;’pTBT(Vi’pa ')A
ipl i
+ %P B (pi, )N (pi, 157) (4.146)
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ipl ,
((q’qui,qﬂl)qi’%%)s,P = %" B (ps, )N (pj,11")
J
Va2 T ]+( ih's) (17, %")

ip ! j
+ W B (pi, Wi)N(pj,%7) (4.147)

The distance constraint function ®2 of Eq. (4.73) depends on model param-
eters C, ' , and s’} . Derivatives ®7,, (2,7),, (@DqTC)u, and ((®”7),() . where

~ and ¢ are constant known vectors and u € {C, " S'f}, are [50]

7 )

D, = —2d; ;" A; (4.148)
D, =2d; ;" A; (4.149)
oL =20
o= (4.150)
. . . . T
(@ e = — 2(¥"" + Blp;, S — A — B, 85 W) A
2d; ;" N(pi,7™") (4.151)

T P 1 7,7 Py g T
(P, Ner = 27"+ B(p; 857" =" = Blpi, 'i )/'7) 4

+ 2di; " N(p;,7'?) (4.152)
(@ e =0 (4.153)
Aj
—CT(p;, d;ij) + BT (pi, S/f)Ai
(@2 Ta)r = 2a ’ (4.154)
_A,

—BT(p;, s'])A;
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Aj
_BT(pia Slf)A
( Z,q]'Ta)s’f =20 ’ (4.155)
Aj

CT(pj, dig) + BT (pj, s'7) A,

(@2 Ta)e =0 (4.156)

9,95

T i T ;
((q)DinQj’Yl)qi7qj72)s,P = ’YITCD:Z,qj N(pla 7211)) + VQT(P(i,qj N(pu ’)ép)
ip i, ipl i, P
dij NP 9%") + (v BT (%P, 875) (4.157)
. T . P
w" BT (", 8))Ai (4.158)

(((I)in,quyl)qm%f}?)s/l? = meN(»Y{vP’,V%,p)
J
_ To° TN CAIPY A TS TN Y
n 9i»q; (pJ772 ) Y2 qi,q; (p]a71 )

ipl i P inT ; P
— (% BT, 8) =" BT (v7,s;))A4; (4.159)

¢ J

(P74, 7) 4, 72) , = 0 (4.160)

Consider vector function

T
wO(a7 k?]) = ( as 0 aj ) (4161)
itk=3and j =1,
T
wola, k, j) = ( a ap 0 ) (4.162)

itk=2and j=1,

wo(a, k, j) = ( 0 as as )T (4.163)



94

ifk=3and j=2,

T
WO(avkvj) = ( aq 0 0 ) (4164)
ifk=1and j =1,
T
wﬂ(avkaj) = ( 0 as 0 ) (4165)
if k=2and j =2,
T
wﬂ(a’ak7j) = < 0 0 as ) (4166>

-
it k =3 and j = 3, where a = ( a; as as ) is a three-dimensional vector and k,j

are integers with properties k,j € {1,2,3} and k > j. Let »' = ( i T ip T )T be
a constant seven-dimensional vector with three-dimensional component 7" and four-
dimensional component 7%, and (J';),; is the inertia tensor J'; element positioned
at row k and column j.

Consider the product of Eq. (A.136) of the Appendix of matrix M; and vector

vt The derivative of product (M;v') with respect to model parameter m; is

i YT — 24,5 Gy
(M )m, = i (4.167)
2G; s, AT

1C

7

In order to evaluate the derivative of (M;y") with respect to model parameter s

(M;~") is re-written such that terms not depending on s’ ,LC are emphasized using the

~

() operator

— W\ 5C T
. (min®") = 2(miA(pi))s's (G(pi)r'?)
My = - - - (4.168)

2(miGp:) )& (Alp) vir) + 4(G(pi) TG (pi) )
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Using the property of the ~ operator that [27] ab = —ba and canceling terms

that do not depend on s'¢

7 )

4Gy

(Miy')ge = 2m; (4.169)

—G (ATy)
The product (M;y*) depends on inertia tensor elements (J'i)y; only through term
4G (p;) " J';G(p;)y"®. Therefore, the derivative of (M;') with respect to (S0 <K,
1s

' 0

4G (J3) gy GV

kj

If j = k € {1, 2,3}, then symmetric 3x 3 matrix (J/i)(J/i)kj has an element equal

to one on k-th row and k-th column, all other elements being zero. If j < k € {1,2,3},

then (J’ i)( T has two elements equal to one, positioned at the k-th row and j-th

column and the j-th row and k-th column, all other elements being zero. Therefore,

the product of matrix (J';), 7, and three-dimensional vector ¢ = < G G G )T
is

(), = G = wolC, b, B) (4171)

where function wy((, k,j), j < k, is defined in Eqgs. (4.161) through (4.166). Prod-

uct (J/i)(J%)ij’ j < k, is a vector having elements (; and (; in j and k positions,

respectively, and zero as the remaining elements; i.e.,

(J,i)(J’i)ij = wo(C, k, ) (4.172)
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for j < k € {1,2,3}. As a result, letting ¢ = (Giv"?),

4 0
(M), = (1.173)

4G Two((Giy?), k, §)

Consider the Coriolis term L; of Eq. (A.128) of the Appendix,

Ly
L; = (4.174)
Lo
where the upper-block of L; is
Ll,i = 4miEiGi/TGi/GiTS/iC (4175)
and the lower-block of L; is
LQ’Z' = —SGilTJIiGipil (4176)

Since only the upper block L, ; depends on mass m;, the derivative of L; with respect
to model parameter m; is

AEG GG
(Li)m, = Z (4.177)

0

Also, only the upper block L;; depends on s’Z.C. Therefore, the derivative of L; with

C .
respect to model parameter §';" is

4miEiGi/TG/GiT
(Li)ge = (4.178)

0
Coriolis term L; depends on inertia tensor elements (J';),; only through the lower-
block Lo ;. Hence,

0
(L), = (4.179)

—8G;"(J";) (0, G
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Replacing (J/i)(‘]/')k' by its expression defined in Egs. (4.171) and (4.171), in which
Ykj

¢ = (Gip'), the derivatives of L; with respect to inertia tensor elements (J';), ; are

(L) (), = ! (4.180)

—8G; " wo((Gipi'), k., j)
Partial derivatives of the applied force component @Q); of Eq. (4.90) with respect
to model parameters F/* and n’f; TSDA parameters k, ly, ¢, and f(l,1'); and RSDA
parameters kg, cg, and n(0,0') are defined by Eqs. (A.210) through (A.233) of the

Appendix.

4.4 An Index-1 Formulation of the Adjoint DAE

Consider the functional

+2

(8, 1%) Zl(t27q2,q’2,ﬁ)+/ 9(a,q'; A, B, t)dt (4.181)

¢l

where final time ¢? is implicitly defined by the the condition [26]

At*,q(6,%),8) = 0 (4.182)

The index-3 adjoint DAE of a multibody system with respect to the functional of Eq.

(4.181) is defined [26] as

MM// . Q,U,U,LL/ _ Q}Lqﬂ _|_ @qTV — Sa (4183)

Spu—r, = 0 (4.184)

where p is the adjoint variable, v is the adjoint Lagrange multiplier, and

T

=M (sh) — (50T (@0 + ()| s
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Q" = —(2M' + S1T) (4.186)
T d T

sa=9¢' = 2 (9¢") (4.187)

Ta=gx" (4.188)

This system was shown in Chapter 3 to be stable in the backward direction. Differen-
tiating the adjoint constraint of Eq. (4.184), the adjoint velocity constraint equation
is obtained,

S+ (D) —1 =0 (4.189)

Differentiating the velocity adjoint constraint of Eq. (4.189), the adjoint acceleration

constraint equation is obtained,

D" +2(0) 1 + (@) ' —1"=0 (4.190)

Defining variables

T (4.191)
1l = (4.192)

and the function
Q' = Q" + Q"= Q" + QM (4.193)

the equivalent index-1 DAE formulation [2], obtained by applying a stabilized index
reduction [24] to the DAE of Eqs. (4.183) and (4.184), augmenting the resulting DAE

with the constraint of Eq. (4.189), and introducing variables x, and ), is



Fa(y7 yla t) =

where

p—pt 4 @y xS
M v d T e Y
1% -+ q ’l/}a Q Sa

Py’ + ((I)q)’,uq — 74

(Dq:uq —Ta

Xa
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(4.194)

(4.195)

A variable step-size BDF integration method of up to order six converges for

the index-1 DAE of Eq. (4.194), as is shown in Section 4.5, as long as integration is

performed in the backward direction. The Jacobian of the non-linear equation that

results from applying a BDF integration method to the index-1 DAE of Eq. (4.194)

18

CYl(I)qT

0 -1 ol

041(I’q ay M — Q”v —Q“q
0 P, (®,)
0 0 P

(4.196)

Evaluations of function F,, Jacobian J,, functions r,’, r,”, and consistent

initial conditions require computation of the following derivatives:

1. The position constraint Jacobian ®,; derivatives of the form (®,'¢ )y (M),

Sy; and S;. The analytic evaluation of these derivatives is shown in Section 4.2.



100

2. First and second derivatives of mass matrix M and derivative of matrix S!.

2

3. Derivatives of function g, g4, (94)’, 9, (92)’, and (gx)".

4.4.1 Consistent Initial Conditions
Consistent initial conditions for the direct differentiation DAE of Egs. (4.183)
and (4.184) are computed after the final time ¢* is reached and are given by the

following conditions [26]:

-
p(t?) )
MS(#?) =" (4.197)
n(t?) g’ (%)
where M?®(t?) is the non-singular Schur-complement matrix defined by Eq. (4.25)
at final time #2. As a result of solving the linear system of Eq. (4.197), the adjoint

variable p(t?) is available. In order to obtain the derivative p/(t?) of the adjoint

variable at the final time, the following linear system must be solved [26]:

VS w8y = (@) T+ g D)
—(t?) Oy u(t?) — g\'(t?)
Q," (%)
+ £(t%) (4.198)
0

where scalar £(¢?) is defined [26] as

(0O @) @) ) e () )
g(t ) = = )

() + ()P
(4t 0.0)) () + 9(#)

T T T ()@

(4.199)
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The adjoint differential equation of Eq. (4.183), together with adjoint accel-

eration constraint of Eq. (4.190), at the final time, form the linear system
M3 () ws = b3 (4.200)
where w§ is the vector of unknowns,

wy = ( W) ()’ )

and

(Sq + Q" 1/ + Qo) ()

(ra" = 2(®g)'s — ()" 1) (?)

which solves for the second derivative p”'(t?) of the adjoint variable and for the adjoint

by =

Lagrange multipliers v(#?) at the final time. As a result, the values of y and y' at

final time #2, which represent initial conditions for the index-1 DAE of Eq. (4.194),

Xa(t?) 0
, a(t?) 0
y(t2) = - (4.201)
1 (t%) 1 (t%)
1u(t?) fu(t?)
and
Xd' 0
y'(t) = v = A (4.202)
(%) (%)
(%) (%)
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4.4.2  Derivatives of Mass Matrix and of Matrix S}

Substituting for x = ¢; and X = M, into Eq. (A.7), of the Appendix,

M = ( (M1 0)q,q" + (Miwao)e .. (Miuro)g,qi" + (Miuz o) ) (4.203)

where w9, { =1,2,...,7, is the seven-dimensional unit vector with all elements zero
except the [-th, which is one. Each column of M’ is independently evaluated using the
identity of Eq. (4.85). For a multibody system with constant mass and moments of
inertia, partial derivatives of mass elements with respect to time, of the form (M;u; ),
l=1,2,...,7, are zero.

The second derivative M;"” is obtained by substituting for x = ¢; and X = M,;

into Eq. (A.12) of the Appendix,

M = ( (mig)" ... (miz)” ) (4.204)

where m;; = Mywo, | = 1,2,...,7, are the columns of M;. Derivatives (mu)" are
obtained by applying the identity of Eq. (A.13) of the Appendix to columns m,,

1=1,2,...,7,

(miy)" = ((MiULO)qZ.QiI)q_

7

+ (Miup) g, 0" + 2(Miuo) g, 0"+ (Miwo)y, (4.205)

where partial derivatives (Mjup), , and (M;up),, are zero for multibody systems

qist t

with constant mass and moments of inertia.

Consequently, the first derivative of the mass matrix is assembled as

M’ = (diag(M;))" = diag((M;)',i =1,2,...,n) (4.206)
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where (M;)" is defined by Eq. (4.203), and the second derivative of the mass matrix
is

M" = (diag(M;))" = diag((M;)",i =1,2,...,m) (4.207)
where (M;)" is defined by Eq. (4.204). Hence, derivatives of the mass matrix are
obtained by independently evaluating the derivatives of each block M;, using Egs.
(4.203) and (4.204). Derivatives of the form (M;y"),, and ((Mi’y{')qi’yg)qi; where +*,
vt and 74 are 7-dimensional constant vectors; are presented in Section A.7 of the
Appendix.

-
Derivatives of matrix blocks L;,,, are obtained by substituting for z = ( ' ¢ )

and X = L;, into the identity of Eq. (A.7) of the Appendix,

(Ligs)' = ( (Lig )t .. (Liqi,)7’) (4.208)

where the derivative of the I-th column, (L;,/ )i, [ =1,2,...,7, of matrix (L;,,) is

(Liqi’)l/ = (Liqi/ul,g)qiq/ + (Liqi/ul?o)qi/qi” + (Liqi/ul’o)t (4209)

Derivatives of the form (L;,,7")q

2

and (L;,,")q are defined by Egs. (A.160) and
(A.161), respectively, in the Appendix. It should be noted that (L, ) = 0,
l=1,2,...,7, for a multibody system with constant mass and moments of inertia.
For an applied force @; acting on body 4, derivatives of matrix blocks Q);,., are
obtained by substituting for x = ( g’ Qi/T )T and X = @, into the identity of

Eq. (A.7) of the Appendix,

(Qigy) = ( (Qig )t - (Qiqi,)/) (4.210)
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where the derivative of the [-th column, (Q;,.)i, [ = 1,2,...,7, of matrix (Q,,) is

(Qiqi/)l, = (Qiqilulﬂ)qiqi, + (Qiqi/ul,o)qi/qi” + (Qiqi’ul,o)t (4211)

. . . . . . /
For a TSDA or RSDA force ); acting between bodies i and j, derivatives (Qiq/ij) ,
T T
L= 3 : . — T
where ¢;; = ( ' g ) , are obtained by substituting for = = ( Gij " ¢ )

and X = Qiq’ij into the identity of Eq. (A.7) of the Appendix,

<Qz~q/ij)’=(<@iq,ij)1’ (Qiq,ij)m') (4.212)

where the derivative of the [-th column, (Qiq/ij)l’ l=1,2,...,14, of matrix (Qiq/ij) is
(Qiq’ij)l/ = (Qiq/ijnl,O)qi]’q/ij + (Qiq’ijnl,O)q/i]-q”ij + (Qiq/ijnl,o)t (4.213)

where 7,9, [ = 1,2,...,14, is the 14-dimensional unit vector with all elements zero
except the [-th, which is one. Derivatives of the form (Qiq/iﬂi’j )qi; Where I s a
constant 14-dimensional vector, are defined in the Appendix by Eqgs. (A.176) and
(A.177), respectively, for TSDA and Egs. (A.199) and (A.200), respectively, for
RSDA. Derivatives of the form (Qiq/ijvi’j )q/i], are defined in the Appendix by Egs.
(A.178) and (A.179), respectively, for TSDA and Egs. (A.201) and (A.202), respec-

tively, for RSDA. Therefore,
(SY) = diag((Lig,) i =1,2,...,m) + Qy' (4.214)

is obtained by independently evaluating the derivatives (Liqi/)/ and (Qiq/)/> using Eqs.
(4.208), (4.210), and (4.212).

Derivatives g4, (9¢)s gr, (g2)', and (g»)" are assumed to be given separately.
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They depend on the actual optimization or optimal control problem for which gradi-

ents are computed [50].

4.5 Existence and Uniqueness of the Solution of
Index-1 DAE Formulations of Motion, Sen-
sitivity, and Adjoint Equations
The index-1 DAE formulations of motion, sensitivity, and adjoint equations of

Eqgs. (4.20), (4.113), and (4.194) have the form

v —ys+ P,y
, Mys' + @,y + fo(ys, ya)
F(y,y',t) = =0 (4.215)
Pyys + f3(ya)

f4(y4)
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-
where y = ( T oy s ! ) . For the index-1 formulation of the equations

of motion of Eq. (4.20),

Y1 = X
Y2 = ¢
ys = v=¢q
Ya = ¢
fo(ys,va) = _51(9761176715)

f3(ya) = Pu(q,B,1)

falya) = (q,6,1)

For the direct differentiation sensitivity index-1 formulation of Eq. (4.113),

Y1 = Xd
Y2 = g
yz = 1' = QB/
yo = 1 =qp
folyssya) = —Q" (Y3 ya) — sala. 4’4", B, 1)

fs(ya) = (®)ys —ralq, B,t)

f4(y4) = (bqy4_rd(Q767t)
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where %, sq4, and r4 are defined by Egs. (4.112), (4.104), and (4.105). For the adjoint

index-1 formulation of Eq. (4.194),

Y1 = Xa
Yo = Ya
ys = p=p
yr = pi=up
fo(ys,ya) = —Q"(ys,va) — sa(q, ¢, A, B, 1)

fa(ys) = (®))ya—ralq.q' X B,t)
f4(y4) = ‘I)q?/4—7’a(qaq/;)\757t)

where Q*, s,, and 7, are defined by Eqs. (4.193), (4.187), and (4.188). It should
be noted that for all three formulations, fs,, = ®,. Also, in the index-1 formu-
lation of the equations of motion, matrices M and ®, depend on y, = ¢, while
in the index-1 formulations of direct differentiation and adjoint equations, they do

.
not depend on corresponding state vectors y = ( a| g vl ozl ) and y =

( Yo o' T pe’ )T. The theorems that follow are proved for later use. They
will be used in the proof of existence and uniqueness of a BDF integration method
applied to the index-1 formulation of Eq. (4.20) for the equations of motion, the
index-1 formulation of Eq. (4.113) for direct differentiation sensitivity equations, and

the index-1 formulation of Eq. (4.194) for adjoint equations.

Theorem 4.1. Matriz J'C = J + m3C is positive definite, where J' is the positive

definite inertia tensor of the body, m is the mass, and s'° is the position of the center
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of mass with respect to the body-fixed coordinate frame.

