
University of Iowa
Iowa Research Online

Theses and Dissertations

2005

On the adjoint formulation of design sensitivity
analysis of multibody dynamics cs
Andrei Serban Schaffer
University of Iowa

Copyright 2005 Andrei Serban Schaffer

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/93

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Mechanical Engineering Commons

Recommended Citation
Schaffer, Andrei Serban. "On the adjoint formulation of design sensitivity analysis of multibody dynamics cs." PhD (Doctor of
Philosophy) thesis, University of Iowa, 2005.
http://ir.uiowa.edu/etd/93.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=ir.uiowa.edu%2Fetd%2F93&utm_medium=PDF&utm_campaign=PDFCoverPages

ON THE ADJOINT FORMULATION OF DESIGN SENSITIVITY ANALYSIS OF

MULTIBODY DYNAMICS

by

Andrei Serban Schaffer

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Mechanical Engineering
in the Graduate College of

The University of Iowa

December 2005

Thesis Supervisors: Professor James F. Cremer
Professor Lea-Der Chen

1

ABSTRACT

Numerical methods for design sensitivity analysis of multibody dynamics are

presented. An analysis of the index-3 adjoint differential-algebraic equations is con-

ducted and stability of the integration of the adjoint differential-algebraic equations

in the backward direction is proven.

Stabilized index-1 formulations are presented and convergence of backward

differentiation formulas is shown for the stabilized index-1 forms of the differential-

algebraic equations of motion, the direct differentiation differential-algebraic equa-

tions, and the adjoint differential-algebraic equations for Cartesian non-centroidal

multibody systems with Euler parameters. Convergence of backward differentia-

tion formulas applied to these formulations is proven, by showing that the resulting

differential-algebraic equations are uniform index-1.

A novel numerical algorithm is presented, the Piecewise Adjoint method, which

formulates the coordinate partitioning underlying ordinary differential equations, re-

sulting from the adjoint sensitivity analysis, as a multiple shooting boundary value

problem. The columns of the fundamental matrix and the particular solution of

the coordinate partitioning underlying ordinary differential equations are evaluated

independently.

Numerical experiments with the Direct Differentiation method, the Adjoint

method, and the Piecewise Adjoint method and efficiency analysis are presented for

two multibody system models: a four bodies spatial slider-crank and a thirteen bod-

2

ies High Mobility Multipurpose Wheeled Vehicle. Sequential and parallel numerical

experiments validate the correctness of the implementation. The predictions of the

number of floating-point operations are confirmed by the sequential results. The

predicted speed-up of the parallel numerical experiments is shown for multibody sys-

tems with small degrees of freedom and potential speed-ups are discussed for larger

problems on architectures with adequate numbers of processors.

Abstract Approved:

Thesis Supervisor

Title and Department

Date

Thesis Supervisor

Title and Department

Date

ON THE ADJOINT FORMULATION OF DESIGN SENSITIVITY ANALYSIS OF

MULTIBODY DYNAMICS

by

Andrei Serban Schaffer

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Mechanical Engineering
in the Graduate College of

The University of Iowa

December 2005

Thesis Supervisors: Professor James F. Cremer
Professor Lea-Der Chen

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Andrei Serban Schaffer

has been approved by the Examining Committee for the
thesis requirement for the Doctor of Philosophy degree
in Mechanical Engineering at the December 2005 gradu-
ation.

Thesis Committee:

James F. Cremer, Thesis Supervisor

Lea-Der Chen, Thesis Supervisor

Kendall E. Atkinson

Suely P. Oliveira

David E. Stewart

ACKNOWLEDGEMENTS

I would like to express my appreciation and gratitude to my advisers, Profes-

sors James Cremer and L.D. Chen for their guidance throughout the course of this

work. Many thanks are also extended to Professor E.J. Haug, Dr. Radu Serban, Dr.

Dan Negrut, Dr. Gisli Ottarson, and Dr. Dale Holtz for their helpful comments and

challenging discussions.

Heartfelt thanks must go to my wife and to my parents and for their love and

continual support.

ii

ABSTRACT

Numerical methods for design sensitivity analysis of multibody dynamics are

presented. An analysis of the index-3 adjoint differential-algebraic equations is con-

ducted and stability of the integration of the adjoint differential-algebraic equations

in the backward direction is proven.

Stabilized index-1 formulations are presented and convergence of backward

differentiation formulas is shown for the stabilized index-1 forms of the differential-

algebraic equations of motion, the direct differentiation differential-algebraic equa-

tions, and the adjoint differential-algebraic equations for Cartesian non-centroidal

multibody systems with Euler parameters. Convergence of backward differentia-

tion formulas applied to these formulations is proven, by showing that the resulting

differential-algebraic equations are uniform index-1.

A novel numerical algorithm is presented, the Piecewise Adjoint method, which

formulates the coordinate partitioning underlying ordinary differential equations, re-

sulting from the adjoint sensitivity analysis, as a multiple shooting boundary value

problem. The columns of the fundamental matrix and the particular solution of

the coordinate partitioning underlying ordinary differential equations are evaluated

independently.

Numerical experiments with the Direct Differentiation method, the Adjoint

method, and the Piecewise Adjoint method and efficiency analysis are presented for

two multibody system models: a four bodies spatial slider-crank and a thirteen bod-

iii

ies High Mobility Multipurpose Wheeled Vehicle. Sequential and parallel numerical

experiments validate the correctness of the implementation. The predictions of the

number of floating-point operations are confirmed by the sequential results. The

predicted speed-up of the parallel numerical experiments is shown for multibody sys-

tems with small degrees of freedom and potential speed-ups are discussed for larger

problems on architectures with adequate numbers of processors.

iv

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . x

LIST OF ABBREVIATIONS . xi

LIST OF SYMBOLS . xii

CHAPTER

1 INTRODUCTION . 1

1.1 Parallel Granularity . 3
1.2 Thesis Objectives . 4
1.3 Thesis Structure . 6

2 LITERATURE REVIEW . 7

2.1 Numerical Methods for Design Sensitivity Analysis 9
2.2 Parallel Methods for Design Sensitivity Analysis of Multibody Sys-

tems . 11

3 STABILITY OF THE ADJOINT DIFFERENTIAL-ALGEBRAIC EQUA-
TIONS OF INDEX-3 MULTIBODY EQUATIONS OF MOTION . . . 15

3.1 Adjoint Equations of Multibody Equations of Motion 16
3.2 Stability Analysis of the Adjoint DAE of the DAE of Motion . . 23
3.3 The Adjoint Coordinate Partitioning Underlying ODE 30

4 IMPLICIT INTEGRATION OF MULTIBODY SYSTEM DIFFEREN-
TIAL ALGEBRAIC EQUATIONS . 55

4.1 Numerical Integration of Index-1 Differential-Algebraic Equations
Using Backward Differentiation Formulas 57

4.2 An Index-1 Formulation of the Non-Centroidal DAE of Motion . 60
4.2.1 Consistent Initial Conditions 63
4.2.2 Analytic Evaluation of the Position Constraint Jacobian

and its First and Second Derivatives 65
4.2.3 Derivatives of the Product of the Transpose of Position

Constraint Jacobian with a Vector 75

v

4.2.4 Derivatives of the Product of the Mass Matrix with a Vector 76
4.2.5 Derivatives of Applied Force and Coriolis Related Terms . 77

4.3 An Index-1 Formulation of the Direct Differentiation DAE 80
4.3.1 Consistent Initial Conditions 84
4.3.2 Evaluation of Partial Derivatives of Kinematic Terms with

respect to Design Parameters 86
4.4 An Index-1 Formulation of the Adjoint DAE 97

4.4.1 Consistent Initial Conditions 100
4.4.2 Derivatives of Mass Matrix and of Matrix S1

v 102
4.5 Existence and Uniqueness of the Solution of Index-1 DAE Formu-

lations of Motion, Sensitivity, and Adjoint Equations 105

5 COARSE GRAINED PARALLELISM: PIECEWISE SOLUTION OF
THE ADJOINT DIFFERENTIAL-ALGEBRAIC EQUATIONS 128

5.1 The Effect of Row and Column Permutations due to the Con-
straint Jacobian Factorization on the Adjoint Underlying ODE . 130

5.2 Linearly Independent Solutions of the Adjoint CPUODE 134
5.3 Evaluation of Gradients of Functionals Using Vectors aµ

j and aν
j

and Matrices Bµ
j and Bν

j . 151
5.3.1 Evaluation of the Initial Time Term 154
5.3.2 Evaluation of Final Time Terms 154
5.3.3 Incremental Evaluation of Integral

∫ t2

t1
gβ(t)dt 155

5.3.4 Evaluation of Partially Postponed Terms 155
5.3.5 Evaluation of Integrals of Partially Postponed Terms . . . 156

5.4 Algorithms for Evaluating Gradients of Functionals Through The
Direct Differentiation, Adjoint, and Piecewise Adjoint Methods . 163

5.5 Efficiency Analysis . 166
5.5.1 Floating Point Operation Estimates 166
5.5.2 Multiprocessor Estimates 180

5.6 Memory Load Analysis . 185

6 NUMERICAL IMPLEMENTATION AND PRELIMINARY RESULTS 188

6.1 Error Control . 189
6.2 Slider-Crank and Vehicle Models 191
6.3 Validation of Kinematic and Force Derivatives 197
6.4 Validation of the Evaluation of Ψβ Through Direct Differentiation,

Adjoint, and Piecewise Adjoint Methods 202
6.5 Initial Assessment of the Parallel Implementation 208

6.5.1 Parallel Experiments . 209
6.5.2 Analysis of Results of Experiments with the Sequential

Piecewise Adjoint Method 216

vi

6.5.3 Analysis of Results of Experiments with the Parallel Piece-
wise Adjoint Method and Predictions of Speed-Up on an
Adequate Multiprocessor Architecture 220

7 CONCLUSIONS AND RECOMMENDATIONS 224

7.1 Conclusions . 224
7.2 Recommended Future Work . 227

APPENDIX . 229

A . 229

A.1 Evaluation of Derivatives of Matrices 229
A.2 Differentiation of the Constraint Jacobian Φq 231
A.3 Boundedness of Matrix S . 243
A.4 Definitions of Orientation Matrices 245
A.5 Partial Derivatives of Orientation Matrices 247
A.6 Equations of Motion in a Non-Centroidal Coordinate Frame . . . 249
A.7 Partial Derivatives of Mass Matrix and Coriolis Blocks 255
A.8 Partial Derivatives of Force Terms 259
A.9 Derivatives with Respect to Force Related Parameters 265

REFERENCES . 270

vii

LIST OF TABLES

Table

6.1 The joints of the spatial slider-crank. 192

6.2 The joints of the HMMWV 13. 195

6.3 Kinematic derivatives: Φq and Θ(Φ, γ) 198

6.4 Kinematic derivatives: (Φq
>ζ)q and Υ(Φ, γ1, γ2) 198

6.5 Joint derivatives with respect to model parameters 199

6.6 Force derivatives . 200

6.7 Force derivatives . 201

6.8 Mass matrix derivatives . 201

6.9 The absolute error of Ψβ with respect to FD, for the sensitivity of the
slider-crank with sixteen model parameters on the AMD Athlon computer 203

6.10 The absolute error of Ψβ with respect to FD, for the sensitivity of the
slider-crank with sixteen model parameters on the Intel Xeon computer . 204

6.11 The absolute error of Ψβ with respect to FD, for the sensitivity of the
slider-crank with sixteen model parameters on the AMD Opteron computer204

6.12 The absolute error of Ψβ with respect to FD, for the sensitivity of the
HMMWV 13 with sixteen model parameters on the AMD Athlon computer
for the time interval of [0, 2]s . 205

6.13 The absolute error of Ψβ with respect to PA, for the sensitivity of the
HMMWV 13 with sixteen model parameters on the AMD Athlon computer
for the time interval of [0, 0.05]s . 206

6.14 The absolute error of Ψβ with respect to FD, for the sensitivity of the
HMMWV 13 with sixteen model parameters on the Intel Xeon computer
for the time interval of [0, 2]s . 206

6.15 The absolute error of Ψβ with respect to PA, for the sensitivity of the
HMMWV 13 with sixteen model parameters on the Intel Xeon computer
for the time interval of [0, 0.05]s . 206

viii

6.16 The absolute error of Ψβ with respect to FD, for the sensitivity of the
HMMWV 13 with sixteen model parameters on the AMD Athlon computer
for the time interval of [0, 2]s . 207

6.17 The absolute error of Ψβ with respect to PA, for the sensitivity of the
HMMWV 13 with sixteen model parameters on the AMD Athlon computer
for the time interval of [0, 0.05]s . 207

6.18 Parallel vs. sequential execution times for the slider-crank on the dual
Intel Xeon computer . 209

6.19 Parallel vs. sequential execution times for the slider-crank on the quad
AMD Opteron computer . 210

6.20 Parallel vs. sequential execution times for the HMMWV 13 on the dual
Intel Xeon computer . 211

6.21 Parallel vs. sequential execution times for the HMMWV 13 on the quad
AMD Opteron computer . 211

ix

LIST OF FIGURES

Figure

5.1 The algorithm for the evaluation of gradients of functionals through the
Direct Differentiation method . 167

5.2 The algorithm for the evaluation of gradients of functionals through the
Direct Differentiation method-continued 168

5.3 The algorithm for the evaluation of gradients of functionals through the
Adjoint method . 169

5.4 The implemented parallel algorithm of the Piecewise Adjoint method . . 170

5.5 The implemented parallel algorithm of the Piecewise Adjoint method -
continued . 171

5.6 The implemented parallel algorithm of the Piecewise Adjoint method -
concluded . 172

5.7 The pipelined algorithm for the evaluation of gradients of functionals
through the Piecewise Adjoint method 173

5.8 The pipelined algorithm for the evaluation of gradients of functionals
through the Piecewise Adjoint method - continued 174

6.1 The spatial slider-crank . 192

6.2 The slider-crank topology . 193

6.3 The HMMWV . 196

6.4 The HMMWV 13 topology . 196

6.5 Execution times for the slider-crank model on the dual Intel Xeon computer212

6.6 Execution times for the slider-crank model on the quad AMD Opteron com-
puter . 213

6.7 Execution time for the HMMWV 13 model on the dual Intel Xeon computer214

6.8 Execution time for the HMMWV 13 model on the quad AMD Opteron com-
puter . 215

x

LIST OF ABBREVIATIONS

ADAE The Adjoint Differential-Algebraic Equations

BDF Backward Differentiation Formulas

BVP Boundary Value Problem

CPUODE Coordinate Partitioning Underlying Ordinary Differential Equations

DAE Differential-Algebraic Equations

EUODE Essential Underlying Ordinary Differential Equations

HMMWV High Mobility Multipurpose Wheeled Vehicle

IVP Initial Value Problem

ODE Ordinary Differential Equations

xi

LIST OF SYMBOLS

β The vector of design parameters

Φ The constraint function vector

λ The function vector of Lagrange multipliers of the DAE of motion

µ The Adjoint variable function vector

ν The function vector of Lagrange multipliers of the Adjoint DAE

Ψ The design sensitivity analysis functional

τY
X The execution time of algorithm Y of task X

Ck(Ω) The space of functions with continous derivatives up to k-th order on Ω

M The mass matrix

L The Coriolis term

N (C) The null-space of matrix C

q The generalized coordinates function vector

Q The function vector of applied forces

xii

1

CHAPTER 1
INTRODUCTION

The continuous development of computation power and cost decrease of com-

puter hardware, especially of internal memory and microprocessor, account for in-

creasing accuracy of mathematical models being used to represent physical phenom-

ena, such as the dynamics of a mechanical system. The computation power currently

available benefits from microprocessor performances and number of memory accesses

per time unit that have increased almost exponentially since the mid 1980s [29].

However, the variety of computer architectures currently available, especially multi-

processors architectures, present special challenges for the modeler; e.g., interprocess

communication and synchronization, process and thread management and model for-

mulation differing from the uniprocessor model formulation.

The modeling of mechanical systems often requires the study of dependency

of a model on parameters whose values cannot be accurately known. Among the pur-

poses of modeling a multibody system are those of model optimization, parameter

estimation, model simplification, data assimilation, optimal control, process sensitiv-

ity, and making a design less sensitive to variation occurring due to the manufacturing

process. All of these goals imply computation, over a finite time-interval, of the evo-

lution of the multibody system generalized coordinate vector and its derivatives with

respect to model parameters. The goal of this thesis is to develop new ways of us-

ing modern multiprocessor architectures to solve the various aspects of the design

sensitivity analysis of multibody systems. Although efficient ways of solving for sen-

2

sitivities of multibody system response have been defined [26] and well-established

computer software is in a stable and mature phase [37], there are still design sen-

sitivity analysis aspects that remain unsolved or algorithms that do not exploit the

benefits of multiprocessor architectures.

The Direct Differentiation formulation of design sensitivity analysis of multi-

body systems [26] is well-suited for parallel computation, but it requires the integra-

tion of a number of differential-algebraic equations (DAE), the Direct Differentiation

DAE, equal to the number of model parameters plus one (for integrating the DAE

of motion). Although each such system can be solved on a different processor, the

number of necessary processors is as large as the number of model parameters, which

can be substantial.

In the Adjoint formulation [26] derivatives of generalized coordinates with

respect to model parameters are not computed directly. Rather, all the terms required

for assembling the gradients of functionals that typically occur in design sensitivity

analysis, optimization, or optimal control are computed by solving only one DAE,

the Adjoint DAE [26], in addition to the DAE of motion.

One of the disadvantages of the Adjoint method is the necessity of backward

integration of the Adjoint DAE, which must be started at the end of the integration of

the DAE of motion. As a result, generalized coordinates of the equations of motion

must be stored during integration of the DAE of motion, in order to be used for

constructing and integrating the Adjoint DAE backward in time, after the final time is

reached. By doing so, a heavy load is imposed on memory resources of the computing

3

system. Furthermore, there is a potential loss in accuracy, due to the fact that the

generalized coordinates cannot be stored at each step of the integration of the DAE

of motion, and therefore have to be interpolated between the storage steps. Also,

the Adjoint method does not take full advantage of a parallel architecture, since the

computation flow has an inherently sequential structure, due to the fact that the

initial time for the Adjoint DAE coincides with final time for the DAE of motion.

A modified Adjoint method is presented, in which computation can be dis-

tributed to 2d + 2 processors, where d is the number of degrees of freedom of the

multibody system, and the Adjoint backward initial value problem (IVP) is replaced

by a boundary value problem (BVP), which is solved through a backward multiple

shooting algorithm [4]. In the equivalent BVP formulation, each time-step is solved

in the backward direction, but time-steps advance in the forward direction. As a

result, the memory load for storing generalized coordinates during integration of the

DAE of motion, is minimized.

1.1 Parallel Granularity

The efficiency of parallel methods depend on the amount of data communi-

cation and synchronization between parallel modules, compared with the amount of

computation in each module. The dependency between the amount of work and the

amount of synchronization in parallel modules is measured by the granularity of the

parallelism [49].

Coarse and fine granularity are relative measures that depend on the size of

4

the problem to be solved, the multiprocessor architecture, and the operating system’s

process management and interprocess communication primitives [54], [15], [45]. In

this thesis, coarse-grained parallel routines are considered those routines that solve for

at least one step of a differential system of equations, routines that compute solutions

of linear systems of equations, or routines that iteratively solve non-linear systems of

equations as part of the numerical integration of a system of differential equations.

Fine-grained parallel methods have a substantial amount of data communica-

tion and synchronization between parallel modules, compared to the average amount

of actual computation that is done by the modules. In order to be efficient, fine-

grained parallelism may require a computing model; e.g., cellular automata, different

from the Turing computing model [10] or they may require solving the problem using

languages [12] especially designed to make fine-grained parallelism efficient. Efficient

fine-grained parallelism is an ongoing Computer Science research problem and is not

a research goal of this thesis.

1.2 Thesis Objectives

The overall objective of this thesis is to reformulate the Adjoint method [26] of

design sensitivity analysis such that the numerical algorithm of the new formulation

preserves the major advantage of the Adjoint method; i.e., the number of DAE, that

the numerical algorithm must integrate, does not depend on the number of design

parameters; and has the following advantages of the Direct Differentiation method

[26]:

5

1. The numerical algorithm advances forward in time.

2. The numerical algorithm can be executed by independent threads of computa-

tion.

In addition, the new formulation must minimize the memory load required by back-

ward integration of the Adjoint method.

The specific objectives of the thesis are as follows:

1. To prove backward stability of the Adjoint method for the index-3 DAE of

motion of a non-centroidal spatial multibody system in which orientation is

defined by Euler parameters. In order to develop numerical algorithms for the

Adjoint method applied to index-3 DAE, stability of the analytic solution of the

Adjoint index-3 DAE [26] in the backward direction must be proven. Backward

stability of the analytic solution of the Adjoint DAE has been shown [16] for

Adjoint DAE of index-0, index-1, and index-2 in Hessenberg form. The Adjoint

DAE of the index-3 DAE of motion of a non-centroidal multibody system with

Euler parameters is an index-3 DAE [26] that cannot be brought to Hessenberg

form [13], because the highest derivative coefficient, the mass matrix, is singular

[52].

2. To prove convergence of the Hiller-Anantharaman [2] stabilized index-1 formu-

lation. Stabilized index-1 DAE formulations are obtained for the index-3 DAE

of motion [27], the index-3 Direct Differentiation DAE, and the index-3 Ad-

joint DAE [26], which are integrated using the Lawrence Livermore National

6

Laboratory’s Implicit Differential-Algebraic (IDA) solver [31].

3. To develop a new method, called the Piecewise Adjoint method, that (1) requires

the integration of a number of DAE that does not depend on the number of

design parameters; (2) has a parallel computational structure; (3) progresses

forward in time; and (4) minimizes the memory load required by the backward

integration of the Adjoint DAE.

1.3 Thesis Structure

The thesis is organized as follows: Chapter 2 is a review of literature on com-

putational aspects of design sensitivity analysis of multibody systems. Chapter 3

presents a stability analysis of backward integration of the Adjoint DAE. Chapter

4 presents the Hiller-Anantharaman index-1 formulations of the the index-3 DAE of

motion, the index-3 Direct Differentiation DAE, and the index-3 Adjoint DAE and

shows convergence results for backward differentiation formulas (BDF) applied to the

stabilized index-1 formulations. Chapter 5 presents the Piecewise Adjoint method

and efficiency and memory load analysis. Chapter 6 presents results of sequential

and parallel numerical experiments and methods of error control. The Appendix

presents algorithms for efficiently evaluating the time-derivatives of a matrix; orien-

tation matrices; kinematic matrices required for solving the Adjoint coordinate par-

titioning underlying ODE of Chapter 5; and partial derivatives of kinematic matrices

and force elements. The bibliography ends the thesis.

7

CHAPTER 2
LITERATURE REVIEW

Numerical methods for multibody system modeling are based on the formula-

tion of differential-algebraic equations (DAE). Because differential-algebraic equations

cannot be treated as ordinary differential equations [46], they require a more complex

numerical approach.

Conditions for existence and uniqueness of the solution of DAE have been

established [13], starting from the analysis of linear time invariant DAE using the

matrix-pencil theory, and extending to nonlinear higher index DAE in Hessenberg

form (the equations of motion for a multibody system are an example of index-3

DAE in Hessenberg form). Several ways have been investigated to define numerical

algorithms for solving DAE. Projection methods work by integrating the differential

equations of the corresponding index two or one DAE, and then projecting the solu-

tion onto the manifold defined by the constraint equations [35]. State-space methods

reduce the DAE to an underlying ODE. By integrating the underlying ODE, only a

subset of the generalized coordinates are integrated, the remaining generalized coor-

dinates being recovered from the constraint equations. Examples of such methods are

the generalized coordinate partitioning method [58]. Based on the implicit function

theorem, a partitioning of the generalized coordinates into independent and depen-

dent coordinates is defined and a corresponding underlying ODE is obtained. Another

example of a state-space method is the differential-geometric approach [47], in which

the DAE are formulated as differential equations on manifolds. Other approaches to

8

solving DAE consider an overdetermined system, consisting of the original DAE and

one or more of the derivatives of the constraint equations. Examples of such methods

are presented by Fuhrer and Leimkuhler [22], where the solution is obtained by the

use of a special pseudo-inverse, and Jay [33], where a special Runge-Kutta method

is defined to integrate the differential equations of motion of a multibody system,

satisfying position, velocity, and acceleration constraints. A different formulation,

due to Rabier and Rheinboldt [48] defines the DAE for a multibody system based

on the Gauss principle of least constraint. Stiff mechanical systems bring additional

complexity to the numerical integration of the DAE, requiring implicit integration

methods [42].

Collocation methods can also be used to solve both initial value problems DAE

and boundary value problems DAE. Collocation methods based on a regularized

boundary value problem approximate the solution by a continuous piecewise poly-

nomial and represent consistent approximations at mesh points by applying Radau

schemes to linear variable coefficient DAE of any index [53]. Under weak assump-

tions, the collocation problems are uniquely and stably solvable and, if the solution is

sufficiently smooth, super-convergence at mesh points is shown. Asher and Spiteri [7]

describe methods and implementation of a general-purpose code, COLDAE, that can

solve boundary value problems for nonlinear systems of semi-explicit DAE of index at

most 2 and fully implicit index-1 DAE. The method implemented is piecewise poly-

nomial collocation at Gaussian points, extended as needed by the projection method

of Ascher-Petzold [3].

9

Current implementations of DAE methods such as projection, state-space,

differential-geometric, coordinate-partitioning, Runge-Kutta and collocation gener-

ally have a formulation in which the computation flow is sequential. Therefore, cur-

rently available software packages have a high degree of data dependency that makes

them unsuitable for parallel computing architectures.

2.1 Numerical Methods for Design Sensitivity

Analysis

Numerical methods and software for sensitivity analysis of DAE [37] have been

defined by investigating three approaches to solving the system obtained by combin-

ing the original DAE and the sensitivity analysis DAE. The resulting Jacobian can

be approximated by a block-diagonal matrix, while retaining rapid Newton conver-

gence and a block-diagonal pre-conditioner is highly effective. Three new codes have

been introduced; DASSLSO, DASPKSO, and SENSD. The first two are modifica-

tions to the ODE/DAE solvers DASSL and DASPK, respectively. The third code

is an auxiliary routine that allows a user to perform sensitivity analysis of a derived

quantity; e.g., the L2 norm of the solution vector. The resulting simultaneous cor-

rector method combines the DAE and sensitivities to form a system that is solved

using a BDF method at each step. The nonlinear system obtained is then solved by

applying Newton’s method to the corrector equation, where the Jacobian is approxi-

mated by its block diagonal part. This method achieves 2-step quadratic convergence

for nonlinear problems, allowing the factored corrector matrix to be reused for mul-

10

tiple steps. As a result, this method is a significant improvement over the staggered

direct method [17], because the need for additional matrix factorizations to solve the

sensitivity system has been eliminated.

Feehery et al. [21] have developed a novel corrector method (called the stag-

gered corrector sensitivity method) for solving DAE and sensitivities, which exhibits

a smaller computational cost. They use two corrector iteration loops at each step,

one for the DAE and the second for sensitivities. Computational savings result from

fewer Jacobian updates, in order to evaluate residuals of the sensitivity equations.

The staggered corrector sensitivity method is an improvement on the simultaneous

corrector method, because the later requires the system Jacobian to be updated at

each corrector iteration. Although this cost is minor compared with matrix factor-

ization, it may become significant for large problems.

Error, convergence, and stability analysis play an important role, not only as

overall measures of the properties of the algorithm, but also as tools for step-size

control, in order to avoid under-solving or over-solving, especially in implicit meth-

ods, which require simplified Newton iterations [32]. Stability analysis is necessary

to establish whether a given formulation or algorithm is well posed. It has been

studied for Adjoint DAE of index-0, index-1, and index-2 [16], in Hessenberg form.

Error, convergence, and stability analysis remain to be done for index three DAE

problems, since design sensitivity analysis for multibody systems require an index-3

DAE formulation.

11

2.2 Parallel Methods for Design Sensitivity

Analysis of Multibody Systems

Parallel computation of multibody systems can bring several benefits to the

task of numerical integration of the corresponding DAE. If the goal is real-time simu-

lation or reduction of the design cycle, pipelining different stages of computation is a

way of decreasing computation time. A re-formulation of multibody system equations

of motion might generate a system with high data independency, therefore enabling

several parts of the computation to be done simultaneously and decreasing computa-

tion time. Another motivation of parallel computation is the desire for a more robust

and reliable code; i.e., obtaining reliable error estimates and accurate dense output

[20].

In order to take advantage of parallel computing capabilities, the multibody

system might require a special formulation [11]. Different parallel architectures and

operating systems may also require different formulations of the same problem [49];

e.g., implicit Runge-Kutta methods can be redefined by using a pre-conditioner, in

order to obtain a parallel structure of the algorithm [34].

The waveform relaxation technique (WR) is an efficient tool for solving large

systems of ODE and DAE in multiprocessor environments. The basic idea is to

decouple a system of ODE by integrating one equation (or a subset of equations) for

one unknown (or a subset of unknowns), with all the other unknowns taken from

previous steps. Under mild assumptions, the iterative application of this algorithm

12

to all unknowns (or subsets of unknowns) will converge to the solution [59].

Waveform relaxation methods for DAE have been investigated by van der

Houwen and van der Veen [55]. Three families of algorithms have been defined, as

follows:

1. A method suitable for higher index DAE (up to index-3), which does not take

advantage of the structure of the system.

2. A partitioned DAE method that can be applied to semi-explicit DAE with faster

convergence.

3. A method that can be applied only to index-1 DAE with even faster convergence

and enhanced parallelism.

Other waveform relaxation techniques for DAE are based on Runge-Kutta

methods and the application of an iterative method that is independent of the num-

ber of stages, when implemented on a multiprocessor environment [56]. However,

the number of iterations required to achieve convergence is generally substantial.

Therefore special algorithms, such as Krylov-subspace acceleration, are necessary to

achieve faster convergence, especially for large systems of equations that are typically

stiff [36].

Design sensitivity analysis of a multibody system also implies a DAE formu-

lation. Two approaches have been defined for calculating gradients of functionals

required in mechanical design, the Direct Differentiation method and the Adjoint

method [26]. The Direct Differentiation method requires integrating the multibody

13

system equations of motion and as many additional independent DAE as the number

of model parameters. As a result, although suitable for a parallel computation ap-

proach, it may still result in a difficult computation task when the number of model

parameters is much larger than the number of available parallel processors. There-

fore, the Adjoint method formulation, which requires solving only one additional

DAE, might be the only reasonable choice.

However, the Adjoint method requires backward numerical integration and

storage of the generalized coordinate vector and its first order derivative at many, if

not all integration steps for the multibody system equation of motion [26]. Although

computing power is considered orthogonal to storage capability; i.e., one cannot be

increased without decreasing the other, multiprocessing can provide a solution for

minimizing the storage load and retaining computational efficiency in existing formu-

lations of the Adjoint method. In order to obtain an algorithm suitable for parallelism,

a new mathematical formulation must be defined for the problem being modeled. The

goal is to minimize data dependency between parallel threads, therefore minimizing

the overhead due to interprocess communication and synchronization. An application

of the principle of a more complex mathematical formulation of a problem in order to

achieve a parallel algorithm is a parallel version of the modified Gram-Schmidt algo-

rithm [57]. A reformulation of the Adjoint method, that can reduce or eliminate data

dependency between modules, by independently solving sets of differential equations,

is considered a coarse-grained parallel method.

Design sensitivity analysis requires the calculation of multibody system kine-

14

matic expressions and their derivatives with respect to generalized coordinates and

model parameters. In a multibody system Cartesian formulation with Euler parame-

ters, basic identities have been developed for efficient computation of such derivatives

[51].

15

CHAPTER 3
STABILITY OF THE ADJOINT DIFFERENTIAL-ALGEBRAIC

EQUATIONS OF INDEX-3 MULTIBODY EQUATIONS OF MOTION

Stability criteria for quasi-linear differential-algebraic equations (DAE), of in-

dex up to three have been established [39], based on information about the real part

of the spectrum of the matrix coefficient of the highest order derivative term. How-

ever, such information is not directly available for the adjoint DAE of the DAE of

dynamics. Stability analysis of the analytic solution of a linearized index-m DAE

in Hessenberg form has been studied [5], but the adjoint equation of a multibody

DAE of motion is not in Hessenberg form, since the coefficient matrix of the highest

order derivative term can be singular. Moreover, analysis performed by Ascher and

Petzold [5] is not extended to the adjoint equation corresponding to a given DAE, or

to the adjoint equation stability properties with respect to those of the given DAE.

The relation between stability properties of a given DAE and its adjoint equation is

studied in Ref. [16], for DAE of index not greater than two in Hessenberg form.

The purpose of this chapter is to establish stability results for adjoint equations

corresponding to semi-explicit index-3 DAE that have a more general form than

Hessenberg, particularly index-3 DAE that arise in the study of multibody dynamics.

In such index-3 DAE, the highest derivative term has a coefficient matrix that is

singular, if Euler parameters are used for body orientation [52].

16

3.1 Adjoint Equations of Multibody Equations

of Motion

Consider a multibody system of nb rigid bodies, between which there are m0

joint constraint equations. The position of body i, i = 1, 2, . . . , nb, is defined in a

global Cartesian coordinate frame by a 3 × 1 vector ri, and orientation of the body

is defined by a 4 × 1 Euler parameter vector pi. Therefore, the configuration of a

multibody system is described by a vector of n = 7 × nb generalized coordinates,

qn×1 =

(
q1
> . . . qnb

>
)>

, in which the 7× 1 vector qi is qi =

(
ri
> pi

>
)>

, i =

1, 2, . . . , nb. The multibody system has a number m = m0+nb of algebraic constraints;

i.e., the m0 joint constraint equations plus the nb Euler parameter normalization

constraints, pi
>pi − 1 = 0, i = 1, 2, . . . , nb. The equations of motion of such a

constrained multibody system are [27]

M(q, β, t)q′′ − L(q, q′, β, t)−Q(q, q′, β, t) + Φq
>λ = 0 (3.1)

Φ(q, β, t) = 0 (3.2)

in which ′ denotes the time derivative, q(β, t)n×1 is the vector of generalized co-

ordinates, depending on time t and nβ time independent model parameters βnβ×1;

λ(β, t)m×1 is the vector of Lagrange multipliers; M(q, β, t)n×n is the system mass ma-

trix; L(q, q′, β, t)n×1 contains Coriolis and related terms; Q(q, q′, β, t)n×1 is the vector

of applied forces; and Φ(q, β, t)m×1 is the constraint function vector. Equations (3.1)

and (3.2) represent an index-3 system of differential-algebraic equations [13]. The

multibody system described by Eqs. (3.1) and (3.2) has d = n −m degrees of free-

17

dom. The constraint Jacobian Φq is assumed to be twice continuously differentiable

with respect to time, Φq ∈ C2(I), t ∈ I = [t1, t2], and bounded ‖Φq‖ ≤ Kq. The

mass matrix M is assumed to be symmetric and positive definite on the null space

of the constraint Jacobian, and vectors q and r are assumed to be twice continuously

differentiable with respect to time and bounded.

As a result of linearization of Eqs. (3.1) and (3.2), the following index-3 DAE

is obtained [26]:

Mq′′ =
2∑

j=1

Ajzj + Bλ + s (3.3)

0 = Cq + r (3.4)

in which zj(β, t) = ∂q(j−1)

∂t(j−1) represents the (j − 1)-th derivative of the generalized

coordinate vector q with respect to time, B = −Φq
>, C = −Φq, A1 = Lq + Qq −

(Φq
>λ)q − (Mq′′)q, and A2 = Lq′ + Qq′ . In order to obtain an essential underlying

ordinary differential equation, Ascher and Petzold show [5] that the change of variable

u = Rq (3.5)

may be performed, in which the time and model parameter dependent matrix

R(β, t)d×n

18

has the properties

‖R‖ < K (3.6)

R ∈ C2(I), t ∈ I = [t1, t2] (3.7)

rank (R) = d (3.8)

RB = 0 (3.9)

Provided that the following assumptions are valid:

1. Aj(β, t), j = 1, 2; B,C ∈ C2(I)

2. Matrix C(β, t) has full row-rank for any t ∈ I. As a result, C(β, t)B(β, t) =

ΦqΦq
> is nonsingular for any t ∈ I

3. ‖Aj
(k)‖ < M, j = 1, 2; ‖B(k)‖ < M, ‖C(k)‖ < M, k = 0, 1, 2

the matrix




R

C


 is invertible [5], with inverse




R

C




−1

=

(
S F

)
(3.10)

in which matrix Sn×d is constructed such that

RS = I (3.11)

CS = 0 (3.12)

and Fn×m is defined [5] as

F = B(CB)−1 (3.13)

19

Due to boundedness of the constraint Jacobian Φq, matrix F is also bounded. With

the additional assumptions that ‖R‖ > kR > 0 and non-singular matrix RR> is well-

conditioned; i.e, its condition number is bounded, κ(RR>) < KRR> < ∞, matrix

S is bounded. This result follows from properties defined by Eqs. (3.11) and (3.12),

according to Theorem A.3 in the Appendix.

Since




R

C


 q =




u

−r


, q is obtained as

q =




R

C




−1 


u

−r


 =

(
S F

)



u

−r


 = Su− Fr (3.14)

Differentiating Eq. (3.14) twice with respect to time yields

q′′ = Su′′ +
1∑

j=0




2

j


 S(2−j)u(j) − (Fr)′′ (3.15)

in which parenthesized superscript notation, (j) denotes index j of differentiation. Pre-

multiplying Eq. (3.15) with the product RM ; pre-multiplying Eq. (3.3) with matrix

R, accounting for the property that RB = 0; and subtracting term by term the two

equations thus obtained, the essential underlying ODE (EUODE) of the index-3 DAE

defined by Eqs. (3.3) and (3.4) is

RMSu′′ = (RA2S − 2RMS ′)u′

+ (RA1S −RMS ′′ + RA2S
′)u + r̂ (3.16)

in which r̂ = Rq + RM(Fr)′′ −RA1Fr −RA2(Fr)′.

20

In order for Eq. (3.16) to be an ODE, its coefficient matrix must be non-

singular. Since matrix M is assumed to be positive definite on the null-space N (C)

of matrix C, the following theorem holds:

Theorem 3.1. Consider matrices T1(d×n) and T2(n×d) having the following properties:

1. T1T2 is a non-singular matrix

2. CT2 = 0, where C = Φq is the constraint Jacobian matrix

3. T1B = 0, where B = C> = Φq
>

With assumptions 1 through 3, if the mass matrix M of Eq. (3.3) is positive definite

on N (C); i.e., η>Mη > 0, for any η 6= 0 such that Cη = 0, then matrix T1MT2 is

non-singular.

Proof. Assume that matrix (T1MT2)d×d is singular. Then, there is a vector

ξ ∈ Rd, ξ 6= 0, such that T1MT2ξ = 0. Letting η = T2ξ, then Cη = CT2ξ = 0.

Therefore, η ∈ N (C). If vector η is zero, then T1η = T1T2ξ = 0, but since T1T2 is

non-singular, vector ξ must also be zero, which contradicts the assumption ξ 6= 0.

Therefore, η is a non-zero vector. Let ζ = Mη. Vector ζ is also a non-zero vector,

because η>ζ = η>Mη 6= 0, since M is positive definite on N (C), and non-zero vector

η belongs to the null-space N (C) of matrix C. Using the vectors η and ζ defined

above, T1MT2ξ = 0 is re-written as

T1MT2ξ = T1Mη = T1ζ = 0

21

Matrix (C>)n×m is

C> =

(
c1 . . . cm

)
(3.17)

Since C has full row-rank, its rows {cj}j=1,2,...,m, which are columns of C>, are linearly

independent. Let Bn ≡ {c1, . . . , cm, c̄1, . . . , c̄d} be a basis in Rn. Therefore, vector

ζ ∈ Rn can be written as a linear combination of vectors in the basis Bn,

ζ =
m∑

j=1

αjcj +
d∑

k=1

ρkc̄k = C>α + C̄ρ (3.18)

in which C̄n×d ≡
(

c̄1 . . . c̄d

)
, ρ =

(
ρ1 . . . ρd

)>
, and α =

(
α1 . . . αm

)>
.

Assume that there is at least one ρk 6= 0, for some k ∈ {1, 2, . . . , d}; i.e., ρ is a non-

zero vector. Pre-multiplying Eq. (3.18) with matrix T1 and accounting for the fact

that T1B = T1C
> = 0,

0 = T1ζ = T1C̄ρ (3.19)

Consider each column sj, j = 1, 2, . . . , n, of matrix T2 =

(
s1 . . . sd

)
,

re-written as a linear combination of the vectors in the basis Bn,

sl =
m∑

j=1

τl,jcj +
d∑

k=1

γl,kc̄k = C>τl + C̄γl (3.20)

in which τl =

(
τl,1 . . . τl,m

)>
and γl =

(
γl,1 . . . γl,d

)>
, l ∈ {1, 2, . . . , d}.

By defining matrices Tm×d ≡
(

τ1 . . . τd

)
and Γd×d ≡

(
γ1 . . . γd

)
, matrix

T2 may be re-written as

T2 = C>T + C̄Γ (3.21)

Pre-multiplying Eq. (3.21) with T1 and accounting for the property that

T1C
> = T1B = 0

22

the following identity is obtained:

T1T2 = T1C̄Γ (3.22)

As a result, matrix T1C̄Γ is non-singular. Applying the Sylvester inequality [23];

according to which for two matrices M1(m×n) and M2(n×p),

rank(M1M2) ≤ min(rank(M1), rank(M2))

to the matrix product T1C̄ · Γ, the rank of matrix product T1C̄Γ cannot exceed the

rank of T1C̄; i.e., d = rank(T1C̄Γ) ≤ rank(T1C̄). As a result, matrix T1C̄ is also

non-singular. Therefore, in Eq. (3.19), vector ρ must be zero. Consequently, vector

ζ in Eq. (3.18) is rewritten as ζ = C>α. Pre-multiplying vector ζ with T2
>, the

following identity is obtained:

T2
>ζ = T2

>Mη = T2
>C>α = (CT2)

>α = 0 (3.23)

where CT2 = 0 is used. Therefore,

η>Mη = ξ>T2
>Mη = 0 (3.24)

Since η is a non-zero vector belonging to the null-space of matrix C, Eq. (3.24)

contradicts the hypothesis that M is positive definite in N (C). Therefore, ξ 6= 0

cannot be true, and matrix T1MT2 is non-singular. ¥

Corollary 3.2. Matrix RMS is non-singular, where M is the mass matrix, R has

the properties of Eqs. (3.6) through (3.9), and S was constructed such that RS = I

and CS = 0.

23

Proof. Matrices R and S have the properties of T1 and T2 respectively, since

RS = I, RB = 0, and CS = 0 and the mass matrix is positive definite on the null-

space of the constraint Jacobian. Therefore matrix RMS, according to Theorem 3.1,

is non-singular. ¥

3.2 Stability Analysis of the Adjoint DAE of the

DAE of Motion

Consider the formulation of a system of ordinary differential or differential -

algebraic equations

F(x′, x, t, β) = 0 (3.25)

The Jacobian Fx′ is non-singular if the system of Eq. (3.25) is an ODE, and singular

if the system is a DAE. The adjoint system corresponding to Eq. (3.25) that is used

for computing sensitivity dG
dβ

of an objective function

G(T, β) =

∫ T

0

g(x(β, t), β, t)dt (3.26)

in which function g is assumed to be twice continuously differentiable and bounded,

is [16]

(w>Fx′)
′ − w>Fx = −gx (3.27)

where w is the adjoint variable.

Re-writing Eq. (3.16) as a first order ODE, in the form given by Eq. (3.25),

F(x′, x, t, β) ≡




x′1 − x2

RMSx′2 − U2x2 − U1x1 − r̂


 = 0 (3.28)

24

in which x1 = u, x2 = u′, x =

(
x1
> x2

>
)>

, U1 = RA1S − RMS ′′ + RA2S
′, and

U2 = RA2S − 2RMS ′ ; matrices Fx′ and Fx are, respectively

Fx′ =




I 0

0 RMS


 (3.29)

Fx =




0 −I

−U1 −U2


 (3.30)

Let the adjoint variable w in Eq. (3.27), corresponding to state vector x in

Eq. (3.28), be w =

(
w1

> w2
>

)>
. Then, the adjoint equation that corresponds to

Eq. (3.28), re-written in the form given by Eq. (3.27), is



(
w1

> w2
>

)



I 0

0 RMS







′

−
(

w1
> w2

>
)




0 −I

−U1 −U2


 = −

(
gx1 gx2

)
(3.31)

which is written component-wise as

w1
′> + w2

>(RA1S −RMS ′′ + RA2S
′) = −gx1 (3.32)

w2
′>RMS + w2

>
(
(RMS)′ + RA2S − 2RMS ′

)
+ w1

> = −gx2 (3.33)

By differentiating Eq. (3.33) with respect to time and subtracting the result

from Eq. (3.32), the following differential equation is obtained:

w2
′′>RMS + w2

′>
(
2(RM)′S + RA2S

)

+ w2
>
(
(RA2S − 2RMS ′)′ + (RMS)′′ −RA1S (3.34)

+ RMS ′′ −RA2S
′
)

= gx1 − gx2

′

25

in which the matrix coefficient of the w2
> term,

U0 = (RA2S − 2RMS ′)′ + (RMS)′′ −RA1S + RMS ′′ −RA2S
′

is re-written, by expanding and simplifying terms, as

U0 = R′A2S + RA2
′S + R′′MS + RM ′′S + 2R′M ′S −RA1S

Replacing the matrix coefficient U0 in Eq. (3.34) and transposing the equation, the

following differential equation is obtained:

(RMS)>w2
′′ +

(
2S>M ′>R> + 2S>M>R′> + S>A2

>R>
)
w2

′

+
(
S>A2

>R′> + S>A2
′>R> + S>M>R′′>

+ S>M ′′>R> + 2S>M ′>R′> − S>A1
>R>

)
w2 (3.35)

= (gx1 − gx2

′)>

This is an ODE, according to Theorem 3.1, since matrix RMS is non-singular.

In order to re-write the linearized index-3 equation of motion defined by Eqs.

(3.3) and (3.4) in the implicit first-order form of Eq. (3.25), consider vector v defined

as v =

(
v1
> v2

> v3
>

)>
=

(
q> q′> λ>

)>
, in which v1 ≡ q, v2 ≡ q′, and

v3 ≡ λ. As a result, the linearized index-3 equation of motion of Eqs. (3.3) and (3.4)

is re-written as

F(v′, v, t, β) ≡




v1
′ − v2

Mv2
′ − A1v1 − A2v2 −Bv3 − s

Cv1 + r




= 0 (3.36)

26

Consequently, the adjoint equation of Eq. (3.36), obtained by applying the procedure

defined in Eq. (3.27), is




(
µ1
> µ2

> µ3
>

)




I 0 0

0 M 0

0 0 0







′

−
(

µ1
> µ2

> µ3
>

)




0 −I 0

−A1 −A2 −B

C 0 0




(3.37)

= −
(

gv1 gv2 gv3

)

in which µ =

(
µ1
> µ2

> µ3
>

)>
is the adjoint variable. By expanding terms, Eq.

(3.37) is re-written component-wise as

µ1
′> + µ2

>A1 − µ3
>C = −gv1 (3.38)

µ2
′>M + µ2

>M ′ + µ1
> + µ2

>A2 = −gv2 (3.39)

µ2
>B = −gv3 (3.40)

By differentiating Eq. (3.39) with respect to time, subtracting the result from

Eq. (3.38), applying the conjugate-transpose operator, and grouping terms; the index-

3 adjoint DAE is obtained,

M>µ2
′′ + (2M ′> + A2

>)µ2
′ + (M ′′> + A2

′> − A1
>)µ2 + C>µ3 = ŝ (3.41)

0 = B>µ2 + r̂ (3.42)

where ŝ ≡ gv1
> − gv2

′> and r̂ ≡ gv3
> are bounded, as a result of smoothness and

27

boundedness properties of function g. In order to obtain an underlying ODE for

the DAE of Eqs. (3.41) and (3.42), the change of variable w = S>µ2 is performed,

after pre-multiplying Eq. (3.41) with matrix S>. Since 0 = CS = S>C>, the term

containing the algebraic variable µ3 vanishes, yielding the ODE

S>M>µ2
′′ + S>(2M ′> + A2

>)µ2
′ + S>(M ′′> + A2

′> − A1
>)µ2 = S>ŝ (3.43)

Because of the identity of Eq. (3.10), the inverse of matrix

(
S F

)>
is explicitly

obtained as

[(
S F

)>]−1

=




S>

F>




−1

=




R

C




>

=

(
R> C>

)
(3.44)

Using the expression of Eq. (3.13) for matrix F , the matrix-vector product

(
S F

)>
µ2

is


S>

F>


 µ2 =




w

F>µ2


 =




w

(
(CB)−1)>B>µ2


 =




w

−(
(CB)−1)>r̂


 (3.45)

As a result, µ2 may be defined as a linear expression in variable w through the identity

µ2 =




S>

F>




−1 


w

−(
(CB)−1)>r̂




=

(
R> C>

)



w

−(
(CB)−1)>r̂


 = R>w − C>(B>C>)

−1
r̂ (3.46)

By differentiating Eq. (3.46) once and twice with respect to time, expressions for first

and second derivatives of µ2 are obtained,

µ2
′ = R′>w + R>w′ − (

C>(B>C>)
−1

r̂
)′

(3.47)

µ2
′′ = R′′>w + 2R′>w′ + R>w′′ − (

C>(B>C>)
−1

r̂
)′′

(3.48)

28

As a result of replacing the adjoint variable µ2 and its first and second deriva-

tives with respect to time with the corresponding expressions of Eqs. (3.46), (3.47),

and (3.48) in Eq. (3.43), the following underlying ODE is obtained for the index-3

adjoint DAE:

(RMS)>w′′ +
(
2S>M ′>R> + 2S>M>R′> + S>A2

>R>
)
w′

+
(
S>A2

>R′> + S>A2
′>R> + S>M>R′′> + S>M ′′>R>

+ 2S>M ′>R′> − S>A1
>R>

)
w

= S>ŝ + S>M>(
C>(B>C>)

−1
r̂
)′′

(3.49)

+ (2S>M ′> + S>A2
>)

(
C>(B>C>)

−1
r̂
)′

+
(
S>M ′′> + S>A2

> − S>A1
>
)
C>(B>C>)

−1
r̂

The homogeneous parts of Eqs. (3.35) and (3.49) are identical. Therefore, the

ODE of Eq. (3.49), which is the essential underlying ODE of the adjoint index-3 DAE

of Eqs. (3.41) and (3.42) corresponding to the linearized index-3 DAE of motion, has

the same stability properties as the ODE of Eq. (3.35). The ODE of Eq. (3.35) is the

adjoint equation of the ODE of Eq. (3.16), which is the essential underlying ODE of

the linearized index-3 DAE of motion. As a result, the following theorem establishes

stability properties of the adjoint index-3 DAE that corresponds to the index-3 DAE

of motion defined in Eqs. (3.1) and (3.2):

Theorem 3.3. With the assumptions of theorem 3.1 regarding the mass matrix and

constraint Jacobian, if the index-3 DAE of motion defined by Eqs. (3.1) and (3.2) is

stable in the forward direction, then the corresponding adjoint index-3 DAE is stable

29

in the backward direction.

Proof. The linearized index-3 DAE of motion of Eqs. (3.3) and (3.4) has locally

the same solution as the original non-linear (quasi-linear) index-3 DAE of motion of

Eqs. (3.1) and (3.2), which is assumed stable in the forward direction. Therefore,

the linearized index-3 DAE of motion is also stable in the forward direction. Since

the solution of the ODE of Eq. (3.16) is obtained from that of the linearized index-3

DAE of motion by the linear change of variable of Eq. (3.5), in which matrix R is

bounded, it follows that the ODE of Eq. (3.16) is stable in the forward direction.

Hence, the ODE of Eq. (3.28), which is the ODE of Eq. (3.16) written as a first order

ODE, is stable in the forward direction.

The ODE of Eq. (3.35) is stable in the backward direction because [16] it

is the adjoint equation of the ODE of Eq. (3.28), which is stable in the forward

direction. Since, as shown above, the underlying ODE defined in Eq. (3.49) has the

same homogeneous part as the ODE of Eq. (3.35), the ODE of Eq. (3.49) is also

stable in the backward direction. The ODE of Eq. (3.49) is obtained from the adjoint

index-3 DAE of Eqs. (3.41) and (3.42) by applying the linear change of coordinates

of Eq. (3.46), in which matrices R, C, and B and vector r̂ are bounded. Therefore,

the adjoint index-3 DAE of Eqs. (3.41) and (3.42) has the same stability properties

as the underlying ODE of Eq. (3.49). As a result, the adjoint index-3 DAE of Eqs.

(3.41) and (3.42) is also stable in the backward direction.

It should be noted that the mass matrix is not assumed to be non-singular. The

mass matrix may be singular, but positive-definite on the null-space of the constraint

30

Jacobian [52]. ¥

3.3 The Adjoint Coordinate Partitioning Under-

lying ODE

Consider a partitioning q =

(
um×1

> vd×1
>

)>
of the generalized coordinate

vector q into dependent part u and independent part v, such that the multibody

system constraint Jacobian Φq is correspondingly partitioned as

(
Φu Φv

)
with Φu

non-singular. Since the constraint Jacobian is assumed to have full row-rank at all

times, such a partition always exists. In general, Φq = Prow

(
Φu Φv

)
Pcol, in which

Prowm×m and Pcoln×n are permutation matrices, and such foregoing partitioning is only

locally valid in an open neighborhood of a solution [58]. For simplicity, permutation

matrix Prow is assumed to be the m ×m identity matrix, and Pcol is assumed to be

the n× n identity matrix.

Since the index-3 adjoint DAE of Eqs. (3.41) and (3.42) has the constraint

Jacobian B> = C = −Φq, the index-3 adjoint DAE is re-written as

Mµ′′ + D1µ
′ + D2µ + Φq

>ν = ŝ (3.50)

0 = Φqµ− r̂ (3.51)

in which µ(t) =

(
µu>(t) µv>(t)

)>
is the adjoint differential variable µ2(t) of Eq.

(3.41), ν(t) ≡ −µ3(t) is the new adjoint algebraic variable, D1 = 2M ′> + A2
>, and

D2 = M ′′> + A2
′> − A1

>.

The index-3 adjoint DAE, in its new form of Eqs. (3.50) and (3.51), has the

31

same constraint Jacobian as the linearized DAE of motion of Eqs. (3.3) and (3.4).

Therefore, the same foregoing partitioning, which was applied to the generalized

coordinate vector q, is applied to the adjoint differential variable µ. As a result, the

partitioned form of the index-3 adjoint DAE is



Muu Muv

M vu M vv







µu′′

µv ′′


 +




D1
uu D1

uv

D1
vu D1

vv







µu′

µv ′




+




D2
uu D2

uv

D2
vu D2

vv







µu

µv


 +




Φu
>

Φv
>


 ν =




ŝu

ŝv


 (3.52)

0 = Φuµ
u + Φvµ

v − r̂ (3.53)

where the right-side term ŝ =




ŝu

ŝv


 is ŝ ≡ gq

> − gq′
′>, the term r̂ is r̂ ≡ gλ

>, and

g is the objective function defined in Eq. (3.26).

As a result of the constraint equation of Eq. (3.53) and matrix Φu being

non-singular, dependent partition µu can be expressed as a function of independent

partition µv, as follows:

µu = −Φu
−1Φvµ

v + Φu
−1gy

>

≡ Ψ11µ
v + ψ1 (3.54)

in which matrix Ψ11 and vector ψ1 are

Ψ11 = −Φu
−1Φv (3.55)

ψ1 = Φu
−1gy

> (3.56)

Consider a m × n continuously differentiable matrix function ∆(q, β, t) =

32




δ1

...

δm




with row vector functions δi1×n(q, β, t), i = 1, 2, . . . , m. Then, for n × 1

column vector functions ρ(β, t) and γ(β, t), not depending on q,

(∆ρ)qγ =







δ1

...

δm




ρ




q

γ =




δ1ρ

...

δmρ




q

γ =




(δ1ρ)q

...

(δmρ)q




γ (3.57)

Since, for any i = 1, 2, . . . , m, the gradient (δiρ)q is a row-vector,

(∆ρ)qγ =




(δ1ρ)qγ

...

(δmρ)qγ




(3.58)

For an arbitrary scalar function δ(q, β, t) and vectors ρ and γ that do not

depend on q, the product (δρ)qγ can be re-written as (ρ>δ>)qγ, since the product of

row-vector δ with column-vector ρ is also a scalar. Vector ρ does not depend on q.

Therefore,

(ρ>δ>)qγ = ρ>(δ>)qγ = γ>
(
(δ>)q

)>
ρ (3.59)

since ρ>(δ>)qγ is a scalar. As a result,

(∆ρ)qγ =




γ>
(
(δ1

>)q

)>
ρ

...

γ>
(
(δm

>)q

)>
ρ




=




γ>
(
(δ1

>)q

)>

...

γ>
(
(δm

>)q

)>




ρ (3.60)

According to the partitioning q =

(
um×1

> vd×1
>

)>
, matrix ∆ and vector ρ

33

are re-written as ∆ =

(
∆u ∆v

)
and ρ =

(
ρu> ρv>

)>
, respectively. Therefore,




(
∆u ∆v

)



ρu

ρv







q

γ = (∆uρu + ∆vρv)qγ

=







δ1
u

...

δm
u




ρu




q

γ +







δ1
v

...

δm
v




ρv




q

γ (3.61)

=




γ>((δ1
u>)q)

>

...

γ>((δm
u>)q)

>




ρu +




γ>((δ1
v>)q)

>

...

γ>((δm
v>)q)

>




ρv

Assume the constraint function vector Φ(q, β, t) has the form Φ(q, β, t) =
(

ϕ1(q, β, t) . . . ϕm(q, β, t)

)>
and consider ∆ ≡ Φq, ρ ≡ µ, and γ ≡ q′. As a

result,

(Φqµ)qq
′ = (∆ρ)qγ ≡ Θµ (3.62)

in which

Θ =

(
Θu Θv

)
=




q′>((ϕ1q
>)

q
)
>

...

q′>((ϕmq
>)

q
)
>




(3.63)

and

Θu =




q′>((ϕ1u
>)q)

>

...

q′>((ϕmu
>)q)

>




(3.64)

34

Θv =




q′>((ϕ1v
>)q)

>

...

q′>((ϕmv
>)q)

>




(3.65)

In order to obtain the first derivative of adjoint variable µ, Eq. (3.51) is

differentiated once with respect to time,

Φqµ
′ + Φq,tµ + (Φqµ)qq

′ =
d

dt
(gy

>) (3.66)

With the notation defined in Eqs. (3.63) through (3.65), and the identity of Eq.

(3.62), Eq. (3.66) is re-written as

Φuµ
u′ + Φvµ

v ′ + Φu,tµ
u + Φv,tµ

v + Θuµu + Θvµv =
d

dt
(gy

>) (3.67)

Therefore, the first derivative of the adjoint variable dependent partition is

µu′ = −Φu
−1Φvµ

v ′ − Φu
−1(Φu,t + Θu)µu

− Φu
−1(Φv,t + Θv)µv + Φu

−1 d

dt
(gy

>) (3.68)

≡ Ψ22µ
v ′ + Ψ21µ

v + ψ2

in which matrices Ψ22 and Ψ21 and vector ψ2 are

Ψ22 = Ψ11 (3.69)

Ψ21 = −Φu
−1(−(Φu,t + Θu)Φu

−1Φv + Φv,t + Θv) (3.70)

ψ2 = −Φu
−1(Φu,t + Θu)ψ1 + Φu

−1 d

dt
(gy

>) (3.71)

Differentiating Eq.(3.66) with respect to time, the second order adjoint con-

35

straint equation is obtained as

Φqµ
′′ + 2Φq,tµ

′ + (Φqµ
′)qq

′ + Φq,ttµ

+ (Φq,tµ)qq
′ +

d

dt
((Φqµ)qq

′) =
d2

dt2
(gy

>) (3.72)

in which

d

dt
((Φqµ)qq

′) =
d

dt
(Θµ) = Θtµ + Θµ′ + (Θµ)qq

′ + (Θµ)q′q
′′ (3.73)

(Θµ)q′ = ((Φqµ)qq
′)

q′
= (Φqµ)q (3.74)

Applying the identity of Eq. (3.60) to (Θµ)qq
′, in which ∆ ≡ Θ, ρ ≡ µ, and

γ ≡ q′,

(Θµ)qq
′ =




q′>((θ1
>)q)

>

...

q′>((θm
>)q)

>




µ ≡ Υµ (3.75)

where θi, i = 1, 2, . . . , m are the rows of matrix Θm×n and

Υ ≡




q′>((θ1
>)q)

>

...

q′>((θm
>)q)

>




(3.76)

Applying the partition q =

(
um×1

> vd×1
>

)>
to each row θi, i = 1, 2, . . . , m,

the m× n matrix Υ is partitioned as

Υ =

(
Υu Υv

)
(3.77)

36

in which

Υu
m×m ≡




q′>((θ1
u>)q)

>

...

q′>((θm
u>)q)

>




(3.78)

and

Υv
m×m ≡




q′>((θ1
v>)q)

>

...

q′>((θm
v>)q)

>




(3.79)

Applying the identity of Eq. (3.60) to terms (Φqµ
′)qq

′, (Φq,tµ)qq
′, and (Θµ)q′q

′′ =

(Φqµ)qq
′′,

(Φqµ
′)qq

′ = Θµ′ (3.80)

(Φq,tµ)qq
′ =




q′>((ϕ1q,t
>)

q
)
>

...

q′>((ϕmq,t
>)

q
)
>




µ ≡ Tµ =

(
T u T v

)
µ (3.81)

T =




q′>((ϕ1q,t
>)

q
)
>

...

q′>((ϕmq,t
>)

q
)
>




(3.82)

T u =




q′>((ϕ1u,t
>)

q
)
>

...

q′>((ϕmu,t
>)

q
)
>




(3.83)

37

T v =




q′>((ϕ1v,t
>)

q
)
>

...

q′>((ϕmv,t
>)

q
)
>




(3.84)

(Φqµ)qq
′′ =




q′′>((ϕ1q
>)

q
)
>

...

q′′>((ϕmq
>)

q
)
>




µ ≡ Zµ =

(
Zu Zv

)
µ (3.85)

Z =




q′′>((ϕ1q
>)

q
)
>

...

q′′>((ϕmq
>)

q
)
>




(3.86)

Zu =




q′′>((ϕ1u
>)q)

>

...

q′′>((ϕmu
>)q)

>




(3.87)

Zv =




q′′>((ϕ1v
>)q)

>

...

q′′>((ϕmv
>)q)

>




(3.88)

After applying the partitions q =

(
u> v>

)>
and µ =

(
µu> µv>

)>
to

Eq. (3.72) and using identities of Eqs. (3.73) through (3.88), the second derivative

38

of the adjoint variable constraint equation is

Φuµ
u′′ + Φvµ

v ′′ + 2Φu,tµ
u′ + 2Φv,tµ

v ′

+ 2Θuµu′ + 2Θvµv ′ + Φu,ttµ
u + Φv,ttµ

v

+ T uµu + T vµv + Θu
t µ

u + Θv
t µ

v (3.89)

+ Υuµu + Υvµv + Zuµu + Zvµv =
d2

dt2
(gy

>)

As a result, µu′′ can be expressed as a linear function of the independent

adjoint variable µv and its first and second derivatives,

µu′′ = −Φu
−1

(
Φvµ

v ′′ + 2(Φu,t + Θu)
(− Φu

−1Φvµ
v ′

+ (Φu
−1(Φu,t + Θu)Φu

−1Φv − Φu
−1(Φv,t + Θv))µv

+ Φu
−1(−Φu

−1gy
> +

d

dt
(gy

>))
)

+ 2(Φv,t + Θv)µv ′ (3.90)

+ (Φu,tt + T u + Θu
t + Υu + Zu)(−Φu

−1Φvµ
v + Φu

−1gy
>)

+ (Φv,tt + T v + Θv
t + Υv + Zv)µv − d2

dt2
(gy

>)
)

≡ Ψ33µ
v ′′ + Ψ32µ

v ′ + Ψ31µ
v + ψ3

in which matrices Ψ3,i, i = 1, 2, 3 and vector ψ3 are

Ψ33 = Ψ11 (3.91)

Ψ32 = 2Ψ21 (3.92)

Ψ31 = −Φu
−1

(
2(Φu,t + Θu)Ψ21 + (Φu,tt + T u + Θu

t + Υu + Zu)Ψ11

+ (Φv,tt + T v + Θv
t + Υv + Zv)) (3.93)

39

ψ3 = −Φu
−1

(
2(Φu,t + Θu)ψ2

+ (Φu,tt + T u + Θu
t + Υu + Zu)ψ1 − d2

dt2
(gy

>)
)

(3.94)

Expanding the upper-block equation in Eq. (3.52),

Muuµu′′ + Muvµv ′′ + D1
uuµu′ + D1

uvµv ′ + D2
uuµu + D2

uvµv + Φu
>ν = ŝu (3.95)

the Lagrange multiplier ν is expressed as a function of µu′′, µv ′′, µu′, µv ′, µu, and µv,

ν = Φu
−1>ŝu − Φu

−1>(Muuµu′′ + Muvµv ′′

+ D1
uuµu′ + D1

uvµv ′

+ D2
uuµu + D2

uvµv) (3.96)

Substituting for µu′′ by expression of Eq. (3.90), for µu′ by expression of Eq. (3.68),

and for µu by expression of Eq. (3.54) in Eq. (3.96),

ν = Φu
−1>(ŝu −Muu(Ψ33µ

v ′′ + Ψ32µ
v ′ + Ψ31µ

v + ψ3)−Muvµv ′′

− D1
uu(Ψ22µ

v ′ + Ψ21µ
v + ψ2)−D1

uvµv ′ (3.97)

− D2
uu(Ψ11µ

v + ψ1)−D2
uvµv)

Collecting terms,

ν = Ψ43µ
v ′′ + Ψ42µ

v ′ + Ψ41µ
v + ψ4 (3.98)

where

Ψ43 = −Φu
−1>(MuuΨ33 + Muv) (3.99)

Ψ42 = −Φu
−1>(MuuΨ32 + D1

uuΨ22 + D1
uv) (3.100)

Ψ41 = −Φu
−1>(MuuΨ31 + D1

uuΨ21 + D2
uuΨ11 + D2

uv) (3.101)

ψ4 = Φu
−1>(ŝu −Muuψ3 −D1

uuψ2 −D2
uuψ1) (3.102)

40

Expanding the lower-block equation in Eq. (3.52),

M vuµu′′ + M vvµv ′′ + D1
vuµu′ + D1

vvµv ′ + D2
vuµu + D2

vvµv + Φv
>ν = ŝv (3.103)

Substituting for µu′′ by expression of Eq. (3.90), for µu′ by expression of Eq. (3.68),

for µu by expression of Eq. (3.54), and for ν by expression of Eq. (3.98) in Eq.