Proof. The definition of the inertia tensor J’ for a rigid body is [27]
J = / 55" dm(P) (4.216)

where s'* is the position of a point P in the rigid body with respect to the body-fixed
coordinate frame, dm(P) is the differential unit of mass at point P, and integration

is performed over the entire mass m of the body. Operator ~, applied to a vector

.
a:(ax Ay az> , Is [27]

0 —a, aqa
a = a, 0 —a,
—Qy Ay 0

with the properties that aa = 0, @' = —a, and det(a) = 0. The definition of the

position of the center of mass s’ is [27]

~C 1
= sPdm(P 4.21
s - /ms m(P) (4.217)
Therefore,
. ~ P~ 1 . 2
JC = J 4 md” =~ / s's  dm(P) + — ( / s’Pdm(P)) (4.218)
m m m

where matrix J'¢ is symmetric,

~C~C. T ~
TN = I am79Y) =T +m(s) (5
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Let a be a three-dimensional constant vector and j“(a) the product

7% a) = a'J% =a"(J + msN’CQ)a = —/ aTSN’Pg’Pa-dm(P)

1 ~ -

+ —(/ aTs’Pdm(P)>~</ S’Pa'dm(P)) (4.220)
m m m

-p.T -
Using the identity (S’P) = —S’P,j’c(a) is re-written as
~p.T~p 1 ~p T ~P
i%a) = / a'(s") s a-dm(P) — —(/ s a-dm(P)) </ s/ a~dm(P))
m m m m
oF 2 Lo a2
= [ lls" alladm(P) — —|[s"[ (4.221)

where s* = [ §’Pa-dm(P).

Consider the vector function f(z) : QCRY —=RY,

flx) = ( A . fa(x) )T (4.222)

where

fi : Q—=Ri=1,2...,N (4.223)
The absolute value of the scalar product of function f;(z) with function u : Q—R
u(x) =1 (4.224)
is, according to the Cauchy-Schwarz inequality [9], bounded by

|(fi wal <[l fillo-lulle (4.225)

where [9]
(fir o= / filx)u()da (4.226)

I fille=V/(fi, fi)e (4.227)
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As a result, the inequality of Eq. (4.225) is

\/fz dx|<\// f2(x \// u?(x (4.228)

which, by squaring terms and accounting for the definition u(z) = 1, is re-written as

(fsome) = s

Since f(z) = ( fi(z) ... fa(z) )

fH(x)f(x)dx = f: fH(x)dr = f: f(x)dx (4.230)
Q Qi i1 /O

Pre-multiplying Eq. (4.230) by positive fQ ldz, where sub-domain €2 is assumed to

have non-zero measure [9],

([1ae)- ([ rwos@ac) =3 ([rae) ([ o) s

=1
Using the inequality of Eq. (4.229),

N

(fooe) (L) = (o) (o)

1

> EN;( / fix ) (4.232)

—

.
Let w = [, f(z)dx = ( [ fi(@)dz ... [, fy(z)de ) . Then, the euclidian

norm of vector w is

Jells= ( f(:v)da:)T- ([ rwe) - i (f fi<x>dx)2 (4.233)

Substituting Eq. (4.233) into the inequality of Eq. (4.232),

(/Q f(x)dx)T_ (/Q f(x)dx) < (/Q 1dx) : (/Q fT(:c)f(:n)dx> (4.234)
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and dividing by the strictly positive scalar fQ 1dz, the following inequality is obtained:

(/Q fT(x)f(x)dx) - ﬁ(/ﬂ f(gg)dgc)T (/Q f(a:)da:) >0 (4.235)

Taking N = 3,z = m(P),Q = m, and f(z) = §’Pa, it follows that [,1-dx =

[, 1-dm(P) = m and the inequality of Eq. (4.235) is re-written as

/Q (57a)" (5P a)dm(P) — %usan? >0 (4.236)

so 7%(a) = a'J'®a > 0, for an arbitrary vector a€R®. In order for the inequality
of Eq. (4.235) to become an equality, it is necessary [9] for f(z) to be constant;
i.e., f(x) = ceRYN. Therefore, s"a = ceR? for any s'F(m(P)); i.e., being given an

arbitrary vector a, the vector product
s (m(P))a = c (4.237)
needs to be constant for any point P inside the body, in order to obtain equality in

Eq. (4.236). As a result, Eq. (4.237) must hold for s”€{i,j’,k'}, where {i, ', k'}

are the unit vectors

-
il = ( 10 0 > (4.238)

T
Jj= ( 010 > (4.239)

T
K = ( 00 1 > (4.240)

Consequently,

i'a = c (4.241)
jla=c (4.242)

ka=c (4.243)



112

where a is the arbitrary given vector of Eq. (4.220). Equations (4.241) through

(4.243) can only hold if ¢ = 0. Thus, vector a must be zero. As a result,
j/C(a) — aTJ/Ca =0

only if @ = 0. Otherwise j°“(a) > 0, as shown in Eq.(4.236). Therefore, J' is positive

definite. ]
Theorem 4.2. The rank of the matrix
6 = (e et ) (4.244)
1s three for any normalized Euler parameter vector p = ( eo €' )
Proof. For the 3x4 matrix G, the following identity holds [27]:
GG =13 (4.245)

where I3 is the 3x3 identity matrix. Applying Sylvester’s inequality [23] to the

identity of Eq. (4.245),

rank(G") 4+ rank(G) —4 < rank(GG")
< min(rank(G"),rank(G)) (4.246)
= rank(G)
it follows that
rank(G) > rank(GGT) = rank(l3) = 3 (4.247)

Since G has three rows, its rank cannot exceed three. Therefore, rank(G) = 3. |
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Theorem 4.3. If J is a 3x3 non-singular matriz, then the 4x4 matriz J¢ = G (p)JG(p)

has rank three, for any normalized Euler parameter vector p.

Proof. According to Sylvester’s inequality [23],

3 = rank(G") 4 rank(J) — 3 < rank(G"J)

< min(rank(G"),rank(J)) =3

Therefore, rank(G"J) = 3. Applying Sylvester’s inequality to the product G'JG, it

follows that

3 = rank(G"J)+rank(G) —3 < rank(G'JG)

< min(rank(G'J),rank(G)) = 3
Consequently, rank(GTJG) = 3 |

Corollary 4.4. The null space of matriz J% = G (p)JG(p), with J non-singular,

has dimension one and s
N(G'(p)JG(p)) = {p}

where p is the normalized Euler parameter vector.

Proof. The following equality holds [23]:
rank(J%) + dim(N(J)) = 4
where dim (N'(J¢)) represents the dimension of the null space of J¢. Therefore,

dim(N(J9)) = 4 — rank(J°) =1 (4.248)
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Since [27]
G(p)p =0 (4.249)
it follows that
Jp =G (p)JG(p)p =0 (4.250)
Therefore,
peN(J9)
and because dim(N'(J%)) =1,
N(J9) = {p}
|
Theorem 4.5. Matriz
m; 13 —2miA(pi)s~’?G(pi)

M;(pi) o

1s a TX7 matrix of rank six, where p; is the normalized Fuler parameter vector of body
i, A(pi) is the orientation matriz [27], G(p;) is the matriz defined by Eq. (4.244), m;
is the mass of body 1, s’ic is the position of the center of mass of body i with respect

to the body fized coordinate frame, and I3 is the 3x3 identity matriz.

Proof. Consider an arbitrary seven-dimensional vector

’U:(U’FT ,UpT)

with tree-dimensional component v" and four-dimensional component v?. For vector



m;ls _2miA(pi)8~/iCG<pi)
~C
—2m;A(p;)s’; G(pi)pi

— == O
4G (pi) JiG (pi)pi

since G(p;)p; = 0 [27]. Assume that veN (M;(p;)); i.e., M;(p;)v = 0. Then,

m;v" — 2miA(pi)§’iCG(pi)vp =0
2m,G (po)'; AT (p " + 4G (i) TG (p)e? = 0
Therefore, Eq. (4.251) states that
v = 24(p)s'; Glp e
which, substituted into Eq. (4.252), yields
AmiG T (p)s'; AT () A(p)S'S Gpi)e” +4GT () TG (pi)” = 0
Since AT (p;)A(p;) = I3, Eq. (4.254) is re-written as
(mGT (p)5; Gp) + G (p) TG p)” =0

Factoring terms,

2

GT(pZ-)(JZ-' + mig’j )G(pi)v? =0

Di
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(4.251)

(4.252)

(4.253)

(4.254)

(4.255)

(4.256)

. ~c? . .
where matrix J; ¢ J!+m;s’; is non-singular, according to Theorem 4.1. As a result

of Corollary 4.4, the null-space of matrix G (p;)J/“G(p;) is

NG (p) TG (p:) = {pi}
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Therefore, v” = ap;, where « is a non-zero scalar. Using Eq. (4.253),
~C
o' =2A(p;)s'; G(pi)ap; =0

so v = ( o' T T ) = ( 0 ap;’ > Thus, if veN (M;(p;)), it has the form

Qap;

Therefore, the null-space of matrix A (M;(p;)) consists of only one vector,

and dim(N (M;(p;))) = 1. Since (M;(p;)) is a 7x7 matrix, it follows that
rank(M;(p;)) =7 — dim(N (M;(p;))) = 6

[
As a result, matrix M;(p;) has six linearly independent rows(columns), for any

normalized four-dimensional vector p;. Thus, the multibody system mass matrix
M(q) = diag(M;(q;),i = 1,2,...,ny)

has 6ny, linearly independent rows(columns), for any consistent generalized coordinate

.
qg= ( “@ o ) ; 1e., any ¢(03,t) such that ®(q,3,t) = 0. Therefore,
I, 0
M'(q) = (4.258)
0 M(q)

where [, is the n-dimensional identity matrix, has n + 6n; linearly independent

rows(columns) for any consistent ¢. Hence, the theorem that follows is proved.
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Theorem 4.6. The rank of mass matriz M*(q) is

rank(M*(q)) = n + 6, (4.259)

for any consistent generalized coordinate q; i.e., any q(3,t) such that ®(q,5,t) = 0.

Theorem 4.7. Let A(x) be a matriz in which each element a;j(x) : R"—>R is a
continuous function. If rank(A(q)) = n, then there is an open neighborhood B(q, p)

of q in which rank(A(z)) = n, for all z€B(q, p)

Proof. The proof is done by induction on the minors of a largest non-zero deter-

minant of A(g). Since rank(A(g)) = n,, there are n? elements a;, j,(q) - . ., ai, 4, (q) - . .,

in, () - -+, G4, 5, (q) such that

iy 51 (q) s Qg g, (Q)

Qi g1 (@) .. Qi Ging (q)

The determinant A(q) is a continuous function A(g) : R"—R. In order to prove this,

it will be shown by induction that each minor [40] of matrix block

Wiy (T) - @iy, (T)
Ai.l?“'?i""f'r (z) =
J1seIny
ainr,jl (ZE) e aimwjnr (IL‘)
consisting of elements situated on rows 4y, ...,%,. and columns ji,...,J,., iS a con-

tinuous function. An order one minor Ay(x) of Aj,..i,, (z) is [40] Ag(x) = a; 5 (),

! Jlsesdnp l
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k,le{l,...,n,}. Since q; j(x) are continuous, Ag(x), k,le{1,...,n,}, are continuous.
I

Assume, as induction hypothesis, that all minors of order p, Ag,,..x,, are continuous

U el
functions. Then, any minor of order p + 1 has the form [40]
Akl,.~~7kp+1(37) = akl,ll(x)Ak2w“7kP+1(x) — Qpy 1, (T)A Ea,.kpt1 (z)
lyeelpta 2, lpt1 li,l3,elpt1
L (_l)pak’hlm-l (x)Ak27~-~7kp+l ($)
1yl
where a4, (x),j = 1,2,...,p+ 1, are continuous functions, according to the hypoth-

esis, and all minors of order p

Ak‘Qw--’k‘p-l»l (m)7 A 7Ak2,...,k‘p+1 (l‘)
loyedpin 11yeelp

are continuous by the induction hypothesis. Since the product of two continuous
functions is a continuous function [44] and the sum of p + 1 continuous functions is a

continuous function [44], terms of the form

Qe 1y (x)Akz,m,ka (IK), Ay Iy (m)A ko,....kpi1 ($), SRR (_1)p@k1,lp+1 (m)Akmm,kml (37)
Iyyodp i1 103, dp 1 I lp

are continuous functions. Hence, their sum, Ag, . x,,,, which is a minor of order p+1,
llv--wlerl

is a continuous function. Therefore, all minors of order one are continuous, and the
assumption that order p minors are continuous implies that order p + 1 minors are
continuous. By induction, it follows that all minors of order 1,2,...,n, of matrix
block Aiy,...i,, (), are continuous functions. Since the only minor of A; ., (z) of

Il Iny jlv“wjny-

order n, is A(z), it follows that A(x) = det(Ai,...i,, (z)) is continuous. As a result,

Il Jngy

by definition of continuity [44], for any € > 0, there is an open neighborhood B(q, p),

with p > 0 depending on ¢ and €, such that |A(x) — A(q)| < € for any x€B(q, p(q, €));
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i.e., A(q) —e < A(z) < A(q) +¢€, where A(q) is non-zero, by hypothesis. If A(g) < 0,
let € < —A(q). Therefore, A(z) < A(q) + € < 0 for any x€B(q, p(q,€)). If A(q) > 0,
let € < A(g). Then, 0 < A(q) — € < A(x), for any z€B(q, p(q,€)). Hence, A(z)
is non-zero for any x in the neighborhood B(q, p(q,€)). As a result, the rank n, is

preserved in the entire neighborhood B(q, p(q, €)). [ |

Theorem 4.8. The rank of the 2(n +m)x2(n + m) matriz

A(g) = (4.260)

is constant and equal to max(n+m,n+6ny), for any consistent generalized coordinate

q; i.e., any q(B,t) such that ®(q,3,t) = 0.

Proof. By row permutations P, and column permutations P,, matrix block

®,0 = (4.261)
0 &,"
can be transformed to
I, O
Po,P.=| o o, (4.262)
0 o,"

where mxm matrix ®, is non-singular [27]. Consider the (n + m)x(n + m) matrix

block

®,0 = (4.263)



and assume there is a (n +m) dimensional vector

U1
v =
(%
such that
In 0 U1
@, = =
0 (I)uT (%)
That is,
v = 0
and
D, vy, =0
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(4.264)

(4.265)

which implies v, = 0, since ®,, is non-singular. Thus, ®,” is non-singular. Consider

matrix blocks

b o, 0
0 M
and
oo ®," 0
0 &,

both of which have at most n + m columns. Therefore, their rank cannot exceed

n + m. Consider the rank of the matrix block

L, 0 &,
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Selecting any number of columns [, equal at most to the number d of degrees of

freedom, from block

and any [ rows from block

(07 0)

the following matrix block is obtained:

[n 0 CY13
o= o a,7 o0
0 Csp 0

where ('3 is a nx[ matrix obtained by selecting any [ columns from matrix (IDqTand
(s is a [xm matrix obtained by selecting any ! rows from matrix ®,'. Then, there

is a (n + m + [)-dimensional vector

-
such that
I, 0 Ci3 U1
o, v=| o o, o0 v | =0 (4.267)
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That is,

v+ Cizvs = 0
CI)UTUQ =0

0321}2 =0

.
Any vector v = < —(Csv3)" 0 wsT > with v3#0 satisfies the condition of Eq.
(4.267). Therefore, ®, is singular for any integer 1<I<d, while block ®,"° is non-
singular. Hence,

rank(®,5) =n+m
The rank of the remaining matrix block

I, 0
M =

0 M

is n+6mny, as shown in Theorem 4.6. As a result, mnk(@uf’q) = n+m, rank(M®)<n+

m, rank(®49)<n + m, and rank(M?') = n + 6n,. Consequently,
rank(A) = maz(n 4+ m,n + 6np)

[

The rank of matrix A depends only on the topology of the multibody sys-
tem;i.e., on the number of bodies n, and number of constraints m. For a system
without constraint addition-deletion [28], in which new bodies are not engaged and
existent bodies are not disengaged, rank(A(q)) is constant at for any ¢(3,t) that

satisfies the algebraic constraints ®(q, 3,t) = 0.
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Definition 4.1. The DAE

Fy,y',t) =0
is uniform index-1 if [13]
1. the index of the constant coefficient system
Aw'(t) + Bw(t) = g(t) (4.268)

where A = F,,(4,9',t) and B = F,(4,7',1), is one for all (§,9/,) in a neighbor-

hood of the graph of the solution.
2. A, Ay and A, exist and are bounded in a neighborhood of the solution.

3. rank(A) is constant in a neighborhood of the solution.

The theorem that follows proves that the DAE of the form of Eq. (4.215), for

dynamic, direct differentiation, and adjoint equations, are uniform index-1 DAE.

Theorem 4.9. Assuming M and ®eC?(Q), QCR"xR™ xR, the DAE formulations
of Eqs. (4.20), (4.113), and (4.194), for the dynamic, Direct Differentiation, and

Adjoint DAE, respectively, are uniform index-1.

Proof. For index-1 DAE formulations of Eqs. (4.20), (4.113), and (4.194),

partial derivatives F}, and F},, are

A=F, = (4.269)
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and
0 0 —I DBpu
0 0 By3 By
B=F, = (4.270)
00 @ (@)
00 O P,

Matrix By = (®," '), for the index-1 DAE formulation of dynamics of Eq. (4.20),
and B4 = 0 for index-1 DAE formulations of direct differentiation and adjoint equa-
tions of Eqgs. (4.113) and (4.194). Matrix Bys = —S} for the index-1 DAE formulation
of dynamics of Eq. (4.20), Bss = —Q* for the index-1 DAE formulation of direct
differentiation equations of Eq. (4.113), and B3 = —Q** for the index-1 DAE for-
mulation of adjoint equations of Eq. (4.194). Matrix Byy = (Mv' + ®," ¥ — S1), for
the index-1 DAE formulation of dynamic equations of Eq. (4.20), Byy = —Q" for
the index-1 DAE formulation of direct differentiation equations of Eq. (4.113), and
By = —Q*Ma for the index-1 DAE formulation of adjoint equations of Eq. (4.194).