(3.103),

M vu(Ψ33µ
v ′′ + Ψ32µ

v ′ + Ψ31µ
v + ψ3) + M vvµv ′′

+ D1
vu(Ψ22µ

v ′ + Ψ21µ
v + ψ2) + D1

vvµv ′

+ D2
vu(Ψ11µ

v + ψ1) + D2
vvµv

+ Φv
>(Ψ43µ

v ′′ + Ψ42µ
v ′ + Ψ41µ

v + ψ4) = ŝv (3.104)

and collecting terms, the coordinate partitioning underlying ODE of the adjoint vari-

able DAE is obtained,

B1µ
v ′′ + B2µ

v ′ + B3µ
v = b4 (3.105)

where d× d matrices Bi, i = 1, 2, 3, and d× 1 vector b4 are

B1 = M vuΨ33 + M vv + Φv
>Ψ43

B2 = M vuΨ32 + D1
vuΨ22 + D1

vv + Φv
>Ψ42

B3 = M vuΨ31 + D1
vuΨ21 + D2

vuΨ11 + D2
vv + Φv

>Ψ41

b4 = ŝv −M vuψ3 −D1
vuψ2 −D2

vuψ1 − Φv
>ψ4

After re-arranging and factoring terms, matrices Bi, i = 1, 2, 3 are re-written as

B1 = X0
>MX0 (3.106)

41

B2 = X0
>
(
2Mu(−Φu

−1)K21 + D1

)
X0 (3.107)

B3 = X0
>
(
Mu(−Φu

−1)(2Ku
21(−Φu

−1)K21 + K31)

+ D1
u(−Φu

−1)K21 + D2

)
X0 (3.108)

where

Mu =




Muu

M vu




D1
u =




D1
uu

D1
vu




X0n×d =



−Φu

−1Φv

Id




K21 =

(
Ku

21 Kv
21

)
≡

(
Φu,t + Θu Φv,t + Θv

)
= Φq,t + Θ

K31 ≡
(

Φu,tt + T u + Θu
t + Υu + Zu Φv,tt + T v + Θv

t + Υv + Zv

)

= Φq,tt + T + Θt + Υ + Z

and Id is the d × d identity matrix. In order for Eq. (3.105) to be a second order

ODE, matrix B1 must be nonsingular.

Corollary 3.4. Matrix X0
>MX0 is non-singular, where M is the mass matrix and

X0 =



−Φu

−1Φv

Id


.

42

Proof. Matrix Xd×d ≡ X0
>X0 = (Φu

−1Φv)
>
Φu

−1Φv + Id is positive definite

because, for an arbitrary d × 1 non-zero vector ξ, ξ>Xξ = ‖ξ‖2 + ‖Φu
−1Φvξ‖2 ≥

‖ξ‖2 > 0. Moreover, ΦqX0 =

(
Φu Φv

)


−Φu

−1Φv

Id


 = −ΦuΦu

−1Φv + Φv = 0,

so

X0
>Φq

> = 0 (3.109)

Therefore, matrices X0
> and X0 have the properties of T1 and T2, respectively, from

Theorem 3.1. Since X0
>X0 is nonsingular, X0

>B ≡ −X0
>Φq

> = 0 and CX0 ≡

−ΦqX0 = 0 and the mass matrix is positive definite on the null-space of the constraint

Jacobian. Therefore, matrix X0
>MX0 is non-singular, according to Theorem 3.1 .

¥

As a result, Eq. (3.105) represents the coordinate partitioning underlying ODE

of the adjoint index-3 DAE of Eqs. (3.50) and (3.51). The coordinate partitioning

[58] underlying ODE (CPUODE) can also be obtained through a procedure similar

to the one used for obtaining the adjoint EUODE of Eq. (3.49), only using a different

pre-multiplying matrix and different changes of variables. With the partitioning µ =
(

µu> µv>
)>

, in which the dependent variable µu is replaced by the expression of

Eq. (3.54), the adjoint variable µ is re-written as

µ =



−Φu

−1Φvµ
v + Φu

−1gy
>

µv


 = X0µ

v +




Φu
−1

0


 r̂ = X0µ

v + X1r̂ (3.110)

43

in which X1 =




Φu
−1

0


, r̂ = gy

>, and

µv =

(
0 Id

)
µ (3.111)

Given an arbitrary non-zero vector ξ =

(
ξ1
> ξ2

>
)>

, consider now the

product

X0
>ξ =

(
−(Φu

−1Φv)
>

Id

)



ξ1

ξ2




A bound on the norm of X0
>ξ is

‖X0
>ξ‖ = ‖

(
−(Φu

−1Φv)
>

Id

)



ξ1

ξ2


 ‖

= ‖ − (Φu
−1Φv)

>
ξ1 + ξ2‖ ≤ ‖Φv

>‖‖Φu
−1>‖‖ξ1‖+ ‖ξ2‖

Since the constraint Jacobian is bounded, ‖Φq‖ ≤ Kq, matrix Φv is also bounded,

‖Φv‖ ≤ ‖Φq‖ ≤ Kq. Also, since matrix Φu is bounded and invertible, there is a

positive constant Ku such that ‖Φu
−1‖ ≤ Ku. Hence,

‖X0
>ξ‖ ≤ KqKu‖ξ1‖+ ‖ξ2‖ ≤ KqKu‖ξ‖+ ‖ξ‖ = (1 + KqKu)‖ξ‖

As a result, matrix X0
> is bounded, with

‖X0
>‖ ≡ sup

ξ 6=0

‖X0
>ξ‖

‖ξ‖ ≤ 1 + KqKu

Since constraint Jacobian Φq is twice continuously differentiable with respect

to time, so is matrix X0
>. The rank of X0

> is d, because Id is the largest square

block with a non-zero determinant. In addition, X0
>B = X0

>Φq
> = 0, as shown by

44

Eq. (3.109) in Corollary 3.4. Therefore, matrix X0
> has the properties of Eqs. (3.6)

through (3.9). As a result, matrix R can be selected as

R = X0
> (3.112)

Let matrix S̃ be defined as

S̃ =

(
0 Id

)>
=




0

Id


 (3.113)

Note that, although RS̃ = X0
>




0

Id


 = Id, CS̃ = −ΦqS̃ 6= 0. Therefore, matrix S̃

is different from matrix S of Eqs. (3.11) and (3.12).

In order to obtain an underlying ODE of the adjoint index-3 DAE of Eqs.

(3.50) and (3.51), through a procedure similar to that used for obtaining the EUODE

of Eq. (3.16), the differential equation of Eq. (3.50) is pre-multiplied by R = X0
>.

Accounting for the property that X0
>Φq

> = 0, the following differential equation is

obtained:

X0
>Mµ′′ + X0

>D1µ
′ + X0

>D2µ = X0
>ŝ (3.114)

where D1 = 2M ′ + A2
> and D2 = M ′′ + A2

′> − A1
>. Then, the change of variable

µv = S̃>µ of Eq. (3.111) is performed, in which matrix S̃ is defined by Eq. (3.113).

Differentiating Eq. (3.110) with respect to time once and twice, µ′ and µ′′ are obtained

as functions of µv,µv ′, and µv ′′,

µ′ = X0µ
v ′ + X0

′µv + (X1r̂)
′ = X0µ

v ′ + X2X0µ
v + (X1r̂)

′ (3.115)

45

µ′′ = X0µ
v ′′ + 2X0

′µv ′ + X0
′′µv + (X1r̂)

′′

= X0µ
v ′′ + 2X2X0µ

v ′ + X3X0µ
v + (X1r̂)

′′ (3.116)

where X0
′, X0

′′, X2, and X3 are defined by Eqs. (A.55), (A.60), (A.56), and (A.61)

in the Appendix. Replacing µ by the expression of Eq. (3.110); µ′, and µ′′ by

expressions of Eqs. (3.115) and (3.116); replacing expressions for matrices D1 and D2

in Eq. (3.114); and factoring terms, an underlying ODE is obtained,

X0
>MX0µ

v ′′

+ X0
>(2MX2 + 2M ′ + A2

>)X0µ
v ′

+ X0
>(MX3 + 2M ′X2 + A2

>X2 + M ′′ + A2
′> − A1

>)X0µ
v (3.117)

= X0
>ŝ−X0

>M(X1r̂)
′′ −X0

>D1(X1r̂)
′ −X0

>D2X1r̂

Equation (3.117) is an ODE, because X0
>MX0 is nonsingular, according to Corollary

3.4.

Theorem 3.5. If R ≡ X0
>, then the underlying ODE of Eq. (3.117) of the adjoint

index-3 DAE of Eqs. (3.50) and (3.51), obtained as a result of pre-multiplying the

differential equation of Eq. (3.50) by R and performing the change of variable µv =

S̃>µ, with S̃ defined in Eq. (3.113), is the CPUODE of Eq. (3.105).

Proof.

The second derivative coefficient matrix of Eq. (3.117) is U1 ≡ X0
>MX0,

which is equal to matrix B1 of Eq. (3.106), which in turn is the second derivative

coefficient matrix in Eq. (3.105). The first derivative coefficient matrix of Eq. (3.117)

46

is U2 ≡ X0
>(2MX2 +2M ′+A2

>)X0. Replacing the expression for X2, defined in Eq.

(A.56) and using the identity of Eq. (A.55) in the Appendix, U2 is re-written as

U2 = X0
>(2M ′ + 2M



−Φu

−1 d
dt

(Φq)

0


 + A2

>)X0

Using the identity of Eq. (A.46) in the Appendix, according to which K21 =

d
dt

(Φq), and replacing the expression D1 = 2M ′> + A2
> in Eq. (3.107), the first

derivative coefficient matrix B2 in Eq. (3.105), is

B2 = X0
>
(
2Mu(−Φu

−1)
d

dt
(Φq) + 2M ′ + A2

>
)
X0

= X0
>
(
2M ′ + 2

(
Mu M v

)


−Φu

−1 d
dt

(Φq)

0


 + A2

>
)
X0

= X0
>
(
2M ′ + 2M



−Φu

−1 d
dt

(Φq)

0


 + A2

>
)
X0 = U2

Therefore, first derivative coefficient matrices U2 and B2 of Eqs. (3.117) and (3.105)

, respectively, are equal.

The coefficient matrix of the undifferentiated term in Eq. (3.117) is

U3 ≡ X0
>(MX3 + 2M ′X2 + A2

>X2 + M ′′ + A2
′> − A1

>)X0

Replacing expressions for X2 and X3; using the identities of Eqs. (A.46) and (A.47)

and the expression for X0
>′′ defined in Eq. (A.60) in the Appendix, matrix U3 is

47

re-written as a sum of three matrices U3 = U31 + U32 + U33, where

U31 ≡ X0
>MX3X0

= X0
>MX0

′′>

= X0
>

(
Mu M v

)




(−2Φu
−1) d

dt
(Φq)



−Φu

−1 d
dt

(Φq)

0


− Φu

−1 d2

dt2
(Φq)

0




X0

= X0
>(Mu(−2Φu

−1)
d

dt
(Φq)



−Φu

−1 d
dt

(Φq)

0


 + Mu(−Φu

−1 d2

dt2
(Φq)))X0

= X0
>(Mu(−Φu

−1)(2(
d

dt
(Φq))

u

(−Φu
−1)

d

dt
(Φq) +

d2

dt2
(Φq)))X0

= X0
>(Mu(−Φu

−1)(2Ku
21(−Φu

−1)K21 + K31))X0

U32 ≡ 2X0
>M ′X2X0 + X0

>A2
>X2X0

= X0
>(2M ′ + A2

>)X0
′

= X0
>

(
(2M ′ + A2

>)
u

(2M ′ + A2
>)

v

)


−Φu

−1 d
dt

(Φq)

0


 X0

= X0
>(2M ′ + A2

>)
u
(−Φu

−1K21)X0

U33 ≡ X0
>M ′′X0 + X0

>A2
′>X0 −X0

>A1
>X0

= X0
>(M ′′ + A2

′> − A1
>)X0

The matrix B3 defined in Eq. (3.108) is also written as a sum of three matrices,

48

B3 = B31 + B32 + B33, where

B31 ≡ X0
>(Mu(−Φu

−1)(2Ku
21(−Φu

−1)K21 + K31)X0

B32 ≡ X0
>(D1

u(−Φu
−1)K21)X0

B33 ≡ X0
>D2X0

After replacing expressions for D1 = 2M ′> + A2
> and D2 = M ′′> + A2

′> − A1
>,

matrices U3,1 and B3,1, U3,2 and B3,2, and U3,3 and B3,3, respectively, are equal.

Therefore, U3 = B3, hence the homogeneous parts of the underlying ODE of Eq.

(3.117) and the CPUODE of Eq. (3.105) are identical. As a result, the two ordinary

differential equations have the same stability properties.

Substituting for ψ4 by the expression in Eq. (3.102) and factoring matrix X0
>,

the right-side b4 of Eq. (3.105) is re-written as

b4 = X0
>ŝ− (M vu − Φv

>Φu
−1>)ψ3 − (D1

vu − Φv
>Φu

−1>)ψ2

− (D2
vu − Φv

>Φu
−1>)ψ1 (3.118)

= X0
>ŝ−X0

>Muψ3 −X0
>D1

uψ2 −X0
>D2

uψ1

After replacing expressions for ψi, i = 1, 2, 3, and using expressions for matrices K21

and K31 defined by Eqs. (A.46) and (A.47) in the Appendix, b4 is written as a sum

of three matrices, b4 = b41 + b42 + b43, where

b41 = X0
>ŝ−X0

>Mu(−Φu
−1)

(
2(Φq

′)u(− Φu
−1(Φu,t + Θu)Φu

−1r̂

+ Φu
−1(r̂)′

)
+

(
(Φq

′′)u)
Φu

−1r̂ − (r̂)′′
)

b42 = −X0
>D1

uΦu
−1

(
− (Φu,t + Θu)Φu

−1r̂ + (r̂)′
)

49

b43 = −X0
>D2

uΦu
−1r̂

Note that for an arbitrary n × n matrix A =

(
Au Av

)
, in which block Au is a

n × m matrix and block Av is a n × d matrix, the product AuΦu
−1 can be written

as AuΦu
−1 =

(
Au Av

)



Φu
−1

0


 = AX1, in which matrix X1 is defined by Eq.

(A.51) in the Appendix. As a result, vectors b4,i, i = 1, 2, 3, are

b41 = X0
>ŝ + X0

>MX1

(
2(Φq

′)u(− Φu
−1(Φq

′)u
Φu

−1r̂

+ Φu
−1(r̂)′

)
+

(
(Φq

′′)u)
Φu

−1r̂ − (r̂)′′
)

(3.119)

b42 = −X0
>D1X1

(
− (Φu,t + Θu)Φu

−1r̂ + (r̂)′
)

(3.120)

b43 = −X0
>D2X1r̂ (3.121)

After arranging terms by time derivative order of vector r̂, b41 is re-written as

b41 = X0
>ŝ + X0

>MX1

((
((Φq

′′)u
)Φu

−1 − 2(Φq
′)u

Φu
−1(Φq

′)u
Φu

−1
)
r̂

+ 2(Φq
′)u

Φu
−1(r̂)′ − (r̂)′′

)

= X0
>ŝ + X0

>MX1

((
Φq

′′X1 − 2Φq
′X1Φq

′X1

)
r̂ (3.122)

+ 2Φq
′X1(r̂)

′ − (r̂)′′
)

The right-side of Eq. (3.117) is

u4 ≡ X0
>ŝ−X0

>M(X1r̂)
′′ −X0

>D1(X1r̂)
′ −X0

>D2X1r̂

= u41 + u42 + u43

50

in which

u41 = X0
>ŝ−X0

>M(X1r̂)
′′ (3.123)

u42 = −X0
>D1(X1r̂)

′ (3.124)

u43 = −X0
>D2X1r̂ (3.125)

Vectors u43 and b43 are equal. Expanding the expression for vector u42 in Eq. (3.124),

u42 = −X0
>D1X1

′r̂ −X0
>D1X1r̂

′

replacing the derivative of matrix X1, defined by Eq. (A.66) in the Appendix, and

using the expression for the first derivative of the Jacobian, Φq
′ defined in Eq. (A.46)

in the Appendix, vector u42 is re-written as

u42 = −X0
>D1(−X1Φq

′X1)r̂ −X0
>D1X1r̂

′

= −X0
>D1X1(−Φq

′X1r̂ + r̂′)

= −X0
>D1X1(−(Φq

′)u
Φu

−1r̂ + r̂′)

= −X0
>D1X1(−(Φu,t + Θu)Φu

−1r̂ + r̂′)

which is equal to vector b42 of Eq. (3.120). Vector u41 is similarly expanded, us-

ing expressions for matrix X1 and its derivatives of Eqs. (A.66) and (A.69) in the

51

Appendix, as

u41 = X0
>ŝ−X0

>M(X1
′′r̂ + 2X1

′r̂′ + X1r̂
′′)

= X0
>ŝ−X0

>M
(
(−X1Φq

′′X1 + 2X1Φq
′X1Φq

′X1)r̂

− 2X1Φq
′X1r̂

′ + X1r̂
′′
)

= X0
>ŝ−X0

>MX1

(
− (Φq

′′)u
Φu

−1 + 2(Φq
′)u

Φu
−1(Φq

′)u
Φu

−1
)
r̂

− 2(Φq
′)u

Φu
−1r̂′ + r̂′′

= X0
>ŝ + X0

>MX1

((
Φq

′′X1 − 2Φq
′X1Φq

′X1

)
r̂

+ 2Φq
′X1r̂

′ − r̂′′
)

which is equal to vector b41 of Eq. (3.122). Since u4,i = b4,i, i = 1, 2, 3, the right-sides

of Eqs. (3.117) and (3.105) are equal. As a result, Eqs. (3.117) and (3.105) are

identical. ¥

Stability of the CPUODE of Eq. (3.105) is shown by proving that its homoge-

neous ODE is the same as the homogeneous adjoint differential equation of a certain

underlying ODE of the DAE of motion. In order to obtain this underlying ODE of

the linearized index-3 DAE of Eqs. (3.3) and (3.4), the change of variable w = S>q

is performed, instead of the EUODE change of variable u = Rq, defined by Ascher

et. al. [5]. Therefore, using an identity similar to the identity of Eq. (3.45),



S>

F>


 q =




w

F>q


 =




w

(
(CB)−1)>B>q




=




w

(
(CB)−1)>Cx


 =




w

−(
(CB)−1)>r


 (3.126)

52

and since

[(
S F

)>]−1

=

(
R> C>

)
, as shown in Eq. (3.44), q is a linear

function of w,

q =

(
R> C>

)



w

−((CB)−1)
>
r


 = R>w − C>(

(CB)−1)>r (3.127)

Differentiating Eq. (3.127) twice with respect to time,

q′′ = R>w′′ +
1∑

j=0




2

j


 (R>)

(2−j)
w(j) −

(
C>(

(CB)−1)>r
)′′

(3.128)

Pre-multiplying the result by matrix RM , the following identity is obtained:

RMq′′ = RMR>w′′+
1∑

j=0




2

j


 RM(R>)

(2−j)
w(j)−RM

(
C>(

(CB)−1)>r
)′′

(3.129)

Pre-multiplying Eq. (3.3) by matrix R, accounting for the property that RB =

0, and subtracting the result from the identity of Eq. (3.129), the following underlying

ODE of the linearized index-3 DAE is obtained:

RMR>w′′ = (RA2R
> − 2RMR′>)w′

+ (RA1R
> + RA2R

′> −RMR′′>)w (3.130)

+ Rq + RM
(
C>((CB)−1)

>
r
)′′

This is an ODE, because the second derivative coefficient matrix is nonsingular, ac-

cording to Corollary 3.4. Note that the underlying ODE of Eq. (3.130) is of similar

form with the EUODE of Eq. (3.16), in which matrix S is replaced by matrix R>.

The adjoint differential equation corresponding to the underlying ODE of Eq.

(3.130) is similarly obtained as the adjoint differential equation of Eq. (3.35). Using

53

a formulation analogous to that of Eqs. (3.27) through (3.34), in which matrix S is

replaced by matrix R> and matrix S> is replaced by matrix R, the adjoint equation

of the underlying ODE of Eq. (3.130) is obtained as

(RMR>)v′′ +
(
2RM ′R> + 2RMR′> + RA2

>R>
)
v′

+
(
RA2

>R′> + RA2
′>R> + RMR′′> + RM ′′R> (3.131)

+ 2RM ′R′> −RA1
>R>

)
v = (gq1 − gq2

′)>

By choosing matrix R as R = X0
>, using the expressions of matrix X0 first

and second derivatives defined by Eqs.(A.55) and (A.60), respectively, in the Ap-

pendix, and factoring terms, the homogeneous differential equation corresponding to

Eq. (3.131) is

X0
>MX0v

′′ + X0
>(2MX2 + 2M ′ + A2

>)X0v
′

+ X0
>(MX3 + 2M ′X2 + A2

>X2 (3.132)

+ M ′′ + A2
′> − A1

>)X0v = 0

which is the same as the homogeneous ODE corresponding to the CPUODE of Eq.

(3.117). Since the index-3 DAE of motion is stable in the forward direction, the

linearized index-3 DAE of motion is also stable in the forward direction. Therefore,

its underlying ODE of Eq. (3.130) is stable in the forward direction, since the solution

of the underlying ODE, w = S>q, is a linear function of the DAE solution q, in which

matrix S is bounded. Then, the adjoint ODE of Eq. (3.131) is stable in the backward

direction [16]. Therefore, the CPUODE of Eq. (3.105), whose homogeneous part

54

coincides with that of the adjoint ODE of Eq. (3.131), is stable in the backward

direction. As a result, the theorem that follows has been proved.

Theorem 3.6. The CPUODE of Eq. (3.105) of the adjoint index-3 DAE of Eqs.(3.50)

and (3.51) is stable in the backward direction, provided that the multibody system

index-3 DAE of motion of Eqs. (3.1) and (3.2) is stable in the forward direction.

¥

55

CHAPTER 4
IMPLICIT INTEGRATION OF MULTIBODY SYSTEM

DIFFERENTIAL ALGEBRAIC EQUATIONS

The differential-algebraic equations of motion and the adjoint differential-

algebraic equations of multibody dynamics are index-3 DAE. The DAE that result

from the direct differentiation formulation [26] of design sensitivity analysis of multi-

body systems are also index-3 DAE. Differential-algebraic equations of index-3 must

have a special structure [13]; i.e., they must be in Hessenberg form, in order for

numerical integration methods to converge when they are directly applied to such

higher-index DAE. The equations of motion, adjoint equations, and direct differen-

tiation equations for a multibody system in which orientation of bodies is expressed

using Euler parameters [27], cannot be brought in Hessenberg form, because the

highest derivative coefficient matrices are singular [26, 52]. Direct discretization of

an index-3 DAE introduces numerical stability difficulties; e.g., a BDF integration

method applied to an index-3 DAE requires constant step-size for convergence [13].

As a result, the original index-3 DAE must be transformed into an equivalent lower

index DAE or ODE; i.e., a DAE or ODE that has a numerical solution from which

the solution of the original formulation can be recovered through linear changes of

variables, of the form of Eq. (3.14) in Chapter 3, or by retaining only certain compo-

nents of the lower index DAE solution. A lower index DAE formulation is obtained

through index reduction methods [13]. Such methods are used to transform the origi-

nal index-3 DAE into a lower index equivalent DAE (typically index-1, for multibody

56

systems [22]) or an underlying ODE [58]. After each integration step, the solution of

the original system is recovered from the solution of the lower index system.

In some DAE formulations it may be possible [25] that not all the constraints

can be enforced simultaneously. Appending the velocity and acceleration constraints,

obtained by differentiating the multibody system position constraint once and twice,

respectively, may result in an overdetermined system. Therefore, there are DAE

formulations; e.g., index-2 equivalent formulations of index-3 DAE [25] that can only

enforce a subset of the position, velocity, and acceleration constraints. As a result, the

missing constraints require projection [25, 35] of the generalized coordinate vector, or

its first or second derivatives, onto the corresponding constraint manifold [25].

In this chapter an index reduction method is selected for solving the equations

of motion, the adjoint DAE, and the direct differentiation DAE, for a non-centroidal

formulation of multibody system equations of motion. Equivalent index-1 formu-

lations are presented for the three DAE systems, an implicit numerical integration

package is chosen for solving the DAE, and reasons for the selected formulation and

numerical integration method are explained.

57

4.1 Numerical Integration of Index-1

Differential-Algebraic Equations Using

Backward Differentiation Formulas

Since numerical integration of DAE has similar stability properties to the nu-

merical integration of stiff ODE [6] and because multibody systems can include stiff

elements [41], implicit numerical integration methods; e.g., BDF methods are of-

ten used for integration of the multibody system DAE. In this thesis, the Implicit

Differential-Algebraic solver (IDA) [31], is used for numerical integration of a multi-

body system DAE of motion index-1 equivalent formulation. Developed at Lawrence

Livermore National Laboratory (LLNL) for solving ODE and index-1 DAE, IDA is a

component of the LLNL’s Suite of Non-linear Differential-Algebraic Solvers (SUNDI-

ALS) package [30]. The implicit numerical integration method that is used in IDA is

a BDF method of variable step-size and variable order up to five. In addition to its

robustness, the IDA package has the advantages of implementing a complex step-size

and order control algorithm based on the fixed leading coefficient method [13] and not

requiring the user to start the integration; i.e., to provide the first s steps. In general,

the first s steps of an s order multi-step integration method are supplied by the user,

who must use a one-step integration method in the beginning and perform step-size

and order control. This is internally done by the IDA integrator and is transparent

to the user.

Consider the general form of an implicit index-0 ODE or index-1 DAE initial

58

value problem,

F (y, y′, t) = 0 (4.1)

together with consistent initial conditions

y(t0) = y0 (4.2)

y′(t0) = y′0 (4.3)

where y is the state vector and y′ its derivative. In the fixed leading coefficient BDF

method of order s, calculation of the state vector y(tk+1) at time-step tk+1 proceeds

as follows [13]:

1. Using approximations of the state vector yk−i, at time-steps tk−i, i = 0, 1, . . . , s,

a solution at time-step tk+1 is predicted by evaluating the predictor polynomial

and its derivative at tk+1. The predictor polynomial ωP
k+1(t) interpolates yk−i

at time-steps tk−i, i = 0, 1, . . . , s; i.e.,

ωP
k+1(tk−i) = yk−i, i = 0, 1, . . . , s (4.4)

The predicted values of y and y′ at tk+1 are, respectively

y
(0)
k+1 = ωP

k+1(tk+1) (4.5)

y′(0)
k+1 = ω′Pk+1(tk+1) (4.6)

2. The corrector polynomial ωC
k+1(t) is constructed such that it satisfies the DAE

at tk+1, and interpolates the predictor polynomial ωP
k+1(t) at s equally spaced

59

points before tk+1,

ωC
k+1(tk+1 − ihk+1) = ωP

k+1(tk+1 − ihk+1), i = 1, 2, . . . , s (4.7)

F (ωC
k+1(tk+1), ω

′C
k+1(tk+1), tk+1) = 0 (4.8)

where hk+1 = tk+1 − tk.

3. The corrected solution yk+1 = ωC
k+1(tk+1), implicitly defined by conditions of

Eqs. (4.7) and (4.8), is obtained by solving the nonlinear equation [13]

F (yk+1, y
′(0)
k+1 −

αs

hk+1

(yk+1 − y
(0)
k+1), tk+1) = 0 (4.9)

with the unknown yk+1, where αs = −∑s
j=1

1
j

and y′k+1 is given by the BDF

integration method as

y′k+1 = y′(0)
k+1 −

αs

hk+1

(yk+1 − y
(0)
k+1) (4.10)

The solution of the nonlinear system of Eq. (4.9) is obtained by applying a

modified Newton iteration,

y(ρ+1) = y(ρ) − cJ−1F (y(ρ), α1y
(ρ) + α2, tk+1) (4.11)

where

α1 = − αs

hk+1

(4.12)

α2 = y′(0)
k+1 − α1y

(0)
k+1 (4.13)

c is a scalar constant chosen to accelerate the rate of convergence of Newton

iterations [13], and

J = Fy + α1Fy′ (4.14)

60

is the Jacobian of nonlinear equation of Eq. (4.9).

The steps in the procedure presented above are transparent to the user of

the integrator. The only function evaluators that the user must provide to the IDA

integrator are [31] an evaluator of function F (y, y′, t) of Eq. (4.1) and an evaluator of

Jacobian J of Eq. (4.14). In addition, the user must compute the initial conditions

for an index-1 DAE initial value problem in which the state vector y cannot be

partitioned into algebraic and differential variables [31].

4.2 An Index-1 Formulation of the Non-

Centroidal DAE of Motion

Consider the non-centroidal formulation presented in Section A.6 of the Ap-

pendix. The resulting index-3 DAE of Eqs. (A.134) and (A.135), is

M(q, β, t)q′′ + Φq
>λ = S1(q, q′, β, t) (4.15)

Φ(q, β, t) = 0 (4.16)

where

S1 = L + Q (4.17)

is the sum of Coriolis force L and applied force Q. Given a consistent set of initial

conditions; i.e., generalized coordinate vector q, generalized velocity vector v ≡ q′,

generalized acceleration vector a ≡ q′′, and Lagrange multiplier vector λ that satisfy

at initial time t0 the index-3 DAE of motion [27] of Eqs. (4.15) and (4.16), the velocity

61

constraint equation

Φqq
′ + Φt = 0 (4.18)

obtained by differentiation of the position constraint equation of Eq. (4.16), and the

acceleration constraint equation

Φqq
′′ + (Φqq

′)qq
′ + 2Φq,tq

′ + Φt,t = 0 (4.19)

obtained by differentiation of the velocity constraint equation of Eq. (4.18); the DAE

of motion has a unique solution [27, 48] at all times.

An index-1 DAE that is equivalent to the DAE of motion of Eqs. (4.15) and

(4.16) is obtained [2] by applying a stabilized index reduction method [24] to the DAE

of motion and introducing differential variables χ and ψ,

F (y, y′, t) =




q′ − v + Φq
>χ′

Mv′ + Φq
>ψ′ − S1

Φqv + Φt

Φ(q, t)




= 0 (4.20)

where

y =




χ

ψ

v

q




(4.21)

The DAE of Eq. (4.20) has the advantage of satisfying both the position constraint

equation of Eq. (4.16) and the velocity constraint equation of Eq. (4.18). As a result,

after a numerical integration step applied to Eq. (4.20), projections of position and

62

velocity vectors onto position constraint and velocity constraint manifolds, respec-

tively, are not necessary. A s-step variable step-size BDF method, s ≤ 6, applied to

the fully implicit index-1 DAE [2] of Eq. (4.20) converges with order s, as shown in

Section 4.5. The Jacobian J of Eq. (4.14) that corresponds to the index-1 DAE of

motion of Eq. (4.20) is

J = Fy + α1Fy′

=




0 0 −I (Φq
>χ′)q

0 0 −S1v (Mv′ + Φq
>Ψ′ − S1)q

0 0 Φq (Φqq
′)q + Φq,t

0 0 0 Φq




+ α1




Φq
> 0 0 I

0 Φq
> M 0

0 0 0 0

0 0 0 0




(4.22)

=




α1Φq
> 0 −I (Φq

>χ′)q + α1I

0 α1Φq
> (α1M − S1

v) (Mv′ + Φq
>Ψ′ − S1)q

0 0 Φq (Φqq
′)q + Φq,t

0 0 0 Φq




(4.23)

Since the state vector y in the index-1 DAE equivalent formulation of Eq. (4.20)

cannot be partitioned into separate differential and algebraic parts, consistent initial

conditions cannot be directly evaluated by the IDA integrator. Therefore, calculation

63

of consistent initial conditions, together with evaluators of function F of Eq. (4.20)

and Jacobian J of Eq. (4.22) must be provided separately. These evaluations require

computation of the following derivatives:

1. Position constraint Jacobian Φq and its first and second derivatives, Φq
′ and Φq

′′.

Although the second derivative of the Jacobian is not used in implicit integration

of the DAE of motion, its evaluation is required, as shown in Sections 4.3 and

4.4, for implicit integration of the DAE resulting from the direct differentiation

and adjoint formulations.

2. Derivatives of terms of the form Φq
>γ with respect to the generalized coordinate

vector q, where γ is a constant vector.

3. Derivatives of terms of the form Mγ with respect to the generalized coordinate

vector q, where γ is a constant vector.

4. Derivatives of vector S1 = L + Q with respect to the generalized coordinate

vector q and its time derivative v.

4.2.1 Consistent Initial Conditions

Calculation of consistent initial conditions for the IVP of Eq. (4.20) starts

with a given initial configuration of the multibody system; i.e., given initial positions

and orientations of the bodies in the system, which define the initial generalized

coordinate vector q0. The process of obtaining a consistent initial configuration; i.e.,

an initial generalized coordinate vector q0 that satisfies the position constraint of

64

Eq. (4.16), within a given tolerance, is known as assembly of the system. Numerical

algorithms for multibody system assembly are presented by Haug [27]. Next, a set

of initial velocities; i.e., the initial time derivative v0 of the generalized coordinate

vector must be given. In order to enforce the velocity constraint equation, an initial

projection step [35] is performed using the generalized coordinate vector q0 resulting

from the assembly process. If the multibody system is assumed to start from a rest

configuration, then the initial velocity is zero.

After consistent initial position q0 and velocity v0 vectors have been obtained,

the equation of motion of Eq. (4.15) and the acceleration constraint of Eq. (4.19), at

initial time t0, define a linear system,




M0 Φq0
>

Φq0 0







a0

λ0


 =




S1
0

−((Φqq
′)qv + 2Φq,tv + Φt,t)

0


 (4.24)

where a0, the initial acceleration vector, and λ0, the initial vector of Lagrange multi-

pliers, are unknowns and

M0 = M(q0, β, t0)

Φq0 = Φq(q0, β, t0)

S1
0 = S1(q0, v0, β, t0)

((Φqq
′)qv + 2Φq,tv + Φt,t)

0
= ((Φqq

′)qv + 2Φq,tv + Φt,t)(q0, v0, β, t0)

Since the multibody system mass matrix is positive definite on the null-space of the

constraint Jacobian [27], the coefficient matrix MS of the linear system of Eq. (4.24),

65

known as the Schur-complement and defined by

MS(q, β, t) ≡




M Φq
>

Φq 0


 (4.25)

is non-singular [52]. Therefore, initial accelerations and Lagrange multipliers are

uniquely obtained by solving the linear system of Eq. (4.24). As a result, initial

conditions y0 and y′0 for the index-1 DAE of Eq. (4.20) are

y0 =




χ0

ψ0

v0

q0




=




0

0

v0

q0




(4.26)

and

y′0 =




χ′0

ψ′0

a0

v0




=




0

λ0

a0

v0




(4.27)

4.2.2 Analytic Evaluation of the Position Constraint Ja-

cobian and its First and Second Derivatives

For a multibody system consisting of nb bodies, the generalized coordinate

vector q is

q ≡ (q1
> . . . qnb

>)
>

(4.28)

66

The position and orientation of body i are defined by the seven-dimensional vector

qi =

(
ri
> pi

>
)>

, where ri is the three-dimensional vector that defines the position

of the origin of a body i non-centroidal body frame with respect to a Cartesian

coordinate global coordinate frame and pi is the four-dimensional normalized vector

comprising the Euler parameters e0, e1, e2, and e3 that define the orientation of body i

with respect to the global coordinate frame [27]. Matrix Ai [27] is the 3×3 orientation

matrix that defines the orientation of body i in terms of Euler parameter vector pi.