The constant coefficient DAE

Aw' + Bw =g
is expanded as
O, W) + wy — ws + Buws = g1 (4.271)
®, " wh + My + Basws + Byyws = go (4.272)
P ws + D wy = g3 (4.273)

<I>qw4 = g4 (4274)



-
where w = (wlT wy ! ws' wﬂ) and g = (91T 92" 93" 94T>
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-
Dif-

ferentiating the algebraic constants of Eqs. (4.273) and (4.274) once, the following

differential equation is obtained:

where coefficient matrix

" 0 0 I wy’
0o &' M 0 wy!
0o 0 &, () ws'
0o 0 0 &, wy'
0 0 —I By wy
0 0 By DBy W2
00 0 0 ws B
00 0 0 wy
o, 0 0
0o &, M
A =
0o 0 &, (®,)
o 0 0 &,

0

g2

gs3

22}

(4.275)

(4.276)

-
is non-singular. Assuming the contrary, let v = ( v vel vyl oy ) be a vector

belonging to the null-space of matrix Aj; i.e.,

Al’U =

(%1

V2

U3

V4

(4.277)
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Therefore,

v +v, =0 (4.278)
®, vy + Mvs =0 (4.279)
D,v3 + By =0 (4.280)

vy =0 (4.281)

Component v, must be zero. Otherwise, pre-multiplying Eq. (4.278) by v, "
v @, + |luallz =0 (4.282)
and accounting for the identity of Eq. (4.281), ®,v, = 0, it follows that
luall3 =0
which implies that vy = 0. As a result, Eq. (4.278) is reduced to
CI)qul =0

which implies that vy = 0, since CI>qT has full column rank. The remaining two

equations, Egs. (4.279) and (4.280), are reduced to

M @, V3
=0

d 0 V2

q

Since the Schur complement matrix

M @,
M® =

o, 0
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is non-singular [52], it follows that v3 = 0 and vy = 0. Consequently v = 0, which
implies that A; is non-singular. Hence, the differential equation of Eq. (4.275),
obtained by once differentiating the constraints of Eqs. (4.273) and (4.274) of the
DAE of Egs. (4.271) through (4.274), is an ODE. Therefore, the DAE of Egs. (4.271)
through (4.274) is an index-1 DAE [13]. Existence and boundedness of 4;, A,, and
A, follow from the hypothesis M(q, 8,t) and ®(q, 3,t)€C?(2), QCR"xR"™ xR. As

a result of Theorem 4.8,

rank(A(q)) = mazx(n + m,n + 6ny)

and Theorem 4.7 shows that a matrix function of ¢, with continuous elements, pre-
serves its rank in a neighborhood B(q, p). Therefore, rank(A(z)) is constant in a
neighborhood B(q, p) of the graph of the solution. Properties 1 through 3 of Defini-
tion 4.1 are, therefore, satisfied. Thus, the DAE formulations of Eqs. (4.20), (4.113),
and (4.194) for dynamic, direct differentiation, and adjoint DAE, respectively, are
uniform index-1. |

According to Theorem 3.2.1. of Ref. [13], a BDF method of order up to six
is convergent for a uniform index-1 DAE. Hence, an up to order six BDF integration
method applied to Egs. (4.20), (4.113), and (4.194), which were shown to be uniform

index-1, has a unique solution.
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CHAPTER 5
COARSE GRAINED PARALLELISM: PIECEWISE SOLUTION OF
THE ADJOINT DIFFERENTIAL-ALGEBRAIC EQUATIONS

Consider a functional subjected to optimization or optimal control, of the form

+2

W(6,2) = 12, 4% B) + / 9(a, s M B, )dt (5.1)

t1

with final time ¢? implicitly defined by the condition [26]

O, q(8,1%),8) = 0 (5.2)

The index-3 adjoint DAE of a multibody system with respect to the functional of Eq.

(5.1) is [26]

My" + Dy + Do+ ®,"v = s, (5.3)

QO = 1 (5.4)

where p is the adjoint variable, v is the adjoint Lagrange multiplier, and

T

D= (M4 (5(SD) — () + (@ N+ ()T 69
D= (2M + SM1) (5.6)
o=, — (o, T) (.7

Ta = g)\T (58)

The constraint Jacobian @, is assumed to have full row-rank at all times [27]. As a

result [58], there exist permutation matrices P, and P. [18]; i.e., orthogonal matrices
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with columns having all elements zero except one element, which is unity, such that
ror.=( o, o) (5.9
where @, is non-singular.
Definition 5.1. Define the partitioned adjoint variable
W=P, (5.10)
the dependent adjoint variable
pr= ( In 0 )/f (5.11)
and the independent adjoint variable
p'= ( 0 Iy )u” (5.12)
where [,,, is the m x m identity matrix and I; is the d x d identity matrix.

In matrix form,
- p =" (5.13)

. . . . —1
and, since P, is an orthogonal matrix; i.e., (P.)™ = P.',

u

I
w=Pu" =P, (5.14)

/,L,U
Substituting for ™ defined by Eq. (5.10) into Eq. (5.12), the independent adjoint

variable p” is expressed as a function of the adjoint variable u as

p = ( 0 I ) P p (5.15)
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Differentiating Eq. (5.15), u”’ is expressed as a function of the derivative p’ of the

adjoint variable,

pt = ( 0 I ) Py (5.16)

5.1 The Effect of Row and Column Permuta-
tions due to the Constraint Jacobian Fac-
torization on the Adjoint Underlying ODE
According to Theorem 3.5 in Chapter 3, when permutation matrices P, and P,
are mxm and n xn identity matrices, respectively, the adjoint coordinate partitioning
underlying ODE (CPUODE) of Eq. (3.105) is obtained by pre-multiplying Eq. (5.3)
by Xo', where matrix X is defined by Eq. (A.50) in the Appendix, and performing
the change of variable p* = ( 0 I ) p. In general, however, partitions of the
constraint Jacobian ®, of the form ( d, o, ), with @, non-singular, require [58]
row and colum permutations; i.e., matrices P, and P, of Eq. (5.9) are different from
the m x m and n x n identity matrices, respectively. In order to obtain the CPUODE
when the constraint Jacobian has the form of Eq. (5.9), where permutation matrices
P, and P, are constant during the foregoing partitioning [58], the theorems that follow

are proven.

Theorem 5.1. Matrix XUTPCTMPCXO, where M is the mass matriz and Xq is defined

by Eq. (A.50) in the Appendiz, is non-singular.
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Proof. Define

Wo = P.Xo (5.17)

Since, according to the identity of Eq. (5.9),

P =P~ ( o, @, )

the product identity

_q)uilq)v
oWy = ®,P. Xy =P, " ( o, @, ) =0 (5.18)
Iy
follows. Also, the product
Wo'Wo =X, P."P.X, = Xy X (5.19)

is non-singular, since X, ' X, is positive definite, as shown by Corollary 3.4 in Chapter
3. Therefore, W, and W have the properties of T} and T, respectively, defined by
Theorem 3.1 of Chapter 3. Hence, according to Theorem 3.1 3, the product W, MW,

is non-singular; i.e., Xo"P."MP.X, is non-singular. |

Theorem 5.2. The equation obtained by pre-multiplying Eq. (5.3) by Wy, where
matriz Wy is defined by Eq. (5.17) and performing the change of variable of Eq.

(5.15), is an ODE.

Proof. Pre-multiplying the adjoint differential equation of Eq. (5.3) by W, "

and accounting for the property that

Wy ®," =0
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which is a result of transposing the identity of Eq. (5.18), the term containing the

adjoint Lagrange multiplier v vanishes. Hence, Eq. (5.3) is re-written as
Wo ' My + Wy Dyp' — Wy Dopp = Wy s, (5.20)

Pre-multiplying Eq. (5.9) by P.", post-multiplying it by P.", and accounting for

orthogonality of permutation matrices P, and P.; i.e., P,” ! = P.TandP, ' = P.T,
o, =P" ( o, @, ) P (5.21)
Substituting for @, from Eq. (5.21) into Eq. (5.4),
P ( o, @, ) Plp—r,=0 (5.22)

Pre-multiplying Eq. (5.22) by orthogonal matrix P, and using the definition of Eq.

u

I
(5.10) and the identity of Eq. (5.13), P,y = pu™ = :
ILLU
/_,l/u
( o, @, ) = Pr, (5.23)

Expanding terms,

q)uﬂu + (I)v,uy = Prra

and pre-multiplying by non-singular matrix ®,,, the dependent adjoint variable p* is

expressed as a linear function of the independent adjoint variable u* as

pt = -0, o,u’ + ¢, P, (5.24)
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Substituting this result for p* into the identity of Eq. (5.14), the adjoint variable u

is expressed as a linear function of the independent adjoint variable ¥ as

I P, P, ' Py
noo= P =P, + P
I I 0
= PCXO,UU + Pchprra (525)

where matrix X is defined by Eq. (A.51) in the Appendix. Differentiating Eq. (5.25),

i = P.Xop"" + P.Xo' 1’ 4+ P.(X,Pry) (5.26)

and replacing the first derivative of Xy by Eq. (A.55) in the Appendix, the derivative
of the adjoint variable is expressed as a linear function of the independent adjoint

variable p¥ and its derivative p*’ as

i = P.Xop" + P.XoXou" + P(X Pry) (5.27)

where X, is defined by Eq. (A.56) in the Appendix. Differentiating Eq. (5.27),

p' = P.Xop"" +2P.Xo' 1" + P.Xo" 1" + P(X1Pory)” (5.28)

and substituting for the first and second derivatives of Xy, defined by Eqgs. (A.55) and
(A.60) in the Appendix, the derivative of the adjoint variable is expressed as a linear
function of the independent adjoint variable p* and its first and second derivatives

Mv/ and uv//’

p' = P.Xop"" +2P. Xy Xou" + P, X3 Xop" + P.(X1Pr,)" (5.29)

where X3 is defined by Eq. (A.61) in the Appendix.
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Substituting for the adjoint variable pu and its derivatives p/ and p” from Egs.
(5.25), (5.27), and (5.29) and for matrix Wy of Eq. (5.17) into Eq. (5.20), the

following differential equation is obtained:

Xo'P."MP.Xop"" + (2Xo' P."MP.XyXo+ Xo' P." D1 P.Xo)u"’
+ (Xo'P."MP.X3Xo+ Xo' P." D1P,X,X,
+ Xo P."DyP.Xo)p' = Xo' P."s, (5.30)
— Xo'P."MP,(X,Pr,)" — X, P.,"D,P,(X,P.r,)

— X, 'P."DyP.X,Pr,

The highest derivative term p” is pre-multiplied by matrix X,' P," M P,X,, which,
according to Theorem 5.1, is non-singular. Therefore, Eq. (5.30) is an ODE. Since the
differential variable p¥ is the independent part of u™ corresponding to the underlying
constraint Jacobian partitioning P, ®,F, = ( o, D, ), Eq. (5.30) is the CPUODE

of the adjoint DAE of Egs. (5.3) and (5.4). |

5.2 Linearly Independent Solutions of the Ad-

joint CPUODE
Consider a sub-interval Z9 = [t;,t;11] (the fine grid) of the time interval

[t1,t%] (the coarse grid) during which sensitivity analysis of the multibody system

4 y (1)
is performed. Let y/(t) = be the solution of the first order form of the

y 2 (t)
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CPUODE of Eq. (5.30),

y
Usy® + Uy + Upy™' = u (5.31)

where
gl (t) = pt(t) (5.32)
yrt) = pt(t) (5.33)

and

u = Xo' P.'MP.(X,Pr,)"
— Xo'P."D\P.(X\Pr,) — Xy P.," D, P.X,P,r, (5.34)
Uy = Xo P."MP.X3X,+ X, P."DP.X,X,+ X, P."D,P.Xy, (5.35)
U, = 2X,"P."MP.X,X,+ X, P."D,P.X, (5.36)
Uy, = Xo P."MP.X, (5.37)
As shown in Chapter 3, the adjoint CPUODE is stable in the backward direction.
Therefore, on the fine-grid Z7, initial conditions are specified at time ¢;,; and inte-
gration progresses from ¢;1; to t; < t;41. Let yf (t) = | be the solution of
the homogeneous IVP of Eq. (5.31),
g =yl =0

Usy?® + Unyl® + Upyl' = 0 (5.38)
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with initial conditions yg (tj4+1) = €;, where 2d x 1 unit vector e; has all elements zero

, . - . ' (t) vl (t)
except the i-th, which is one. In addition, let v7(t) = = be a

p(t) vy(t)
particular solution of the non-homogeneous CPUODE of Eq. (5.31) with zero initial

conditions; i.e., v/(t;41) = 0. Since u, Uy, Uy, and Us of Egs. (5.34) through (5.37)
do not depend on the independent adjoint variable p¥, the CPUODE of Eq. (5.31)
is linear. As a result, the general solution of the adjoint CPUODE of Eq. (5.31), on

interval 77, is [4]

Y (t) =Yg (8)s; + 07 (t) (5.39)

where
w0 = o . do) (5.10)
is the fundamental matrix [4] in which the i-th column, i = 1,2,...,2d, is the vector

y!(t); i.e., the solution of the homogeneous IVP of Eq. (5.31) with initial conditions
yf(tjﬂ) = e¢;. Since the fundamental matrix at time ¢;,; is the 2d x 2d identity

matrix,

g (tj41) = ( Yiltivn) o Pyt ) = Iz (5.41)
hence, Yoj(t) is non-singular for all time [18], s;€ER?? is a constant vector to be deter-
mined by the initial conditions of the IVP of Eq. (5.31), and v/(t) is the particular

solution of the non-homogeneous CPUODE of Eq. (5.31) with zero initial conditions.

Since the linear ODE of Eq. (5.39) is the adjoint CPUODE of Eq. (5.30) in
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first order form, given initial conditions y/(¢;41) = yg L1 e

Y (ti) = Mv(tj+1):y§i1
yj’z(tjﬂ) = u”’(tj+1)=y§f1 (5.42)

.
where y§+1 = ( ygilT ygflT ) , the solution of Eq. (5.39) is obtained through the

following algorithm (the integrate-recover-assemble algorithm):
1. Integrate the adjoint DAE of Egs. (5.3) and (5.4) at time t€(t;,tj41), in the
backward direction, with initial conditions at ¢, obtained by substituting the
independent adjoint variable p%(t;41) = yﬁl and its derivative p"'(t;+1) = yjil

into Eqgs. (5.25) and (5.27), respectively,

ptiv) = PXoylly + P.X1Porg (5.43)

W(ti) = P.Xoyl?, + PXoXoylty + PA(X1Pr,) (5.44)

2. Recover the independent adjoint variable p¥(t) and its derivative p*'(t), at time
t, by substituting the adjoint variable p(t) and its derivative p/(t), previously

solved for, into Egs. (5.15) and (5.16), respectively.

3. Assemble the solution of the ODE of Eq. (5.39),

. Y (t)
y'(t) = (5.45)
Y2 (t)

where
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Alternatively, the solution of the ODE of Eq. (5.39) can be obtained by
assembling terms u, Uy, Uy, and U, of Eqgs. (5.34) through (5.37) and integrating
the ODE of Eq. (5.31). The integrate-recover-assemble algorithm has the advantage
of eliminating the need for computing u, Uy, Uy, and Us,, which is computationally
expensive and using, instead, the adjoint index-1 formulation developed in Section
4.4 of Chapter 4, which involves fewer matrix evaluations. However, integration of
an index-1 DAE with solution y(¢) of dimension 2(n + m) is more expensive than
integration of an ODE with solution y’(¢) of dimension 2d = 2(n — m).

The integrate-recover-assemble algorithm requires that the adjoint DAE initial
conditions defined by Eqs. (5.43) and (5.44) are consistent; i.e., they must satisfy the
adjoint position constraint equation of Eq. (5.4) and the adjoint velocity constraint

equation of Eq. (4.189).

Theorem 5.3. Given arbitrary d-dimensional vectors a and b, the n-dimensional

vectors
H1 = PCXQCL -+ PchprTa (546)

po = P.Xob+ P.XoXoa+ P.(X\Pry) (5.47)

satisfy the following equations:

Q1 — 1 =0 (5.48)
Dpiz + ((I)q)lﬂl —ry =0 (5.49)
Proof. Substituting for p; of Eq. (5.46) into the left-side of Eq. (5.48),

O, (P Xoa + PX1Pyry) — 14 = Oy P, Xoa + ®yP,X, Pyry — 14 (5.50)
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and accounting for the identity

P, =P, ( o, @, ) (5.51)
which is obtained by pre-multiplying Eq. (5.9) by P.,~* = P, the left-side of Eq.
(5.48) is re-written as

®,P.Xoa + ®,P.X\Pro =1, = BT < o, @, > Xoa
+ BT ( o, O, )lerra —r,  (5.52)

Substituting for the product ®,P. defined by Eq. (5.51) and for the matrix X, defined

by Eq. (A.50) in the Appendix into the product ®,P.X,
_(I)u_lq)v
o,P. Xy = ( o, @, )XO = ( o, ) =0 (5.53)
Iq
and substituting for the product ®,P. defined by Eq. (5.51) and for matrix Xj,
defined by Eq. (A.51) in the Appendix into the product ®,P. X,

o,
o,P.X, = < o, @, >X1 = ( o, @, ) =1, (5.54)
0

where I, is the m x m identity matrix. Substituting products of Eqgs. (5.53) and

(5.54) into Eq. (5.52),
PTT ( (I)u Q)v ) Xoa‘i‘PrT ( q)u (I)v ) leﬂ”a — T, = PTTPTTQ —r, = 0 (555)

since P," P, = I,,,. Therefore, the identity of Eq. (5.48) is satisfied.

The term (X, P,r,)" of Eq. (5.47) is expanded as

(X1Pry) = X{' Py + X1 Por,/ (5.56)
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which, accounting for the expression of X" defined by Eq. (A.66) and for the expres-

sion of X5 defined by Eq. (A.57) in the Appendix, is re-written as
(X,Pry) = — X, P.(®,) P.X, Pry + X, Por,/ (5.57)

Substituting for (X;P7,)" of Eq. (5.57) and for X, defined by Eq. (A.57) in the

Appendix into Eq. (5.47), ps is re-written as

py = P.Xob— P.X,P.(®,)P.Xoa

P.X\P,(®,) P.X1Pyro + P.X1 Por,' (5.58)

Substituting for p; of Eq. (5.46) and for py of Eq. (5.58) into the left-side of

Eq. (5.49),

<I>q,u2 + ((I)q)',ul — Ta/ = (I)q(Pchb — chlpr(q)q)/Pcha
— P.X,P.(9,)P.X1P.ry + P.X, Por,)

+ (®,) (P.Xoa + P.X1Pr,) — 14 (5.59)
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and grouping terms,

Dypiz + (@) 1 — 1 = ®,P.Xob
+ ((®g) PeXo — By PX1 P(®g) PXo)a
+ ((®g)PX1P, — O P X\ P,(9,) P.X 1 P)rg
- ([m - (I)chX1Pr)7‘a/
= ®,P.Xob
+ (I, — ®,P.X,P,)(®,) P.Xoa
+ (I, — ®,P.X,P.)(®,) P.X\P,r,

— (I, — ®,P.X P, (5.60)
where [,,, is the m x m identity matrix. Therefore,

Py + ((I)q)lul —ry = PP Xob

+ (I — ®,P.X,P,)((®,) P.Xoa + (®,) P.X,1 Piry — 14') (5.61)

Substituting for the product ®,P,. defined by Eq. (5.51) into factor I,, —
QP X1 Py
Iy — ©P.X\P, =1, — P," ( o, ®, ) Xy P, (5.62)
and substituting for the product ( o, @, >X1 defined by Eq. (5.54) into Eq.
(5.62),
Iy — ®P.X\P, =1, — P, I,,P, =0 (5.63)
since P,' P, = P,~'P, = I,,. Substituting for the identity of Eq. (5.53) and for the

identity of Eq. (5.63) into Eq. (5.61), the left-side of Eq. (5.49) is identically zero.
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As a result, Eq. (5.49) is satisfied. |

Corollary 5.4. Given arbitrary d-dimensional vectors a and b, the n-dimensional

vectors
w = P.Xpa (5.64)
o = P.Xob+ P.X5Xpa (5.65)

satisfy
Doy =0 (5.66)
Dypin + (Py)' 1 = 0 (5.67)

Proof. Substituting for r, and r,” the m-dimensional zero vector into Eqs.

(5.46) and (5.47), it follows from Theorem 5.3 that Egs. (5.48) and (5.49), in which
r, and r," are replaced by zero, are satisfied; i.e. Eqs. (5.66) and (5.67) are satisfied.
[

The linearly independent columns y{ (t), 7 =1,2,...,2d, of the fundamental
matrix Yoj(t) are obtained by applying the integrate-recover-assemble algorithm to
the homogeneous adjoint DAE; i.e., the DAE obtained by substituting the right sides
sq and r, of Egs. (5.3) and (5.4) by zero. The initial conditions for the homogeneous
adjoint DAE have the form of Eqgs. (5.43) and (5.44), in which r, is replaced by zero
and ( yﬁlT y;‘flT )T = e;; i, Yl = el and yi7, = €7, where e} is the vector

consisting of the first d elements of unit vector e; and €? is the vector consisting of
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the last d elements of unit vector e;,

ptjpn) = PeXoe; (5.68)

W(tiy) = P.Xoe? + P.XoXoe; (5.69)

According to Corollary 5.4, initial conditions of Egs. (5.68) and (5.69) are consis-
tent. After recovering the independent adjoint variable u*(t) and its derivative u*'(t)
from the adjoint variable u(t) and its derivative p/(t), the i-th column y/(¢) of the
fundamental matrix Y7 (¢) is assembled at time t. Each such column is, therefore,
computed independently. The particular solution v’(t) is independently obtained by
applying the integrate-recover-assemble algorithm to the non-homogeneous adjoint
DAE of Egs. (5.3) and (5.4), with initial conditions of the form of Egs. (5.43) and

(5.44), in which ygil =0 and yﬁfl = 0; i.e.,

/,L(tJJrl) = PCleTTa (570)

p(ti) = P(XiPr,) (5.71)

According to Theorem 5.3, initial conditions of Egs. (5.70) and (5.71) are consistent.
Application of the integrate-recover-assemble algorithm for independently evaluating
columns yg(t), 1 =1,2,...,2d, of the fundamental matrix Yoj(t), and using the par-
ticular solution v7(t), represents a parallel algorithm with 2d independent threads
for computing the columns of Y7 (¢) and one independent thread for computing the
particular solution v’(t). The 2d+1 parallel thread algorithm thus obtained is coarse-
grained, according to the convention adopted in Chapter 2. It should be noted that

evaluation at time t€[t;, ;1] of matrix terms involved in the adjoint DAE index-
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1 formulation developed in Section 4.4 of Chapter 4 requires the evaluation of the
generalized coordinate vector ¢(t), its derivatives ¢'(¢) and ¢”(¢), and the Lagrange
multiplier A(¢). This is achieved by integrating in advance the index-1 DAE formula-
tion of the equations of motion developed in Section 4.2 of Chapter 4; storing q(tx),

¢ (tr), ¢"(tx), and A(tx) computed on a mesh
AN = {ty, =tj,. .ty =tj1} (5.72)

that covers interval 7 = [t;, ;41]; and interpolating for ¢, ¢/, ¢”, and X at the required
time t€[t;, ;1] using the stored q(tx), ¢ (tx), ¢"(tx), and A(ty), for each ¢, € AJ.
Therefore, on each fine-grid sub-interval Z7 = [t;,t;11], j = 1,2,..., N, where
t; = t' and i1 = t2, 2d + 1 independent IVP must be solved. Vectors sj are
determined [4] so that the adjoint CPUODE numerical solution z(t) = y’(¢),t € 77,
where ¢/ (t) is the piecewise adjoint CPUODE solution defined by Eq. (5.39), is

continuous over the entire interval [t!,#?]; i.e.,
v (i) =y (t), i =1,2,...,N; — 1 (5.73)
Substituting for 47 (t) by its expression of Eq. (5.39),
Vi (ti1)s; + 07 (t1) = Y (t1)sj0 F 07 (t00),5 = 1,2,... N, — 1 (5.74)
and ordering terms,
—YJ T (tj1)s540 + 55 = 0T N (), 5 = 1,2, N; — 1 (5.75)
At final time t = t*=ty 41,

y(tn, 1) = Y5 (tng)sn, + 0™ (1) = o7 (5.76)
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where y? is the state vector y™i of the last fine-grid Z% at final time ¢y, 1 = t*.
Vector 9?2 is calculated using the adjoint variable and its derivative at final time, as

follows:

1. Compute p(t?) and g/ (%) by solving [26], at final time ¢?, linear systems of Eqs.

(4.197) and (4.198).

2. Recover the independent adjoint variable ;¥ (#?) and its derivative ¥’ (¢?) at final
time t* by substituting for the adjoint variable u(¢?) and its derivative p'(¢?)

into Eqgs. (5.15) and (5.16), respectively.

3. Assemble the solution of the ODE of Eq. (5.39) at final time ¢,

g | (5.77)

YA ()

where
PR = ()

yrE) = ()

As a result, Egs. (5.75) and (5.76) form the linear system.

I —}/02<t2) 0 0 ... 0 0 S1 Uz(tg)
0 I —%3(753) 0 ... 0 0 S92 US(tg)
0 0 0 0 ... I —Yy"(ty,) SN,1 Nty )
0 0 0 0 0 I SN, y?
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After final time ¢? is reached, the linear system of Eq. (5.78) is assembled. As a
result, vectors s;,j = 1,2,..., N;, are solved for and the solution z(¢) of the adjoint
CPUODE is available on each sub-interval Z7 = [t;, t;11], j = 1,2,..., N,
2(t) = Yi (t)s; + 07 (t),t € 7 (5.79)
It should be noted that although the matrix of the linear system of Eq. (5.78) can
be very large, with dimension Ny ;2) X Np g2), where
N o) = 2d - N; (5.80)
increases with the number N; of fine-grid sub-intervals, it is an upper-triangular
banded matrix in which the size of the upper-band; i.e., the largest non-zero com-
ponent vector, on each column above the diagonal, does not exceed 4d. Therefore,
storage of the matrix requires only storage of the upper-band component vector of
each column and the solution of Eq. (5.78) is obtained by backward substitution; i.e.,
the matrix of the linear system of Eq. (5.78) is already factored.
Since the piecewise solution defined by Eqs. (5.32) and (5.33) is ¢/(t) =
( OO )T, for t € 77, the independent adjoint variable u¥(t) and its
derivative p'(t) at time t € Z7 are
wiw = (1 o0)ro (5.50)
wiy = (o 1) (5.8
Substituting for the independent adjoint variable p(t) of Eq. (5.81) into Eq. (5.25),

the adjoint variable is evaluated as a function of y7(t),

u(t) = P.Xou" + P.X,Pory = P.X, ( I; 0 ) Y (t) + PeX1 Py (5.83)



147

where [, is the d x d identity matrix. Substituting for the independent adjoint variable
w’(t) of Eq. (5.81) and for its derivative of Eq. (5.82) into Eq. (5.27), the derivative

of the adjoint variable pu(t) is evaluated as a function of 3/ (t),

w(t) = PXou" + P.XoXou' + P.(X1Por,)

v

]
= ( P. X2 Xy P.X ) + P(X1Pyrg)

v/
= ( P.X,Xo P.X )yj (t) + Po(X1Prra) (5.84)

Substituting for the piecewise solution 3’(t) of the adjoint CPUODE at time t € Z7

its expression of Eq. (5.39) into Egs. (5.83) and (5.84),

p(t) = PeXg ( I 0 ) (Y7 (t)s; + 07 (8)) + P.X1Por (5.85)

pot) = ( P.X,X, P.X, ) (Y§ (t)s; + 07 (1)) + Po(X1Pra) (5.86)

the adjoint variable and its derivative are evaluated at time ¢t € Z7 as linear functions
of the fundamental matrix Yoj(t), the particular solution v’(t), and constant vector
Sj.

The adjoint acceleration constraint of Eq. (4.190),
CI)qluﬂ + Q‘qul/ + ‘Pq"/t _ Ta” (587)

together with Eq. (5.3), form the linear system

M o, " Sa Dy, Dy L (5.35)

o, 0 v ry o, 29, '
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with unknowns g and v. The matrix

M5 = (5.89)

is the Schur complement of the system and is non-singular [52]. Therefore, the vector
v(t) of adjoint Lagrange multipliers is obtained by solving the linear system of Eq.

(5.88) and extracting the last m elements of the solution,

1 Sa 2
v(t) = ( 0 I, )MS ~H (5.90)
7,,a// Iu/
where
D, Dy
H = (5.91)
@q/l 2@(]/

Substituting for adjoint variable p(t) and its derivative p/(t) of Eqgs. (5.85) and (5.86)

into Eq. (5.90), v(¢) is re-written as

Sa
y(t) = ( 0 I, ) M5 — HA (5.92)
,r,a//
where
P() (W(t)sj + U](t)) + PCXl.PTT’a
A= (5.93)
Px (YJ(t)s; + v (1)) + Po(X1Prry)'
and

PO = PCXO([d 0)

Px = <PCX2X0 PCXU)
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Therefore, the adjoint variable u(t) and the vector of Lagrange multipliers v()

at time t € Z7 are functions of the following:

1. Permutation matrices P. and P, resulting from the foregoing partitioning,

PO, P. = < o, @, >

on the fine-grid Z9 and matrices Xy, X1, Dy, Dy, ®,, ®,/, ®,”, and M that are
computed at time ¢ using multibody system state information ¢(t), ¢'(¢), ¢"(t),
and A(t), obtained by interpolating for ¢, ¢/, ¢”, and A at the required time

t€(t;, t;11] using the previously stored q(tx), ¢'(tr), " (tr), tx € A.

2. The fundamental matrix Y (t) that is obtained by applying the integrate-
recover-assemble algorithm on interval Z7 to the homogeneous adjoint DAE,

with initial conditions of the form of Egs. (5.68) and (5.69).

3. The particular solution v/ (¢) that is obtained as a result of applying the integrate-
recover-assemble algorithm on interval Z7 to the non-homogeneous adjoint DAE,

with initial conditions of the form of Egs. (5.70) and (5.71).

4. Vector s;, which is available after ¢? is reached in solving the linear system of

Eq. (5.78).

Separating data that is available at the end of the fine-grid Z7 from data that
is available after final time ¢? is reached, the adjoint variable u(t) on the fine grid Z”
is re-written as

u(t) = a(t) + B (t)s; (5.94)

J J
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where vector

J

a’(t) = P.X, ( I, 0 ) v (t) + P.X,1P.r, (5.95)

and matrix

B0 = 2% (1, 0 ) V0 (5.96)
are evaluated at each time ¢ inside the fine-grid sub-interval [t;, ¢;41], while the eval-
uation of s; is postponed until after ¢* is reached. Similarly, by separating data that
is available at the end of the fine-grid Z7 from data that is available after final time
t? is reached, the vector of adjoint Lagrange multipliers v(t) on the fine grid Z7 is

re-written as

v(t) = ai(t) + Bj(t)s; (5.97)
where vector af(t) is defined as
1 Sa
af(t) = ( 0 I, ) M? — HAg (5.98)
ra//
matrix BY(t) is defined as
o [ Ao
BY(t) = — ( 0 I )M H | (5.99)
A2Y5 (1)

and
P.X Py + A0l (t)
Ay = (5.100)
P.(X1Pry) + Agvi (2)

Ay = <PCX2X0 PCXO) (5.102)
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Consequently, provided that the multibody system state vectors q(tx), ¢'(tx), ¢" (tx),
and A(t) have been stored for each t; € A7, vectors af(t) and a}(t) and matrices
B (t) and BY(t) can be evaluated, using Eqs. (5.95),(5.98),(5.96), and (5.99), at each
time ¢ inside the fine grid [t;,¢;41], while evaluation of s; is postponed until after ¢

is reached.

5.3 Evaluation of Gradients of Functionals Us-
ing Vectors af and @} and Matrices B} and
Bj

The adjoint formulation for the gradient of the functional of Eq. (5.1) is [26]
T
Uy = 1)+ (VK = () =0 (Dyd)s(1) — £Q(1)
— 9o (t)gs(t") — u' T ()M ( ) + / gs(t (5.103)

1

- / (T (DIt + 17 (D) s(1))dt

where

Ky = (Mgg' — (Sy + M')qs) (") (5.104)

and

Ky(t) = (M3")+ (2,"N)s — S} (5.105)

Vectors n? and +? and scalar £2 are evaluated after final time #2 is reached, as defined
in Ref. [26]. Assuming the coarse-grid interval [t!, ¢?] is partitioned into fine-grid sub-

intervals, 770 = [t;,t;41], j = 1,2,..., N;, where t; = t! and ty,41 = t?, the gradient
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Uz of functional ¥ is a summation of the following terms:

1. One term that is evaluated at initial time t', g, (t")gg(¢').

2. Terms that are evaluated after final time ¢2 is reached; e.g., l5(2), 72 ®4(2),

P (@4d)5(%), and £20(#2).
3. One term that is incrementally evaluated on each fine-grid [¢;,;41], fttlz ga(t)dt.
4. Partially postponed terms; i.e., terms of the form
z;(t) = a;(t) + B;(t)s; (5.106)

where a;(t) and Bj;(t) can be evaluated at each time ¢ inside the fine-grid
[t t;11], and s; can be evaluated only after ¢* is reached. Such terms are
uT(t) Ky and /" (tY)M(t")gs(t!). Substituting for t = ¢, and j = 1 into Eq.
(5.94),

p(th) = ai(t') + B (t') s (5.107)
and substituting for for t = ¢; and j = 1 into Eq. (5.86),
Pt = ( P(X2X0) () P.Xo(t) )vl(tl) + P.(X1Prg)' (1Y)

+ ( P(XoXo)(t) PCXO(tl))YJ(tl)sl

= o’ (t") + B (tY)s (5.108)

where

Sy
=
—~
~
~—
I

@ (1) = (PC<X2X0><t> pcxou))vj<t>+Pc<X1Prra>’<t> (5.109)
)Yoj(t) (5.110)

( Po(XaXo)(t) PeXo(t)
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a(t) and B (t) defined by Eqs. (5.95) and (5.96), are evaluated at initial time
t!: and vector s;, which is a component of solution of the linear system of Eq.

(5.78), is evaluated only after final time ¢? is reached.

5. Integrals of partially postponed terms; i.e., terms of the form
t? N

/t 5T X (it =Y / T WX ()t (5.111)

! =17t
where () is a partially postponed vector of the form of Eq. (5.106) and X (¢)

is a matrix that can be evaluated at each time ¢ inside the fine-grid [¢;,;41].

Therefore,

/t (X ()dt = Z/tw (a; " (t) +s; " B; " (t)) X (t)dt

1 .
j=1"7t

N;j tir1 tjt1
= > / a; ()X (H)dt + ;" / B;T ()X (t)dt
j=1 tj 2
N /tj“aw)X(t)dt
= J
j=1 "1
N; tiin N; Nj
+ ZSJT/ Bi' X0t =3 1+ 5T (5.112)
j=1 t j=1 j=1
where vector
ti+1
Tj:/ a; ' ()X (t)dt (5.113)
tj
and matrix
tj+1
7— [ BT O 0 (5.114)
t

J

are evaluated at the end of each fine-grid [t;,¢,41] and stored until after final time ¢* is

reached, when vectors s;, 7 = 1,2,..., NV}, are computed by solving the linear system
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of Eq. (5.78). After final time ¢? is reached, the integral of Eq. (5.111) is assembled

according to Eq. (5.112). It should be noted that, while matrices 7} need to be stored

N;

at the end of each sub-interval [t;,t;41], j = 1,2,..., Nj, only the sum 7 =} 7, 7;

of vectors 7; needs to be stored for assembling the integral of Eq. (5.111).

5.3.1 Evaluation of the Initial Time Term
Evaluation of the term g, (t')gs(t') requires initial conditions g(t'), v(t'), a(t'),
and A(t') of Egs. (4.15) and (4.16) and the initial sensitivity matrix ¢g(¢'). The initial

sensitivity

ap(t') = ( a5, (t) s (t') .. %n@(tl))

is obtained by solving for the initial conditions of the direct differentiation DAE, as

shown in Section 4.3 of Chapter 4.

5.3.2 Evaluation of Final Time Terms
After final time ¢* is reached; i.e., when Q(¢, ¢, ¢, 3) = 0, terms l5(¢?), szi)ﬁ(tz),

2" (®,4)5(t2), and £2Q5(t2) are computed as follows:
1. Term [5(t?) is evaluated directly, since (12, ¢*, ¢, 3) is given.