Vector s′Pi is the three-dimensional vector that defines the position of a point P on

body i with respect to body i’s body fixed coordinate frame.

The first derivative of the constraint Jacobian, as shown in Eq. (A.23) of the

Appendix, is

Φq
′ = (Φqq

′)q + Φq,t (4.29)

Using differential operator Θ introduced in Eq. (3.63) of Chapter 3,

Θ(Φ, γ) ≡ (Φqγ)q (4.30)

where γ is a vector not depending on q, Eq. (4.29) is re-written as

Φq
′ = Θ(Φ, q′) + Φq,t (4.31)

The second derivative of the constraint Jacobian, as shown in Eq. (A.39) of the

Appendix, is

Φq
′′ = Φq,tt + (Φq,tq

′)q + (Φqq
′)q,t

+ ((Φqq
′)qq

′)
q
+ (Φqq

′′)q (4.32)

67

Using differential operators Θ and Υ introduced in Eq. (3.76) of Chapter 3,

Υ(Φ, γ1, γ2) ≡ ((Φqγ1)qγ2)
q

= ((Θ(Φ, γ1))γ2)q (4.33)

where γ1and γ2 are vectors that do not depend on q, Eq. (4.32) is re-written as

Φq
′′ = Φq,tt + (Φq,tq

′)q + (Φqq
′)q,t

+ Υ(Φ, q′, q′) + Θ(Φ, q′′) (4.34)

The position constraint function Φ consists of (1) algebraic constraints intro-

duced by joints between bodies and (2) Euler parameter normalization constraints,

Φ =




Φ̄

ΦP


 (4.35)

Joint constraints are a combination of one or more of the following basic kinematic

constraints [27]:

1. Spherical constraint ΦS = 0

2. Dot-1 constraint Φd1 = 0

3. Dot-2 constraint Φd2 = 0

4. Distance constraint ΦD = 0

Since none of the four basic kinematic constraint functions depend explictly on time,

first and second derivative of their Jacobian are expressed only in terms of operators

Θ and Υ, as follows:

ΦK
q

′
= Θ(ΦK , q′) (4.36)

68

and

ΦK
q

′′
= Υ(ΦK , q′, q′) + Θ(ΦK , q′′) (4.37)

where K ∈ {S, d1, d2, D}. Therefore, for a joint consisting of any combination of

the four basic constraints, in addition to evaluating its Jacobian, calculating corre-

sponding Θ and Υ operators is sufficient for computing the Jacobian first and second

derivatives.

The spherical constraint between bodies i and j is defined [27] as

ΦS = ri + Ais
′P
i − (rj + Ajs

′P
j) = 0 (4.38)

The Jacobian of the spherical constraint; i.e., the derivative of ΦS with respect to qi

and qj is [51]

ΦS
qi,qj

=

(
I3 B(pi, s

′P
i) −I3 −B(pj, s

′P
j)

)
(4.39)

where three-dimensional vector s′Pi is the position of a point fixed in body i, with

respect to the body i coordinate frame, and s′Pj is the position of a point fixed in

body j, with respect to body j coordinate frame. Matrix B(p, γ), where p is a

normalized four-dimensional vector and γ a three-dimensional vector, is the derivative

with respect to vector p of the product of the orientation matrix A(p) and a vector γ

and is defined in Ref. [51]. Operator Θ for the spherical constraint is

ΘS(ΦS, γ) = (ΦS
qi,qj

γ)qi,qj
=

(
0 B(γi,p, s′Pi) 0 −B(γj,p, s′Pj)

)
(4.40)

where γ is a fourteen-dimensional vector partitioned into seven-dimensional compo-

69

nents γi and γj,

γ =




γi

γj


 (4.41)

and each seven-dimensional component k is partitioned into a three-dimensional com-

ponent γk,r and a four-dimensional component γk,p,

γk =




γk,r

γk,p


 , k = i, j (4.42)

Since vectors γ, s′Pi , and s′Pj do not depend on the generalized coordinate vector q, it

follows that ΘS(ΦS, γ) is constant. As a result, operator Υ for the spherical constraint

is

ΥS(ΦS, γ1, γ2) =
(
ΘS(ΦS, γ1)γ2

)
qi,qj

= 0 (4.43)

In addition to operators Θ and Υ, let operator ∆γ be defined as

∆γ = ΦS
qi,qj

γ = γi,r + B(pi, s
′p
i)γ

i,p − γj,r −B(pj, s
′p
j)γ

j,p

= ΦS
qi
γi − ΦS

qj
γj (4.44)

where γ is a fourteen-dimensional constant vector of the form of Eq. (4.41) and ΦS

is the constraint Jacobian of the spherical constraint. The derivative of operator ∆γ

with respect to generalized coordinate components qi and qj is

∆γqi,qj
=

(
0 B(γi,p, s′Pi) 0 −B(γj,p, s′Pj)

)
(4.45)

The dot-1 constraint between bodies i and j is defined [27] as

Φd1 = (Aih
′
i)
>
Ajh

′
j (4.46)

70

where h′i is a unit vector fixed with respect to the body i coordinate frame, and h′j

is a unit vector fixed with respect to the body j coordinate frame. The Jacobian of

the dot-1 constraint is [51]

Φd1
qi,qj

=

(
0 (Ajh

′
j)
>B(pi, h

′
i) 0 (Aih

′
i)
>B(pj, h

′
j)

)
(4.47)

A fourteen-dimensional vector γ =

(
γi> γj>

)>
is re-written, using Eq. (4.42), as

γ =

(
(γi,r)

>
(γi,p)

>
(γj,r)

>
(γj,p)

>
)>

(4.48)

Consider post-multiplication of the dot-1 Jacobian by vector γ,

Φd1
qi,qj




γi,r

γi,p

γj,r

γj,p




= (Ajh
′
j)
>
B(pi, h

′
i)γ

i,p + (Aih
′
i)
>
B(pj, h

′
j)γ

j,p

= γi,p>B>(pi, h
′
i)Ajh

′
j + γj,p>B>(pj, h

′
j)Aih

′
i (4.49)

Since the product of the dot-1 Jacobian and vector γ does not depend on position

vectors ri and rj, it follows that

(Φd1
qi,qj

γ)ri,rj
= 0 (4.50)

Differentiating the product of the dot-1 Jacobian and vector γ with respect to Euler

parameter vectors pi and pj, the following matrices are obtained:

(Φd1
qi,qj

γ)pi
= (Ajh

′
j)
>
B(γi,p, h′i) + γj,p>B>(pj, h

′
j)B(pi, h

′
i) (4.51)

(Φd1
qi,qj

γ)pj
= γi,p>B>(pi, h

′
i)B(pj, h

′
j) + (Aih

′
i)
>
B(γj,p, h′j) (4.52)

71

As a result of Eqs. (4.50), (4.51), and (4.52), operator Θ for the dot-1 constraint is

Θd1(Φd1 , γ) =

(
0 (Φd1

qi,qj
γ)pi

0 (Φd1
qi,qj

γ)pj

)
(4.53)

Next, consider post-multiplying matrix Θd1(Φ, γ) by a fourteen-dimensional constant

vector ζ. Differentiating with respect to position vectors ri and rj and Euler parameter

vectors pi and pj, the following matrices are obtained:

(Θd1(Φd1 , γ)ζ)ri,rj
= 0 (4.54)

(Θd1(Φd1 , γ)ζ)pi
= γj,p>B>(pj, h

′
j)B(ζ i,p, h′i) + ζj,p>B>(pj, h

′
j)B(γi,p, h′i)

+ ζj,p>B>(γj,p, h′j)B(pi, h
′
i) (4.55)

(Θd1(Φd1 , γ)ζ)pj
= ζ i,p>B>(γi,p, h′i)B(pj, h

′
j) + ζ i,p>B>(pi, h

′
i)B(γj,p, h′j)

+ γi,p>B>(pi, h
′
i)B(ζj,p, h′j) (4.56)

Therefore, operator Υ for the dot-1 constraint is

Υd1(Φd1 , γ, ζ) =

(
0 (Θd1(Φ, γ)ζ)pi

0 (Θd1(Φ, γ)ζ)pj

)
(4.57)

The dot-2 constraint between bodies i and j is defined [27] as

Φd2 = (Aih
′
i)
>
dij = 0 (4.58)

where h′i is a three-dimensional unit vector fixed in the body i coordinate frame and

the three-dimensional vector

dij = rj + Ajs
′P
j − ri − Ais

′P
i = −ΦS (4.59)

72

is the vector between a point fixed on body j, whose position with respect to its body

coordinate frame is s′Pj , and a point fixed on body i, whose position with respect to

its body coordinate frame is s′Pi . Since dij = −ΦS the derivative of dij with respect

to qi and qj is

(dij)qi,qj
= −ΦS

qi,qj
(4.60)

The Jacobian of the dot-2 constraint is [51]

Φd2
qi,qj

= −(Aih
′
i)
>
ΦS

qi,qj
+ dij

>
(

0 B(pi, h
′
i) 0 0

)
(4.61)

Multiplying the Jacobian by the constant vector γ

(Φd2
qi,qj

γ) = −(Aih
′
i)
>
∆γ + dij

>B(pi, h
′
i)γ

i,p

= −(Aih
′
i)
>
∆γ + γi,p>B>(pi, h

′
i)dij (4.62)

and differentiating with respect to position and orientation vectors

(Φd2
qi,qj

γ)ri
= −γi,p>B>(pi, h

′
i) (4.63)

(Φd2
qi,qj

γ)rj
= γi,p>B>(pi, h

′
i) (4.64)

(Φd2
qi,qj

γ)pi
= −∆γ>B(pi, h

′
i)− (Aih

′
i)
>
B(γi,p, s′pi)

+ dij
>B(γi,p, h′i)− γi,p>B>(pi, h

′
i)B(pi, s

′p
i) (4.65)

(Φd2
qi,qj

γ)pj
= (Aih

′
i)
>
B(γj,p, s′pj) + γi,p>B>(pi, h

′
i)B(pj, s

′p
j) (4.66)

The dot-2 Θ operator is

Θd2(Φd2 , γ) =

(
(Φd2

qi,qj
γ)ri

(Φd2
qi,qj

γ)pi
(Φd2

qi,qj
γ)rj

(Φd2
qi,qj

γ)pj

)
(4.67)

73

Multiplying Θd2 by a constant fourteen-dimensional vector ζ and differentiating with

respect to position and orientation vectors,

(Θd2(Φd2 , γ)ζ)ri
= −ζ i,p>B>(γi,p, h′i) (4.68)

(Θd2(Φd2 , γ)ζ)rj
= ζ i,p>B>(γi,p, h′i) (4.69)

(Θd2(Φd2 , γ)ζ)pi
= −ζ i,r>B(γi,p, h′i)−∆γ>B(ζ i,p, h′i)

− ζ i,p>B>(pi, h
′
i)B(γi,p, s′pi)− ζ i,p>B>(γi,p, s′pi)B(pi, h

′
i)

− ζ i,p>B>(γi,p, h′i)B(pi, s
′p
i)− γi,p>B>(pi, h

′
i)B(ζ i,p, s′pi)

− ζ i,p>B>(pi, s
′p
i)B(γi,p, h′i) + ζj,r>B(γi,p, h′i) (4.70)

+ ζj,p>B>(γj,p, s′pj)B(pi, h
′
i) + ζj,p>B>(pj, s

′p
j)B(γi,ph′i)

(Θd2(Φd2 , γ)ζ)pj
= ζ i,p>B>(γi,p, h′i)B(pj, s

′p
j) + γi,p>B>(pi, h

′
i)B(ζj,p, s′pj)

+ ζ i,p>B>(pi, h
′
i)B(γj,p, s′pj) (4.71)

the dot-2 Υ operator is

Υd2(Φd2 , γ, ζ) =




(Θd2(Φd2 , γ)ζ)ri

>

(Θd2(Φd2 , γ)ζ)pi

>

(Θd2(Φd2 , γ)ζ)rj

>

(Θd2(Φd2 , γ)ζ)pj

>




>

(4.72)

The distance constraint between bodies i and j is defined [27] as

ΦD = dij
>dij − c2 = 0 (4.73)

74

where dij is the distance vector introduced by Eq. (4.59) and c is a scalar. The

Jacobian of the distance constraint is [51]

ΦD
qi,qj

= −2dij
>ΦS

qi,qj
= −2dij

>
(

I3 B(pi, s
′P
i) −I3 −B(pj, s

′P
j)

)
(4.74)

The distance Θ operator is

ΘD(ΦD, γ) = −2γ>(ΦS
qi,qj

>
dij)qi,qj

= 2γ>ΦS
qi,qj

>
ΦS

qi,qj
− 2dij

>(∆γqi,qj
) (4.75)

Multiplying ΘD by a constant fourteen-dimensional vector ζ,

ΘD(ΦD, γ)ζ = 2ζ>ΦS
qi,qj

>
∆γ − 2ζ>(∆γqi,qj

)>dij (4.76)

and differentiating with respect to generalized coordinate components qi and qj, the

distance constraint Υ operator is

ΥD(ΦD, γ, ζ) = (ΘD(ΦD, γ)ζ)qi,qj
= 2ζ>ΦS

qi,qj

>
∆γqi,qj

+2∆γ>∆ζqi,qj
+2ζ>(∆γqi,qj

)>ΦS
qi,qj

(4.77)

The Euler parameter normalization constraint for body i is defined [27] as

ΦP
i = pi

>pi − 1 (4.78)

The Jacobian of the Euler parameter normalization constraint is [27]

ΦP
i qi,qj

=

(
0 2pi

> 0 0

)
(4.79)

Multiplying the Jacobian by the constant vector γ and differentiating with respect

to generalized coordinate components qi and qj, operator Θ for the Euler parameter

75

normalization constraint is obtained

ΘP
i (ΦP

i , γ) = (ΦP
i qi,qj

γ)qi,qj
= (2pi

>γi,p)qi,qj
=

(
0 2γi,p> 0 0

)
(4.80)

which is a constant matrix. As a result, operator Υ for the Euler parameters normal-

ization constraint is

ΥP
i (ΦP

i , γ, ζ) = (ΘP
i (ΦP

i , γ)ζ)qi,qj
= 0 (4.81)

4.2.3 Derivatives of the Product of the Transpose of Po-

sition Constraint Jacobian with a Vector

Consider the product

Φq
>ζ

where ζ does not depend on q, and let ui be the unit vector with 1 in the i-th position

and all the other elements zero. The product

ξi = ui
>(Φq

>ζ)q

is the i-th row of the matrix (Φq
>ζ)q. Since ui is a constant vector, ξi is re-written as

ξi = (ui
>Φq

>ζ)q

Since ui
>Φq

>ζ is a scalar,

ui
>Φq

>ζ = (ui
>Φq

>ζ)
>

= ζ>Φqui

Since ζ does not depend on q, the i-th row of the matrix (Φq
>ζ)q is

ξi = (ζ>Φqui)q = ζ>(Φqui)q = ζ>Θ(Φ, ui) (4.82)

76

Therefore, the matrix (Φq
>ζ)q is

(Φq
>ζ)q =




ζ>Θ(Φ, u1)

...

ζ>Θ(Φ, un)




(4.83)

where each row is computed independently.

4.2.4 Derivatives of the Product of the Mass Matrix

with a Vector

For a multibody system comprised of nb bodies, in which orientation of bod-

ies is defined using Euler parameters and body-fixed coordinate frames are non-

centroidal, the mass matrix is a singular block-diagonal symmetric matrix, as shown

in Eq. (A.131) of the Appendix,

M = diag(Mi, i = 1, 2, . . . , nb)

where the 7× 7 matrix block Mi is given by Eq. (A.126) of the Appendix,

Mi(qi, β) =




miI3 −2miAis̃′
C

i Gi

2miGi
>s̃′

C

i Ai
> 4Gi

>J ′iGi


 (4.84)

where mi is the mass of body i, I3 is the 3 × 3 identity matrix; Ai(pi) is the body

i orientation matrix [27], Gi = G(pi) is an Euler parameter dependent matrix [27],

s̃′
C

i is the matrix obtained by applying the ∼ operator [27] to the i-th body center of

mass position vector s′Ci with respect to the body-fixed coordinate frame, and J ′i is

the inertia tensor of body i with respect to its body-fixed coordinate frame.

77

The derivative of the product of matrix Mi and a constant vector

γi =

(
γi,r> γi,p>

)>

with respect to qi, defined by Eq. (A.146) of the Appendix, is

(Miγ
i)qi

=




0 M1,i

0 M2,i


 (4.85)

where

M1,i = −2miB(pi, s̃′
C

i Giγ
i,p) + 2miAis̃′

C

i G(γi,p)

M2,i = 2mi(s̃′
C

i Ai
>γi,r)

−
+ 2miGi

>s̃′
C

i C(pi, γ
i,r) + 4(J ′iGiγ

i,p)
− − 4Gi

>J ′iG(γi,p)

Operator ()− is defined in Ref. [43] and matrix C(pi, ξ), depending on Euler parameter

vector pi and vector ξ, is defined in Ref. [50]. As a result, the matrix (Mγ)q, where

γ =

(
γ1
> . . . γnb

>
)>

, is

(Mγ)q = diag((Miγ
i)qi

, i = 1, 2, . . . , nb) (4.86)

and blocks (Miγ
i)qi

are computed independently.

4.2.5 Derivatives of Applied Force and Coriolis Related

Terms

The Coriolis force relative to a non-centroidal reference frame, defined in Eq.

(A.132) of the Appendix, is

L =

(
L1

> . . . Lnb

>
)>

78

where component Li, defined in Eq. (A.128) of the Appendix, is

Li =




4miEiGi
′>Gi

′Gi
>s′Ci

−8Gi
′>J ′iGipi

′


 (4.87)

where matrix Ei, which depends on the body i Euler parameter vector pi, is defined in

Ref. [27]. The vector function Li depends only on the body i Euler parameter vector

and its derivative. Therefore, the derivative of Li with respect to qi =

(
ri
> pi

>
)>

,

defined by Eq. (A.153) of the Appendix, is

Liqi
=




0 −4miE(Gi
′>Gi

′Gi
>s′Ci) + 4miEiGi

′>Gi
′(s′Ci)

−

0 8Gi
′>J ′iGi

′


 (4.88)

and the derivative of Li with respect to qi
′ is

Liqi
′ =




0 4miEi(Gi
′Gi

>s′Ci)
− − 4miEiGi

′>G(Gi
>s′Ci)

0 −8(J ′iGipi
′)− − 8Gi

′>J ′iGi


 (4.89)

As a result, matrices Lq and Lq′ are

Lq = diag(Liqi
, i = 1, 2, . . . , nb)

Lq′ = diag(Liqi
′i = 1, 2, . . . , nb)

where matrix blocks Liqi
and Liqi

′ are computed independently.

Generalized force Qi acting on body i is of the form [50]

Qi =




FA
i

2Gi
>n′Ai


 + QTSDA

i + QRSDA
i (4.90)

where applied force FA
i is given and torque n′Ai is defined in Eq. (A.110) of the

Appendix as a function of FA
i . The term QTSDA

i represents the force produced by a

79

translational spring-damper-actuator (TSDA) that connects bodies i and j and has

the form [27]

QTSDA
i =

(
k(l − l0) + cl′ + f(l, l′)

l

)



dij

˜s′Pi Aj
>dij


 (4.91)

where dij, defined by Eq. (4.59), is the vector between points s′Pi and s′Pj on bodies

i and j, respectively; l = ‖dij‖ is the distance between the two points; l0 is the given

distance at the spring rest position; k is the given spring stiffness; c is the given

damping constant; and f(l, l′) is the known actuator force function, depending on l

and its derivative l′. The term QRSDA
i represents the force produced by a rotational

spring-damper-actuator (RSDA) that connects bodies i and j and has the form [27]

QRSDA
i = (kθ(θ + 2nrevπ) + cθθ

′ + n(θ + 2nrevπ, θ′))




0

h′i


 (4.92)

where h′i is a unit vector fixed with respect to the body i coordinate frame, θ is the

angle between the rotational spring rest position and current position 0 ≤ θ ≤ 2π,

nrev is the integer number of revolutions of the rotational spring relative to its rest

position, kθ is the given rotational spring stiffness constant, cθ is the rotational damper

constant, and n(θ, θ′) is the rotational actuator known torque, depending on θ and

its derivative θ′.

The applied force Qi depends on generalized coordinate components qi and qj

80

and their derivatives qi
′ and qj

′. Its derivative with respect to qij =

(
qi
> qj

>
)>

is

Qiqij
=




(FA
i)qij

2Gi
>n′Ai qij


 +




0 0 0 0

0 2(n′Ai)
−

0 0




+ QTSDA
i qij

+ QRSDA
i qij

(4.93)

and the derivative of the applied force with respect to q′ij =

(
q′i
> q′j

>
)>

is

Qiq′ij =




(FA
i)q′ij

2Gi
>n′Ai qij


 + QTSDA

i q′ij
+ QRSDA

i q′ij
(4.94)

where derivatives QTSDA
i qij

, QTSDA
i q′ij

, QRSDA
i qij

, and QRSDA
i q′ij

are defined by Eqs.

(A.172) through (A.202) of the Appendix. As a result, derivatives Qq and Qq′ of the

applied force

Q =

(
Q1

> . . . Qnb

>
)>

are obtained by independently computing blocks Qiqij
and Qiq′ij and assembling them

into matrices Qq and Qq′ .

4.3 An Index-1 Formulation of the Direct Dif-

ferentiation DAE

Differentiating the equation of motion of Eq. (4.15) with respect to design

parameter βl, l ∈ {1, 2, . . . , nβ}, where β is the vector of design parameters,

β =

(
β1
> . . . βnβ

>
)

81

the direct differentiation index-3 DAE is obtained as [26]

Mqβl

′′ + Φq
>λβl

=
(
Lq + Qq − (Mq′′)q − (Φq

>λ)q

)
qβl

+ (Lq′ + Qq′)qβl

′

− (Mq̂′′)βl
− (Φq

>λ̂)βl
+ Lβl

+ Qβl
(4.95)

Φqqβl
+ Φβl

= 0 (4.96)

where Eq. (4.95) represents the differential sensitivity equation and Eq. (4.96) repre-

sents the position sensitivity constraint equation. Terms of the form (A(η)ξ̂)η denote

that variable ξ is held fixed during differentiation with respect to variable η. Differ-

entiating the position sensitivity constraint equation (4.96), the velocity sensitivity

constraint equation is obtained as

Φqqβl

′ + (Φq)
′qβl

+ (Φβl
)′ = 0 (4.97)

and differentiating the velocity sensitivity constraint equation of Eq. (4.97), the

acceleration sensitivity constraint equation is obtained as

Φqqβl

′′ + 2(Φq)
′qβl

′ + (Φq)
′′qβl

+ (Φβl
)′′ = 0 (4.98)

Defining variables

xq(β, t) ≡ qβl
(β, t) (4.99)

xv(β, t) ≡ qβl

′(β, t) (4.100)

z(β, t) ≡ λβl
(β, t) (4.101)

the direct differentiation DAE of Eqs. (4.95) and (4.96) is re-written as

Mxv ′ + Φq
>z = sd + Qxqxq + Qxvxv (4.102)

Φqx
q = rd (4.103)

82

where subscript d stands for direct differentiation method and functions sd, rd, Qxq ,

and Qxv are

sd = S1
βl
− (Mq̂′′βl

)
βl
− (Φq

>λ̂)βl
(4.104)

rd = −Φβl
(4.105)

Qxq = S1
q − (Mq′′)q − (Φq

>λ)q (4.106)

Qxv = S1
v (4.107)

The velocity sensitivity constraint equation of Eq. (4.97) is re-written as

Φqx
v + (Φq)

′xq = rd
′ (4.108)

where

rd
′ = −(Φβl

)′ = −(Φq q̂′)βl
− Φt,βl

(4.109)

and the acceleration sensitivity constraint equation of Eq. (4.98) is re-written as

Φqx
v ′ + 2(Φq)

′xv + (Φq)
′′xq = rd

′′ (4.110)

where

rd
′′ = −(Φβl

)′′

= −((Φq q̂′)q q̂
′)

βl
− (Φq q̂′′)βl

− 2(Φq,tq̂′)βl
− Φtt,βl

(4.111)

Defining the vector

Qx = Qxvxv + Qxqxq (4.112)

the equivalent index-1 DAE formulation [2], obtained by applying a stabilized index

reduction [24] to the DAE of Eqs. (4.102) and (4.103), augmenting the resulting DAE

83

with the constraint equation of Eq. (4.108), and introducing variables χd and ψd is

Fd(y, y′, t) =




xq ′ − xv + Φq
>χd

′

Mxv ′ + Φq
>ψd

′ −Qx − sd

Φqx
v + (Φq)

′xq − rd
′

Φqx
q − rd




= 0 (4.113)

where y =

(
χd

> ψd
> xv> xq>

)>
. A variable step-size BDF integration method

of up to order six converges for the index-1 DAE of Eq. (4.113), as is shown in

Section 4.5. The Jacobian of the non-linear equation that results from applying a

BDF integration method to the index-1 DAE of Eq. (4.113) is

Jd =




α1Φq
> 0 −I α1I

0 α1Φq
> α1M −Qxv −Qxq

0 0 Φq (Φq)
′

0 0 0 Φq




(4.114)

Evaluations of function Fd, Jacobian Jd, functions rd
′ and rd

′′, and consistent initial

conditions require computation of the following derivatives:

1. The position constraint Jacobian Φq and derivatives of the form (Φq
>ζ)q, (Mγ)q,

S1
q , and S1

v . The analytic evaluation of these derivatives is shown in Section 4.2.

2. Partial derivatives of kinematic terms with respect to design parameters β, Φβ,

(Φq
>ζ)β, (Mγ)β, S1

β, (Φqγ)β, and ((Φqγ)qζ)
β
.

84

4.3.1 Consistent Initial Conditions

Consistent initial conditions for the direct differentiation DAE of Eqs. (4.95)

and (4.96) are computed assuming one of the following hypothesis [50]:

1. The initial configuration of the multibody system depends explicitly upon the

design parameters [26]. As a result, initial conditions for the sensitivity equa-

tions are obtained by direct differentiation of the initial conditions of equations

of motion [26].

2. The generalized coordinate vector q is partitioned into subvectors qu and qv,

q = [qu>qv>]
>
, where qv has dimension equal to the number d of degrees of

freedom of the system. Also, the corresponding subvector qv ′ of the generalized

velocities is given. As a result, the sensitivities qv
β and qu

β , and their derivatives

qv
β
′ and qu

β
′ are [50]

qv
β = 0

qu
β = −(Φu)

−1Φβ

qv
β
′ = 0

qu
β
′ = −(Φu)

−1
(
Φt,β + (Φq q̂

′)β + (Φq q̂
′ + Φt)qqβ

)

where the constraint Jacobian Φq is partitioned into a nonsingular square block

Φu and block Φv,

Φq =

(
Φu Φv

)

3. The initial configuration is a static equilibrium configuration.

Therefore, generalized velocities q′ and accelerations q′′ are zero, and the initial

85

sensitivities are obtained [50] by solving the linear system




(Φq
>λ̂)q − S1

q Φq
>

Φq 0







qβ

λβ


 =




S1
β − (Φq

>λ̂)β

−Φβ




qβ
′ = 0

After consistent initial sensitivities for position qβ0 and velocity qβ
′
0 have been

obtained, the differential sensitivity equation of Eq. (4.96), together with the accel-

eration sensitivity constraint of Eq. (4.97), define the linear system

MS
0 wd

0 = bd
0 (4.115)

where MS
0 is the Schur complement matrix, defined by Eq. (4.25), at initial time t0,

wd
0 is the vector of unknowns,

wd
0 =

(
qβl

′′(t0)
> λβl

(t0)
>

)>

and

bd
0 =




(
(Lq + Qq − (Mq′′)q − (Φq

>λ)q)qβl
+ (Lq′ + Qq′)qβl

′)(t0)
(− 2(Φq)

′qβl

′ − (Φq)
′′qβl

− (Φβl
)′′

)
(t0)




As a result, initial conditions y0 and y′0 for the index-1 DAE of Eq. (4.113)

are

y0 =




χd0

ψd0

qβ
′
0

qβ0




=




0

0

qβ
′
0

qβ0




(4.116)

86

and

y′0 =




χd
′
0

ψd
′
0

qβl

′′(t0)

qβl

′(t0)




=




0

λβl
(t0)

qβl

′′(t0)

qβl

′(t0)




(4.117)

4.3.2 Evaluation of Partial Derivatives of Kinematic

Terms with respect to Design Parameters

Partial derivatives of kinematic terms with respect to design parameters β are

obtained by using the chain rule of differentiation. For a kinematic term X(q, q′, q′′, λ, u(β))

that depends on the generalized coordinate vector q, its first and second derivatives q′

and q′′, Lagrange multipliers λ, and a set of model parameters u(β) that are functions

of design parameters β, the partial derivative

∂X

∂β
=

∂X

∂u

∂u

∂β

has the following constituent parts:

1. The partial derivative of X with respect to model parameter u can be ana-

lytically evaluated, since, for a given topology, the multibody system depends

explicitly on model parameters; e.g., positions of points in bodies with respect

to corresponding body-fixed coordinate frame, inertia properties of a body, and

body fixed unit vectors.

2. The partial derivative of the vector of model parameter u with respect to design

87

parameter β, which must be given, or evaluated through finite differences or the

complex-step method.

In this thesis, only evaluation of terms in the first part is provided, while all the nec-

essary terms in the second part are assumed to be explicitly given. Next, evaluation

of derivatives with respect to model parameters of the form Φu, (Φqγ)u, (Φq
>ζ)u,

and ((Φqγ)qζ)
u
, where γ and ζ are constant known vectors, is presented for each

of the four basic constraints; spherical, dot-1, dot-2, and distance. Let constant

fourteen-dimensional vectors γ, γ1, and γ2 have the form of Eq. (4.48), γ3 be a

three-dimensional constant vector, and α be a constant scalar.

The spherical constraint function ΦS of Eq. (4.38) depends on model parame-

ters s′Pi and s′Pj . Derivatives ΦS
u, (ΦS

qγ)u, (ΦS
q
>
ζ)u, and ((ΦS

qγ)qζ)
u
, where γ and

ζ are constant known vectors and u ∈ {s′Pi , s′Pj }, are [50]

ΦS
s′Pi

= Ai (4.118)

ΦS
s′Pj

= −Aj (4.119)

(ΦS
qi,qj

γ)s′Pi
= N(pi, γ

i,p) (4.120)

(ΦS
qi,qj

γ)s′Pj
= −N(pj, γ

j,p) (4.121)

(ΦS
qi,qj

>
γ3)s′Pi

=




0

C>(pi, γ3)

0

0




(4.122)

88

(ΦS
qi,qj

>
γ3)s′Pj

=




0

0

0

−C>(pj, γ3)




(4.123)

(
(ΦS

qi,qj
γ1)qi,qj

γ2

)
s′Pi

=
(
B(γi,p

1 , s′Pi)γi,p
2 −B(γj,p

1 , s′Pj)γj,p
2

)
s′Pi

= N(γi,p
1 , γi,p

2) (4.124)

(
(ΦS

qi,qj
γ1)qi,qj

γ2

)
s′Pj

=
(
B(γi,p

1 , s′Pi)γi,p
2 −B(γj,p

1 , s′Pj)γj,p
2

)
s′Pj

= −N(γj,p
1 , γj,p

2) (4.125)

Derivatives

N(pi, γ
j,p) ≡ ∂(B(pi, a

′
i)γ

j,p)

∂a′i
(4.126)

and

C>(pi, γ3) ≡ ∂(B>(pi, a
′
i)γ3)

∂a′i
(4.127)

are defined by Eqs. (A.98) and (A.101), respectively, of the Appendix.