2. Terms depending on 72,72, and £ are evaluated by solving first for the initial
conditions of the adjoint DAE, as shown in Section 4.4 of Chapter 4. After vec-
tors 42 and 7? and scalar £ are computed, ®5(¢*) and (®,¢’)5(t?) are computed,

using the procedure presented in Section 4.3.2 of Chapter 4.
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3. Term Q4(t?) is evaluated directly, since Q(t, q, ¢, 3) is given.

5.3.3 Incremental Evaluation of Integral fttf gp(t)dt

As a result of integration of the equations of the motion on fine-grid sub-
interval Z7, the generalized coordinate vector ¢(t), its derivatives ¢'(t) and ¢”(t), and
the Lagrange multiplier \(t) are computed and stored on the fine-grid mesh AJ.
Function g(q,q¢’, A, 5,t) is given and vectors ¢(t),¢'(t), and A(t) are interpolated at
each point inside the fine-grid [t;,¢;41], using previously stored q(tx), ¢'(tx), ¢"(tx),

and A(tg), for each t;, € AJ. As a result, the integral

tjt1
17, = / gs(t)dt (5.115)
t

J

is computed at the end of the fine-grid, using a quadrature numerical formula; e.g., a
Newton-Cotes or Gauss [8] integration formula. The result is then added to the sum

of integrals of gg(t) on previous intervals, using the recurrence formula

)

where I{ = I, = [,* gs(t)dt is the integral of gs(t) on the first fine-grid [t;, ;1] with

j = 1. After final time ¢? is reached, the recurrence relation of Eq. (5.116) yields

N; tit1 +2
Bon=3 [ sttt = [ gotar (5.117)

j=1 Yt !

5.3.4 Evaluation of Partially Postponed Terms
After final time #? is reached, the linear system of Eq. (5.78) is solved and

vectors sj, j = 1,2,..., N, are available. As a result, the adjoint variable p(¢') and
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its derivative p/(t') are evaluated by substituting for vector s; into Egs. (5.107) and
(5.108), in which fundamental matrix Yy (¢!) and particular solution v!(¢') have been
previously stored at the end of the first fine-grid [tq,?s]. Matrix K; defined by Eq.
(5.104) requires initial sensitivities gg(t') and ¢j(t'), which are computed at initial
time ¢', as shown in Section 5.3.1; matrices M (t') and S, ('), which are computed at
initial time ¢!, as shown in Sections 4.2.4 and 4.2.5 of Chapter 4; and the derivative of
the mass matrix M’(t!), as shown in Section 4.4.2 of Chapter 4. As a result, ' (¢') K,
and g/ T (t"YM(t")qs(t") are assembled using the adjoint variable y and its derivative

p' at initial time t', mass matrix M ('), matrix K7, and initial sensitivities gg(t').

5.3.5 Evaluation of Integrals of Partially Postponed
Terms

Evaluation of the integral

tir1 -
Ity = / 1T () K (8)dt (5.118)
t

J

is decomposed as follows:

AR T
Ity = / (a (t)+s; B (1)) K (t)dt
t

J J
J

tit1 tj+1
_ /t i (Ko (t)dt + 557 /t BT () Ka(t)dt (5.119)

_om T Trp
= Tio t55 T;
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where
T AR
/o :/ ai (t)Ko(t)dt (5.120)
tj

J

tjt1
™ :/ B (t) Ko (t)dt (5.121)
t

and a}ﬁ(t) and B;-‘T(t) are defined by Eqs. (5.95) and (5.96).

As a result,

j=1"%
N N - Nj . j
- Lo=) (T + SjTTJ“) = ZT}fO + Z szTJ“ (5.122)
Jj=1 j=1 j=1 -

w T . . .
where Z 21 Ti\o is incrementally computed using the recurrence formula

m

T =Tt (5.123)

where 71" = 71, and 7} are computed using Eq. (5.120) on fine-grid [t;,¢;1]. There-
fore, at final time t*=ty 41,

T;@jﬂ ZTJO (5.124)
Terms T}, j = 1,2,..., N, are computed using Eq. (5.121) on fine-grid [t;, ;1] and

stored. After final time tQEth_H is reached and s;, 7 =1,2,..., N;, are obtained, as

a result of solving Eq. (5.78), the integral

Nj N;
T T T
I = ZTJO - Z si T} =Ty + Z sj Tf (5.125)
Jj=1 j=1
is assembled using incrementally computed term T]'L\l}j 1, stored terms Tjﬂ i=1,2,...,Nj

and vectors s;. Both 7/, and T} require evaluation of matrix

Ky(t) = (M3")+ (2,"\)s — S} (5.126)
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in which (M§@")s, (®,' A)g, and Sy are evaluated at any point ¢ inside the fine-grid
[t;,t;+1], using formulas developed in Section 4.3 of Chapter 4 and previously stored
q(tr), ¢'(tr), ¢"(tr), and (L), for each t;, € AJ. The numerical integration required
by terms 77, and T}" is performed using a quadrature formula; e.g., Newton-Cotes or

Gauss [8]. Similarly, evaluation of the integral
tj+1
. / VT () (¢)dt (5.127)
tj
is decomposed as follows:
tj+1 tit1
I :/t a;T(t)%(t)dtHjT/t BT (t)®g(t)dt =%y +s; ¢  (5.128)

where %7 (t) and B;T(t) are defined by Egs. (5.98) and (5.99), respectively, and

ti+1

T = / ay T ()P (t)dt (5.129)
tj
tjt1 -

TV = /t BYT (1)(t)dt (5.130)

As a result,
+2 N tig1
I = / v (t)®s(t)dt = / v (1) ®s(t)dt
! j=1 7t

N;

Nj Nj
v v T Trw
= D Lo=> 70+ 5T, (5.131)
j=1 j=1 j=1
where Zjvzjl TJ’fOT is incrementally computed using the recurrence formula
T]’/+1 = 7—]’/ + le’jO (5132)

where 71 = 71 and 77, are computed using Eq. (5.129) on fine-grid [t;,2;,1]. There-
fore, at final time =ty 41,

R = 7" (5.133)
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Terms TY, j = 1,2,..., N;, are computed using Eq. (5.130) on fine-grid [t;,¢;,1] and

then stored. After the final time is reached, the integral

Nj Nj N]'
v v T Trwv v T v
I’ = ZTJEO + Z s; Tj = TN + Z i1} (5.134)
j=1 7=1 j=1
is assembled using the incrementally computed term 7y .1, stored terms TY, j =

1,2,...,N;, and vectors s; obtained by solving the linear system of Eq. (5.78). Both

Y Y

7jp and T} require the evaluation of matrix ®s, which is computed at any time ¢

inside the fine-grid [t;, ¢;41], using formulas developed in Section 4.3 of Chapter 4 and
previously stored q(t1), ¢'(t), ¢"(tx), and (), for each t; € A7,
As a result, the integral of partially postponed terms, on the coarse-grid in-

terval [t!, 2],

t2 t2
v = I“+I”:/ pT(t)Kg(t)dt—i—/ v () ®s(t)dt
tl

tl
Nj

N;
_ u T T rpp
= D> o Y 5T
i=1

j=1
N; N;

+ Z ! + Z s TV (5.135)
j=1 j=1

which, by ordering terms and defining

Nj
o= ) (T + ) (5.136)
j=1
T, = TI+T) (5.137)
is re-written as
Nj
" =1" 43 (s;7T)) (5.138)
j=1

where 7 is updated at the end of each fine-grid sub-interval [¢;,¢,.1]; T; are computed

using a quadrature formula on the fine-grid [t;,¢,41], 7 = 1,2,..., N;; and vectors s;
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are obtained by solving the linear system of Eq. (5.78), after final time #? is reached.
Consequently, the integral of partially postponed terms algorithm, for computing the
integral

I = /t (1" () Ko (t) + v (1) Pp(t))dt (5.139)

1

is defined as follows:

1. Initialization. Let t = ¢!, j = 1, and 7 = 0. Compute initial conditions of Egs.

(415) and (416)7 q1 = Q(t>ﬁ)7 v = q/(ta/B)7 ap = (”taﬁ) and )\1 = /\(t7ﬁ)> as

shown in Section 4.2 of Chapter 4. Let qiost = q1.

2. Termination test. If ||Q(¢, gest, B)|| < €, let t* = t and go to step 7. Else

continue.

3. Integration of equations of motion . Define fine-grid sub-interval Z7 = [t;, t;41],
where t; =t and t;.; = t+ h;. Integrate Eqs. (4.15) and (4.16) and store (),
¢ (tx), ¢"(tx), and A(tx) solved for on the mesh AV = {t, =t;,... tk, = tj1}.

Define gest = q(tj41,0).

4. Application of integrate-recover-assemble algorithm. The linearly independent
columns yf (t),71=1,2,...,2d, of the fundamental matrix Yoj(t) are obtained,
at each t;, € A7, by independently applying the integrate-recover-assemble al-
gorithm presented in Section 5.2 to the homogeneous adjoint DAE of Eqs. (5.3)
and (5.4), with initial conditions of the form of Eqs. (5.68) and (5.69). The
particular solution v7(¢) is independently obtained by applying the integrate-

recover-assemble algorithm to the non-homogeneous adjoint DAE of Eqgs. (5.3)
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and (5.4), with initial conditions of the form of Eqgs. (5.70) and (5.71).

5. Evaluation of 7 and Tj. Applying quadrature formulas to a/f T(6) K (t), a’ T (t)®s(t),

B;-‘T(t)Kz(t), and B}’T(t)q)g(t), vectors 7/ and 77

o, and matrices T} and T}

of Egs. (5.120), (5.129), (5.121), and (5.130) are obtained; 7 of Eq. (5.136) is
incrementally updated; and 7, of Eq. (5.137) is computed on the fine-grid Z7

and stored.
6. Step advance. Let j = j+ 1 and t = ¢;4;. Go to step 2.

7. Finalization. Solve the linear system of Eq. (5.78) for vectors s;, j = 1,2,..., N;.
Assemble the integral I** of partially postponed terms, from vectors s;, previ-

ously stored 73, and 7.

By comparison with evaluation of the gradient Ws using the adjoint formula-
tion [26] presented in Section 4.4 of Chapter 4, or the direct differentiation formulation
[26] presented in Section 4.3 of Chapter 4, the advantages of computing gradients of
functionals through the piecewise solution of the adjoint DAE; i.e., assembling the
gradient W3 by evaluating the initial time term, as shown in Section 5.3.1; incremen-
tally evaluating the fttlz gp(t)dt, as shown in Section 5.3.3; evaluating the partially
postponed terms, as shown in Section 5.3.4; and evaluating the integrals of partially
postponed terms, as shown above, follows mainly from the structure of the integral

of partially postponed terms algorithm. They are as follows:

1. The fundamental matrix Y (t) and particular solution v7(t) are independently

evaluated using 2d + 1 threads of computation.
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2. Steps 3, 4, and 5 in the integral of partially postponed terms algorithm can
be simultaneously performed in a three-stage pipeline; i.e., while integration of
the equations of motion is performed on fine-grid sub-interval Z/*!, application
of the integrate-recover-assemble algorithm is performed on fine-grid Z7, and

evaluation of terms 7 and 7} is performed on fine-grid Z7~!.

3. In order to compute gradients of functionals through the direct differentiation
formulation [26], independent integration of ngz index-3 DAE is required, while
computing gradients of functionals through the piecewise solution of the adjoint
DAE requires independent integration of only 2d+2 DAE; one DAE integration
for the equations of motion, 2d integrations for the 2d columns of the funda-

mental matrix Y (), and one integration for the particular solution v7(t).

4. The adjoint formulation [26] requires integration of only two DAE, the equations
of motion and the adjoint DAE, but their integration must be performed se-
quentially; i.e., integration of the adjoint DAE can start only after integration of
equations of motion has reached final time t2. By contrast, computation of gra-
dients of functionals through piecewise solution of the adjoint DAE progresses
forward in time, along with integration of the equations of motion, requiring the
additional evaluation of partially postponed terms and assembly of integrals of
partially postponed terms by solving the linear system of Eq. (5.78), after final

time t? is reached.

5. The fundamental matrix Yoj (t) can be used for computation of gradients of many
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functionals, since it is obtained by solving the homogeneous adjoint DAE, as
shown by the integrate-recover-assemble algorithm. Therefore, it is not affected
by the right-side of the adjoint DAE, which depends [26] on the structure of the

functionals.

The disadvantage of computing gradients of functionals through piecewise so-
lution of the adjoint DAE is that, in addition to the adjoint DAE integrations result-
ing from the integrate-recover-assemble algorithm, the constraint Jacobian must be

factored. Its factorization is required for the following:

1. evaluation of vectors @/ (t) and a(t) and matrices B} (t) and BY(t), defined by

Eqs. (5.95),(5.98),(5.96), and (5.99).

2. recovery of the independent adjoint variable and its derivative, defined by Egs.

(5.15) and (5.16).

5.4 Algorithms for Evaluating Gradients of
Functionals Through The Direct Differenti-
ation, Adjoint, and Piecewise Adjoint Meth-
ods
In this Section, outlines of the algorithms for the Direct Differentiation, Ad-
joint, and Piecewise Adjoint methods are presented. Interpolation methods for inter-

polating the equation of motion variables ¢, v = ¢/, a = ¢”, and A, which are used
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for constructing and solving the index-1 Direct Differentiation DAE of (4.113), the
index-1 Adjoint DAE of (4.194), and the Adjoint CPUODE of Eq. (5.31), are chosen
depending on the number of interpolating nodes and the availability of derivatives,

as follows [8]:

1. Functions for which derivatives are not available; e.g., a(t) and A(¢), are in-
terpolated using Lagrange interpolation with divided differences if the number
of interpolating nodes is larger than ten, or Natural Splines if the number of

interpolating nodes is between four and ten.

2. Functions for which first derivatives are available; e.g., ¢(t) and v(t) with deriva-
tives v(t) and a(t), respectively, are interpolated using Complete Splines or Cu-
bic Hermite, depending on the number of interpolating nodes. A Complete
Splines interpolant is used when the number of interpolating nodes is larger
than three. A Cubic Hermite interpolant is used when the number of inter-
polating nodes is two. A pair of Cubic Hermite interpolants is used when the

number of interpolating nodes is three.

Figures 5.1 and 5.2 present the algorithm for evaluating gradients of functionals
through the Direct Differentiation method. The gradient of functional ¥ of Eq.

(4.181), in the Direct Differentiation formulation, is [26]

Vs = (lgqs + lq’q,ﬁ>(t2) + lﬁ(tQ)

Q.q5 +
— (i+g+1,4d + lq/q”)(qqﬁQ—,B)(tQ)

1

12
+ / (quﬁ + gq/q’ﬁ + g)\)\g + gg)(t)dt (5140)
t
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The term

7 = (lygs +lgd 5)(#°) + 15(£7)

(295 + 23)

O (t%) (5.141)

— (49414 +1yq")

is evaluated after final time ¢? is reached. Figure 5.3 presents the algorithms for the
Adjoint method. Figures 5.4 through 5.6 present the implemented algorithm for the
Piecewise Adjoint method.

Both the Direct Differentiation and the Piecewise Adjoint method can benefit
from a pipelined structure of the algorithm. In the Direct Differentiation method the

following pipeline stages can be independently performed:

1. Pipeline stage 1. The integration of the DAE of motion and temporary storage

of the equation of motion states on fine-grid Z7**.

2. Pipeline stage 2. The integration of the Direct Differentiation DAE, for each
parameter 3,1 = 1,2,...,ng on fine-grid Z7, using the equation of motion states

previously stored by pipeline stage 1.

3. Pipeline stage 3. The integration of the gradient of functional on fine-grid Z7—!
using the information previously evaluated and stored by pipeline stages 1 and

2.

In the Piecewise Adjoint method the following pipeline stages can be independently

performed:

1. Pipeline stage 1. The integration of the DAE of motion and temporary storage

of the equation of motion states on fine-grid Z7+*.
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2. Pipeline stage 2. The integration of the particular solution and columns of the
fundamental matrix of the Adjoint CPUODE on fine-grid Z7, using the equation

of motion states previously stored by pipeline stage 1.

3. Pipeline stage 3. The integration of the gradient of functional on fine-grid Z7—!
using the information previously evaluated and stored by pipeline stages 1 and

2.

Figures 5.7 and 5.8 present the pipelined version of the Piecewise Adjoint method.

5.5 Efficiency Analysis

This Section presents an estimation of the number of floating-point arithmetic
operations (flops) for the Piecewise Adjoint method. Since floating-point additions are
less expensive than floating-point multiplications or divisions [8], only multiplications
and divisions are counted. The implemented parallel version of Figs. 5.4 through 5.6,
the pipelined parallel version of Figs. 5.7 and 5.8, and the implemented sequential
version are analyzed. The algorithm of the implemented sequential Piecewise Adjoint
method is obtained from the algorithm of pipelined parallel version of Figs. 5.7 and

5.8 by running the pipeline stages sequentially.

5.5.1 Floating Point Operation Estimates
The most expensive computing effort of the Piecewise Adjoint method is spent
inside the main loop; i.e., the Do while loop in Figs. 5.7 and 5.8 that advances the

integration of the gradient of functional W4 from the initial time ¢ to the final time
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Let t; =t'; j = 1;

Forl=1,2,...,n3
I

q1

= [q/z = I)\z = Iﬁz =0;

End For
Evaluate IC
q(B,t1), 4 (8,t1), 4" (B, 1), A(B, t1);
45(8,t1), 45(8, t1), a5(B, tr), As(B, t1);
Do while [Q(t;,q(8,t;), )| > €
pipeline stage 1
define subinterval I = [t;,t;11] and fine-grid
A ={ty, =1, tey =i}
solve the DAE of motion of Eq. (4.20) on A;
store {q(8,t1), (B, t), ¢" (B, 1), AM(B, tr), the AT };
End pipeline stage 1
pipeline stage 2
For[=1,2,...,n4
independently solve the DAFE of Eq. (4.113) for parameter [3;
store {qg,(tx), ¢'5,(tx), Ag, (), Lk €A };
End For

End pipeline stage 2

Figure 5.1: The algorithm for the evaluation of gradients of functionals through the
Direct Differentiation method
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pipeline stage 3

update [, = [, + fthH Yq4p,d1;
update Iy = I + [ gyl dt;
update I, = I, + ftzﬁl DA, dt;
update I = I + fti,jﬂ gs(t)dt;
End pipeline stage 3
Let j =7+ 1;
End Do
Forl=1,2,...,ng

evaluate final term g;;

assemble Wy = g7 + I, + Iy + Iy, + I, ;
End For

Figure 5.2: The algorithm for the evaluation of gradients of functionals through the
Direct Differentiation method-continued
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Let t; =t'; j = 1;
Evaluate IC
q(8,11),¢'(8,11), 4" (8, 11), A(B, t1);
qs(B,t1), q5(B, 1), q5(B, t1), Ag(B, 1h);
Evaluate g, = g, (t')qs(t");
Do while [Q(t;,q(5,t),0)| > €
ty =1 + h;
solve the DAE of motion of Eq. (4.20)
store {q(8,tx),q'(B,tk), ¢" (B, tx), A(B, t) }:
tj = tk;
End Do
Evaluate Adjoint IC of Eqs. (4.197) through (4.198);
Evaluate the final terms [5(t2), 7% ®5(t2), 7% (®,q)5(t2), and E2Q5(2) ;
Do while ¢; > ¢!
solve the Adjoint DAE of Eq. (4.194),
by interpolating for {q(5,t;),q'(3.t;),q"(5,t;), \(B,t;)} using the stored set
{a(B.t4), ¢ (B th), 4" (B, k), A(B, th), e =, .. £
update I, = I, + j;;’;h gp(t)dt;
update " of Fq. (5.139);
t

J
End Do

Evaluate pu(t!), 1/(t') of Egs. (5.107) and (5.108);

Evaluate the initial terms p' (t')k, and /" (t) M (t1)qs(t");

Evaluate the gradient of the functional of Eq. (5.103), by assembling I,, ",

the initial terms,the final terms, and g¢1;

Figure 5.3: The algorithm for the evaluation of gradients of functionals through the
Adjoint method
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Let t; =t'; j = 1;
Evaluate IC
q(B,t1),q¢' (B, 1), ¢"(B,t1), M(B, t1);
43(8,11), 58, 1), €48, 1), A (B, 1);
Evaluate g = g, (t")gs(t"); 7 = 0; I, = 0;
Create 2d + 1 ChildrenThreads in addition to the MainThread;
Do while [Q(t;,q(3,t;),0)| > €
Set the 2d + 1 ChildrenThreads on WAIT state;
MainThread Executes:
define subinterval 70 = [t;,t;11] and fine-grid
A ={ty, =1, tey =i}
solve the DAE of motion of Eq. (4.20) on AJ;
store {q(8,tk), ' (B, tk), ¢" (B, tr), M8, tx), th €A };
Set the ChildrenThreads on READY state;
Set the MainThread on WAIT state;
FEach ChildThread Executes:
independently compute the LU factorization of ®, at each mode t;,€AN;
Notify MainThread that ChildThread is DONE,;
Set ChildThread on WAIT state;
After all ChildrenThreads Notify the MainThread
Set the MainThread on READY state;
MainThread Executes:
store the factored constraint Jacobians {®LY (ty,), tye A7}
Set the ChildrenThreads on READY state;
Set the MainThread on WAIT state;

Figure 5.4: The implemented parallel algorithm of the Piecewise Adjoint method
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Fach ChildThread Executes:

by interpolating the set
{9(B,t1), ' (B, tr), ¢" (B, ), A(B, t), th€AT} and using the set
{®IV, tye AT},
independently evaluate a column of the fundamental matriz
{Yo! (tr), te €A} or the particular solution {v7 (1), L€AY,
through the integrate-recover-assemble algorithm, defined
in Section 5.2;
store Yy/(t;),v7(t;);
Notify MainThread that ChildThread is DONE,;
Set ChildThread on WAIT state;
After all ChildrenThreads Notify the MainThread
Set the MainThread on READY state;
MainThread Executes:
using {Y7 (tx), v/ (tx), i €A7} update 7 of Eq. (5.136), T of Eq. (5.137);
update I, = I, + ftzj“ gp(t)dt;
Let j =7+ 1;
End Do

Figure 5.5: The implemented parallel algorithm of the Piecewise Adjoint method -
continued
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Evaluate vectors {sy, ..., sy, }, where tN].HEtQ 18 the final time, by solving the linear
system of Eq. (5.78);

Assemble [*" = 7T + Zjvzjl i Tj;

Evaluate pu(t'), 1/ (t') of Egs. (5.107) and (5.108);

Evaluate the initial terms p' (t')k, and /" (t) M (t1)qs(tY);

Evaluate the final terms [5(t2), 72 ®@4(t2), 72 (9,4)5(t2), and £2Qu(t2) ;
Evaluate the gradient of the functional of Eq. (5.103), by assembling I,, ",
the initial terms, the final terms, and g¢;;

Destroy the ChildrenThreads;

Figure 5.6: The implemented parallel algorithm of the Piecewise Adjoint method -
concluded

t2. The following computing tasks are identified inside the main loop:
1. Implicit integration of the DAE of motion of Eq. (4.20).

2. Factorization of the constraint Jacobian ®, and of the non-singular block @,

for each point of the mesh A7, j =1,2,..., N, defined by Eq. (5.72).

3. Evaluation of the columns of the fundamental matrices {Yy(t),t,€A7} and
the particular solutions {v7(t},), €A’} through the integrate-recover-assemble

algorithm defined in Section 5.2.
4. Updating of 7 of Eq. (5.136) and evaluation of T} of Eq. (5.137).

Assume that the implicit integration of the DAE of motion of Eq. (4.20) using

the LLNL’s IDA integrator [31] require
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Let t; =t'; j = 1;
Evaluate IC
q(B,t1),d' (B, t1),¢" (B, 1), A(B, t1);
45(8,12), 4B, 12), €48, 1), Aa(B, );
Evaluate g = g, (t")gs(t"); 7 = 0; I, = 0;
Do while [Q(t;,q(5,t),0)| > €
pipeline stage 1
define subinterval 79 = [t;, t;11] and fine-grid
A = {ty, =tj,... ty, =tj1};
solve the DAFE of motion of Eq. (4.20) on A;
store {q(0,tx),q'(B,tr), ¢" (B, 1), M(B, 1), the AT };
independently compute the LU factorization of ®, at each mode t,,€N;
store the factored constraint Jacobians {®LY (ty), t,e AT}
End pipeline stage 1
pipeline stage 2
Fori=1,2...2d+1
by interpolating the set
{a(B,te), ¢ (B, tr), ¢" (B, tr), N(B, k), th€ AT} and using the set
{®LV tee AT},
independently evaluate the columns of fundamental matrices
{Yo! (), tk €A} and the particular solutions {v(ty,), th€AI},
through the integrate-recover-assemble algorithm, defined
in Section 5.2;
End For
store Yy/(t;),v7(t;);

End pipeline stage 2

Figure 5.7: The pipelined algorithm for the evaluation of gradients of functionals
through the Piecewise Adjoint method
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pipeline stage 3
using {Y7 (1), v’ (tx), e €A7} update 7 of Eq. (5.136), T of Eq. (5.137);
update I, = [, + [V g5(t)dt;

End pipeline stage 3

Let j =75+ 1;
End Do
Evaluate vectors {si,...,sn;}, where th+1Et2 18 the final time, by solving the linear

system of Eq. (5.78);

Assemble [*" = 7T + Zjvzjl i Tj;

Evaluate pu(t'), 1/ (t') of Egs. (5.107) and (5.108);

Evaluate the initial terms u' (t')k, and p'" (t) M (t)qs(tY);

Evaluate the final terms [5(t2), 72 ®4(t2), 72 (9,4)5(t2), and £2Qu(t2) ;
Evaluate the gradient of the functional of Eq. (5.103), by assembling I,, ",

the initial terms, the final terms, and g¢;;

Figure 5.8: The pipelined algorithm for the evaluation of gradients of functionals
through the Piecewise Adjoint method - continued
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1. NEOM integration steps.

2. NFOM evaluations of the 2(n +m)-dimensional vector function F(y,y/,t) of Eq.

(4.20).
3. NEOM evaluations of the (2(n +m)) x (2(n +m)) Jacobian J of Eq. (4.22).

4. One factorization per step of the Jacobian J of Eq. (4.22), due to the integrator’s
correction phase [31]. The factorization of a s x s matrix A requires ¢ x s* flops,
where constant ¢ depends on the factorization method [8]; e.g., ¢ = % for LU-
factorization [8]. Hence, the factorization of the (2(n+m))x (2(n+m)) Jacobian

J of Eq. (4.22) requires 64c(n + m)3 flops per integration step.

D. Nng M integrator correction failures [31] that require re-factorization of the Ja-

cobian J of Eq. (4.22).

Therefore, the total number of flops required by the integration of the DAE of motion

of Eq. (4.20) is

NEOM  — NEOM 5 9(n +m) + NEOM x 4(n + m)?

+ NEOY 5 64c(n+m)® + NEPM x 64c(n + m)?

steps

= 6dc(n+m)*(NEOY + NEPM)

steps

+ ANFOM(p 4 m)? + 2NFOM (n 4 m) (5.142)

Factorizations of the m X n constraint Jacobian ®, and of the m x m block
®,, require ¢ x m? flops, each. These two factorizations are performed once per mesh

point. Assuming the total simulation time interval [, #?] contains Ny,.;; mesh points,
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the factorizations of the constraint Jacobian ®, and block ®, require a number of
flops of

NFACTS = N g x (em® + em?®) = 2Ny iqm?® (5.143)

The integrate-recover-assemble algorithm defined in Section 5.2 is called 2d+1
times to evaluate the 2d columns of the fundamental matrix Yy’ (tx) and the particular
solutions v/ (t;) at each mesh point t,€A’. Each time it is called, the integrate-
recover-assemble algorithm integrates the adjoint DAE of Eq. (4.194) with different
initial conditions and different right-sides. Assume that the implicit integration of

the adjoint DAE of Eq. (4.20) using the LLNL’s IDA integrator [31] require

1. NADAE

steps  1ntegration steps.

2. NAPAE evaluations of the 2(n + m)-dimensional vector function F,(y,v/,t) of

Eq. (4.194).
3. N4PAE evaluations of the (2(n +m)) x (2(n +m)) Jacobian J, of Eq. (4.196).

4. One factorization per step of the Jacobian J, of Eq. (4.196), due to the inte-
grator’s correction phase [31]. The factorization of the (2(n+m)) x (2(n+m))

Jacobian J, of Eq. (4.196) requires 64c(n + m)? flops per integration step.

D. Néf?AE integrator correction failures [31] that require re-factorization of the

Jacobian J, of Eq. (4.196).



177

Therefore, the total number of flops required by the integration of one Adjoint DAE

1s
NADAE  _ NADAE y 9(p ) 4 Nj‘DAE x 4(n + m)?

4+ NAPAE » 64¢(n + m)® + N‘CL‘JPAE x 64c(n +m)?

steps

= 6dc(n+m)*(NLGH2E + NGPAP)

steps

+ ANFPAE(p 4m)? 4 2NAPAE (n 4 m) (5.144)

Since the integrate-recover-assemble algorithm is called 2d + 1 times to evaluate the
fundamental matrices {Yy’(t4), tx€A7} and the particular solutions {v’(ty), t,€A7},
its number of flops is on average (2d + 1) NAPAE,

Vector T]’f o of Eq. (5.120) is evaluated by applying a quadrature numerical
formula; e.g., Simpson method [8] to the product of n-dimensional row vector a;-‘ of
Eq. (5.95) and the n x ng matrix K, of Eq. (5.105) on the mesh A/. Each such
product requires n X ng multiplications. The quadrature numerical formula requires

the evaluation of this product for each of the N4 mesh points. Hence, the number

of flops required by the evaluation of vector Tf o 18
N(Tﬁo) = Ngrid Xn Xng (5145)

Matrix Tj“ of Eq. (5.121) is evaluated by applying a quadrature numerical
formula to the product of the transposed of the n x 2d matrix B of Eq. (5.96) and
the n x ng matrix K, of Eq. (5.105) on the mesh AJ. Each such product requires
2d x n x ng multiplications. The quadrature numerical formula requires the evaluation

of this product for each of the Ny, mesh points. Hence, the number of flops required
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by the evaluation of matrix T} is
N(T}') = Ngrig x 2d x n X ng (5.146)

Vector 77 of Eq. (5.129) is evaluated by applying a quadrature numerical
formula to the product of m-dimensional row vector a¥ of Eq. (5.98) and the m x ng
matrix @5 on the mesh AJ. Each such product requires m x ng multiplications. The
quadrature numerical formula requires the evaluation of this product for each of the
Ngrig mesh points. Hence, the number of flops required by the evaluation of vector
T/ 18

N(77) = Ngria X m X ng (5.147)

Matrix T} of Eq. (5.130) is evaluated by applying a quadrature numerical
formula to the product of the transposed of the m x 2d matrix BY of Eq. (5.99) and
the m x ng matrix ®5 on the mesh AJ. Each such product requires 2d X m X ng
multiplications. The quadrature numerical formula requires the evaluation of this
product for each of the Ngy.;q mesh points. Hence, the number of flops required by

the evaluation of matrix Tj” is
N(T}) = Ngria X 2d X m X ng (5.148)

In addition, vector a of Eq. (5.98), which is used to compute the vector )
of Eq. (5.129), requires the evaluation of the inverse of (n+m) x (n+m) matrix M~
of Eq. (5.89) for each mesh point. Also, matrix B} of Eq. (5.99), which is used to
compute the matrix T/ of Eq. (5.130), requires M* ! for each mesh point. Therefore,

computing 77, and T} requires the factorization of matrix (M%), for each of the Ngria
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mesh points; i.e., the number of flops required is

Niacr = Ngria X ¢(n+m)* = cNgyia(n + m)® (5.149)

Vector 7 of Eq. (5.136) and matrix 7; of Eq. (5.137) are updated by evaluating

vectors T]H o and 77, and matrices T]“ and T7. Hence, the number of flops required for

the evaluation of 7 and 7j is

NT]' T

= N(7j0) + N(T7) + N(7j5) + N(T}) + Niaor

= Ngria(2d + 1)(n +m)ng + cNgpig(n + m)? (5.150)

As a result, the total number of flops for the Piecewise Adjoint method is

Npa(n,m,ng) =

+

_|_

NEOM + NFACTS + (2d+ 1)NADAE + NTj,T
(n+m)*(64c(NGoN + NEPM + (2d + 1) (NGDAP + NGPAF)) + cNgria)
(n+m)?(4NFOM + 4(2d + 1)N;PAF)

(n+m)(2NFOM +2(2d + 1)N/APAE)

2C]ng'zﬂn3 + Ngm’d<2d + 1)(71 + m)ng (5151)

The execution time of the sequential Piecewise Adjoint method is proportional to the

number Npy of floating-point operations [29]

Tpa = aNpa(n,m,ng) (5.152)

where « is a constant depending on the CPU type, memory access speed, and oper-

ating system [54].
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5.5.2  Multiprocessor Estimates

Assume now that the following shared memory parallel architecture with ker-
nel threads [54] is used: the number of available parallel processors is n,, there are
ny, children threads in addition to the main thread of a process [54], and that POSIX
threads [15] are used. Multi-threading structures; e.g., mutezes and condition vari-
ables are used to prevent threads from writing into the same memory location at
the same time and for communication between threads [15]. Also, the main thread
requires barriers [15]. Barriers allow the main thread to wait for the other threads
to finish and then collect their results; e.g., a producer-consumer application [54] in
which the main thread produces some data, the children threads process it, and the
main thread waits to collect the results. With POSIX threads barriers are imple-
mented using a pair of mutexes and a condition variable [15]. The use of mutexes and
condition variables is usually computationally expensive and should be kept to a min-
imum [15]. The time that the operating system spends on communication between
threads through mutexes and condition variables is called synchronization time and
it depends on the computer architecture used, number of processors, and number of
threads.

If a computing task X can be split into ny, threads of computation and the
number of floating point operations associated with X, performed sequentially, is

N7 then the number of floating point operations per thread of computing task X is

seq
NX

Nth __
Ny =
Ntp,

(5.153)
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If Sx(nu,n,) is the synchronization time of the ny, threads on n, processors for
task X, then the estimated execution time of task X when the operating system is

responsible for assigning the ny, threads to the n, available processors is [15, 19, 29]

seq
X

Tx (Neh, Np) = @ + Sx(nen,ny) (5.154)

np

where « is a constant depending on the CPU type, memory access speed, and operat-
ing system [54]. When the number of available processors n,, is less than the number
of necessary threads ny,, there is the alternate option of partitioning the n, threads
into 77%: groups of n, threads, execute all threads in a group in parallel, but execute
the groups one after another. This option is in general more expensive [19] because
the number of barriers is increased by a factor of %f Therefore, this option is not
implemented.

For the implemented parallel Piecewise Adjoint algorithm of Figs. 5.4 through
5.6 each of the following computing tasks are performed in parallel: (1) factorization
of the ®, and @, in each point of the A/ mesh and (2) evaluation of the columns
of the fundamental matrices Yy’() and the particular solutions v7(t) through the
integrate-recover-assemble algorithm. Substituting NFACTS of Eq. (5.143) for Ny*
into Eq. (5.154), it follows that the estimated execution time for the factorization of

®, and ®,, on the parallel architecture with n, processors and ny, threads, is

2¢N, gm-dm3

TrAcTS(Mih, Np) = O + Sracrs(Nin, nyp) (5.155)

np
Also, substituting the (2d + 1) N4P4Z flops required for the evaluation of the columns

of the fundamental matrices and the particular solutions, where N4P4F is defined by
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Eq. (5.144), for N¥? into Eq. (5.154), it follows that the evaluation of the columns
of the fundamental matrices Yy’ () and the particular solutions v7(t) through the
integrate-recover-assemble algorithm, on the parallel architecture with n, processors

and ny, threads, is

64c(2d + 1)(n + m)3(NAPAE 4 N&?AE)

steps
TADAEx(2d+1)(nth,np) = «
np
4(2d + 1)NAPAE (n 4+ m)? + 2(2d + 1) NAPAE (n 4+ m)
«
Ty
+  Sapaex@itr)(Nn, np) (5.156)

The integration of the DAE of motion and the evaluation of 7 of Eq. (5.136) and 7}

of Eq. (5.137) are performed sequentially. Therefore,
TEoM (N, np) = aNFOM (5.157)
where NEOM is defined by Eq. (5.142) and
1, (N, np) = N7 (5.158)

where N7 is defined by Eq. (5.150).
As a result, the estimated execution time for the implemented parallel Piece-
wise Adjoint algorithm of Figs. 5.4 through 5.6 on the parallel architecture with n,

processors and ny, threads is

Tﬁ%allel(”th,np) = TEOM(”thy”p)+7—Tj,7—<nthanp)

+  TapAExd+1)(Nens M) + TracTs (Nen, Np) (5.159)

where Tgons(nin, np) is defined by Eq. (5.157), 77, - (74, np) is defined by Eq. (5.158),

TADAEx (2d+1)(Mth, ) is defined by Eq. (5.156), and 7pacrs(nem, np) is defined by Eq.
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(5.155). The number of necessary threads, in addition to the process’ main thread,
for the factorization of ®, and ®,, in each point of the A/ mesh is the average number
|Aj’j:1,2,...,Nj of mesh points in the set of meshes {A7,j =1,2,..., N;}. The number
of necessary threads, in addition to the process’ main thread, for the evaluation of
the columns of the fundamental matrices Y,/ (¢) and the particular solutions v7(t),

through the integrate-recover-assemble algorithm, is 2d 4+ 1. Hence, the total number

of necessary threads for the implemented parallel Piecewise Adjoint algorithm is

nbA = max{]Ajb:m N, T 1,2d+2} (5.160)

.....