The dot-1 constraint function Φd1 of Eq. (4.46) depends on model parameters

h′i and h′j. Derivatives Φd1
u, (Φd1

qγ)u, (Φd1
q
>
ζ)u, and ((Φd1

qγ)qζ)
u
, where γ and ζ

are constant known vectors and u ∈ {h′i, h′j}, are [50]

Φd1

h′i = h′j
>
Aj

>Ai (4.128)

Φd1

h′j = h′i
>
Ai

>Aj (4.129)

(Φd1
q γ)h′i = (Ajh

′
j)
>
N(pi, γ

pi) + γpj>B>(pj, h
′
j)Ai (4.130)

89

(Φd1
q γ)h′j = (Aih

′
i)
>
N(pj, γ

pj) + γpi>B>(pi, h
′
i)Aj (4.131)

(Φd1
q

>
α)h′i = α




0

C>(pi, Ajh
′
j)

0

B>(pj, h
′
j)Ai




(4.132)

(Φd1
q

>
α)h′j = α




0

B>(pi, h
′
i)Aj

0

C>(pj, Aih
′
i)




(4.133)

((Φd1
qi,qj

γ1)qi,qj
γ2)

h′i
=

(
(Ajh

′
j)
>
B(γi,p

1 , h′i)γ
i,p
2 + γj,p

1

>
B>(pj, h

′
j)B(pi, h

′
i)γ

i,p
2

+ γi,p
1

>
B>(pi, h

′
i)B(pj, h

′
j)γ

j,p
2 + (Aih

′
i)
>
B(γj,p

1 , h′j)γ
j,p
2

)
h′i

= (Ajh
′
j)
>
N(γi,p

1 , γi,p
2) + γj,p

1

>
B>(pj, h

′
j)N(pi, γ

i,p
2)

+ γj,p
2

>
B>(pj, h

′
j)N(pi, γ

i,p
1) + γj,p

2

>
B>(γj,p

1 , h′j)Ai (4.134)

((Φd1
qi,qj

γ1)qi,qj
γ2)

h′j
=

(
(Ajh

′
j)
>
B(γi,p

1 , h′i)γ
i,p
2 + γj,p

1

>
B>(pj, h

′
j)B(pi, h

′
i)γ

i,p
2

+ γi,p
1

>
B>(pi, h

′
i)B(pj, h

′
j)γ

j,p
2 + (Aih

′
i)
>
B(γj,p

1 , h′j)γ
j,p
2

)
h′j

= γi,p
2

>
B>(γi,p

1 , h′i)Aj + γi,p
2

>
B>(pi, h

′
i)N(pj, γ

j,p
1)

+ γi,p
1

>
B>(pi, h

′
i)N(pj, γ

j,p
2) + (Aih

′
i)
>
N(γj,p

1 , γj,p
2) (4.135)

The dot-2 constraint function Φd2 of Eq. (4.58) depends on model parameters

h′i, s′Pi , and s′Pj . Derivatives Φd2
u, (Φd2

qγ)u, (Φd2
q
>
ζ)u, and ((Φd2

qγ)qζ)
u
, where γ

90

and ζ are constant known vectors and u ∈ {h′i, s′Pi , s′Pj }, are [50]

Φd2

h′i = di,j
>Ai (4.136)

Φd2

s′Pi
= (Aih

′
i)
>
(−Ai) = −h′i

>
(4.137)

Φd2

s′Pj
= (Aih

′
i)
>
(Aj) (4.138)

(Φd2
qi,qj

γ)h′i = −γi,r>(Ai) + di,j
>N(pi, γ

i,p)− γi,p>B>(pi, s
′P
i)Ai

+ γj,r>Ai + γj,p>B>(pj, s
′P
j)Ai (4.139)

(Φd2
qi,qj

γ)s′Pi
= −γi,p>B>(pi, h

′
i)Ai − (Aih

′
i)
>
N(pi, γ

i,p) (4.140)

(Φd2
qi,qj

γ)s′Pj
=

(
(Aih

′
i)
>
B(pj, s

′P
j)γj,p

)
s′Pj

+ γi,p>B>(pi, h
′
i)di,js′Pj

= (Aih
′
i)
>
N(pj, γ

j,p) + γi,p>B>(pi, h
′
i)Aj (4.141)

91

(Φd2
qi,qj

>
α)

h′i
= α




−Ai

C>(pi, di,j)−B>(pi, s
′P
i)Ai

Ai

B>(pj, s
′P
j)Ai




(4.142)

(Φd2
qi,qj

>
α)s′Pi

= α




0

−C>(pi, Aih
′
i)−B>(pi, h

′
i)Ai

0

0




(4.143)

(Φd2
qi,qj

>
α)s′Pj

= α




0

B>(pi, h
′
i)Aj

0

C>(pj, Aih
′
i)




(4.144)

((Φd2
qi,qj

γ1)qi,qj
γ2)

h′i
= di,j

>N(γi,p
1 , γi,p

2)− γi,r
2

>
N(pi, γ

i,p
1)− (ΦS

qi,qj
γ1)

>
N(pi, γ

i,p
2)

− γi,p
2

>
B>(γi,p

1 , s′Pi)Ai − γi,p
2

>
B>(pi, s

′P
i)N(pi, γ

i,p
1)

+ γj,r
2

>
N(pi, γ

i,p
1) + γj,p

2

>
B>(γj,p

1 , s′Pj)Ai

+ γj,p
2

>
B>(pj, s

′P
j)N(pi, γ

i,p
1) (4.145)

((Φd2
qi,qj

γ1)qi,qj
γ2)

s′Pi
= −γi,p

2

>
B>(pi, h

′
i)N(pi, γ

i,p
1)

+ (Aih
′
i)
>
N(γi,p

1 , γi,p
2) + γi,p

2

>
B>(γi,p

1 , h′i)Ai

+ γi,p
1

>
B>(pi, h

′
i)N(pi, γ

i,p
2) (4.146)

92

((Φd2
qi,qj

γ1)qi,qj
γ2)

s′Pj
= γi,p

2

>
B>(pi, h

′
i)N(pj, γ

j,p
1)

+ γi,p
2

>
B>(γi,p

1 , h′i)Aj + (Aih
′
i)
>
N(γj,p

1 , γj,p
2)

+ γi,p
1

>
B>(pi, h

′
i)N(pj, γ

j,p
2) (4.147)

The distance constraint function ΦD of Eq. (4.73) depends on model param-

eters C, s′Pi , and s′Pj . Derivatives ΦD
u, (ΦD

qγ)u, (ΦD
q
>
ζ)u, and ((ΦD

qγ)qζ)
u
, where

γ and ζ are constant known vectors and u ∈ {C, s′Pi , s′Pj }, are [50]

ΦD
s′Pi

= −2di,j
>Ai (4.148)

ΦD
s′Pj

= 2di,j
>Aj (4.149)

ΦD
C = −2C (4.150)

(ΦD
qi,qj

γ)s′Pi
= − 2

(
γj,r + B(pj, s

′P
j)γj,p − γi,r −B(pi, s

′P
i)γi,p

)>
Ai

− 2di,j
>N(pi, γ

i,p) (4.151)

(ΦD
qi,qj

γ)s′Pj
= 2

(
γj,r + B(pj, s

′P
j)γj,p − γi,r −B(pi, s

′P
i)γi,p

)>
Aj

+ 2di,j
>N(pj, γ

j,p) (4.152)

(ΦD
qi,qj

γ)C = 0 (4.153)

(ΦD
qi,qj

>
α)s′Pi

= 2α




Ai

−C>(pi, di,j) + B>(pi, s
′P
i)Ai

−Ai

−B>(pj, s
′P
j)Ai




(4.154)

93

(ΦD
qi,qj

>
α)s′Pj

= 2α




Aj

−B>(pi, s
′P
i)Aj

Aj

C>(pj, di,j) + B>(pj, s
′P
j)Aj




(4.155)

(ΦD
qi,qj

>
α)C = 0 (4.156)

((ΦD
qi,qj

γ1)qi,qj
γ2)

s′Pi
= γ1

>ΦS
qi,qj

>
N(pi, γ

i,p
2) + γ2

>ΦS
qi,qj

>
N(pi, γ

i,p
1)

− di,j
>N(γi,p

1 , γi,p
2) +

(
γi,p

2

>
B>(γi,p

1 , s′Pi) (4.157)

− γj,p
2

>
B>(γj,p

1 , s′Pj)
)
Ai (4.158)

((ΦD
qi,qj

γ1)qi,qj
γ2)

s′Pj
= di,j

>N(γj,p
1 , γj,p

2)

− γ1
>ΦS

qi,qj

>
N(pj, γ

j,p
2)− γ2

>ΦS
qi,qj

>
N(pj, γ

j,p
1)

− (
γi,p

2

>
B>(γi,p

1 , s′Pi)− γj,p
2

>
B>(γj,p

1 , s′Pj)
)
Aj (4.159)

((ΦD
qi,qj

γ1)qi,qj
γ2)

C
= 0 (4.160)

Consider vector function

ω0(a, k, j) =

(
a3 0 a1

)>
(4.161)

if k = 3 and j = 1,

ω0(a, k, j) =

(
a2 a1 0

)>
(4.162)

if k = 2 and j = 1,

ω0(a, k, j) =

(
0 a3 a2

)>
(4.163)

94

if k = 3 and j = 2,

ω0(a, k, j) =

(
a1 0 0

)>
(4.164)

if k = 1 and j = 1,

ω0(a, k, j) =

(
0 a2 0

)>
(4.165)

if k = 2 and j = 2,

ω0(a, k, j) =

(
0 0 a3

)>
(4.166)

if k = 3 and j = 3, where a =

(
a1 a2 a3

)>
is a three-dimensional vector and k,j

are integers with properties k, j ∈ {1, 2, 3} and k ≥ j. Let γi =

(
γi,r> γi,p>

)>
be

a constant seven-dimensional vector with three-dimensional component γi,r and four-

dimensional component γi,p, and (J ′i)kj is the inertia tensor J ′i element positioned

at row k and column j.

Consider the product of Eq. (A.136) of the Appendix of matrix Mi and vector

γi. The derivative of product (Miγ
i) with respect to model parameter mi is

(Miγ
i)mi

=




γi,r − 2Ais̃′
C

i Giγ
i,p

2Gi
>s̃′

C

i Ai
>γi,r


 (4.167)

In order to evaluate the derivative of (Miγ
i) with respect to model parameter s′Ci ,

(Miγ
i) is re-written such that terms not depending on s′Ci are emphasized using the

(̂) operator

Miγ
i =




̂(miγi,r)− 2 ̂(miA(pi))s̃′
C

i
̂(G(pi)γi,p)

2 ̂(miG(pi)
>)s̃′

C

i
̂(A(pi)

>γi,r) + 4 ̂(G(pi)
>J ′iG(pi)γi,p)


 (4.168)

95

Using the property of the ∼ operator that [27] ãb = −b̃a and canceling terms

that do not depend on s′Ci ,

(Miγ
i)s′Ci

= 2mi




Ai
˜(Giγi,p)

−Gi
> ˜(Ai

>γi,r)


 (4.169)

The product (Miγ
i) depends on inertia tensor elements (J ′i)kj only through term

4G(pi)
>J ′iG(pi)γ

i,p. Therefore, the derivative of (Miγ
i) with respect to (J ′i)kj,j ≤ k,

is

(Miγ
i)(J ′i)kj

=




0

4Gi
>(J ′i)(J ′i)kj

G(pi)γ
i,p


 (4.170)

If j = k ∈ {1, 2, 3}, then symmetric 3×3 matrix (J ′i)(J ′i)kj
has an element equal

to one on k-th row and k-th column, all other elements being zero. If j < k ∈ {1, 2, 3},

then (J ′i)(J ′i)kj
has two elements equal to one, positioned at the k-th row and j-th

column and the j-th row and k-th column, all other elements being zero. Therefore,

the product of matrix (J ′i)(J ′i)kk
and three-dimensional vector ζ =

(
ζ1 ζ2 ζ3

)>

is

(J ′i)(J ′i)kk
ζ = ζk = ω0(ζ, k, k) (4.171)

where function ω0(ζ, k, j), j ≤ k, is defined in Eqs. (4.161) through (4.166). Prod-

uct (J ′i)(J ′i)kj
ζ, j < k, is a vector having elements ζj and ζk in j and k positions,

respectively, and zero as the remaining elements; i.e.,

(J ′i)(J ′i)kj
ζ = ω0(ζ, k, j) (4.172)

96

for j < k ∈ {1, 2, 3}. As a result, letting ζ = (Giγ
i,p),

(Miγ
i)(J ′i)kj

=




0

4Gi
>ω0((Giγ

i,p), k, j)


 (4.173)

Consider the Coriolis term Li of Eq. (A.128) of the Appendix,

Li =




L1,i

L2,i


 (4.174)

where the upper-block of Li is

L1,i = 4miEiGi
′>Gi

′Gi
>s′Ci (4.175)

and the lower-block of Li is

L2,i = −8Gi
′>J ′iGipi

′ (4.176)

Since only the upper block L1,i depends on mass mi, the derivative of Li with respect

to model parameter mi is

(Li)mi
=




4EiGi
′>Gi

′Gi
>s′Ci

0


 (4.177)

Also, only the upper block L1,i depends on s′Ci . Therefore, the derivative of Li with

respect to model parameter s′Ci is

(Li)s′Ci
=




4miEiGi
′>Gi

′Gi
>

0


 (4.178)

Coriolis term Li depends on inertia tensor elements (J ′i)kj only through the lower-

block L2,i. Hence,

(Li)(J ′i)kj
=




0

−8Gi
>(J ′i)(J ′i)kj

Gipi
′


 (4.179)

97

Replacing (J ′i)(J ′i)kj
by its expression defined in Eqs. (4.171) and (4.171), in which

ζ = (Gipi
′), the derivatives of Li with respect to inertia tensor elements (J ′i)kj are

(Li)(J ′i)kj
=




0

−8Gi
>ω0((Gipi

′), k, j)


 (4.180)

Partial derivatives of the applied force component Qi of Eq. (4.90) with respect

to model parameters FA
i and n′Ai ; TSDA parameters k, l0, c, and f(l, l′); and RSDA

parameters kθ, cθ, and n(θ, θ′) are defined by Eqs. (A.210) through (A.233) of the

Appendix.

4.4 An Index-1 Formulation of the Adjoint DAE

Consider the functional

Ψ(β, t2) = l(t2, q2, q′2, β) +

∫ t2

t1
g(q, q′, λ, β, t)dt (4.181)

where final time t2 is implicitly defined by the the condition [26]

Ω(t2, q(β, t2), β) = 0 (4.182)

The index-3 adjoint DAE of a multibody system with respect to the functional of Eq.

(4.181) is defined [26] as

Mµ′′ −Qµvµ′ −Qµqµ + Φq
>ν = sa (4.183)

Φqµ− ra = 0 (4.184)

where µ is the adjoint variable, ν is the adjoint Lagrange multiplier, and

Qµq = −
[
M ′′ +

(d

dt
(S1

v)
)> − (S1

q)
>

+
(
(Φq

>λ)q

>)
+

(
(Mv′)q

)>]
(4.185)

98

Qµv = −(2M ′ + S1
v
>
) (4.186)

sa = gq
> − d

dt
(gq′

>) (4.187)

ra = gλ
> (4.188)

This system was shown in Chapter 3 to be stable in the backward direction. Differen-

tiating the adjoint constraint of Eq. (4.184), the adjoint velocity constraint equation

is obtained,

Φqµ
′ + (Φq)

′µ− ra
′ = 0 (4.189)

Differentiating the velocity adjoint constraint of Eq. (4.189), the adjoint acceleration

constraint equation is obtained,

Φqµ
′′ + 2(Φq)

′µ′ + (Φq)
′′µ− ra

′′ = 0 (4.190)

Defining variables

µv = µ′ (4.191)

µq = µ (4.192)

and the function

Qµ = Qµvµ′ + Qµqµ = Qµvµv + Qµqµq (4.193)

the equivalent index-1 DAE formulation [2], obtained by applying a stabilized index

reduction [24] to the DAE of Eqs. (4.183) and (4.184), augmenting the resulting DAE

with the constraint of Eq. (4.189), and introducing variables χa and ψa is

99

Fa(y, y′, t) =




µ′q − µv + Φq
>χa

′

Mµ′v + Φq
>ψa

′ −Qµ − sa

Φqµ
v + (Φq)

′µq − ra
′

Φqµ
q − ra




= 0 (4.194)

where

y =




χa

ψa

µv

µq




(4.195)

A variable step-size BDF integration method of up to order six converges for

the index-1 DAE of Eq. (4.194), as is shown in Section 4.5, as long as integration is

performed in the backward direction. The Jacobian of the non-linear equation that

results from applying a BDF integration method to the index-1 DAE of Eq. (4.194)

is

Ja =




α1Φq
> 0 −I α1I

0 α1Φq
> α1M −Qµv −Qµq

0 0 Φq (Φq)
′

0 0 0 Φq




(4.196)

Evaluations of function Fa, Jacobian Ja, functions ra
′, ra

′′, and consistent

initial conditions require computation of the following derivatives:

1. The position constraint Jacobian Φq; derivatives of the form (Φq
>ζ)q, (Mγ)q,

S1
q ; and S1

v . The analytic evaluation of these derivatives is shown in Section 4.2.

100

2. First and second derivatives of mass matrix M and derivative of matrix S1
v .

3. Derivatives of function g, gq, (gq′)
′, gλ, (gλ)

′, and (gλ)
′′.

4.4.1 Consistent Initial Conditions

Consistent initial conditions for the direct differentiation DAE of Eqs. (4.183)

and (4.184) are computed after the final time t2 is reached and are given by the

following conditions [26]:

MS(t2)




µ(t2)

η(t2)


 =




lq′(t
2)
>

gλ
>(t2)


 (4.197)

where MS(t2) is the non-singular Schur-complement matrix defined by Eq. (4.25)

at final time t2. As a result of solving the linear system of Eq. (4.197), the adjoint

variable µ(t2) is available. In order to obtain the derivative µ′(t2) of the adjoint

variable at the final time, the following linear system must be solved [26]:

MS(t2)




µ′(t2)

−γ(t2)


 = −




(M ′µ + S1
q′
>
µ− (Φqq

′)q
>η + lq

> + gq′
>)(t2)

Φq
′µ(t2)− gλ

′(t2)




+




Ωq
>(t2)

0


 ξ(t2) (4.198)

where scalar ξ(t2) is defined [26] as

ξ(t2) = −

(
q′(t2)>(Φqq

′)q
>(t2) + q′′(t2)>Φq

>(t2)
)
η(t2)

Ωt(t2) + (Ωqq′)(t2)

+

(
d
dt

l(t, q, q′)
)
(t2) + g(t2)

Ωt(t2) + (Ωqq′)(t2)
(4.199)

101

The adjoint differential equation of Eq. (4.183), together with adjoint accel-

eration constraint of Eq. (4.190), at the final time, form the linear system

MS(t2)wa
2 = ba

2 (4.200)

where wa
2 is the vector of unknowns,

wa
2 =

(
µ′′(t2)> ν(t2)

>
)>

and

ba
2 =




(sa + Qµvµ′ + Qµqµ)(t2)

(ra
′′ − 2(Φq)

′µ′ − (Φq)
′′µ)(t2)




which solves for the second derivative µ′′(t2) of the adjoint variable and for the adjoint

Lagrange multipliers ν(t2) at the final time. As a result, the values of y and y′ at

final time t2, which represent initial conditions for the index-1 DAE of Eq. (4.194),

are

y(t2) =




χa(t
2)

ψa(t
2)

µ′(t2)

µ(t2)




=




0

0

µ′(t2)

µ(t2)




(4.201)

and

y′(t2) =




χa
′

ψa
′

µ′′(t2)

µ′(t2)




=




0

ν(t2)

µ′′(t2)

µ′(t2)




(4.202)

102

4.4.2 Derivatives of Mass Matrix and of Matrix S1
v

Substituting for x ≡ qi and X ≡ Mi into Eq. (A.7), of the Appendix,

Mi
′ =

(
(Miu1,0)qi

qi
′ + (Miu1,0)t . . . (Miu7,0)qi

qi
′ + (Miu7,0)t

)
(4.203)

where ul,0, l = 1, 2, . . . , 7, is the seven-dimensional unit vector with all elements zero

except the l-th, which is one. Each column of Mi
′ is independently evaluated using the

identity of Eq. (4.85). For a multibody system with constant mass and moments of

inertia, partial derivatives of mass elements with respect to time, of the form (Miul,0)t,

l = 1, 2, . . . , 7, are zero.

The second derivative Mi
′′ is obtained by substituting for x ≡ qi and X ≡ Mi

into Eq. (A.12) of the Appendix,

Mi
′′ =

(
(mi,1)

′′ . . . (mi,7)
′′

)
(4.204)

where mi,l = Miul,0, l = 1, 2, . . . , 7, are the columns of Mi. Derivatives (mi,l)
′′ are

obtained by applying the identity of Eq. (A.13) of the Appendix to columns mi,l,

l = 1, 2, . . . , 7,

(mi,l)
′′ = ((Miul,0)qi

qi
′)

qi
+ (Miul,0)qi

qi
′′ + 2(Miul,0)qi,t

qi
′ + (Miul,0)t,t (4.205)

where partial derivatives (Miul,0)qi,t
and (Miul,0)t,t are zero for multibody systems

with constant mass and moments of inertia.

Consequently, the first derivative of the mass matrix is assembled as

M ′ = (diag(Mi))
′ = diag((Mi)

′, i = 1, 2, . . . , nb) (4.206)

103

where (Mi)
′ is defined by Eq. (4.203), and the second derivative of the mass matrix

is

M ′′ = (diag(Mi))
′′ = diag((Mi)

′′, i = 1, 2, . . . , nb) (4.207)

where (Mi)
′′ is defined by Eq. (4.204). Hence, derivatives of the mass matrix are

obtained by independently evaluating the derivatives of each block Mi, using Eqs.

(4.203) and (4.204). Derivatives of the form (Miγ
i)qi

and ((Miγ
i
1)qi

γi
2)qi

; where γi,

γi
1, and γi

2 are 7-dimensional constant vectors; are presented in Section A.7 of the

Appendix.

Derivatives of matrix blocks Liqi
′ are obtained by substituting for x ≡

(
qi
> qi

′>
)>

and X ≡ Liqi
′ into the identity of Eq. (A.7) of the Appendix,

(Liqi
′)′ =

(
(Liqi

′)1
′ . . . (Liqi

′)7
′
)

(4.208)

where the derivative of the l-th column, (Liqi
′)l, l = 1, 2, . . . , 7, of matrix (Liqi

′) is

(Liqi
′)l
′ = (Liqi

′ul,0)qi
qi
′ + (Liqi

′ul,0)qi
′qi
′′ + (Liqi

′ul,0)t (4.209)

Derivatives of the form (Liqi
′γi)qi

and (Liqi
′γi)qi

′ are defined by Eqs. (A.160) and

(A.161), respectively, in the Appendix. It should be noted that (Liqi
′ul,0)t = 0,

l = 1, 2, . . . , 7, for a multibody system with constant mass and moments of inertia.

For an applied force Qi acting on body i, derivatives of matrix blocks Qiqi
′ are

obtained by substituting for x ≡
(

qi
> qi

′>
)>

and X ≡ Qiqi
′ into the identity of

Eq. (A.7) of the Appendix,

(Qiqi
′)
′ =

(
(Qiqi

′)1
′ . . . (Qiqi

′)7
′
)

(4.210)

104

where the derivative of the l-th column, (Qiqi
′)l, l = 1, 2, . . . , 7, of matrix (Qiqi

′) is

(Qiqi
′)l
′ = (Qiqi

′ul,0)qi
qi
′ + (Qiqi

′ul,0)qi
′qi
′′ + (Qiqi

′ul,0)t (4.211)

For a TSDA or RSDA force Qi acting between bodies i and j, derivatives (Qiq′ij)
′,

where qij =

(
qi
> qj

>
)>

, are obtained by substituting for x ≡
(

qij
> q′ij

>
)>

and X ≡ Qiq′ij into the identity of Eq. (A.7) of the Appendix,

(Qiq′ij)
′ =

(
(Qiq′ij)1

′ . . . (Qiq′ij)14
′
)

(4.212)

where the derivative of the l-th column, (Qiq′ij)l, l = 1, 2, . . . , 14, of matrix (Qiq′ij) is

(Qiq′ij)l
′ = (Qiq′ijηl,0)qij

q′ij + (Qiq′ijηl,0)q′ijq
′′
ij + (Qiq′ijηl,0)t (4.213)

where ηl,0, l = 1, 2, . . . , 14, is the 14-dimensional unit vector with all elements zero

except the l-th, which is one. Derivatives of the form (Qiq′ijγ
i,j)qij

where γi,j is a

constant 14-dimensional vector, are defined in the Appendix by Eqs. (A.176) and

(A.177), respectively, for TSDA and Eqs. (A.199) and (A.200), respectively, for

RSDA. Derivatives of the form (Qiq′ijγ
i,j)q′ij are defined in the Appendix by Eqs.

(A.178) and (A.179), respectively, for TSDA and Eqs. (A.201) and (A.202), respec-

tively, for RSDA. Therefore,

(S1
v)
′
= diag((Liqi

′)′, i = 1, 2, . . . , nb) + Qq′
′ (4.214)

is obtained by independently evaluating the derivatives (Liqi
′)′ and (Qiql

′)
′, using Eqs.

(4.208), (4.210), and (4.212).

Derivatives gq, (gq′)
′, gλ, (gλ)

′, and (gλ)
′′ are assumed to be given separately.

105

They depend on the actual optimization or optimal control problem for which gradi-

ents are computed [50].

4.5 Existence and Uniqueness of the Solution of

Index-1 DAE Formulations of Motion, Sen-

sitivity, and Adjoint Equations

The index-1 DAE formulations of motion, sensitivity, and adjoint equations of

Eqs. (4.20), (4.113), and (4.194) have the form

F (y, y′, t) =




y4
′ − y3 + Φq

>y1
′

My3
′ + Φq

>y2
′ + f2(y3, y4)

Φqy3 + f3(y4)

f4(y4)




= 0 (4.215)

106

where y =

(
y1
> y2

> y3
> y4

>
)>

. For the index-1 formulation of the equations

of motion of Eq. (4.20),

y1 = χ

y2 = ψ

y3 = v ≡ q′

y4 = q

f2(y3, y4) = −S1(q, q′, β, t)

f3(y4) = Φt(q, β, t)

f4(y4) = Φ(q, β, t)

For the direct differentiation sensitivity index-1 formulation of Eq. (4.113),

y1 = χd

y2 = ψd

y3 = xv ≡ qβ
′

y4 = xq ≡ qβ

f2(y3, y4) = −Qx(y3, y4)− sd(q, q
′, q′′, β, t)

f3(y4) = (Φq)
′y4 − rd(q, β, t)′

f4(y4) = Φqy4 − rd(q, β, t)

107

where Qx, sd, and rd are defined by Eqs. (4.112), (4.104), and (4.105). For the adjoint

index-1 formulation of Eq. (4.194),

y1 = χa

y2 = ψa

y3 = µv ≡ µ′

y4 = µq ≡ µ

f2(y3, y4) = −Qµ(y3, y4)− sa(q, q
′, λ, β, t)

f3(y4) = (Φq)
′y4 − ra(q, q

′, λ, β, t)
′

f4(y4) = Φqy4 − ra(q, q
′, λ, β, t)

where Qµ, sa, and ra are defined by Eqs. (4.193), (4.187), and (4.188). It should

be noted that for all three formulations, f4y4
= Φq. Also, in the index-1 formu-

lation of the equations of motion, matrices M and Φq depend on y4 ≡ q, while

in the index-1 formulations of direct differentiation and adjoint equations, they do

not depend on corresponding state vectors y =

(
χd

> ψd
> xv> xq>

)>
and y =

(
χa

> ψa
> µv> µq>

)>
. The theorems that follow are proved for later use. They

will be used in the proof of existence and uniqueness of a BDF integration method

applied to the index-1 formulation of Eq. (4.20) for the equations of motion, the

index-1 formulation of Eq. (4.113) for direct differentiation sensitivity equations, and

the index-1 formulation of Eq. (4.194) for adjoint equations.

Theorem 4.1. Matrix J ′C = J ′ + ms̃′C
2

is positive definite, where J ′ is the positive

definite inertia tensor of the body, m is the mass, and s′C is the position of the center

108

of mass with respect to the body-fixed coordinate frame.

Proof. The definition of the inertia tensor J ′ for a rigid body is [27]

J ′ = −
∫

m

s̃′
P
s̃′

P
dm(P) (4.216)

where s′P is the position of a point P in the rigid body with respect to the body-fixed

coordinate frame, dm(P) is the differential unit of mass at point P, and integration

is performed over the entire mass m of the body. Operator ∼, applied to a vector

a =

(
ax ay az

)>
, is [27]

ã =




0 −az ay

az 0 −ax

−ay ax 0




with the properties that ãa = 0, ã> = −ã, and det(ã) = 0. The definition of the

position of the center of mass s′C is [27]

s̃′
C

=
1

m

∫

m

s′P dm(P) (4.217)

Therefore,

J ′C = J ′ + ms̃′
c2

= −
∫

m

s̃′
P
s̃′

P
dm(P) +

1

m

(∫

m

s̃′
P
dm(P)

)2

(4.218)

where matrix J ′C is symmetric,

J ′C
>

= J ′> + m(s̃′
C
s̃′

C
)
>

= J ′ + m(s̃′
C
)
>
(s̃′

C
)
>

= J ′ + m(−s̃′
C
)(−s̃′

C
) = J ′ + m(−s̃′

C
)2 = J ′C (4.219)

109

Let a be a three-dimensional constant vector and j′C(a) the product

j′C(a) = a>J ′Ca = a>(J ′ + ms̃′
c2

)a = −
∫

m

a>s̃′
P
s̃′

P
a·dm(P)

+
1

m

(∫

m

a>s̃′
P
dm(P)

)
·
(∫

m

s̃′
P
a·dm(P)

)
(4.220)

Using the identity (s̃′
P
)
>

= −s̃′
P
, j′C(a) is re-written as

j′C(a) =

∫

m

a>(s̃′
P
)
>
s̃′

P
a·dm(P)− 1

m

(∫

m

s̃′
P
a·dm(P)

)>(∫

m

s̃′
P
a·dm(P)

)

=

∫

m

‖s̃′P a‖2
2dm(P)− 1

m
‖sa‖2

2 (4.221)

where sa =
∫

m
s̃′

P
a·dm(P).

Consider the vector function f(x) : Ω⊂RN→RN ,

f(x) =

(
f1(x) . . . fN(x)

)>
(4.222)

where

fi : Ω→R, i = 1, 2, . . . , N (4.223)

The absolute value of the scalar product of function fi(x) with function u : Ω→R

u(x) = 1 (4.224)

is, according to the Cauchy-Schwarz inequality [9], bounded by

|(fi, u)Ω|≤‖fi‖Ω·‖u‖Ω (4.225)

where [9]

(fi, u)Ω≡
∫

Ω

fi(x)u(x)dx (4.226)

‖fi‖Ω≡
√

(fi, fi)Ω (4.227)

110

As a result, the inequality of Eq. (4.225) is

|
∫

Ω

fi(x)u(x)dx|≤
√∫

Ω

f 2
i (x)dx·

√∫

Ω

u2(x)dx (4.228)

which, by squaring terms and accounting for the definition u(x) = 1, is re-written as

(∫

Ω

fi(x)dx

)2

≤
∫

Ω

1dx

∫
f 2

i (x)dx (4.229)

Since f(x) =

(
f1(x) . . . fN(x)

)>

∫

Ω

f>(x)f(x)dx =

∫

Ω

N∑
i=1

f 2
i (x)dx =

N∑
i=1

∫

Ω

f 2
i (x)dx (4.230)

Pre-multiplying Eq. (4.230) by positive
∫

Ω
1dx, where sub-domain Ω is assumed to

have non-zero measure [9],

(∫

Ω

1dx

)
·
(∫

Ω

f>(x)f(x)dx

)
=

N∑
i=1

(∫

Ω

1dx

)
·
(∫

Ω

f 2
i (x)dx

)
(4.231)

Using the inequality of Eq. (4.229),

(∫

Ω

1dx

)
·
(∫

Ω

f>(x)f(x)dx

)
=

N∑
i=1

(∫

Ω

1dx

)
·
(∫

Ω

f 2
i (x)dx

)

≥
N∑

i=1

(∫

Ω

fi(x)dx

)2

(4.232)

Let ω =
∫

Ω
f(x)dx =

(∫
Ω

f1(x)dx . . .
∫

Ω
fN(x)dx

)>
. Then, the euclidian

norm of vector ω is

‖ω‖2 =

(∫

Ω

f(x)dx

)>
·
(∫

Ω

f(x)dx

)
=

N∑
i=1

(∫

Ω

fi(x)dx

)2

(4.233)

Substituting Eq. (4.233) into the inequality of Eq. (4.232),

(∫

Ω

f(x)dx

)>
·
(∫

Ω

f(x)dx

)
≤

(∫

Ω

1dx

)
·
(∫

Ω

f>(x)f(x)dx

)
(4.234)

111

and dividing by the strictly positive scalar
∫
Ω

1dx, the following inequality is obtained:

(∫

Ω

f>(x)f(x)dx

)
− 1∫

Ω
1dx

(∫

Ω

f(x)dx

)> (∫

Ω

f(x)dx

)
≥ 0 (4.235)

Taking N = 3, x = m(P), Ω = m, and f(x) = s̃′
P
a, it follows that

∫
Ω

1·dx =

∫
m

1·dm(P) = m and the inequality of Eq. (4.235) is re-written as

∫

Ω

(s̃P a)
>
(s̃P a)dm(P)− 1

m
‖sa‖2 ≥ 0 (4.236)

so j′C(a) = a>J ′Ca ≥ 0, for an arbitrary vector a∈R3. In order for the inequality

of Eq. (4.235) to become an equality, it is necessary [9] for f(x) to be constant;

i.e., f(x) = c∈RN . Therefore, s̃′
P
a = c∈R3 for any s′P (m(P)); i.e., being given an

arbitrary vector a, the vector product

s̃′
P
(m(P))a = c (4.237)

needs to be constant for any point P inside the body, in order to obtain equality in

Eq. (4.236). As a result, Eq. (4.237) must hold for sP∈{i′, j′, k′}, where {i′, j′, k′}

are the unit vectors

i′ =
(

1 0 0

)>
(4.238)

j′ =
(

0 1 0

)>
(4.239)

k′ =
(

0 0 1

)>
(4.240)

Consequently,

ĩ′a = c (4.241)

j̃′a = c (4.242)

k̃′a = c (4.243)

112

where a is the arbitrary given vector of Eq. (4.220). Equations (4.241) through

(4.243) can only hold if c = 0. Thus, vector a must be zero. As a result,

j′C(a) = a>J ′Ca = 0

only if a = 0. Otherwise j′C(a) > 0, as shown in Eq.(4.236). Therefore, J ′C is positive

definite. ¥

Theorem 4.2. The rank of the matrix

G(p) =

(
−e −ẽ + e0I

)
(4.244)

is three for any normalized Euler parameter vector p =

(
e0 e>

)
.

Proof. For the 3×4 matrix G, the following identity holds [27]:

GG> = I3 (4.245)

where I3 is the 3×3 identity matrix. Applying Sylvester’s inequality [23] to the

identity of Eq. (4.245),

rank(G>) + rank(G)− 4 ≤ rank(GG>)

≤ min
(
rank(G>), rank(G)

)
(4.246)

= rank(G)

it follows that

rank(G) ≥ rank(GG>) = rank(I3) = 3 (4.247)

Since G has three rows, its rank cannot exceed three. Therefore, rank(G) = 3. ¥

113

Theorem 4.3. If J is a 3×3 non-singular matrix, then the 4×4 matrix JG = G>(p)JG(p)

has rank three, for any normalized Euler parameter vector p.