In order to minimize the amount of time spent on synchronization the number of

processors must be at least as big as the number of threads [19]
ny > g

Consider now the pipelined Piecewise Adjoint algorithm of Figs. 5.7 and 5.8.
In the first pipeline stage the computing tasks that are executed are the integration of
the DAE of motion followed by the factorizations of ®, and ®,,. Hence, the estimated

execution time for the first pipeline stage is

Tpa = TEoM (Nth, Np) + TracTs (N, M) (5.161)

where Tgon(nm, ny) is defined by Eq. (5.157) and 7pacrs(numn, ny) is defined by Eq.
(5.155). The number of necessary threads for the first pipeline stage is the average
number |Aj|j:1727__7Nj of mesh points in the set of meshes {A’,j =1,2,...,N;}.

In the second pipeline stage the computing tasks that are executed are the

evaluations of the columns of the fundamental matrices Yy’ () and the particular so-
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lutions v’(t) through the integrate-recover-assemble algorithm. Hence, the estimated

execution time for the second pipeline stage is

Tgfq = TADAEX(2d+1)(nth7 np) (5.162)

where Tapapx2d+1)(un, np) is defined by Eq. (5.156). The number of necessary
threads for the second pipeline stage is 2d + 1.

In the third pipeline stage the computing task that is executed is the evaluation
of vector 7 of Eq. (5.136) and matrix 7; of Eq. (5.137). Hence, the estimated

execution time for the third pipeline stage is
7']];6;4 = TTﬂ(nth, np) (5163)

where 77, 7 (1, np) is defined by Eq. (5.158). The number of necessary threads for
the third pipeline stage is 1.

Since the three pipeline stages are executed simultaneously, the estimated ex-
ecution time for the pipelined Piecewise Adjoint algorithm is the maximum execution

time of the three pipeline stages

pipelined __ p1 P2 D3
TpA = maz{Tpy, Tpus Tpa (5.164)

and the number of necessary threads, in addition to the process’ main thread, is the

sum of necessary threads for each pipeline stage
nf}ipelined — |Aj|j:1,2,...,Nj +2d+ 3 (5165)

The number of flops Npa(n,m,ng) of Eq. (5.151) for the Piecewise Adjoint

method increases with the number of design parameters ng. Therefore, the execution
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times of both the sequential and the parallel Piecewise Adjoint algorithms, of Egs.
(5.152) and (5.159), respectively, increases with the number of design parameters ng.

The execution time for the implemented parallel Piecewise Adjoint algorithm
is difficult to estimate in advance because the time spent by the operating system on
synchronizing mutexes and condition variables [15] is difficult to measure. Although
the estimation of Eq. (5.159) includes synchronization costs, they are difficult to

determine in actual parallel experiments [15].

5.6 Memory Load Analysis

In the Adjoint method, storage of the equations of motion states, ¢, v, a, and A
is required during forward integration of the DAE of motion, to be used for assembling
and solving the Adjoint DAE using backward integration. In the Piecewise Adjoint
method, at each time ¢;, 7 = 1,2,..., Nj; i.e., the beginning of the fine-grid interval
7’ and also the end point of the backward integration of the Adjoint CPUODE on
fine-grid interval Z7, the fundamental matrix Y (t,) and the particular solution v7(t;)
need to be stored, in order to construct and solve the linear system of Eq. (5.78),

after final time t* = ty 4, is reached. Also, matrix T; defined by Eq. (5.114) and

N;
j=1

vector 7 = 7;, which accumulates the sum of vectors 7; defined by Eq. (5.113)
for each fine-grid interval Z7, need to be stored in order to assemble the gradient of
the functional after final time is reached, as shown by the algorithm in Figs. 5.7 and

5.8.

Consider a multibody system with n, bodies, m constraints (including the
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Euler parameter normalization constraints), and ng design parameters. Also, consider
N; fine-grid intervals Z7, j = 1,2,..., N;. Each fine-grid interval consists of p mesh
points. For the Adjoint method, when final time is reached N; x p sets of motion

states ¢, v, a, and A are stored, resulting in a total of
N4 = (3n+m)x N; x p (5.166)

double precision numbers, where n = 7 X n,,.

For the Piecewise Adjoint method, the dimension of fundamental matrices Y{
is 2d x 2d, where d = n — m; the dimension of vectors v/ is 2d; the size of vector
7 is ng; and the dimension of matrices T} is ng x 2d. Therefore, when final time is
reached a total of

NP4 = (ng(2d + 1) + 4d* + 4d) x N; (5.167)

double precision numbers are stored.

For the slider-crank model, with n = 28, m = 27, and d = 1; ng = 10 design
parameters; and N; = 40 fine-grid intervals, each with p = 10 mesh points, the
Adjoint method requires storage of N4 = 44,400 double precision points, while the
Piecewise Adjoint method requires storage of N4 = 1520 double precision points,
resulting in less than 3.5% of the Adjoint method memory consumption. For ng = 100
design parameters, N¥4 = which is less than a third of the Adjoint method memory
consumption.

For the HMMWYV 13 model, with n = 91, m = 81, and d = 10; ng = 10

design parameters; and N; = 40 fine-grid intervals, each with p = 10 mesh points,
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the Adjoint method requires storage of N4 = 141,600 double precision points, while
the Piecewise Adjoint method requires storage of N¥4 = 26,000 double precision
points, resulting in less than a fifth of the Adjoint method memory consumption. For
ng = 100 design parameters, N¥4 = 57600 which is less than half of the Adjoint

method memory consumption.
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CHAPTER 6
NUMERICAL IMPLEMENTATION AND PRELIMINARY RESULTS

This Chapter is organized as follows: Section 6.1 shows error control of the
quadrature methods that are used; Section 6.2 presents the slider-crank and the
vehicle models; Sections 6.3 and 6.4 show validation results of the implementation
of the Direct Differentiation, Adjoint, and Piecewise Adjoint methods; and Section
6.5 presents (1) parallel implementation attempts on the two parallel architectures,
(2) an analysis of the sequential and parallel Piecewise Adjoint methods, and (3)
predictions of the pipelined parallel Piecewise Adjoint method on multiprocessors
architectures with adequate number of processors. Numerical results are presented
for two multibody systems, a slider-crank and a vehicle. For each model, the following

equations are solved:

1. The index-1 DAE of motion of Eq. (4.20), presented in Section 4.2.

2. The index-1 Direct Differentiation DAE of Eq. (4.113), presented in Section

4.3.

3. The index-1 Adjoint DAE of Eq. (4.194), presented in Section 4.4.

4. The non-homogeneous and homogeneous Adjoint CPUODE of Eq. (5.31), using

the integrate-recover-assemble algorithm presented in Section 5.2.
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The solutions of these equations are used to integrate gradients of functionals of the

form

t2
U — / (g q + agq’Tq’)dt (6.1)
t

1

where a; and s are constant scalars. Sequential and parallel experiments are per-
formed on computers with the following configurations of microprocessor type (CPU),

microprocessor speed, random access memory (RAM), and operating system (OS):

1. single-processor computer with CPU: AMD Athlon XP 2500+, speed: 1.8 GHz,

RAM: 512 MB RAM, and OS: Suse Linux 9.0;

2. dual-processor computer with 2x CPU: Intel Xeon , speed: 3 GHz, RAM: 1GB

RAM, and OS: Windows XP;

3. quad-processor computer with 4x CPU: AMD Opteron Processor 850, speed:

2.4 GHz, RAM: 21 GB, and OS: Suse Linux 9.1;

6.1 Error Control

The absolute and relative tolerances for the integration of the DAE of motion
of Eq. (4.20); the DAE of Eq. (4.113) of the Direct Differentiation method, presented
in Section 4.3; and the DAE of Eq. (4.194) of the Adjoint and the Piecewise Adjoint
methods, of Sections 4.4 and 5.2, respectively, are controlled by the IDA DAE solver
[31] through a variable step-size and variable order constant leading coefficient algo-

rithm [13]. For the control of the error in the integration of the functional and its
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gradient through the Direct Differentiation, Adjoint, and Piecewise Adjoint methods,

two options are implemented:

1. Error control by using Richardson extrapolation [25];

2. Error control by using the IDA integrator;

Let I7

(t1.t2] be a numerical integration method applied to function f(¢) on in-

terval [tq,s]; e.g., Simpson method [8]. Using Richardson extrapolation, an estimate
of the local error of the integration is obtained by evaluating the difference between

integrating with step-size h = t, —t;, and integrating with half of the step-size h; i.e.,

)

—7f f f
Clontal = T o) ~ Uy gty + s

If ey, 1, is less than a prescribed error-per-length, obtained by dividing the tolerance
by the length of the interval, (t; — t1), then I[J;h] is accepted; otherwise, ][’;M is
rejected, the interval is divided in half, and the result is obtained by recursively
applying the same algorithm to each sub-interval, and add results on sub-intervals.

For the second method of error control in the integration of function f(¢) on

interval [tq, 5], consider
t
A = [ #(rir
t1
Since I = z(ts), the integration of function f(t) on interval [t1,s] is performed by

solving the ODE

with initial conditions z(#;) = 0. Using the IDA solver, the local error is controlled by

the IDA integrator. Tests with both methods resulted in the same order of accuracy,
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although the IDA solver, which uses an implicit integration method, is less efficient

in terms of execution speed.

6.2 Slider-Crank and Vehicle Models

In this Section the topology graphs [52] of the spatial slider-crank and the
thirteen-body High mobility multipurpose wheeled vehicle (HMMWYV) are presented.
The nodes of the graphs represent bodies and the edges represent joints in the set
{D,S,R,U, T}, where labels D, S, R, U, and T represent distance, spherical, revolute,
universal, and translational joints, respectively.

Figure 6.1 presents the spatial slider-crank. It consists of the following four

bodies:

1. ground;

2. crank;

3. connecting rod (CONROD);

4. slider;

The bodies are connected through a set of four joints. Table 6.1 presents the set of
joints of the spatial slider-crank, where each entry presents the type of the joint and

the bodies it connects.
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Type Body i Body j
1 Spherical CRANK | CONROD
2 Universal CONROD | SLIDER

3 Translational | SLIDER | GROUND

4 Revolute GROUND | CRANK

Table 6.1: The joints of the spatial slider-crank.

Figure 6.2 presents the spatial slider-crank topology graph.

Figure 6.1: The spatial slider-crank
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SLIDER

GROUN

Figure 6.2: The slider-crank topology

The thirteen bodies HMMWYV model (HMMWYV 13) is similar to the fourteen
bodies HMMWYV model (HMMWYV 14) presented by Negrut [41]. Tires are mod-
eled as vertical translational-spring-damper elements between bodies and the terrain,
which is modeled as a planar surface. In order to fix the steering rack, the HMMWV
14 model [41] has a translational and a distance joint between the chassis and the
steering rack. In the HMMWYV 13 model, the steering rack is removed and its mass
and inertia are transfered to the chassis. In both HMMWYV models, stiffness is in-
troduced by prescribing very large values for the stiffness and damping coefficients
of the Tire and TSDA force elements; i.e., the stiffness coefficient of each TSDA is
2.0e + 7 N/m and the damping coefficient is 2.0e + 6 Ns/m. The stiffness coefficients

of the tires are 296325 N/m and the damping coefficients are 3502 Ns/m. Figure 6.3



presents the HMMWYV 13 model. It consists of the following thirteen bodies:

10.

11.

12.

13.

. chassis;

. front left lower control arm (FLLCA);

. front left upper control arm (FLUCA);

. front left wheel assembly (FLWA);

. front right lower control arm (FRLCA);

. front right upper control arm (FRUCA);

front right wheel assembly (FRWA);

. rear left lower control arm (RLLCA);

. rear left upper control arm (RLUCA);

rear left wheel assembly (RLWA);

rear right lower control arm (RRLCA);

rear right upper control arm (RRUCA);

rear right wheel assembly (RRWA);

194

Table 6.2 presents the set of joints of the HMMWYV 13, where each entry presents the

type of the joint and the bodies it connects.
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Type

Body i

Body j

Type

Body 1

Body j

Distance

CHASSIS

FLWA

11

Distance

CHASSIS

RRWA

Revolute

CHASSIS

FLUCA

12

Revolute

CHASSIS

RRUCA

Revolute

CHASSIS

FLLCA

13

Revolute

CHASSIS

RRLCA

Spherical

FLWA

FLUCA

14

Spherical

RRWA

RRUCA

Spherical

FLWA

FLLCA

15

Spherical

RRWA

RRLCA

Distance

CHASSIS

FRWA

16

Distance

CHASSIS

RLWA

Revolute

CHASSIS

FRUCA

17

Revolute

CHASSIS

RLUCA

Revolute

CHASSIS

FRLCA

18

Revolute

CHASSIS

RLLCA

Spherical

FRWA

FRUCA

19

Spherical

RLWA

RLUCA

10

Spherical

FRWA

FRLCA

20

Spherical

RLWA

RLLCA

Table 6.2: The joints of the HMMWYV 13.

Figure 6.4 presents the HMMWYV 13 model topology graph.
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Figure 6.3: The HMMWV

Figure 6.4: The HMMWYV 13 topology
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6.3 Validation of Kinematic and Force Deriva-
tives
Analytic evaluation of kinematic and force derivatives has been validated by

comparison with centered [8] finite differences,

Of(x) _ flz+h)—flz—h)

5 o + O(h?) (6.2)

where h = 107%  Tables 6.3 and 6.4 show the absolute error between kinematic
derivatives evaluated analytically and corresponding derivatives evaluated with finite
differences, where the P superscript stands for finite differences. The validation tests
have been performed on the single-processor AMD Athlon computer. The vector norm

used is the {; norm [9]
lelly = Jail

where z is a n,-dimensional vector.
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1257 = @qll, | 11(@g7)g " — (27)all,
Distance 1.75e-09 1.21e-07
Spherical 9.77e-11 7.67e-09
Revolute 9.77e-11 7.67e-09
Universal 2.08e-10 6.45e-09
Translational 2.30e-10 1.77e-08

Table 6.3: Kinematic derivatives: ®, and ©(®, )

1((@11)12)g = (Per1)gr2)al, | 1@ )5 = (4" Call,
Distance 2.42e-06 4.51e-09
Spherical 0.0 7.36e-10
Revolute 1.80e-07 2.55e-09
Universal 7.86e-08 2.27e-09
Translational 3.66e-07 6.67e-09

Table 6.4: Kinematic derivatives: (®,'¢), and Y (®,y1,72)

Table 6.5 presents maximum error between analytic and finite difference eval-

uation of derivatives with respect to model parameters, ®g, (®,7)s, ((P471)472)3, and
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(®,"7)s. The vector 3 of model parameters depends on the type of joint for which

derivatives are evaluated. For Distance and Spherical joints

T
6: /PT /PT

for Revolute and Universal joints

T
T T

? J

and for the Translational joint

T
T T
= 1P 1P ' T ' T a a
p (3‘ S h; hj Ji 9¢>

? J

max{[|05” — ||, [(P47)57 — (24l
1((@gr1)g72) 5 = (@g1)gr2)sll, 1(g " 1EP = (D4 )l }
Distance 3.41e-06
Spherical 8.74e-08
Revolute 8.74e-08
Universal 1.23e-07
Translational 6.30e-07

Table 6.5: Joint derivatives with respect to model parameters

Tables 6.6 and 6.7 present errors between analytic and finite difference eval-

uation of derivatives of forces with respect to generalized coordinates ¢ and ¢ and
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model parameters 3. The vector( of model parameters depends on the type of force

for which derivatives are evaluated. For constant applied forces

-
p= ( FAT s’-CT)

for TSDA forces
for Tire forces

for RSDA forces

.
5—(ng AR AN VAR A (e N)

and for Coriolis forces, L;, i = 1,2,..., ny,

B:(mi SliCT (D (Fia (D (S)a (‘]1{)23 (‘]1{>33)

1Q¢” — Qqll, | 1Q7 — Qull, | 1QF" — @Qsll,
Constant 2.34e-09 0.00 2.00e-06
Tire 9.10e-09 8.85e-09 1.00e-08
TSDA 2.81e-08 3.63e-08 2.74e-06
RSDA 5.69e-10 1.22e-10 1.15e-05
Coriolis 9.95e-09 9.62e-09 1.58e-08

Table 6.6: Force derivatives



1Qy)s” = (Qu)ally | Qe V)E” — (Quy)ell,
Constant 0.00 0.00
Tire 2.34e-08 0.00
TSDA 8.95e-07 0.00
RSDA 2.08e-09 0.00
Coriolis 8.28e-08 6.05e-08

Table 6.7: Force derivatives
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Table 6.8 presents errors between analytic and finite difference evaluation of

derivatives involving the mass matrix with respect to generalized coordinates ¢ and

model parameters . The vector of model parameters for the mass matrix is

(2

-
ﬁ:<mi s¢

(D U Udis (Faa (Jas (Jé)gs)

I(My)g? = (M)l

I((My1)gv2)g” = (My1)gr2)gll,

[MEP — M|,

8.95e-09

1.37e-07

6.56e-09

Table 6.8: Mass matrix derivatives

The main source of the errors is the truncation error in the finite differences

evaluation of derivatives [8]. There is no accumulation of round-off errors [8] in the
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analytic evaluation of derivatives because derivatives are evaluated pointwise; i.e.,

their evaluation does not require summation over a time interval.