Proof. According to Sylvester’s inequality [23],

3 = rank(G>) + rank(J)− 3 ≤ rank(G>J)

≤ min
(
rank(G>), rank(J)

)
= 3

Therefore, rank(G>J) = 3. Applying Sylvester’s inequality to the product G>JG, it

follows that

3 = rank(G>J) + rank(G)− 3 ≤ rank(G>JG)

≤ min
(
rank(G>J), rank(G)

)
= 3

Consequently, rank(G>JG) = 3 ¥

Corollary 4.4. The null space of matrix JG = G>(p)JG(p), with J non-singular,

has dimension one and is

N (G>(p)JG(p)) = {p}

where p is the normalized Euler parameter vector.

Proof. The following equality holds [23]:

rank(JG) + dim
(N (JG)

)
= 4

where dim
(N (JG)

)
represents the dimension of the null space of JG. Therefore,

dim
(N (JG)

)
= 4− rank(JG) = 1 (4.248)

114

Since [27]

G(p)p = 0 (4.249)

it follows that

JGp = G>(p)JG(p)p = 0 (4.250)

Therefore,

p∈N (JG)

and because dim(N (JG)) = 1,

N (JG) = {p}

¥

Theorem 4.5. Matrix

Mi(pi)




miI3 −2miA(pi)s̃′
C

i G(pi)

2miG
>(pi)s̃′

C

i A>(pi) 4G>(pi)J
′
iG(pi)




is a 7×7 matrix of rank six, where pi is the normalized Euler parameter vector of body

i, A(pi) is the orientation matrix [27], G(pi) is the matrix defined by Eq. (4.244), mi

is the mass of body i, s′Ci is the position of the center of mass of body i with respect

to the body fixed coordinate frame, and I3 is the 3×3 identity matrix.

Proof. Consider an arbitrary seven-dimensional vector

v =

(
vr> vp>

)

with tree-dimensional component vr and four-dimensional component vp. For vector

115

ωi =

(
0 pi

>
)
∈N (Mi(pi)),

Mi(pi)ωi =




miI3 −2miA(pi)s̃′
C

i G(pi)

2miG
>(pi)s̃′

C

i A>(pi) 4G>(pi)J
′
iG(pi)







0

pi




=



−2miA(pi)s̃′

C

i G(pi)pi

4G>(pi)J
′
iG(pi)pi


 = 0

since G(pi)pi = 0 [27]. Assume that v∈N (Mi(pi)); i.e., Mi(pi)v = 0. Then,

miv
r − 2miA(pi)s̃′

C

i G(pi)v
p = 0 (4.251)

2miG
>(pi)s̃′

C

i A>(pi)v
r + 4G>(pi)J

′
iG(pi)v

p = 0 (4.252)

Therefore, Eq. (4.251) states that

vr = 2A(pi)s̃′
C

i G(pi)v
p (4.253)

which, substituted into Eq. (4.252), yields

4miG
>(pi)s̃′

C

i A>(pi)A(pi)s̃′
C

i G(pi)v
p + 4G>(pi)J

′
iG(pi)v

p = 0 (4.254)

Since A>(pi)A(pi) = I3, Eq. (4.254) is re-written as

(
miG

>(pi)s̃′
c2

i G(pi) + G>(pi)J
′
iG(pi)

)
vp = 0 (4.255)

Factoring terms,

G>(pi)(J
′
i + mis̃′

c2

i)G(pi)v
p = 0 (4.256)

where matrix J ′i
G = J ′i +mis̃′

c2

i is non-singular, according to Theorem 4.1. As a result

of Corollary 4.4, the null-space of matrix G>(pi)J
′
i
GG(pi) is

N (G>(pi)J
′
i
G
G(pi)) = {pi}

116

Therefore, vp = αpi, where α is a non-zero scalar. Using Eq. (4.253),

vr = 2A(pi)s̃′
C

i G(pi)αpi = 0

so v =

(
vr> vp>

)
=

(
0 αpi

>
)

. Thus, if v∈N (Mi(pi)), it has the form

v =




0

αpi




Therefore, the null-space of matrix N (Mi(pi)) consists of only one vector,

N (Mi(pi)) =








0

pi








(4.257)

and dim(N (Mi(pi))) = 1. Since (Mi(pi)) is a 7×7 matrix, it follows that

rank(Mi(pi)) = 7− dim(N (Mi(pi))) = 6

¥

As a result, matrix Mi(pi) has six linearly independent rows(columns), for any

normalized four-dimensional vector pi. Thus, the multibody system mass matrix

M(q) = diag(Mi(qi), i = 1, 2, . . . , nb)

has 6nb linearly independent rows(columns), for any consistent generalized coordinate

q =

(
q1
> . . . qnb

>
)>

; i.e., any q(β, t) such that Φ(q, β, t) = 0. Therefore,

M I(q) =




In 0

0 M(q)


 (4.258)

where In is the n-dimensional identity matrix, has n + 6nb linearly independent

rows(columns) for any consistent q. Hence, the theorem that follows is proved.

117

Theorem 4.6. The rank of mass matrix M I(q) is

rank(M I(q)) = n + 6nb (4.259)

for any consistent generalized coordinate q; i.e., any q(β, t) such that Φ(q, β, t) = 0.

¥

Theorem 4.7. Let A(x) be a matrix in which each element aij(x) : Rn→R is a

continuous function. If rank(A(q)) = nr then there is an open neighborhood B(q, ρ)

of q in which rank(A(x)) = nr for all x∈B(q, ρ)

Proof. The proof is done by induction on the minors of a largest non-zero deter-

minant of A(q). Since rank(A(q)) = nr, there are n2
r elements ai1,j1(q) . . . , ai1,jnr

(q) . . .,

ainr ,j1(q) . . . , ainr ,jnr
(q) such that

∆(q) =

∣∣∣∣∣∣∣∣∣∣∣∣

ai1,j1(q) . . . ai1,jnr
(q)

...
...

ainr ,j1(q) . . . ainr ,jnr
(q)

∣∣∣∣∣∣∣∣∣∣∣∣

6=0

The determinant ∆(q) is a continuous function ∆(q) : Rn→R. In order to prove this,

it will be shown by induction that each minor [40] of matrix block

Ai1,...,inr
j1,...,jnr

(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

ai1,j1(x) . . . ai1,jnr
(x)

...
...

ainr ,j1(x) . . . ainr ,jnr
(x)

∣∣∣∣∣∣∣∣∣∣∣∣

consisting of elements situated on rows i1, . . . , inr and columns j1, . . . , jnr , is a con-

tinuous function. An order one minor ∆k
l
(x) of Ai1,...,inr

j1,...,jnr

(x) is [40] ∆k
l
(x) = aik,jl

(x),

118

k, l∈{1, . . . , nr}. Since ai,j(x) are continuous, ∆k
l
(x), k, l∈{1, . . . , nr}, are continuous.

Assume, as induction hypothesis, that all minors of order p, ∆k1,...,kp

l1,...,lp

, are continuous

functions. Then, any minor of order p + 1 has the form [40]

∆k1,...,kp+1

l1,...,lp+1

(x) = ak1,l1(x)∆k2,...,kp+1

l2,...,lp+1

(x)− ak1,l2(x)∆ k2,...,kp+1

l1,l3,...,lp+1

(x)

+ . . . + (−1)pak1,lp+1(x)∆k2,...,kp+1

l1,...,lp

(x)

where ak1,lj(x), j = 1, 2, . . . , p + 1, are continuous functions, according to the hypoth-

esis, and all minors of order p

∆k2,...,kp+1

l2,...,lp+1

(x), . . . , ∆k2,...,kp+1

l1,...,lp

(x)

are continuous by the induction hypothesis. Since the product of two continuous

functions is a continuous function [44] and the sum of p + 1 continuous functions is a

continuous function [44], terms of the form

ak1,l1(x)∆k2,...,kp+1

l2,...,lp+1

(x),−ak1,l2(x)∆ k2,...,kp+1

l1,l3,...,lp+1

(x), . . . , (−1)pak1,lp+1(x)∆k2,...,kp+1

l1,...,lp

(x)

are continuous functions. Hence, their sum, ∆k1,...,kp+1

l1,...,lp+1

, which is a minor of order p+1,

is a continuous function. Therefore, all minors of order one are continuous, and the

assumption that order p minors are continuous implies that order p + 1 minors are

continuous. By induction, it follows that all minors of order 1, 2, . . . , nr of matrix

block Ai1,...,inr
j1,...,jnr

(x), are continuous functions. Since the only minor of Ai1,...,inr
j1,...,jnr

(x) of

order nr is ∆(x), it follows that ∆(x) = det(Ai1,...,inr
j1,...,jnr

(x)) is continuous. As a result,

by definition of continuity [44], for any ε > 0, there is an open neighborhood B(q, ρ),

with ρ > 0 depending on q and ε, such that |∆(x)−∆(q)| < ε for any x∈B(q, ρ(q, ε));

119

i.e., ∆(q)− ε < ∆(x) < ∆(q)+ ε, where ∆(q) is non-zero, by hypothesis. If ∆(q) < 0,

let ε < −∆(q). Therefore, ∆(x) < ∆(q) + ε < 0 for any x∈B(q, ρ(q, ε)). If ∆(q) > 0,

let ε < ∆(q). Then, 0 < ∆(q) − ε < ∆(x), for any x∈B(q, ρ(q, ε)). Hence, ∆(x)

is non-zero for any x in the neighborhood B(q, ρ(q, ε)). As a result, the rank nr is

preserved in the entire neighborhood B(q, ρ(q, ε)). ¥

Theorem 4.8. The rank of the 2(n + m)×2(n + m) matrix

A(q) =




Φq
> 0 0 In

0 Φq
> M 0

0 0 0 0

0 0 0 0




(4.260)

is constant and equal to max(n+m,n+6nb), for any consistent generalized coordinate

q; i.e., any q(β, t) such that Φ(q, β, t) = 0.

Proof. By row permutations Pr and column permutations Pc, matrix block

Φq
I,0 =




In 0

0 Φq
>


 (4.261)

can be transformed to

PrΦq
I,0Pc =




In 0

0 Φu
>

0 Φv
>




(4.262)

where m×m matrix Φu is non-singular [27]. Consider the (n + m)×(n + m) matrix

block

Φu
I,0 =




In 0

0 Φu
>


 (4.263)

120

and assume there is a (n + m) dimensional vector

v =




v1

v2


 (4.264)

such that

Φu
I,0v =




In 0

0 Φu
>







v1

v2


 =




v1

Φu
>v2


 = 0 (4.265)

That is,

v1 = 0

and

Φu
>v2 = 0

which implies v2 = 0, since Φu is non-singular. Thus, Φu
I,0 is non-singular. Consider

matrix blocks

MΦ =




Φq
> 0

0 M




and

Φq,q =




Φq
> 0

0 Φq
>




both of which have at most n + m columns. Therefore, their rank cannot exceed

n + m. Consider the rank of the matrix block

Φu
i,q =




In 0 Φq
>

0 Φu
> 0

0 Φv
> 0




121

Selecting any number of columns l, equal at most to the number d of degrees of

freedom, from block 


Φq
>

0

0




and any l rows from block
(

0 Φv
> 0

)

the following matrix block is obtained:

Φu
I,l =




In 0 C13

0 Φu
> 0

0 C32 0




where C13 is a n×l matrix obtained by selecting any l columns from matrix Φq
>and

C32 is a l×m matrix obtained by selecting any l rows from matrix Φv
>. Then, there

is a (n + m + l)-dimensional vector

v =

(
v1
> v2

> v3
>

)>
(4.266)

such that

Φu
I,lv =




In 0 C13

0 Φu
> 0

0 C32 0







v1

v2

v3




= 0 (4.267)

122

That is,

v1 + C13v3 = 0

Φu
>v2 = 0

C32v2 = 0

Any vector v =

(
−(C13v3)

> 0 v3
>

)>
with v3 6=0 satisfies the condition of Eq.

(4.267). Therefore, Φu
I,l is singular for any integer 1≤l≤d, while block Φu

I,0 is non-

singular. Hence,

rank(Φu
I,q) = n + m

The rank of the remaining matrix block

M I =




In 0

0 M




is n+6nb, as shown in Theorem 4.6. As a result, rank(Φu
I,q) = n+m, rank(MΦ)≤n+

m, rank(Φq,q)≤n + m, and rank(M I) = n + 6nb. Consequently,

rank(A) = max(n + m,n + 6nb)

¥

The rank of matrix A depends only on the topology of the multibody sys-

tem;i.e., on the number of bodies nb and number of constraints m. For a system

without constraint addition-deletion [28], in which new bodies are not engaged and

existent bodies are not disengaged, rank(A(q)) is constant at for any q(β, t) that

satisfies the algebraic constraints Φ(q, β, t) = 0.

123

Definition 4.1. The DAE

F (y, y′, t) = 0

is uniform index-1 if [13]

1. the index of the constant coefficient system

Aw′(t) + Bw(t) = g(t) (4.268)

where A = Fy′(ŷ, ŷ′, t̂) and B = Fy(ŷ, ŷ′, t̂), is one for all (ŷ, ŷ′, t̂) in a neighbor-

hood of the graph of the solution.

2. At, Ay and Ay′ exist and are bounded in a neighborhood of the solution.

3. rank(A) is constant in a neighborhood of the solution.

The theorem that follows proves that the DAE of the form of Eq. (4.215), for

dynamic, direct differentiation, and adjoint equations, are uniform index-1 DAE.

Theorem 4.9. Assuming M and Φ∈C2(Ω), Ω⊆Rn×Rnβ×R, the DAE formulations

of Eqs. (4.20), (4.113), and (4.194), for the dynamic, Direct Differentiation, and

Adjoint DAE, respectively, are uniform index-1.

Proof. For index-1 DAE formulations of Eqs. (4.20), (4.113), and (4.194),

partial derivatives Fy′ and Fy, are

A = Fy′ =




Φq
> 0 0 I

0 Φq
> M 0

0 0 0 0

0 0 0 0




(4.269)

124

and

B = Fy =




0 0 −I B14

0 0 B23 B24

0 0 Φq (Φq)
′

0 0 0 Φq




(4.270)

Matrix B14 = (Φq
>χ′)q for the index-1 DAE formulation of dynamics of Eq. (4.20),

and B14 = 0 for index-1 DAE formulations of direct differentiation and adjoint equa-

tions of Eqs. (4.113) and (4.194). Matrix B23 = −S1
v for the index-1 DAE formulation

of dynamics of Eq. (4.20), B23 = −Qxv for the index-1 DAE formulation of direct

differentiation equations of Eq. (4.113), and B23 = −Qµv for the index-1 DAE for-

mulation of adjoint equations of Eq. (4.194). Matrix B24 = (Mv′ + Φq
>Ψ′ − S1)q for

the index-1 DAE formulation of dynamic equations of Eq. (4.20), B24 = −Qxq for

the index-1 DAE formulation of direct differentiation equations of Eq. (4.113), and

B24 = −Qµq for the index-1 DAE formulation of adjoint equations of Eq. (4.194).

The constant coefficient DAE

Aw′ + Bw = g

is expanded as

Φq
>w′

1 + w′
4 − w3 + B14w4 = g1 (4.271)

Φq
>w′

2 + Mw′
3 + B23w3 + B24w4 = g2 (4.272)

Φqw3 + Φq
′w4 = g3 (4.273)

Φqw4 = g4 (4.274)

125

where w =

(
w1

> w2
> w3

> w4
>

)>
and g =

(
g1
> g2

> g3
> g4

>
)>

. Dif-

ferentiating the algebraic constants of Eqs. (4.273) and (4.274) once, the following

differential equation is obtained:


Φq
> 0 0 I

0 Φq
> M 0

0 0 Φq (Φq)
′

0 0 0 Φq







w1
′

w2
′

w3
′

w4
′




+




0 0 −I B14

0 0 B23 B24

0 0 0 0

0 0 0 0







w1

w2

w3

w4




=




g1

g2

g3

g4




(4.275)

where coefficient matrix

A1 =




Φq
> 0 0 I

0 Φq
> M 0

0 0 Φq (Φq)
′

0 0 0 Φq




(4.276)

is non-singular. Assuming the contrary, let v =

(
v1
> v2

> v3
> v4

>
)>

be a vector

belonging to the null-space of matrix A1; i.e.,

A1v =




Φq
> 0 0 I

0 Φq
> M 0

0 0 Φq (Φq)
′

0 0 0 Φq







v1

v2

v3

v4




= 0 (4.277)

126

Therefore,

Φq
>v1 + v4 = 0 (4.278)

Φq
>v2 + Mv3 = 0 (4.279)

Φqv3 + Φq
′v4 = 0 (4.280)

Φqv4 = 0 (4.281)

Component v4 must be zero. Otherwise, pre-multiplying Eq. (4.278) by v4
>

v4
>Φq

> + ‖v4‖2
2 = 0 (4.282)

and accounting for the identity of Eq. (4.281), Φqv4 = 0, it follows that

‖v4‖2
2 = 0

which implies that v4 = 0. As a result, Eq. (4.278) is reduced to

Φq
>v1 = 0

which implies that v1 = 0, since Φq
> has full column rank. The remaining two

equations, Eqs. (4.279) and (4.280), are reduced to




M Φq
>

Φq 0







v3

v2


 = 0

Since the Schur complement matrix

MS =




M Φq
>

Φq 0




127

is non-singular [52], it follows that v3 = 0 and v2 = 0. Consequently v = 0, which

implies that A1 is non-singular. Hence, the differential equation of Eq. (4.275),

obtained by once differentiating the constraints of Eqs. (4.273) and (4.274) of the

DAE of Eqs. (4.271) through (4.274), is an ODE. Therefore, the DAE of Eqs. (4.271)

through (4.274) is an index-1 DAE [13]. Existence and boundedness of At, Ay, and

Ay′ follow from the hypothesis M(q, β, t) and Φ(q, β, t)∈C2(Ω), Ω⊆Rn×Rnβ×R. As

a result of Theorem 4.8,

rank(A(q)) = max(n + m,n + 6nb)

and Theorem 4.7 shows that a matrix function of q, with continuous elements, pre-

serves its rank in a neighborhood B(q, ρ). Therefore, rank(A(x)) is constant in a

neighborhood B(q, ρ) of the graph of the solution. Properties 1 through 3 of Defini-

tion 4.1 are, therefore, satisfied. Thus, the DAE formulations of Eqs. (4.20), (4.113),

and (4.194) for dynamic, direct differentiation, and adjoint DAE, respectively, are

uniform index-1. ¥

According to Theorem 3.2.1. of Ref. [13], a BDF method of order up to six

is convergent for a uniform index-1 DAE. Hence, an up to order six BDF integration

method applied to Eqs. (4.20), (4.113), and (4.194), which were shown to be uniform

index-1, has a unique solution.

128

CHAPTER 5
COARSE GRAINED PARALLELISM: PIECEWISE SOLUTION OF

THE ADJOINT DIFFERENTIAL-ALGEBRAIC EQUATIONS

Consider a functional subjected to optimization or optimal control, of the form

Ψ(β, t2) = l(t2, q2, q′2, β) +

∫ t2

t1
g(q, q′, λ, β, t)dt (5.1)

with final time t2 implicitly defined by the condition [26]

Ω(t2, q(β, t2), β) = 0 (5.2)

The index-3 adjoint DAE of a multibody system with respect to the functional of Eq.

(5.1) is [26]

Mµ′′ + D1µ
′ + D2µ + Φq

>ν = sa (5.3)

Φqµ = ra (5.4)

where µ is the adjoint variable, ν is the adjoint Lagrange multiplier, and

D2 =

[
M ′′ +

(d

dt
(S1

v)
)> − (S1

q)
>

+
(
(Φq

>λ)q

>)
+

(
(Mv′)q

)>]
(5.5)

D1 = (2M ′ + S1
v
>
) (5.6)

sa = gq
> − d

dt
(gq′

>) (5.7)

ra = gλ
> (5.8)

The constraint Jacobian Φq is assumed to have full row-rank at all times [27]. As a

result [58], there exist permutation matrices Pr and Pc [18]; i.e., orthogonal matrices

129

with columns having all elements zero except one element, which is unity, such that

PrΦqPc =

(
Φu Φv

)
(5.9)

where Φu is non-singular.

Definition 5.1. Define the partitioned adjoint variable

µπ≡Pc
>µ (5.10)

the dependent adjoint variable

µu≡
(

Im 0

)
µπ (5.11)

and the independent adjoint variable

µv≡
(

0 Id

)
µπ (5.12)

where Im is the m×m identity matrix and Id is the d× d identity matrix.

In matrix form,



µu

µv


 =




Im 0

0 Id


 µπ = µπ (5.13)

and, since Pc is an orthogonal matrix; i.e., (Pc)
−1 = Pc

>,

µ = Pcµ
π = Pc




µu

µv


 (5.14)

Substituting for µπ defined by Eq. (5.10) into Eq. (5.12), the independent adjoint

variable µv is expressed as a function of the adjoint variable µ as

µv =

(
0 Id

)
Pc
>µ (5.15)

130

Differentiating Eq. (5.15), µv ′ is expressed as a function of the derivative µ′ of the

adjoint variable,

µv ′ =
(

0 Id

)
Pc
>µ′ (5.16)

5.1 The Effect of Row and Column Permuta-

tions due to the Constraint Jacobian Fac-

torization on the Adjoint Underlying ODE

According to Theorem 3.5 in Chapter 3, when permutation matrices Pr and Pc

are m×m and n×n identity matrices, respectively, the adjoint coordinate partitioning

underlying ODE (CPUODE) of Eq. (3.105) is obtained by pre-multiplying Eq. (5.3)

by X0
>, where matrix X0 is defined by Eq. (A.50) in the Appendix, and performing

the change of variable µv =

(
0 Id

)
µ. In general, however, partitions of the

constraint Jacobian Φq of the form

(
Φu Φv

)
, with Φu non-singular, require [58]

row and colum permutations; i.e., matrices Pr and Pc of Eq. (5.9) are different from

the m×m and n×n identity matrices, respectively. In order to obtain the CPUODE

when the constraint Jacobian has the form of Eq. (5.9), where permutation matrices

Pr and Pc are constant during the foregoing partitioning [58], the theorems that follow

are proven.

Theorem 5.1. Matrix X0
>Pc

>MPcX0, where M is the mass matrix and X0 is defined

by Eq. (A.50) in the Appendix, is non-singular.

131

Proof. Define

W0 = PcX0 (5.17)

Since, according to the identity of Eq. (5.9),

ΦqPc = Pr
−1

(
Φu Φv

)

the product identity

ΦqW0 = ΦqPcX0 = Pr
−1

(
Φu Φv

)


−Φu

−1Φv

Id


 = 0 (5.18)

follows. Also, the product

W0
>W0 = X0

>Pc
>PcX0 = X0

>X0 (5.19)

is non-singular, since X0
>X0 is positive definite, as shown by Corollary 3.4 in Chapter

3. Therefore, W0
> and W0 have the properties of T1 and T2, respectively, defined by

Theorem 3.1 of Chapter 3. Hence, according to Theorem 3.1 3, the product W0
>MW0

is non-singular; i.e., X0
>Pc

>MPcX0 is non-singular. ¥

Theorem 5.2. The equation obtained by pre-multiplying Eq. (5.3) by W0
>, where

matrix W0 is defined by Eq. (5.17) and performing the change of variable of Eq.

(5.15), is an ODE.

Proof. Pre-multiplying the adjoint differential equation of Eq. (5.3) by W0
>

and accounting for the property that

W0
>Φq

> = 0

132

which is a result of transposing the identity of Eq. (5.18), the term containing the

adjoint Lagrange multiplier ν vanishes. Hence, Eq. (5.3) is re-written as

W0
>Mµ′′ + W0

>D1µ
′ −W0

>D2µ = W0
>sa (5.20)

Pre-multiplying Eq. (5.9) by Pr
>, post-multiplying it by Pc

>, and accounting for

orthogonality of permutation matrices Pr and Pc; i.e., Pr
−1 = Pr

>andPc
−1 = Pc

>,

Φq = Pr
>

(
Φu Φv

)
Pc
> (5.21)

Substituting for Φq from Eq. (5.21) into Eq. (5.4),

Pr
>

(
Φu Φv

)
Pc
>µ− ra = 0 (5.22)

Pre-multiplying Eq. (5.22) by orthogonal matrix Pr and using the definition of Eq.

(5.10) and the identity of Eq. (5.13), Pc
>µ = µπ =




µu

µv


,

(
Φu Φv

)



µu

µv


 = Prra (5.23)

Expanding terms,

Φuµ
u + Φvµ

v = Prra

and pre-multiplying by non-singular matrix Φu, the dependent adjoint variable µu is

expressed as a linear function of the independent adjoint variable µv as

µu = −Φu
−1Φvµ

v + Φu
−1Prra (5.24)

133

Substituting this result for µu into the identity of Eq. (5.14), the adjoint variable µ

is expressed as a linear function of the independent adjoint variable µv as

µ = Pc




µu

µv


 = Pc



−Φ−1

u Φvµ
v

µv


 + Pc




Φ−1
u Prra

0




= PcX0µ
v + PcX1Prra (5.25)

where matrix X1 is defined by Eq. (A.51) in the Appendix. Differentiating Eq. (5.25),

µ′ = PcX0µ
v ′ + PcX0

′µv + Pc(X1Prra)
′ (5.26)

and replacing the first derivative of X0 by Eq. (A.55) in the Appendix, the derivative

of the adjoint variable is expressed as a linear function of the independent adjoint

variable µv and its derivative µv ′ as

µ′ = PcX0µ
v ′ + PcX2X0µ

v + Pc(X1Prra)
′ (5.27)

where X2 is defined by Eq. (A.56) in the Appendix. Differentiating Eq. (5.27),

µ′′ = PcX0µ
v ′′ + 2PcX0

′µv ′ + PcX0
′′µv + Pc(X1Prra)

′′ (5.28)

and substituting for the first and second derivatives of X0, defined by Eqs. (A.55) and

(A.60) in the Appendix, the derivative of the adjoint variable is expressed as a linear

function of the independent adjoint variable µv and its first and second derivatives

µv ′ and µv ′′,

µ′′ = PcX0µ
v ′′ + 2PcX2X0µ

v ′ + PcX3X0µ
v + Pc(X1Prra)

′′ (5.29)

where X3 is defined by Eq. (A.61) in the Appendix.

134

Substituting for the adjoint variable µ and its derivatives µ′ and µ′′ from Eqs.

(5.25), (5.27), and (5.29) and for matrix W0 of Eq. (5.17) into Eq. (5.20), the

following differential equation is obtained:

X0
>Pc

>MPcX0µ
v ′′ + (2X0

>Pc
>MPcX2X0 + X0

>Pc
>D1PcX0)µ

v ′

+ (X0
>Pc

>MPcX3X0 + X0
>Pc

>D1PcX2X0

+ X0
>Pc

>D2PcX0)µ
v = X0

>Pc
>sa (5.30)

− X0
>Pc

>MPc(X1Prra)
′′ −X0

>Pc
>D1Pc(X1Prra)

′

− X0
>Pc

>D2PcX1Prra

The highest derivative term µv ′′ is pre-multiplied by matrix X0
>Pc

>MPcX0, which,

according to Theorem 5.1, is non-singular. Therefore, Eq. (5.30) is an ODE. Since the

differential variable µv is the independent part of µπ corresponding to the underlying

constraint Jacobian partitioning PrΦqPc =

(
Φu Φv

)
, Eq. (5.30) is the CPUODE

of the adjoint DAE of Eqs. (5.3) and (5.4). ¥

5.2 Linearly Independent Solutions of the Ad-

joint CPUODE

Consider a sub-interval Ij ≡ [tj, tj+1] (the fine grid) of the time interval

[t1, t2] (the coarse grid) during which sensitivity analysis of the multibody system

is performed. Let yj(t) =




yj,1(t)

yj,2(t)


 be the solution of the first order form of the

135

CPUODE of Eq. (5.30),

yj,1′ − yj,2 = 0

U2y
j,2′ + U1y

j,2 + U0y
j,1 = u (5.31)

where

yj,1(t) ≡ µv(t) (5.32)

yj,2(t) ≡ µv ′(t) (5.33)

and

u = X0
>Pc

>MPc(X1Prra)
′′

− X0
>Pc

>D1Pc(X1Prra)
′ −X0

>Pc
>D2PcX1Prra (5.34)

U0 = X0
>Pc

>MPcX3X0 + X0
>Pc

>D1PcX2X0 + X0
>Pc

>D2PcX0 (5.35)

U1 = 2X0
>Pc

>MPcX2X0 + X0
>Pc

>D1PcX0 (5.36)

U2 = X0
>Pc

>MPcX0 (5.37)

As shown in Chapter 3, the adjoint CPUODE is stable in the backward direction.

Therefore, on the fine-grid Ij, initial conditions are specified at time tj+1 and inte-

gration progresses from tj+1 to tj < tj+1. Let yj
i (t) =




yj
1,i(t)

yj
2,i(t)


 be the solution of

the homogeneous IVP of Eq. (5.31),

yj,1
i

′ − yj,2
i = 0

U2y
j,2
i

′
+ U1y

j,2
i + U0y

j,1
i = 0 (5.38)

136

with initial conditions yj
i (tj+1) = ei, where 2d× 1 unit vector ei has all elements zero

except the i-th, which is one. In addition, let vj(t) =




µv(t)

µv ′(t)


 =




vj
1(t)

vj
2(t)


 be a

particular solution of the non-homogeneous CPUODE of Eq. (5.31) with zero initial

conditions; i.e., vj(tj+1) = 0. Since u, U0, U1, and U2 of Eqs. (5.34) through (5.37)

do not depend on the independent adjoint variable µv, the CPUODE of Eq. (5.31)

is linear. As a result, the general solution of the adjoint CPUODE of Eq. (5.31), on

interval Ij, is [4]

yj(t) = Y j
0 (t)sj + vj(t) (5.39)

where

Y j
0 (t) =

(
yj

1(t) . . . yj
2d(t)

)
(5.40)

is the fundamental matrix [4] in which the i-th column, i = 1, 2, . . . , 2d, is the vector

yj
i (t); i.e., the solution of the homogeneous IVP of Eq. (5.31) with initial conditions

yj
i (tj+1) = ei. Since the fundamental matrix at time tj+1 is the 2d × 2d identity

matrix,

Y j
0 (tj+1) =

(
yj

1(tj+1) . . . yj
2d(tj+1)

)
= I2d (5.41)

hence, Y j
0 (t) is non-singular for all time [18], sj∈R2d is a constant vector to be deter-

mined by the initial conditions of the IVP of Eq. (5.31), and vj(t) is the particular

solution of the non-homogeneous CPUODE of Eq. (5.31) with zero initial conditions.

Since the linear ODE of Eq. (5.39) is the adjoint CPUODE of Eq. (5.30) in

137

first order form, given initial conditions yj(tj+1) = yj
j+1; i.e.,

yj,1(tj+1) ≡ µv(tj+1) = yj,1
j+1

yj,2(tj+1) ≡ µv ′(tj+1) = yj,2
j+1 (5.42)

where yj
j+1 =

(
yj,1

j+1

>
yj,2

j+1

>
)>

, the solution of Eq. (5.39) is obtained through the

following algorithm (the integrate-recover-assemble algorithm):

1. Integrate the adjoint DAE of Eqs. (5.3) and (5.4) at time t∈(tj, tj+1), in the

backward direction, with initial conditions at tj+1 obtained by substituting the

independent adjoint variable µv(tj+1) = yj,1
j+1 and its derivative µv ′(tj+1) = yj,2

j+1

into Eqs. (5.25) and (5.27), respectively,

µ(tj+1) = PcX0y
j,1
j+1 + PcX1Prra (5.43)

µ′(tj+1) = PcX0y
j,2
j+1 + PcX2X0y

j,1
j+1 + Pc(X1Prra)

′ (5.44)

2. Recover the independent adjoint variable µv(t) and its derivative µv ′(t), at time

t, by substituting the adjoint variable µ(t) and its derivative µ′(t), previously

solved for, into Eqs. (5.15) and (5.16), respectively.

3. Assemble the solution of the ODE of Eq. (5.39),

yj(t) =




yj,1(t)

yj,2(t)


 (5.45)

where

yj,1(t) = µv(t)

yj,2(t) = µv ′(t)

138

Alternatively, the solution of the ODE of Eq. (5.39) can be obtained by

assembling terms u, U0, U1, and U2 of Eqs. (5.34) through (5.37) and integrating

the ODE of Eq. (5.31). The integrate-recover-assemble algorithm has the advantage

of eliminating the need for computing u, U0, U1, and U2, which is computationally

expensive and using, instead, the adjoint index-1 formulation developed in Section

4.4 of Chapter 4, which involves fewer matrix evaluations. However, integration of

an index-1 DAE with solution y(t) of dimension 2(n + m) is more expensive than

integration of an ODE with solution yj(t) of dimension 2d = 2(n−m).

The integrate-recover-assemble algorithm requires that the adjoint DAE initial

conditions defined by Eqs. (5.43) and (5.44) are consistent; i.e., they must satisfy the

adjoint position constraint equation of Eq. (5.4) and the adjoint velocity constraint

equation of Eq. (4.189).

Theorem 5.3. Given arbitrary d-dimensional vectors a and b, the n-dimensional

vectors

µ1 = PcX0a + PcX1Prra (5.46)

µ2 = PcX0b + PcX2X0a + Pc(X1Prra)
′ (5.47)

satisfy the following equations:

Φqµ1 − ra = 0 (5.48)

Φqµ2 + (Φq)
′µ1 − ra

′ = 0 (5.49)

Proof. Substituting for µ1 of Eq. (5.46) into the left-side of Eq. (5.48),

Φq(PcX0a + PcX1Prra)− ra = ΦqPcX0a + ΦqPcX1Prra − ra (5.50)

139

and accounting for the identity

ΦqPc = Pr
>

(
Φu Φv

)
(5.51)

which is obtained by pre-multiplying Eq. (5.9) by Pr
−1 = Pr

>, the left-side of Eq.

(5.48) is re-written as

ΦqPcX0a + ΦqPcX1Prra − ra = Pr
>

(
Φu Φv

)
X0a

+ Pr
>

(
Φu Φv

)
X1Prra − ra (5.52)

Substituting for the product ΦqPc defined by Eq. (5.51) and for the matrix X0 defined

by Eq. (A.50) in the Appendix into the product ΦqPcX0,

ΦqPcX0 =

(
Φu Φv

)
X0 =

(
Φu Φv

)


−Φu

−1Φv

Id


 = 0 (5.53)

and substituting for the product ΦqPc defined by Eq. (5.51) and for matrix X1,

defined by Eq. (A.51) in the Appendix into the product ΦqPcX1,

ΦqPcX1 =

(
Φu Φv

)
X1 =

(
Φu Φv

)



Φu
−1

0


 = Im (5.54)

where Im is the m × m identity matrix. Substituting products of Eqs. (5.53) and

(5.54) into Eq. (5.52),

Pr
>

(
Φu Φv

)
X0a + Pr

>
(

Φu Φv

)
X1Prra − ra = Pr

>Prra − ra = 0 (5.55)

since Pr
>Pr = Im. Therefore, the identity of Eq. (5.48) is satisfied.

The term (X1Prra)
′ of Eq. (5.47) is expanded as

(X1Prra)
′ = X1

′Prra + X1Prra
′ (5.56)

140

which, accounting for the expression of X1
′ defined by Eq. (A.66) and for the expres-

sion of X2 defined by Eq. (A.57) in the Appendix, is re-written as

(X1Prra)
′ = −X1Pr(Φq)

′PcX1Prra + X1Prra
′ (5.57)

Substituting for (X1Prra)
′ of Eq. (5.57) and for X2 defined by Eq. (A.57) in the

Appendix into Eq. (5.47), µ2 is re-written as

µ2 = PcX0b− PcX1Pr(Φq)
′PcX0a

− PcX1Pr(Φq)
′PcX1Prra + PcX1Prra

′ (5.58)

Substituting for µ1 of Eq. (5.46) and for µ2 of Eq. (5.58) into the left-side of

Eq. (5.49),

Φqµ2 + (Φq)
′µ1 − ra

′ = Φq(PcX0b− PcX1Pr(Φq)
′PcX0a

− PcX1Pr(Φq)
′PcX1Prra + PcX1Prra

′)

+ (Φq)
′(PcX0a + PcX1Prra)− ra

′ (5.59)

141

and grouping terms,

Φqµ2 + (Φq)
′µ1 − ra

′ = ΦqPcX0b

+ ((Φq)
′PcX0 − ΦqPcX1Pr(Φq)

′PcX0)a

+ ((Φq)
′PcX1Pr − ΦqPcX1Pr(Φq)

′PcX1Pr)ra

− (Im − ΦqPcX1Pr)ra
′

= ΦqPcX0b

+ (Im − ΦqPcX1Pr)(Φq)
′PcX0a

+ (Im − ΦqPcX1Pr)(Φq)
′PcX1Prra

− (Im − ΦqPcX1Pr)ra
′ (5.60)

where Im is the m×m identity matrix. Therefore,

Φqµ2 + (Φq)
′µ1 − ra

′ = ΦqPcX0b

+ (Im − ΦqPcX1Pr)((Φq)
′PcX0a + (Φq)

′PcX1Prra − ra
′) (5.61)

Substituting for the product ΦqPc defined by Eq. (5.51) into factor Im −

ΦqPcX1Pr,

Im − ΦqPcX1Pr = Im − Pr
>

(
Φu Φv

)
X1Pr (5.62)

and substituting for the product

(
Φu Φv

)
X1 defined by Eq. (5.54) into Eq.

(5.62),

Im − ΦqPcX1Pr = Im − Pr
>ImPr = 0 (5.63)

since Pr
>Pr = Pr

−1Pr = Im. Substituting for the identity of Eq. (5.53) and for the

identity of Eq. (5.63) into Eq. (5.61), the left-side of Eq. (5.49) is identically zero.

142

As a result, Eq. (5.49) is satisfied. ¥

Corollary 5.4. Given arbitrary d-dimensional vectors a and b, the n-dimensional

vectors

µ1 = PcX0a (5.64)

µ2 = PcX0b + PcX2X0a (5.65)

satisfy

Φqµ1 = 0 (5.66)

Φqµ2 + (Φq)
′µ1 = 0 (5.67)

Proof. Substituting for ra and ra
′ the m-dimensional zero vector into Eqs.

(5.46) and (5.47), it follows from Theorem 5.3 that Eqs. (5.48) and (5.49), in which

ra and ra
′ are replaced by zero, are satisfied; i.e. Eqs. (5.66) and (5.67) are satisfied.

¥

The linearly independent columns yj
i (t), i = 1, 2, . . . , 2d, of the fundamental

matrix Y j
0 (t) are obtained by applying the integrate-recover-assemble algorithm to

the homogeneous adjoint DAE; i.e., the DAE obtained by substituting the right sides

sa and ra of Eqs. (5.3) and (5.4) by zero. The initial conditions for the homogeneous

adjoint DAE have the form of Eqs. (5.43) and (5.44), in which ra is replaced by zero

and

(
yj,1

j+1

>
yj,2

j+1

>
)>

= ei; i.e., yj,1
j+1 = e1

i and yj,2
j+1 = e2

i , where e1
i is the vector

consisting of the first d elements of unit vector ei and e2
i is the vector consisting of

143

the last d elements of unit vector ei,

µ(tj+1) = PcX0e
1
i (5.68)

µ′(tj+1) = PcX0e
2
i + PcX2X0e

1
i (5.69)

According to Corollary 5.4, initial conditions of Eqs. (5.68) and (5.69) are consis-

tent. After recovering the independent adjoint variable µv(t) and its derivative µv ′(t)

from the adjoint variable µ(t) and its derivative µ′(t), the i-th column yj
i (t) of the

fundamental matrix Y j
0 (t) is assembled at time t. Each such column is, therefore,

computed independently. The particular solution vj(t) is independently obtained by

applying the integrate-recover-assemble algorithm to the non-homogeneous adjoint

DAE of Eqs. (5.3) and (5.4), with initial conditions of the form of Eqs. (5.43) and

(5.44), in which yj,1
j+1 = 0 and yj,2

j+1 = 0; i.e.,

µ(tj+1) = PcX1Prra (5.70)

µ′(tj+1) = Pc(X1Prra)
′ (5.71)

According to Theorem 5.3, initial conditions of Eqs. (5.70) and (5.71) are consistent.

Application of the integrate-recover-assemble algorithm for independently evaluating

columns yj
i (t), i = 1, 2, . . . , 2d, of the fundamental matrix Y j

0 (t), and using the par-

ticular solution vj(t), represents a parallel algorithm with 2d independent threads

for computing the columns of Y j
0 (t) and one independent thread for computing the

particular solution vj(t). The 2d+1 parallel thread algorithm thus obtained is coarse-

grained, according to the convention adopted in Chapter 2. It should be noted that

evaluation at time t∈[tj, tj+1] of matrix terms involved in the adjoint DAE index-

144

1 formulation developed in Section 4.4 of Chapter 4 requires the evaluation of the

generalized coordinate vector q(t), its derivatives q′(t) and q′′(t), and the Lagrange

multiplier λ(t). This is achieved by integrating in advance the index-1 DAE formula-

tion of the equations of motion developed in Section 4.2 of Chapter 4; storing q(tk),

q′(tk), q′′(tk), and λ(tk) computed on a mesh

∆j ≡ {tk1 = tj, . . . , tk2 = tj+1} (5.72)

that covers interval Ij = [tj, tj+1]; and interpolating for q, q′, q′′, and λ at the required

time t∈[tj, tj+1] using the stored q(tk), q′(tk), q′′(tk), and λ(tk), for each tk ∈ ∆j.

Therefore, on each fine-grid sub-interval Ij = [tj, tj+1], j = 1, 2, . . . , Nj, where

t1 ≡ t1 and tNj+1 ≡ t2, 2d + 1 independent IVP must be solved. Vectors sj are

determined [4] so that the adjoint CPUODE numerical solution z(t) ≡ yj(t), t ∈ Ij,

where yj(t) is the piecewise adjoint CPUODE solution defined by Eq. (5.39), is

continuous over the entire interval [t1, t2]; i.e.,

yj(tj+1) = yj+1(tj+1), j = 1, 2, . . . , Nj − 1 (5.73)

Substituting for yj(t) by its expression of Eq. (5.39),

Y j
0 (tj+1)sj + vj(tj+1) = Y j+1

0 (tj+1)sj+1 + vj+1(tj+1), j = 1, 2, . . . , Nj − 1 (5.74)

and ordering terms,

−Y j+1
0 (tj+1)sj+1 + sj = vj+1(tj+1), j = 1, 2, . . . , Nj − 1 (5.75)

At final time t = t2≡tNj+1,

y(tNj+1) = Y
Nj

0 (tNj+1)sNj
+ vNj(tNj+1) = y2 (5.76)

145

where y2 is the state vector yNj of the last fine-grid INj at final time tNj+1 ≡ t2.

Vector y2 is calculated using the adjoint variable and its derivative at final time, as

follows:

1. Compute µ(t2) and µ′(t2) by solving [26], at final time t2, linear systems of Eqs.

(4.197) and (4.198).

2. Recover the independent adjoint variable µv(t2) and its derivative µv ′(t2) at final

time t2 by substituting for the adjoint variable µ(t2) and its derivative µ′(t2)

into Eqs. (5.15) and (5.16), respectively.

3. Assemble the solution of the ODE of Eq. (5.39) at final time t2,

yj(t2) =




yj,1(t2)

yj,2(t2)


 (5.77)

where

yj,1(t2) = µv(t2)

yj,2(t2) = µv ′(t2)

As a result, Eqs. (5.75) and (5.76) form the linear system.



I −Y 2
0 (t2) 0 0 . . . 0 0

0 I −Y 3
0 (t3) 0 . . . 0 0

...
...

...
... . . .

...
...

0 0 0 0 . . . I −Y
Nj

0 (tNj
)

0 0 0 0 . . . 0 I







s1

s2

...

sNj−1

sNj




=




v2(t2)

v3(t3)

...

vNj(tNj
)

y2




(5.78)

146

After final time t2 is reached, the linear system of Eq. (5.78) is assembled. As a

result, vectors sj, j = 1, 2, . . . , Nj, are solved for and the solution z(t) of the adjoint

CPUODE is available on each sub-interval Ij = [tj, tj+1], j = 1, 2, . . . , Nj,

z(t) = Y j
0 (t)sj + vj(t), t ∈ Ij (5.79)

It should be noted that although the matrix of the linear system of Eq. (5.78) can

be very large, with dimension N[t1,t2] ×N[t1,t2], where

N[t1,t2] = 2d ·Nj (5.80)

increases with the number Nj of fine-grid sub-intervals, it is an upper-triangular

banded matrix in which the size of the upper-band; i.e., the largest non-zero com-

ponent vector, on each column above the diagonal, does not exceed 4d. Therefore,

storage of the matrix requires only storage of the upper-band component vector of

each column and the solution of Eq. (5.78) is obtained by backward substitution; i.e.,

the matrix of the linear system of Eq. (5.78) is already factored.

Since the piecewise solution defined by Eqs. (5.32) and (5.33) is yj(t) =
(

µv(t)> µv ′(t)>
)>

, for t ∈ Ij, the independent adjoint variable µv(t) and its

derivative µv ′(t) at time t ∈ Ij are

µv(t) =

(
Id 0

)
yj(t) (5.81)

µv ′(t) =

(
0 Id

)
yj(t) (5.82)

Substituting for the independent adjoint variable µv(t) of Eq. (5.81) into Eq. (5.25),

the adjoint variable is evaluated as a function of yj(t),

µ(t) = PcX0µ
v + PcX1Prra = PcX0

(
Id 0

)
yj(t) + PcX1Prra (5.83)

147

where Id is the d×d identity matrix. Substituting for the independent adjoint variable

µv(t) of Eq. (5.81) and for its derivative of Eq. (5.82) into Eq. (5.27), the derivative

of the adjoint variable µ(t) is evaluated as a function of yj(t),

µ′(t) = PcX0µ
v ′ + PcX2X0µ

v + Pc(X1Prra)
′

=

(
PcX2X0 PcX0

)



µv

µv ′


 + Pc(X1Prra)

′

=

(
PcX2X0 PcX0

)
yj(t) + Pc(X1Prra)

′ (5.84)

Substituting for the piecewise solution yj(t) of the adjoint CPUODE at time t ∈ Ij

its expression of Eq. (5.39) into Eqs. (5.83) and (5.84),

µ(t) = PcX0

(
Id 0

) (
Y j

0 (t)sj + vj(t)
)

+ PcX1Prra (5.85)

µ′(t) =

(
PcX2X0 PcX0

) (
Y j

0 (t)sj + vj(t)
)

+ Pc(X1Prra)
′ (5.86)

the adjoint variable and its derivative are evaluated at time t ∈ Ij as linear functions

of the fundamental matrix Y j
0 (t), the particular solution vj(t), and constant vector

sj.

The adjoint acceleration constraint of Eq. (4.190),

Φqµ
′′ + 2Φq

′µ′ + Φq
′′µ = ra

′′ (5.87)

together with Eq. (5.3), form the linear system




M Φq
>

Φq 0







µ′′

ν


 =




sa

ra
′′


−




D2 D1

Φq
′′ 2Φq

′







µ

µ′


 (5.88)

148

with unknowns µ′′ and ν. The matrix

MS =




M Φq
>

Φq 0


 (5.89)

is the Schur complement of the system and is non-singular [52]. Therefore, the vector

ν(t) of adjoint Lagrange multipliers is obtained by solving the linear system of Eq.

(5.88) and extracting the last m elements of the solution,

ν(t) =

(
0 Im

)
MS−1







sa

ra
′′


−H




µ

µ′





 (5.90)

where

H =




D2 D1

Φq
′′ 2Φq

′


 (5.91)

Substituting for adjoint variable µ(t) and its derivative µ′(t) of Eqs. (5.85) and (5.86)

into Eq. (5.90), ν(t) is re-written as

ν(t) =

(
0 Im

)
MS−1







sa

ra
′′


−HΛ


 (5.92)

where

Λ =




P0

(
Y j

0 (t)sj + vj(t)
)

+ PcX1Prra

PX

(
Y j

0 (t)sj + vj(t)
)

+ Pc(X1Prra)
′


 (5.93)

and

P0 = PcX0

(
Id 0

)

PX =

(
PcX2X0 PcX0

)

149

Therefore, the adjoint variable µ(t) and the vector of Lagrange multipliers ν(t)

at time t ∈ Ij are functions of the following:

1. Permutation matrices Pc and Pr resulting from the foregoing partitioning,

PrΦqPc =

(
Φu Φv

)

on the fine-grid Ij and matrices X0, X1, D1, D2, Φq, Φq
′, Φq

′′, and M that are

computed at time t using multibody system state information q(t), q′(t), q′′(t),

and λ(t), obtained by interpolating for q, q′, q′′, and λ at the required time

t∈[tj, tj+1] using the previously stored q(tk), q′(tk), q′′(tk), tk ∈ ∆j.

2. The fundamental matrix Y j
0 (t) that is obtained by applying the integrate-

recover-assemble algorithm on interval Ij to the homogeneous adjoint DAE,

with initial conditions of the form of Eqs. (5.68) and (5.69).

3. The particular solution vj(t) that is obtained as a result of applying the integrate-

recover-assemble algorithm on interval Ij to the non-homogeneous adjoint DAE,

with initial conditions of the form of Eqs. (5.70) and (5.71).

4. Vector sj, which is available after t2 is reached in solving the linear system of

Eq. (5.78).

Separating data that is available at the end of the fine-grid Ij from data that

is available after final time t2 is reached, the adjoint variable µ(t) on the fine grid Ij

is re-written as

µ(t) = aµ
j (t) + Bµ

j (t)sj (5.94)

150

where vector

aµ
j (t) = PcX0

(
Id 0

)
vj(t) + PcX1Prra (5.95)

and matrix

Bµ
j (t) = PcX0

(
Id 0

)
Y j

0 (t) (5.96)

are evaluated at each time t inside the fine-grid sub-interval [tj, tj+1], while the eval-

uation of sj is postponed until after t2 is reached. Similarly, by separating data that

is available at the end of the fine-grid Ij from data that is available after final time

t2 is reached, the vector of adjoint Lagrange multipliers ν(t) on the fine grid Ij is

re-written as

ν(t) = aν
j (t) + Bν

j (t)sj (5.97)

where vector aν
j (t) is defined as

aν
j (t) =

(
0 Im

)
MS−1







sa

ra
′′


−HΛ0


 (5.98)

matrix Bν
j (t) is defined as

Bν
j (t) = −

(
0 Im

)
MS−1

H




Λ1Y
j
0 (t)

Λ2Y
j
0 (t)


 (5.99)

and

Λ0 =




PcX1Prra + Λ1v
j(t)

Pc(X1Prra)
′ + Λ2v

j(t)


 (5.100)

Λ1 = PcX0

(
Id 0

)
(5.101)

Λ2 =

(
PcX2X0 PcX0

)
(5.102)

151

Consequently, provided that the multibody system state vectors q(tk), q′(tk), q′′(tk),

and λ(tk) have been stored for each tk ∈ ∆j, vectors aµ
j (t) and aν

j (t) and matrices

Bµ
j (t) and Bν

j (t) can be evaluated, using Eqs. (5.95),(5.98),(5.96), and (5.99), at each

time t inside the fine grid [tj, tj+1], while evaluation of sj is postponed until after t2

is reached.

5.3 Evaluation of Gradients of Functionals Us-

ing Vectors aµ
j and aν

j and Matrices Bµ
j and

Bν
j

The adjoint formulation for the gradient of the functional of Eq. (5.1) is [26]

Ψβ = lβ(t2) + µ>(t1)K1 − γ2>Φβ(t2)− η2>(Φq q̂
′)β(t2)− ξ2Ωβ(t2)

− gq′(t
1)qβ(t1)− µ′>(t1)M(t1)qβ(t1) +

∫ t2

t1
gβ(t)dt (5.103)

−
∫ t2

t1
(µ>(t)K2(t) + ν>(t)Φβ(t))dt

where

K1 =
(
Mqβ

′ − (S1
q′ + M ′)qβ

)
(t1) (5.104)

and

K2(t) = (Mq̂′′)β + (Φq
>λ̂)β − S1

β (5.105)

Vectors η2 and γ2 and scalar ξ2 are evaluated after final time t2 is reached, as defined

in Ref. [26]. Assuming the coarse-grid interval [t1, t2] is partitioned into fine-grid sub-

intervals, Ij = [tj, tj+1], j = 1, 2, . . . , Nj, where t1 ≡ t1 and tNj+1 ≡ t2, the gradient

152

Ψβ of functional Ψ is a summation of the following terms:

1. One term that is evaluated at initial time t1, gq′(t
1)qβ(t1).

2. Terms that are evaluated after final time t2 is reached; e.g., lβ(t2), γ2>Φβ(t2),

η2>(Φq q̂
′)β(t2), and ξ2Ωβ(t2).

3. One term that is incrementally evaluated on each fine-grid [tj, tj+1],
∫ t2

t1
gβ(t)dt.

4. Partially postponed terms; i.e., terms of the form

xj(t) = aj(t) + Bj(t)sj (5.106)

where aj(t) and Bj(t) can be evaluated at each time t inside the fine-grid

[tj, tj+1], and sj can be evaluated only after t2 is reached. Such terms are

µ>(t1)K1 and µ′>(t1)M(t1)qβ(t1). Substituting for t = t1 and j = 1 into Eq.

(5.94),

µ(t1) = aµ
1(t1) + Bµ

1 (t1)s1 (5.107)

and substituting for for t = t1 and j = 1 into Eq. (5.86),

µ′(t1) =

(
Pc(X2X0)(t

1) PcX0(t
1)

)
v1(t1) + Pc(X1Prra)

′(t1)

+

(
Pc(X2X0)(t

1) PcX0(t
1)

)
Y 1

0 (t1)s1

= aµ′
1 (t1) + Bµ′

1 (t1)s1 (5.108)

where

aµ′
j (t) ≡

(
Pc(X2X0)(t) PcX0(t)

)
vj(t) + Pc(X1Prra)

′(t) (5.109)

Bµ′
j (t) ≡

(
Pc(X2X0)(t) PcX0(t)

)
Y j

0 (t) (5.110)

153

aµ
j (t) and Bµ

j (t) defined by Eqs. (5.95) and (5.96), are evaluated at initial time

t1; and vector s1, which is a component of solution of the linear system of Eq.

(5.78), is evaluated only after final time t2 is reached.

5. Integrals of partially postponed terms; i.e., terms of the form

∫ t2

t1
xj
>(t)X(t)dt =

Nj∑
j=1

∫ tj+1

tj

x>(t)X(t)dt (5.111)

where xj(t) is a partially postponed vector of the form of Eq. (5.106) and X(t)

is a matrix that can be evaluated at each time t inside the fine-grid [tj, tj+1].

Therefore,

∫ t2

t1
x>(t)X(t)dt =

Nj∑
j=1

∫ tj+1

tj

(
aj
>(t) + sj

>Bj
>(t)

)
X(t)dt

=

Nj∑
j=1

(∫ tj+1

tj

aj
>(t)X(t)dt + sj

>
∫ tj+1

tj

Bj
>(t)X(t)dt

)

=

Nj∑
j=1

∫ tj+1

tj

aj
>(t)X(t)dt

+

Nj∑
j=1

sj
>

∫ tj+1

tj

Bj
>(t)X(t)dt =

Nj∑
j=1

τj +

Nj∑
j=1

sj
>Tj (5.112)

where vector

τj =

∫ tj+1

tj

aj
>(t)X(t)dt (5.113)

and matrix

Tj =

∫ tj+1

tj

Bj
>(t)X(t)dt (5.114)

are evaluated at the end of each fine-grid [tj, tj+1] and stored until after final time t2 is

reached, when vectors sj, j = 1, 2, . . . , Nj, are computed by solving the linear system

154

of Eq. (5.78). After final time t2 is reached, the integral of Eq. (5.111) is assembled

according to Eq. (5.112). It should be noted that, while matrices Tj need to be stored

at the end of each sub-interval [tj, tj+1], j = 1, 2, . . . , Nj, only the sum τ =
∑Nj

j=1 τj

of vectors τj needs to be stored for assembling the integral of Eq. (5.111).

5.3.1 Evaluation of the Initial Time Term

Evaluation of the term gq′(t
1)qβ(t1) requires initial conditions q(t1), v(t1), a(t1),

and λ(t1) of Eqs. (4.15) and (4.16) and the initial sensitivity matrix qβ(t1). The initial

sensitivity

qβ(t1) =

(
qβ1(t

1) qβ2(t
1) . . . qβnβ

(t1)

)

is obtained by solving for the initial conditions of the direct differentiation DAE, as

shown in Section 4.3 of Chapter 4.

5.3.2 Evaluation of Final Time Terms

After final time t2 is reached; i.e., when Ω(t, q, q′, β) = 0, terms lβ(t2), γ2>Φβ(t2),

η2>(Φq q̂
′)β(t2), and ξ2Ωβ(t2) are computed as follows:

1. Term lβ(t2) is evaluated directly, since l(t2, q2, q′2, β) is given.

2. Terms depending on γ2, η2, and ξ2 are evaluated by solving first for the initial

conditions of the adjoint DAE, as shown in Section 4.4 of Chapter 4. After vec-

tors γ2 and η2 and scalar ξ2 are computed, Φβ(t2) and (Φq q̂
′)β(t2) are computed,

using the procedure presented in Section 4.3.2 of Chapter 4.

155

3. Term Ωβ(t2) is evaluated directly, since Ω(t, q, q′, β) is given.

5.3.3 Incremental Evaluation of Integral
∫ t2

t1
gβ(t)dt

As a result of integration of the equations of the motion on fine-grid sub-

interval Ij, the generalized coordinate vector q(t), its derivatives q′(t) and q′′(t), and

the Lagrange multiplier λ(t) are computed and stored on the fine-grid mesh ∆j.

Function g(q, q′, λ, β, t) is given and vectors q(t), q′(t), and λ(t) are interpolated at

each point inside the fine-grid [tj, tj+1], using previously stored q(tk), q′(tk), q′′(tk),

and λ(tk), for each tk ∈ ∆j. As a result, the integral

Ig
j,0 =

∫ tj+1

tj

gβ(t)dt (5.115)

is computed at the end of the fine-grid, using a quadrature numerical formula; e.g., a

Newton-Cotes or Gauss [8] integration formula. The result is then added to the sum

of integrals of gβ(t) on previous intervals, using the recurrence formula

Ig
j+1 = Ig

j + Ig
j,0, j = 1, 2, . . . , Nj − 1 (5.116)

where Ig
1 = Ig

1,0 =
∫ t2

t1
gβ(t)dt is the integral of gβ(t) on the first fine-grid [tj, tj+1] with

j = 1. After final time t2 is reached, the recurrence relation of Eq. (5.116) yields

Ig
Nj+1 =

Nj∑
j=1

∫ tj+1

tj

gβ(t)dt =

∫ t2

t1
gβ(t)dt (5.117)

5.3.4 Evaluation of Partially Postponed Terms

After final time t2 is reached, the linear system of Eq. (5.78) is solved and

vectors sj, j = 1, 2, . . . , Nj, are available. As a result, the adjoint variable µ(t1) and

156

its derivative µ′(t1) are evaluated by substituting for vector s1 into Eqs. (5.107) and

(5.108), in which fundamental matrix Y 1
0 (t1) and particular solution v1(t1) have been

previously stored at the end of the first fine-grid [t1, t2]. Matrix K1 defined by Eq.

(5.104) requires initial sensitivities qβ(t1) and q′β(t1), which are computed at initial

time t1, as shown in Section 5.3.1; matrices M(t1) and S1
q′(t

1), which are computed at

initial time t1, as shown in Sections 4.2.4 and 4.2.5 of Chapter 4; and the derivative of

the mass matrix M ′(t1), as shown in Section 4.4.2 of Chapter 4. As a result, µ>(t1)K1

and µ′>(t1)M(t1)qβ(t1) are assembled using the adjoint variable µ and its derivative

µ′ at initial time t1, mass matrix M(t1), matrix K1, and initial sensitivities qβ(t1).

5.3.5 Evaluation of Integrals of Partially Postponed

Terms

Evaluation of the integral

Iµ
j,0 =

∫ tj+1

tj

µ>(t)K2(t)dt (5.118)

is decomposed as follows:

Iµ
j,0 =

∫ tj+1

tj

(
aµ

j
>(t) + sj

>Bµ
j
>(t)

)
K2(t)dt

=

∫ tj+1

tj

aµ
j
>(t)K2(t)dt + sj

>
∫ tj+1

tj

Bµ
j
>(t)K2(t)dt (5.119)

= τµ
j,0
> + sj

>T µ
j

157

where

τµ
j,0
> =

∫ tj+1

tj

aµ
j
>(t)K2(t)dt (5.120)

T µ
j =

∫ tj+1

tj

Bµ
j
>(t)K2(t)dt (5.121)

and aµ
j
>(t) and Bµ

j
>(t) are defined by Eqs. (5.95) and (5.96).

As a result,

Iµ =

∫ t2

t1
µ>(t)K2(t)dt =

Nj∑
j=1

∫ tj+1

tj

µ>(t)K2(t)dt

=

Nj∑
j=1

Iµ
j,0 =

Nj∑
j=1

(τµ
j,0
> + sj

>T µ
j) =

Nj∑
j=1

τµ
j,0
> +

Nj∑
j=1

sj
>T µ

j (5.122)

where
∑Nj

j=1 τµ
j,0
> is incrementally computed using the recurrence formula

τµ
j+1 = τµ

j + τµ
j,0 (5.123)

where τµ
1 = τµ

1,0 and τµ
j,0 are computed using Eq. (5.120) on fine-grid [tj, tj+1]. There-

fore, at final time t2≡tNj+1,

τµ
Nj+1

> =

Nj∑
j=1

τµ
j,0
> (5.124)

Terms T µ
j , j = 1, 2, . . . , Nj, are computed using Eq. (5.121) on fine-grid [tj, tj+1] and

stored. After final time t2≡tNj+1 is reached and sj, j = 1, 2, . . . , Nj, are obtained, as

a result of solving Eq. (5.78), the integral

Iµ =

Nj∑
j=1

τµ
j,0
> +

Nj∑
j=1

sj
>T µ

j = τµ
Nj+1

> +

Nj∑
j=1

sj
>T µ

j (5.125)

is assembled using incrementally computed term τµ
Nj+1, stored terms T µ

j , j = 1, 2, . . . , Nj,

and vectors sj. Both τµ
j,0 and T µ

j require evaluation of matrix

K2(t) = (Mq̂′′)β + (Φq
>λ̂)β − S1

β (5.126)

158

in which (Mq̂′′)β, (Φq
>λ̂)β, and S1

β are evaluated at any point t inside the fine-grid

[tj, tj+1], using formulas developed in Section 4.3 of Chapter 4 and previously stored

q(tk), q′(tk), q′′(tk), and λ(tk), for each tk ∈ ∆j. The numerical integration required

by terms τµ
j,0 and T µ

j is performed using a quadrature formula; e.g., Newton-Cotes or

Gauss [8]. Similarly, evaluation of the integral

Iν
j,0 =

∫ tj+1

tj

ν>(t)Φβ(t)dt (5.127)

is decomposed as follows:

Iν
j,0 =

∫ tj+1

tj

aν
j
>(t)Φβ(t)dt + sj

>
∫ tj+1

tj

Bν
j
>(t)Φβ(t)dt = τ ν

j,0
> + sj

>T ν
j (5.128)

where aν
j
>(t) and Bν

j
>(t) are defined by Eqs. (5.98) and (5.99), respectively, and

τ ν
j,0
> =

∫ tj+1

tj

aν
j
>(t)Φβ(t)dt (5.129)

T ν
j =

∫ tj+1

tj

Bν
j
>(t)Φβ(t)dt (5.130)

As a result,

Iν =

∫ t2

t1
ν>(t)Φβ(t)dt =

Nj∑
j=1

∫ tj+1

tj

ν>(t)Φβ(t)dt

=

Nj∑
j=1

Iν
j,0 =

Nj∑
j=1

τ ν
j,0
> +

Nj∑
j=1

sj
>T ν

j (5.131)

where
∑Nj

j=1 τ ν
j,0
> is incrementally computed using the recurrence formula

τ ν
j+1 = τ ν

j + τ ν
j,0 (5.132)

where τ ν
1 = τ ν

1,0 and τ ν
j,0 are computed using Eq. (5.129) on fine-grid [tj, tj+1]. There-

fore, at final time t2≡tNj+1,

τ ν
Nj+1

> =

Nj∑
j=1

τ ν
j,0
> (5.133)

159

Terms T ν
j , j = 1, 2, . . . , Nj, are computed using Eq. (5.130) on fine-grid [tj, tj+1] and

then stored. After the final time is reached, the integral

Iν =

Nj∑
j=1

τ ν
j,0
> +

Nj∑
j=1

sj
>T ν

j = τ ν
Nj+1

> +

Nj∑
j=1

sjT
ν
j (5.134)

is assembled using the incrementally computed term τ ν
Nj+1

>, stored terms T ν
j , j =

1, 2, . . . , Nj, and vectors sj obtained by solving the linear system of Eq. (5.78). Both

τ ν
j,0 and T ν

j require the evaluation of matrix Φβ, which is computed at any time t

inside the fine-grid [tj, tj+1], using formulas developed in Section 4.3 of Chapter 4 and

previously stored q(tk), q′(tk), q′′(tk), and λ(tk), for each tk ∈ ∆j.

As a result, the integral of partially postponed terms, on the coarse-grid in-

terval [t1, t2],

Iµ,ν ≡ Iµ + Iν =

∫ t2

t1
µ>(t)K2(t)dt +

∫ t2

t1
ν>(t)Φβ(t)dt

=

Nj∑
j=1

τµ
j,0
> +

Nj∑
j=1

sj
>T µ

j

+

Nj∑
j=1

τ ν
j,0
> +

Nj∑
j=1

sj
>T ν

j (5.135)

which, by ordering terms and defining

τ =

Nj∑
j=1

(τµ
j,0 + τ ν

j,0) (5.136)

Tj = T µ
j + T ν

j (5.137)

is re-written as

Iµ,ν = τ> +

Nj∑
j=1

(sj
>Tj) (5.138)

where τ is updated at the end of each fine-grid sub-interval [tj, tj+1]; Tj are computed

using a quadrature formula on the fine-grid [tj, tj+1], j = 1, 2, . . . , Nj; and vectors sj

160

are obtained by solving the linear system of Eq. (5.78), after final time t2 is reached.

Consequently, the integral of partially postponed terms algorithm, for computing the

integral

Iµ,ν =

∫ t2

t1
(µ>(t)K2(t) + ν>(t)Φβ(t))dt (5.139)

is defined as follows:

1. Initialization. Let t = t1, j = 1, and τ = 0. Compute initial conditions of Eqs.

(4.15) and (4.16), q1 = q(t, β), v1 = q′(t, β), a1 = (′′t, β) and λ1 = λ(t, β), as

shown in Section 4.2 of Chapter 4. Let qtest = q1.

2. Termination test. If ‖Ω(t, qtest, β)‖ < ε, let t2 = t and go to step 7. Else

continue.

3. Integration of equations of motion . Define fine-grid sub-interval Ij = [tj, tj+1],

where tj = t and tj+1 = t+hj. Integrate Eqs. (4.15) and (4.16) and store q(tk),

q′(tk), q′′(tk), and λ(tk) solved for on the mesh ∆j = {tk1 = tj, . . . , tk2 = tj+1}.

Define qtest = q(tj+1, β).