6.4 Validation of the Evaluation of V3 Through

Direct Differentiation, Adjoint, and Piece-

wise Adjoint Methods

In this Section the gradient of the functional of Eq. (6.1) is computed through
the Direct Differentiation (DD), Adjoint (A), and Piecewise Adjoint (PA) meth-
ods and compared against the gradient of the same functional obtained with finite
differences (FD). The numerical experiments have been performed on the single-
processor AMD Athlon computer, the dual Intel Xeon computer, and the quad AMD
Opteron computer. The time interval chosen is [0,2] sec, a; = as = 1, and relative
and absolute tolerances for the IDA solver are [31] of 107° and 1079, respectively.
The tolerance used for integration of Wy is 1077, The finite differences evaluation
of s uses the centered finite differences formula of Eq. (6.2) where h = 1075, i.e.,
the functional W, is first integrated with each model parameter 3, [ = 1,2,... ng,
perturbed to §; + h, then W_j is integrated with each model parameter [3; perturbed

to B, — h, and

Ui, =W,

\I/FD —
p 2h

(6.3)

Tables 6.9 through 6.11 present comparative results for the absolute errors between

the Direct Differentiation, Adjoint, Piecewise Adjoint, and the finite differences meth-
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ods for the slider-crank sensitivity with respect to sixteen model parameters. The
validation results for the gradient of the functional are shown for each of the three
computers because the different architectures and operating systems may influence
the round-off errors [8]. The vector norm used is the /; norm. The spatial slider-crank
sensitivity validation test case uses the following 16-dimensional vector of model pa-

rameters:

T
S T
B = ( ghrev MCRANK (J/CONROD)Z',J':IQ,BJ#J' (JéLIDER)i,FLZ,&i# ) (6.4)

where s7ev is the 3-dimensional position vector of the revolute joint between ground
and crank with respect to ground. Parameter mcrank is the crank mass. The
six parameters (Joongop)ij—123i2; are the elements of the inertia tensor of the
connecting rod. The six parameters (Jg,;ppp);jo123,2; ate the elements of the

inertia tensor of the slider.

DD A PA

IWEP — Wy, 5.03¢-3 9.25¢-3 7.12¢-3

Direct Pi ] Direct Adjoint
”\I[B wrect \Ijﬁzecewzse“ H\Ilﬁ wrect \I/ ”1

1 B

1.32e-2 9.86e-3

Table 6.9: The absolute error of Wz with respect to FD, for the sensitivity of the
slider-crank with sixteen model parameters on the AMD Athlon computer
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DD A PA
[WED — )|, 1.27e-3 2.04e-3 1.8¢-3
irec iecewise irec Adjoin
[wgereet — wf I [wgireet — wademt)
5.76e-3 2.55e-3

Table 6.10: The absolute error of W with respect to FD, for the sensitivity of the
slider-crank with sixteen model parameters on the Intel Xeon computer

DD A PA

15D — W), 8.13¢-4 9.63¢-4 9.98¢-4

H\Ijgirect - qjgiecewiseHl H\Ijgirect . \IjgldjointH

1

1.39e-3 1.15e-3

Table 6.11: The absolute error of W with respect to FD, for the sensitivity of the
slider-crank with sixteen model parameters on the AMD Opteron computer

Tables 6.12 through 6.17 present comparative results for the absolute errors be-
tween the Direct Differentiation, Adjoint, Piecewise Adjoint, and the finite differences
methods for the HMMWYV 13 sensitivity with respect to sixteen model parameters.
The time interval chosen for the simulation is [0, 2]s for the comparison between the

Direct Differentiation, Adjoint, and finite differences methods. The time interval
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chosen for the simulation is only [0,0.05]s for the comparison between the Piecewise
Adjoint method and Direct Differentiation, Adjoint, and finite differences methods
because the execution time of the Piecewise Adjoint method for the HMMWYV 13
model is significantly larger, as will be explained in Section 6.5.2. The HMMWV
13 sensitivity validation test case uses the following 16-dimensional vector of model

parameters:

T
H _ T
p = ( BHmass (JéJHASSIS>z‘,j:1,2,3,i7éj (‘];%LLCA)i,j:I,Z?),i;éj ) (6.5)

where vector

T
s mass McHASSIS ™MRLLCA "™MRLWA TRRWA

consists of the masses of the chassis mopassrs, rear left lower control arm mgrrca,
rear left wheel assembly mpgrwa, and rear right wheel assembly mgrrwa. The six
parameters (J/CHASSIS)i,j:LZ,&z‘;éj are the elements of the inertia tensor of the chassis.
The six parameters (Jp; 1 04); j=123:2; r€ the elements of the inertia tensor of the

rear left lower control arm.

DD A
[W5P — W), 3.61e-03 7.25¢-03
[whireet — gademt) 4.44e-04

Table 6.12: The absolute error of Ws with respect to FD, for the sensitivity of the
HMMWYV 13 with sixteen model parameters on the AMD Athlon computer for the
time interval of [0, 2]s
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Method

DD

A

FD

1.05e-03

8.17e-04

9.65e-03

H\IIIBDA _ \I,g/lethodul

Table 6.13: The absolute error of Wz with respect to PA, for the sensitivity of the
HMMWYV 13 with sixteen model parameters on the AMD Athlon computer for the
time interval of [0, 0.05]s

DD A
[UEP — Wy, 2.88¢-03 6.61e-03
[whireet — ggdomt| 2.07e-04

Table 6.14: The absolute error of Ws with respect to FD, for the sensitivity of the
HMMWYV 13 with sixteen model parameters on the Intel Xeon computer for the time
interval of [0, 2]s

Method DD A FD

8.77e-03 5.39e-04 7.1e-03

H\I,g’A _ \Ij]ﬁwethOd”l

Table 6.15: The absolute error of Wz with respect to PA, for the sensitivity of the
HMMWYV 13 with sixteen model parameters on the Intel Xeon computer for the time
interval of [0,0.05]s
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DD A
[UEP — Wy, 7.97e-04 6.56¢-04
[whireet — gademt) 5.13e-04

Table 6.16: The absolute error of W with respect to FD, for the sensitivity of the
HMMWYV 13 with sixteen model parameters on the AMD Athlon computer for the
time interval of [0, 2]s

Method DD A FD

|54 — wpethod 5.11e-04 8.17e-04 1.82¢-03

Table 6.17: The absolute error of W3 with respect to PA, for the sensitivity of the
HMMWYV 13 with sixteen model parameters on the AMD Athlon computer for the
time interval of [0,0.05]s

In addition to the truncation error in the finite differences evaluation of the
gradient of the functional, there are more significant round-off errors. There is ac-
cumulation of the round-off errors [8] in the evaluation of the gradient because it

requires summation over a time interval.
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6.5 Initial Assessment of the Parallel Implemen-
tation

Parallel experiments with the Piecewise Adjoint method for the slider-crank
and HMMWYV 13 models have been performed on the dual Intel Xeon computer and
the quad AMD Opteron computer. Both parallel workstations have a shared memory
architecture. POSIX threads (p-threads) [15] have been used as independent threads
of computation. The parallel experiments have been performed using only a limited
number of parallel processors (two and four, respectively). Therefore, the pipelined
parallel Piecewise Adjoint method of Figs. 5.7 and 5.8 could not be tested effectively.

The execution times of both the slider-crank and the HMMWYV 13 models
show significant differences between the dual Intel Xeon computer and the quad
AMD Opteron computer. This is explained not only by the different number of
processors; i.e., two on to the dual Intel Xeon computer and four on the quad AMD
Opteron computer, but also by the different types of processors and the different
types of operating systems [54]; i.e., Windows XP on the dual Intel Xeon computer
and Suse Linux 9.1 on the quad AMD Opteron computer.

The experiments with the implemented parallel Piecewise Adjoint method, on
the limited parallel architectures that were available, show very low speed-ups or even
slow-downs, when the number of independent threads is much larger than the number
of parallel processors. However, given an adequate number of processors, the pipelined

Piecewise Adjoint algorithm shows an improved predicted speed-up. Therefore, the
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Piecewise Adjoint method may show benefits when the number of parallel processors

is large enough to run the pipelined Piecewise Adjoint algorithm.

6.5.1 Parallel Experiments

Tables 6.18 and 6.19 and Figs. 6.5 and 6.6 present parallel and sequential

results for the sensitivity of the slider-crank with 1, 2, 4, 8 and 16 parameters.

Execution times are shown for the parallel Piecewise Adjoint method vs. sequential

Direct Differentiation, Adjoint, and Piecewise Adjoint methods, on the dual Intel

Xeon computer and the quad AMD Opteron computers, respectively. The simulated

time interval for the slider-crank is [0, 2]s.

1 2 4 8 16
DD 101.00 324.00 661.00 1436.00 2650.00
A 295.00 302.00 307.00 308.00 349.00
PA,, 409.00 424.00 454.00 518.00 707.00
PA,araliel 297.00 313.00 349.00 393.00 536.00

Table 6.18: Parallel vs. sequential execution times for the slider-crank on the dual
Intel Xeon computer
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1 2 4 8 16
DD 19.74 48.33 97.12 212.63 436.48
A 61.99 62.14 62.44 63.95 66.45
PAge, 391.57 407.06 436.74 497.09 619.34
PApraitel 152.14 169.5 177.98 195.06 243.49

Table 6.19: Parallel vs. sequential execution times for the slider-crank on the quad
AMD Opteron computer

Tables 6.20 and 6.21 and Figs. 6.7 and 6.8 present parallel and sequential
results for the sensitivity of the HMMWYV 13 with 1, 2, 4, 8, and 16 parameters.
Execution times are shown for the parallel Piecewise Adjoint method vs. sequential
Direct Differentiation, Adjoint, and Piecewise Adjoint methods, on the dual Intel
Xeon computer and the quad AMD Opteron computers, respectively. The simulated

time interval for the HMMWYV 13 is [0, 0.05]s.
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1 2 4 8 16
DD 146.00 235.00 397.00 811.00 1605.00
A 2149.00 2246.00 2279.00 2378.00 2435.00
PAg, 57274.00 | 59279.00 | 63310.00 | 71540.00 | 88709.00
PA,qraliel 150956.00 | 156994.00 | 174264.00 | 195175.00 | 261535.00

Table 6.20: Parallel vs. sequential execution times for the HMMWYV 13 on the dual
Intel Xeon computer

1 2 4 8 16
DD 45.06 69.00 111.73 | 210.127 | 402.42
A 254.02 254.42 257.9 258.33 259.3
PAg, 32436.92 | 34869.69 | 37755.71 | 43041.51 | 52510.64
PAparaitel 42168.72 | 46385.59 | 48704.87 | 55036.5 | 69346.00

Table 6.21: Parallel vs. sequential execution times for the HMMWYV 13 on the quad
AMD Opteron computer
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Execution times for the slider—crank model
on the dual processor computer (2s of simulation)

3000
I oD
- A

2500 | [ PA,,
:] PAparallel

2000

2 1500

1000

500

1 2 4 8 16
Number of parameters

Figure 6.5: Execution times for the slider-crank model on the dual Intel Xeon com-
puter
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Execution times for the slider—crank model
on the quad processor computer (2s of simulation)

700
I 0D
600 - - ]
[ PA,,
500 - :] PAparallel
400 - — ]
o,
300+
200+
100
0
1 2 4 8 16

Number of parameters

Figure 6.6: Execution times for the slider-crank model on the quad AMD
Opteron computer
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Execution times for the HMMWYV 13 model

X 10° on the dual processor computer (50 ms of simulation)
I oD
. A _
25 [ l:l PAseq
:] PAparallel
2F —
@ 15¢ = [ ]
1 |-
0.5F
0 V| il V| V| |
1 2 4 8 16

Number of parameters

Figure 6.7: Execution time for the HMMWYV 13 model on the dual Intel Xeon com-
puter
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Execution times for the HMMWYV 13 model
x 10% on the quad processor computer (50 ms of simulation)

I oD
5 B A
[ PA, B
5k :] PAparallel ]
Al —
o —
ol —
2 [
1 [
0 | | | | |
1 2 4 8 16

Number of parameters

Figure 6.8: Execution time for the HMMWYV 13 model on the quad AMD
Opteron computer

It should be noted that the parallel experiments on the dual Intel Xeon and
the quad AMD Opteron architectures could not take advantage of an exclusive use
of the computers; i.e., the experiments were performed in a multi-tasking and multi-
user environment [54] with other users running parallel tasks, too. Therefore, the
execution times of Tables 6.18 through 6.21 may not accurately reflect the duration
of the implemented parallel Piecewise Adjoint method on the corresponding parallel
architectures. Also, there was not enough information available about the task load
on each of the two parallel architectures to make a significant comparison between

the execution times on the dual Intel Xeon and the quad AMD Opteron computers.
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6.5.2 Analysis of Results of Experiments with the Se-

quential Piecewise Adjoint Method

On the dual Intel Xeon computer the data resulting from running the sequen-
tial Piecewise Adjoint method applied to the slider-crank, with n = 28, m = 27,

ng € {1,2,4,8,16}, and ¢ = %, on the [0, 2]s interval, is the following:

1. for the integration of the DAE of motion NFOM = 1110, NFOM = 556, NFOM =

steps

1791, Ng]?M = 0 have been reported by the IDA integrator;

2. for the integration of one Adjoint DAE an average of NAPAE = 294 NAPAE —

steps

25, NAPAE = 534, N4 P4F = 0 have been reported by the IDA integrator;
3. a total of N4 = 400 mesh points have been used;

4. an average of ‘Aj|j:1,2,...,Nj = 10 mesh points in the set of meshes {A7,j =

1,2,...,Nj};

It should be noted that in addition to the DAE of motion, a number of 2d + 1
Adjoint DAE are integrated. The DAE of motion and the Adjoint DAE do not
depend on the design parameters ng. Consequently, the integrator resulting from
running the sequential Piecewise Adjoint method applied to a given model on a given
architecture does not change with the number of design parameters ng. However, the
estimated number of flops of the sequential Piecewise Adjoint method does depend

on the number of design parameters ng, as it is shown by Eq. (5.151). The predicted
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[0’-§er of the sequential Piecewise Adjoint method on the slider-

number of flops Npa;

crank is obtained by substituting for this data into Eq. (5.151).
On the dual Intel Xeon computer the data resulting from running the sequen-
tial Piecewise Adjoint method applied to the HMMWYV 13, with n = 91, m = 81,

ng € {1,2,4,8,16}, and ¢ = %, on the [0,0.05]s interval, is the following;

1. for the integration of the DAE of motion NEOM =18, NFOM =5 NFOM — 25,

NngM = 0 have been reported by the IDA integrator;

2. for the integration of one Adjoint DAE an average of N4ADAE = 93 N4APAE — 49,

steps

NADAE — 1928, N‘C“JPAE = 12 have been reported by the IDA integrator;
3. a total of N4 = 400 mesh points have been used;

4. an average of |A7|

J=12,0N; = 10 mesh points in the set of meshes {A7 ] =

1,2,...,Nj};

The predicted number of flops of the sequential Piecewise Adjoint method on the
HMMWYV 13 is obtained by substituting for this data into Eq. (5.151). Since the
0, 2]s interval is 40 times larger than the [0,0.05]s interval, the estimated number of
flops for the [0, 2]s interval is NPAE%]%/}[MWV =40 x NPAE*?I}(\)Z?\E;]W\/-

Therefore, the predicted ratio of the execution time of sequential Piecewise
Adjoint method applied to the HMMWYV 13 model and the execution time of sequen-
tial Piecewise Adjoint method applied to the slider-crank model, on the dual Intel

Xeon computer, is

0,2
N PA[H]\/][MWV
Npa 0.2

slider

PXeon =
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For a number of design parameters ng € {1,2,4,8,16}, the average value of the
predicted ratio is pxeon = 4940. Hence, the execution time of the sequential Piecewise
Adjoint method applied to the HMMWYV 13 model is therefore expected to be at least
4940 times more expensive than the sequential Piecewise Adjoint method applied to
the slider-crank model, on the same interval of [0, 2]s. The results of the experiments
with the two models on the dual Intel Xeon computer, presented in Tables 6.18 and
6.20 show that the actual ratio of the execution time of the sequential Piecewise
Adjoint method applied to the HMMWYV 13 and the execution time of the sequential
Piecewise Adjoint method applied to the slider-crank is on average 5462.

On the quad AMD Opteron computer the data resulting from running the
sequential Piecewise Adjoint method applied to the slider-crank, with n = 28, m = 27,

ng € {1,2,4,8,16}, and ¢ = %, on the [0, 2]s interval, is the following;:

1. for the integration of the DAE of motion NFOM = 1108, NFOM = 525 NEOM —

steps

1601, NAPM = 0 have been reported by the IDA integrator;

2. for the integration of one Adjoint DAE an average of N ﬁg)fE = 270, N{PAE —

22, NAPAE = 525, NP4 = 0 have been reported by the IDA integrator;
3. a total of Ng.;q = 400 mesh points have been used;

4. an average of \Aj|j:1’27_”7Nj = 10 mesh points in the set of meshes {A7,j =
1,2,...,Nj};

[0,2]

aiaer Of the sequential Piecewise Adjoint method

The predicted number of flops Npy

on the slider-crank is obtained by substituting for this data into Eq. (5.151).
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On the quad AMD Opteron computer the data resulting from running the
sequential Piecewise Adjoint method applied to the HMMWYV 13, with n = 91,

m =81, ng € {1,2,4,8,16}, and ¢ = %, on the [0,0.05]s interval, is the following:

1. for the integration of the DAE of motion NEOM = 13 NFOM = 4 NFOM — 19

steps )

NEZM = 0 have been reported by the IDA integrator;

2. for the integration of one Adjoint DAE an average of NAPAE = 59 NAPAE — 39,

steps

NAPAE — 95, Néf?AE = 7 have been reported by the IDA integrator;
3. a total of N4 = 400 mesh points have been used;

4. an average of |Aj|j:12__’Nj = 10 mesh points in the set of meshes {AJ,j =

1,2,,Nj},

The predicted number of flops of the sequential Piecewise Adjoint method on the
HMMWYV 13 is obtained by substituting for this data into Eq. (5.151). Since the
0,2]s interval is 40 times larger than the [0, 0.05]s interval, the estimated number of
flops for the [0, 2]s interval is Np Ag’ﬁ uwy =40 x Np Agg}(\]ﬁ\i]wv

Therefore, the predicted ratio of the executio