4. Application of integrate-recover-assemble algorithm. The linearly independent

columns yj
i (t), i = 1, 2, . . . , 2d, of the fundamental matrix Y j

0 (t) are obtained,

at each tk ∈ ∆j, by independently applying the integrate-recover-assemble al-

gorithm presented in Section 5.2 to the homogeneous adjoint DAE of Eqs. (5.3)

and (5.4), with initial conditions of the form of Eqs. (5.68) and (5.69). The

particular solution vj(t) is independently obtained by applying the integrate-

recover-assemble algorithm to the non-homogeneous adjoint DAE of Eqs. (5.3)

161

and (5.4), with initial conditions of the form of Eqs. (5.70) and (5.71).

5. Evaluation of τ and Tj. Applying quadrature formulas to aµ
j
>(t)K2(t), aν

j
>(t)Φβ(t),

Bµ
j
>(t)K2(t), and Bν

j
>(t)Φβ(t), vectors τµ

j,0 and τ ν
j,0, and matrices T µ

j and T ν
j

of Eqs. (5.120), (5.129), (5.121), and (5.130) are obtained; τ of Eq. (5.136) is

incrementally updated; and Tj of Eq. (5.137) is computed on the fine-grid Ij

and stored.

6. Step advance. Let j = j + 1 and t = tj+1. Go to step 2.

7. Finalization. Solve the linear system of Eq. (5.78) for vectors sj, j = 1, 2, . . . , Nj.

Assemble the integral Iµ,ν of partially postponed terms, from vectors sj, previ-

ously stored Tj, and τ .

By comparison with evaluation of the gradient Ψβ using the adjoint formula-

tion [26] presented in Section 4.4 of Chapter 4, or the direct differentiation formulation

[26] presented in Section 4.3 of Chapter 4, the advantages of computing gradients of

functionals through the piecewise solution of the adjoint DAE; i.e., assembling the

gradient Ψβ by evaluating the initial time term, as shown in Section 5.3.1; incremen-

tally evaluating the
∫ t2

t1
gβ(t)dt, as shown in Section 5.3.3; evaluating the partially

postponed terms, as shown in Section 5.3.4; and evaluating the integrals of partially

postponed terms, as shown above, follows mainly from the structure of the integral

of partially postponed terms algorithm. They are as follows:

1. The fundamental matrix Y j
0 (t) and particular solution vj(t) are independently

evaluated using 2d + 1 threads of computation.

162

2. Steps 3, 4, and 5 in the integral of partially postponed terms algorithm can

be simultaneously performed in a three-stage pipeline; i.e., while integration of

the equations of motion is performed on fine-grid sub-interval Ij+1, application

of the integrate-recover-assemble algorithm is performed on fine-grid Ij, and

evaluation of terms τ and Tj is performed on fine-grid Ij−1.

3. In order to compute gradients of functionals through the direct differentiation

formulation [26], independent integration of nβ index-3 DAE is required, while

computing gradients of functionals through the piecewise solution of the adjoint

DAE requires independent integration of only 2d+2 DAE; one DAE integration

for the equations of motion, 2d integrations for the 2d columns of the funda-

mental matrix Y j
0 (t), and one integration for the particular solution vj(t).

4. The adjoint formulation [26] requires integration of only two DAE, the equations

of motion and the adjoint DAE, but their integration must be performed se-

quentially; i.e., integration of the adjoint DAE can start only after integration of

equations of motion has reached final time t2. By contrast, computation of gra-

dients of functionals through piecewise solution of the adjoint DAE progresses

forward in time, along with integration of the equations of motion, requiring the

additional evaluation of partially postponed terms and assembly of integrals of

partially postponed terms by solving the linear system of Eq. (5.78), after final

time t2 is reached.

5. The fundamental matrix Y j
0 (t) can be used for computation of gradients of many

163

functionals, since it is obtained by solving the homogeneous adjoint DAE, as

shown by the integrate-recover-assemble algorithm. Therefore, it is not affected

by the right-side of the adjoint DAE, which depends [26] on the structure of the

functionals.

The disadvantage of computing gradients of functionals through piecewise so-

lution of the adjoint DAE is that, in addition to the adjoint DAE integrations result-

ing from the integrate-recover-assemble algorithm, the constraint Jacobian must be

factored. Its factorization is required for the following:

1. evaluation of vectors aµ
j (t) and aν

j (t) and matrices Bµ
j (t) and Bν

j (t), defined by

Eqs. (5.95),(5.98),(5.96), and (5.99).

2. recovery of the independent adjoint variable and its derivative, defined by Eqs.

(5.15) and (5.16).

5.4 Algorithms for Evaluating Gradients of

Functionals Through The Direct Differenti-

ation, Adjoint, and Piecewise Adjoint Meth-

ods

In this Section, outlines of the algorithms for the Direct Differentiation, Ad-

joint, and Piecewise Adjoint methods are presented. Interpolation methods for inter-

polating the equation of motion variables q, v ≡ q′, a ≡ q′′, and λ, which are used

164

for constructing and solving the index-1 Direct Differentiation DAE of (4.113), the

index-1 Adjoint DAE of (4.194), and the Adjoint CPUODE of Eq. (5.31), are chosen

depending on the number of interpolating nodes and the availability of derivatives,

as follows [8]:

1. Functions for which derivatives are not available; e.g., a(t) and λ(t), are in-

terpolated using Lagrange interpolation with divided differences if the number

of interpolating nodes is larger than ten, or Natural Splines if the number of

interpolating nodes is between four and ten.

2. Functions for which first derivatives are available; e.g., q(t) and v(t) with deriva-

tives v(t) and a(t), respectively, are interpolated using Complete Splines or Cu-

bic Hermite, depending on the number of interpolating nodes. A Complete

Splines interpolant is used when the number of interpolating nodes is larger

than three. A Cubic Hermite interpolant is used when the number of inter-

polating nodes is two. A pair of Cubic Hermite interpolants is used when the

number of interpolating nodes is three.

Figures 5.1 and 5.2 present the algorithm for evaluating gradients of functionals

through the Direct Differentiation method. The gradient of functional Ψ of Eq.

(4.181), in the Direct Differentiation formulation, is [26]

Ψβ = (lqqβ + lq′q
′
β)(t2) + lβ(t2)

− (lt + g + lqq
′ + lq′q

′′)
(Ωqqβ + Ωβ)

Ω′ (t2)

+

∫ t2

t1
(gqqβ + gq′q

′
β + gλλβ + gβ)(t)dt (5.140)

165

The term

g2 = (lqqβ + lq′q
′
β)(t2) + lβ(t2)

− (lt + g + lqq
′ + lq′q

′′)
(Ωqqβ + Ωβ)

Ω′ (t2) (5.141)

is evaluated after final time t2 is reached. Figure 5.3 presents the algorithms for the

Adjoint method. Figures 5.4 through 5.6 present the implemented algorithm for the

Piecewise Adjoint method.

Both the Direct Differentiation and the Piecewise Adjoint method can benefit

from a pipelined structure of the algorithm. In the Direct Differentiation method the

following pipeline stages can be independently performed:

1. Pipeline stage 1. The integration of the DAE of motion and temporary storage

of the equation of motion states on fine-grid Ij+1.

2. Pipeline stage 2. The integration of the Direct Differentiation DAE, for each

parameter βl, l = 1, 2, . . . , nβ on fine-grid Ij, using the equation of motion states

previously stored by pipeline stage 1.

3. Pipeline stage 3. The integration of the gradient of functional on fine-grid Ij−1

using the information previously evaluated and stored by pipeline stages 1 and

2.

In the Piecewise Adjoint method the following pipeline stages can be independently

performed:

1. Pipeline stage 1. The integration of the DAE of motion and temporary storage

of the equation of motion states on fine-grid Ij+1.

166

2. Pipeline stage 2. The integration of the particular solution and columns of the

fundamental matrix of the Adjoint CPUODE on fine-grid Ij, using the equation

of motion states previously stored by pipeline stage 1.

3. Pipeline stage 3. The integration of the gradient of functional on fine-grid Ij−1

using the information previously evaluated and stored by pipeline stages 1 and

2.

Figures 5.7 and 5.8 present the pipelined version of the Piecewise Adjoint method.

5.5 Efficiency Analysis

This Section presents an estimation of the number of floating-point arithmetic

operations (flops) for the Piecewise Adjoint method. Since floating-point additions are

less expensive than floating-point multiplications or divisions [8], only multiplications

and divisions are counted. The implemented parallel version of Figs. 5.4 through 5.6,

the pipelined parallel version of Figs. 5.7 and 5.8, and the implemented sequential

version are analyzed. The algorithm of the implemented sequential Piecewise Adjoint

method is obtained from the algorithm of pipelined parallel version of Figs. 5.7 and

5.8 by running the pipeline stages sequentially.

5.5.1 Floating Point Operation Estimates

The most expensive computing effort of the Piecewise Adjoint method is spent

inside the main loop; i.e., the Do while loop in Figs. 5.7 and 5.8 that advances the

integration of the gradient of functional Ψβ from the initial time t1 to the final time

167

Let t1 = t1; j = 1;

For l = 1, 2, . . . , nβ

Iql
= Iq′l = Iλl

= Iβl
= 0;

End For

Evaluate IC

q(β, t1), q
′(β, t1), q

′′(β, t1), λ(β, t1);

qβ(β, t1), q
′
β(β, t1), q

′′
β(β, t1), λβ(β, t1);

Do while |Ω(tj, q(β, tj), β)| > ε

pipeline stage 1

define subinterval Ij = [tj, tj+1] and fine-grid

∆j = {tk1 = tj, . . . , tk2 = tj+1};
solve the DAE of motion of Eq. (4.20) on ∆j;

store {q(β, tk), q
′(β, tk), q

′′(β, tk), λ(β, tk), tk∈∆j};
End pipeline stage 1

pipeline stage 2

For l = 1, 2, . . . , nβ

independently solve the DAE of Eq. (4.113) for parameter βl;

store {qβl
(tk), q

′
βl

(tk), λβl
(tk), tk∈∆j};

End For

End pipeline stage 2

Figure 5.1: The algorithm for the evaluation of gradients of functionals through the
Direct Differentiation method

168

pipeline stage 3

update Iql
= Iql

+
∫ tj+1

tj
gqqβl

dt;

update Iq′l = Iq′l +
∫ tj+1

tj
gq′q

′
βl

dt;

update Iλl
= Iλl

+
∫ tj+1

tj
gλλβl

dt;

update Iβl
= Iβl

+
∫ tj+1

tj
gβ(t)dt;

End pipeline stage 3

Let j = j + 1;

End Do

For l = 1, 2, . . . , nβ

evaluate final term gl;

assemble Ψβl
= g2

l + Iql
+ Iq′l + Iλl

+ Iβl
;

End For

Figure 5.2: The algorithm for the evaluation of gradients of functionals through the
Direct Differentiation method-continued

169

Let t1 = t1; j = 1;

Evaluate IC

q(β, t1), q
′(β, t1), q

′′(β, t1), λ(β, t1);

qβ(β, t1), q
′
β(β, t1), q

′′
β(β, t1), λβ(β, t1);

Evaluate g1 = gq′(t
1)qβ(t1);

Do while |Ω(tj, q(β, tj), β)| > ε

tk = tj + h;

solve the DAE of motion of Eq. (4.20)

store {q(β, tk), q
′(β, tk), q

′′(β, tk), λ(β, tk)};
tj = tk;

End Do

Evaluate Adjoint IC of Eqs. (4.197) through (4.198);

Evaluate the final terms lβ(t2), γ2>Φβ(t2), η2>(Φq q̂
′)β(t2), and ξ2Ωβ(t2) ;

Do while tj > t1

solve the Adjoint DAE of Eq. (4.194),

by interpolating for {q(β, tj), q
′(β, tj), q

′′(β, tj), λ(β, tj)} using the stored set

{q(β, tk), q
′(β, tk), q

′′(β, tk), λ(β, tk), tk = t1, . . . , t2};
update Ig = Ig +

∫ tj
tj−h

gβ(t)dt;

update Iµ,ν of Eq. (5.139);

tj = tj − h;

End Do

Evaluate µ(t1), µ′(t1) of Eqs. (5.107) and (5.108);

Evaluate the initial terms µ>(t1)k1 and µ′>(t1)M(t1)qβ(t1);

Evaluate the gradient of the functional of Eq. (5.103), by assembling Ig, I
µ,ν ,

the initial terms,the final terms, and g1;

Figure 5.3: The algorithm for the evaluation of gradients of functionals through the
Adjoint method

170

Let t1 = t1; j = 1;

Evaluate IC

q(β, t1), q
′(β, t1), q

′′(β, t1), λ(β, t1);

qβ(β, t1), q
′
β(β, t1), q

′′
β(β, t1), λβ(β, t1);

Evaluate g1 = gq′(t
1)qβ(t1); τ = 0; Ig = 0;

Create 2d + 1 ChildrenThreads in addition to the MainThread;

Do while |Ω(tj, q(β, tj), β)| > ε

Set the 2d + 1 ChildrenThreads on WAIT state;

MainThread Executes:

define subinterval Ij = [tj, tj+1] and fine-grid

∆j = {tk1 = tj, . . . , tk2 = tj+1};
solve the DAE of motion of Eq. (4.20) on ∆j;

store {q(β, tk), q
′(β, tk), q

′′(β, tk), λ(β, tk), tk∈∆j};
Set the ChildrenThreads on READY state;

Set the MainThread on WAIT state;

Each ChildThread Executes:

independently compute the LU factorization of Φq at each mode tk∈∆j;

Notify MainThread that ChildThread is DONE;

Set ChildThread on WAIT state;

After all ChildrenThreads Notify the MainThread

Set the MainThread on READY state;

MainThread Executes:

store the factored constraint Jacobians {ΦLU
q (tk), tk∈∆j};

Set the ChildrenThreads on READY state;

Set the MainThread on WAIT state;

Figure 5.4: The implemented parallel algorithm of the Piecewise Adjoint method

171

Each ChildThread Executes:

by interpolating the set

{q(β, tk), q
′(β, tk), q

′′(β, tk), λ(β, tk), tk∈∆j} and using the set

{ΦLU
q , tk∈∆j},

independently evaluate a column of the fundamental matrix

{Y0
j(tk), tk∈∆j} or the particular solution {vj(tk), tk∈∆j},

through the integrate-recover-assemble algorithm, defined

in Section 5.2;

store Y0
j(tj), v

j(tj);

Notify MainThread that ChildThread is DONE;

Set ChildThread on WAIT state;

After all ChildrenThreads Notify the MainThread

Set the MainThread on READY state;

MainThread Executes:

using {Y j
0 (tk), v

j(tk), tk∈∆j} update τ of Eq. (5.136), Tj of Eq. (5.137);

update Ig = Ig +
∫ tj+1

tj
gβ(t)dt;

Let j = j + 1;

End Do

Figure 5.5: The implemented parallel algorithm of the Piecewise Adjoint method -
continued

172

Evaluate vectors {s1, . . . , sNj
}, where tNj+1≡t2 is the final time, by solving the linear

system of Eq. (5.78);

Assemble Iµ,ν = τT +
∑Nj

j=1 sj
>Tj;

Evaluate µ(t1), µ′(t1) of Eqs. (5.107) and (5.108);

Evaluate the initial terms µ>(t1)k1 and µ′>(t1)M(t1)qβ(t1);

Evaluate the final terms lβ(t2), γ2>Φβ(t2), η2>(Φq q̂
′)β(t2), and ξ2Ωβ(t2) ;

Evaluate the gradient of the functional of Eq. (5.103), by assembling Ig, I
µ,ν ,

the initial terms, the final terms, and g1;

Destroy the ChildrenThreads;

Figure 5.6: The implemented parallel algorithm of the Piecewise Adjoint method -
concluded

t2. The following computing tasks are identified inside the main loop:

1. Implicit integration of the DAE of motion of Eq. (4.20).

2. Factorization of the constraint Jacobian Φq and of the non-singular block Φu

for each point of the mesh ∆j, j = 1, 2, . . . , Nj defined by Eq. (5.72).

3. Evaluation of the columns of the fundamental matrices {Y0
j(tk), tk∈∆j} and

the particular solutions {vj(tk), tk∈∆j} through the integrate-recover-assemble

algorithm defined in Section 5.2.

4. Updating of τ of Eq. (5.136) and evaluation of Tj of Eq. (5.137).

Assume that the implicit integration of the DAE of motion of Eq. (4.20) using

the LLNL’s IDA integrator [31] require

173

Let t1 = t1; j = 1;

Evaluate IC

q(β, t1), q
′(β, t1), q

′′(β, t1), λ(β, t1);

qβ(β, t1), q
′
β(β, t1), q

′′
β(β, t1), λβ(β, t1);

Evaluate g1 = gq′(t
1)qβ(t1); τ = 0; Ig = 0;

Do while |Ω(tj, q(β, tj), β)| > ε

pipeline stage 1

define subinterval Ij = [tj, tj+1] and fine-grid

∆j = {tk1 = tj, . . . , tk2 = tj+1};
solve the DAE of motion of Eq. (4.20) on ∆j;

store {q(β, tk), q
′(β, tk), q

′′(β, tk), λ(β, tk), tk∈∆j};
independently compute the LU factorization of Φq at each mode tk∈∆j;

store the factored constraint Jacobians {ΦLU
q (tk), tk∈∆j};

End pipeline stage 1

pipeline stage 2

For i = 1, 2, . . . , 2d + 1

by interpolating the set

{q(β, tk), q
′(β, tk), q

′′(β, tk), λ(β, tk), tk∈∆j} and using the set

{ΦLU
q , tk∈∆j},

independently evaluate the columns of fundamental matrices

{Y0
j(tk), tk∈∆j} and the particular solutions {vj(tk), tk∈∆j},

through the integrate-recover-assemble algorithm, defined

in Section 5.2;

End For

store Y0
j(tj), v

j(tj);

End pipeline stage 2

Figure 5.7: The pipelined algorithm for the evaluation of gradients of functionals
through the Piecewise Adjoint method

174

pipeline stage 3

using {Y j
0 (tk), v

j(tk), tk∈∆j} update τ of Eq. (5.136), Tj of Eq. (5.137);

update Ig = Ig +
∫ tj+1

tj
gβ(t)dt;

End pipeline stage 3

Let j = j + 1;

End Do

Evaluate vectors {s1, . . . , sNj
}, where tNj+1≡t2 is the final time, by solving the linear

system of Eq. (5.78);

Assemble Iµ,ν = τT +
∑Nj

j=1 sj
>Tj;

Evaluate µ(t1), µ′(t1) of Eqs. (5.107) and (5.108);

Evaluate the initial terms µ>(t1)k1 and µ′>(t1)M(t1)qβ(t1);

Evaluate the final terms lβ(t2), γ2>Φβ(t2), η2>(Φq q̂
′)β(t2), and ξ2Ωβ(t2) ;

Evaluate the gradient of the functional of Eq. (5.103), by assembling Ig, I
µ,ν ,

the initial terms, the final terms, and g1;

Figure 5.8: The pipelined algorithm for the evaluation of gradients of functionals
through the Piecewise Adjoint method - continued

175

1. NEOM
steps integration steps.

2. NEOM
r evaluations of the 2(n+m)-dimensional vector function F (y, y′, t) of Eq.

(4.20).

3. NEOM
J evaluations of the (2(n + m))× (2(n + m)) Jacobian J of Eq. (4.22).

4. One factorization per step of the Jacobian J of Eq. (4.22), due to the integrator’s

correction phase [31]. The factorization of a s×s matrix A requires c×s3 flops,

where constant c depends on the factorization method [8]; e.g., c = 2
3

for LU -

factorization [8]. Hence, the factorization of the (2(n+m))×(2(n+m)) Jacobian

J of Eq. (4.22) requires 64c(n + m)3 flops per integration step.

5. NEOM
Cf integrator correction failures [31] that require re-factorization of the Ja-

cobian J of Eq. (4.22).

Therefore, the total number of flops required by the integration of the DAE of motion

of Eq. (4.20) is

NEOM = NEOM
r × 2(n + m) + NEOM

J × 4(n + m)2

+ NEOM
steps × 64c(n + m)3 + NEOM

Cf × 64c(n + m)3

= 64c(n + m)3(NEOM
steps + NEOM

Cf)

+ 4NEOM
J (n + m)2 + 2NEOM

r (n + m) (5.142)

Factorizations of the m × n constraint Jacobian Φq and of the m ×m block

Φu require c×m3 flops, each. These two factorizations are performed once per mesh

point. Assuming the total simulation time interval [t1, t2] contains Ngrid mesh points,

176

the factorizations of the constraint Jacobian Φq and block Φu require a number of

flops of

NFACTS = Ngrid × (cm3 + cm3) = 2cNgridm
3 (5.143)

The integrate-recover-assemble algorithm defined in Section 5.2 is called 2d+1

times to evaluate the 2d columns of the fundamental matrix Y0
j(tk) and the particular

solutions vj(tk) at each mesh point tk∈∆j. Each time it is called, the integrate-

recover-assemble algorithm integrates the adjoint DAE of Eq. (4.194) with different

initial conditions and different right-sides. Assume that the implicit integration of

the adjoint DAE of Eq. (4.20) using the LLNL’s IDA integrator [31] require

1. NADAE
steps integration steps.

2. NADAE
r evaluations of the 2(n + m)-dimensional vector function Fa(y, y′, t) of

Eq. (4.194).

3. NADAE
J evaluations of the (2(n + m))× (2(n + m)) Jacobian Ja of Eq. (4.196).

4. One factorization per step of the Jacobian Ja of Eq. (4.196), due to the inte-

grator’s correction phase [31]. The factorization of the (2(n + m))× (2(n + m))

Jacobian Ja of Eq. (4.196) requires 64c(n + m)3 flops per integration step.

5. NADAE
Cf integrator correction failures [31] that require re-factorization of the

Jacobian Ja of Eq. (4.196).

177

Therefore, the total number of flops required by the integration of one Adjoint DAE

is

NADAE = NADAE
r × 2(n + m) + NADAE

J × 4(n + m)2

+ NADAE
steps × 64c(n + m)3 + NADAE

Cf × 64c(n + m)3

= 64c(n + m)3(NADAE
steps + NADAE

Cf)

+ 4NADAE
J (n + m)2 + 2NADAE

r (n + m) (5.144)

Since the integrate-recover-assemble algorithm is called 2d + 1 times to evaluate the

fundamental matrices {Y0
j(tk), tk∈∆j} and the particular solutions {vj(tk), tk∈∆j},

its number of flops is on average (2d + 1)NADAE.

Vector τµ
j,0 of Eq. (5.120) is evaluated by applying a quadrature numerical

formula; e.g., Simpson method [8] to the product of n-dimensional row vector aµ
j of

Eq. (5.95) and the n × nβ matrix K2 of Eq. (5.105) on the mesh ∆j. Each such

product requires n× nβ multiplications. The quadrature numerical formula requires

the evaluation of this product for each of the Ngrid mesh points. Hence, the number

of flops required by the evaluation of vector τµ
j,0 is

N(τµ
j,0) = Ngrid × n× nβ (5.145)

Matrix T µ
j of Eq. (5.121) is evaluated by applying a quadrature numerical

formula to the product of the transposed of the n× 2d matrix Bµ
j of Eq. (5.96) and

the n × nβ matrix K2 of Eq. (5.105) on the mesh ∆j. Each such product requires

2d×n×nβ multiplications. The quadrature numerical formula requires the evaluation

of this product for each of the Ngrid mesh points. Hence, the number of flops required

178

by the evaluation of matrix T µ
j is

N(T µ
j) = Ngrid × 2d× n× nβ (5.146)

Vector τ ν
j,0 of Eq. (5.129) is evaluated by applying a quadrature numerical

formula to the product of m-dimensional row vector aν
j of Eq. (5.98) and the m× nβ

matrix Φβ on the mesh ∆j. Each such product requires m× nβ multiplications. The

quadrature numerical formula requires the evaluation of this product for each of the

Ngrid mesh points. Hence, the number of flops required by the evaluation of vector

τ ν
j,0 is

N(τ ν
j,0) = Ngrid ×m× nβ (5.147)

Matrix T ν
j of Eq. (5.130) is evaluated by applying a quadrature numerical

formula to the product of the transposed of the m× 2d matrix Bν
j of Eq. (5.99) and

the m × nβ matrix Φβ on the mesh ∆j. Each such product requires 2d × m × nβ

multiplications. The quadrature numerical formula requires the evaluation of this

product for each of the Ngrid mesh points. Hence, the number of flops required by

the evaluation of matrix T ν
j is

N(T ν
j) = Ngrid × 2d×m× nβ (5.148)

In addition, vector aν
j of Eq. (5.98), which is used to compute the vector τ ν

j,0

of Eq. (5.129), requires the evaluation of the inverse of (n+m)× (n+m) matrix MS

of Eq. (5.89) for each mesh point. Also, matrix Bν
j of Eq. (5.99), which is used to

compute the matrix T ν
j of Eq. (5.130), requires MS−1

for each mesh point. Therefore,

computing τ ν
j,0 and T ν

j requires the factorization of matrix (MS), for each of the Ngrid

179

mesh points; i.e., the number of flops required is

N ν
FACT = Ngrid × c(n + m)3 = cNgrid(n + m)3 (5.149)

Vector τ of Eq. (5.136) and matrix Tj of Eq. (5.137) are updated by evaluating

vectors τµ
j,0 and τ ν

j,0 and matrices T µ
j and T ν

j . Hence, the number of flops required for

the evaluation of τ and Tj is

NTj ,τ = N(τµ
j,0) + N(T µ

j) + N(τ ν
j,0) + N(T ν

j) + N ν
FACT

= Ngrid(2d + 1)(n + m)nβ + cNgrid(n + m)3 (5.150)

As a result, the total number of flops for the Piecewise Adjoint method is

NPA(n, m, nβ) = NEOM + NFACTS + (2d + 1)NADAE + NTj ,τ

= (n + m)3
(
64c(NEOM

steps + NEOM
Cf + (2d + 1)(NADAE

steps + NADAE
Cf)) + cNgrid

)

+ (n + m)2
(
4NEOM

J + 4(2d + 1)NADAE
J

)

+ (n + m)
(
2NEOM

r + 2(2d + 1)NADAE
r

)

+ 2cNgridm
3 + Ngrid(2d + 1)(n + m)nβ (5.151)

The execution time of the sequential Piecewise Adjoint method is proportional to the

number NPA of floating-point operations [29]

τ seq
PA = αNPA(n,m, nβ) (5.152)

where α is a constant depending on the CPU type, memory access speed, and oper-

ating system [54].

180

5.5.2 Multiprocessor Estimates

Assume now that the following shared memory parallel architecture with ker-

nel threads [54] is used: the number of available parallel processors is np, there are

nth children threads in addition to the main thread of a process [54], and that POSIX

threads [15] are used. Multi-threading structures; e.g., mutexes and condition vari-

ables are used to prevent threads from writing into the same memory location at

the same time and for communication between threads [15]. Also, the main thread

requires barriers [15]. Barriers allow the main thread to wait for the other threads

to finish and then collect their results; e.g., a producer-consumer application [54] in

which the main thread produces some data, the children threads process it, and the

main thread waits to collect the results. With POSIX threads barriers are imple-

mented using a pair of mutexes and a condition variable [15]. The use of mutexes and

condition variables is usually computationally expensive and should be kept to a min-

imum [15]. The time that the operating system spends on communication between

threads through mutexes and condition variables is called synchronization time and

it depends on the computer architecture used, number of processors, and number of

threads.

If a computing task X can be split into nth threads of computation and the

number of floating point operations associated with X, performed sequentially, is

N seq
X then the number of floating point operations per thread of computing task X is

Nnth
X =

N seq
X

nth

(5.153)

181

If SX(nth, np) is the synchronization time of the nth threads on np processors for

task X, then the estimated execution time of task X when the operating system is

responsible for assigning the nth threads to the np available processors is [15, 19, 29]

τX(nth, np) = α
N seq

X

np

+ SX(nth, np) (5.154)

where α is a constant depending on the CPU type, memory access speed, and operat-

ing system [54]. When the number of available processors np is less than the number

of necessary threads nth, there is the alternate option of partitioning the nth threads

into nth

np
groups of np threads, execute all threads in a group in parallel, but execute

the groups one after another. This option is in general more expensive [19] because

the number of barriers is increased by a factor of nth

np
. Therefore, this option is not

implemented.

For the implemented parallel Piecewise Adjoint algorithm of Figs. 5.4 through

5.6 each of the following computing tasks are performed in parallel: (1) factorization

of the Φq and Φu in each point of the ∆j mesh and (2) evaluation of the columns

of the fundamental matrices Y0
j(t) and the particular solutions vj(t) through the

integrate-recover-assemble algorithm. Substituting NFACTS of Eq. (5.143) for N seq
X

into Eq. (5.154), it follows that the estimated execution time for the factorization of

Φq and Φu, on the parallel architecture with np processors and nth threads, is

τFACTS(nth, np) = α
2cNgridm

3

np

+ SFACTS(nth, np) (5.155)

Also, substituting the (2d+1)NADAE flops required for the evaluation of the columns

of the fundamental matrices and the particular solutions, where NADAE is defined by

182

Eq. (5.144), for N seq
X into Eq. (5.154), it follows that the evaluation of the columns

of the fundamental matrices Y0
j(t) and the particular solutions vj(t) through the

integrate-recover-assemble algorithm, on the parallel architecture with np processors

and nth threads, is

τADAE×(2d+1)(nth, np) = α
64c(2d + 1)(n + m)3(NADAE

steps + NADAE
Cf)

np

+ α
4(2d + 1)NADAE

J (n + m)2 + 2(2d + 1)NADAE
r (n + m)

np

+ SADAE×(2d+1)(nth, np) (5.156)

The integration of the DAE of motion and the evaluation of τ of Eq. (5.136) and Tj

of Eq. (5.137) are performed sequentially. Therefore,

τEOM(nth, np) = αNEOM (5.157)

where NEOM is defined by Eq. (5.142) and

τTj ,τ (nth, np) = αNTj ,τ (5.158)

where NTj ,τ is defined by Eq. (5.150).

As a result, the estimated execution time for the implemented parallel Piece-

wise Adjoint algorithm of Figs. 5.4 through 5.6 on the parallel architecture with np

processors and nth threads is

τ parallel
PA (nth, np) = τEOM(nth, np) + τTj ,τ (nth, np)

+ τADAE×(2d+1)(nth, np) + τFACTS(nth, np) (5.159)

where τEOM(nth, np) is defined by Eq. (5.157), τTj ,τ (nth, np) is defined by Eq. (5.158),

τADAE×(2d+1)(nth, np) is defined by Eq. (5.156), and τFACTS(nth, np) is defined by Eq.

183

(5.155). The number of necessary threads, in addition to the process’ main thread,

for the factorization of Φq and Φu in each point of the ∆j mesh is the average number

|∆j|j=1,2,...,Nj
of mesh points in the set of meshes {∆j, j = 1, 2, . . . , Nj}. The number

of necessary threads, in addition to the process’ main thread, for the evaluation of

the columns of the fundamental matrices Y0
j(t) and the particular solutions vj(t),

through the integrate-recover-assemble algorithm, is 2d + 1. Hence, the total number

of necessary threads for the implemented parallel Piecewise Adjoint algorithm is

nPA
th = max{|∆j|j=1,2,...,Nj

+ 1, 2d + 2} (5.160)

In order to minimize the amount of time spent on synchronization the number of

processors must be at least as big as the number of threads [19]

np ≥ nPA
th

Consider now the pipelined Piecewise Adjoint algorithm of Figs. 5.7 and 5.8.

In the first pipeline stage the computing tasks that are executed are the integration of

the DAE of motion followed by the factorizations of Φq and Φu. Hence, the estimated

execution time for the first pipeline stage is

τ p1

PA = τEOM(nth, np) + τFACTS(nth, np) (5.161)

where τEOM(nth, np) is defined by Eq. (5.157) and τFACTS(nth, np) is defined by Eq.

(5.155). The number of necessary threads for the first pipeline stage is the average

number |∆j|j=1,2,...,Nj
of mesh points in the set of meshes {∆j, j = 1, 2, . . . , Nj}.

In the second pipeline stage the computing tasks that are executed are the

evaluations of the columns of the fundamental matrices Y0
j(t) and the particular so-

184

lutions vj(t) through the integrate-recover-assemble algorithm. Hence, the estimated

execution time for the second pipeline stage is

τ p2

PA = τADAE×(2d+1)(nth, np) (5.162)

where τADAE×(2d+1)(nth, np) is defined by Eq. (5.156). The number of necessary

threads for the second pipeline stage is 2d + 1.

In the third pipeline stage the computing task that is executed is the evaluation

of vector τ of Eq. (5.136) and matrix Tj of Eq. (5.137). Hence, the estimated

execution time for the third pipeline stage is

τ p3

PA = τTj ,τ (nth, np) (5.163)

where τTj ,τ (nth, np) is defined by Eq. (5.158). The number of necessary threads for

the third pipeline stage is 1.

Since the three pipeline stages are executed simultaneously, the estimated ex-

ecution time for the pipelined Piecewise Adjoint algorithm is the maximum execution

time of the three pipeline stages

τ pipelined
PA = max{τ p1

PA, τ p2

PA, τ p3

PA} (5.164)

and the number of necessary threads, in addition to the process’ main thread, is the

sum of necessary threads for each pipeline stage

npipelined
th = |∆j|j=1,2,...,Nj

+ 2d + 3 (5.165)

The number of flops NPA(n,m, nβ) of Eq. (5.151) for the Piecewise Adjoint

method increases with the number of design parameters nβ. Therefore, the execution

185

times of both the sequential and the parallel Piecewise Adjoint algorithms, of Eqs.

(5.152) and (5.159), respectively, increases with the number of design parameters nβ.

The execution time for the implemented parallel Piecewise Adjoint algorithm

is difficult to estimate in advance because the time spent by the operating system on

synchronizing mutexes and condition variables [15] is difficult to measure. Although

the estimation of Eq. (5.159) includes synchronization costs, they are difficult to

determine in actual parallel experiments [15].

5.6 Memory Load Analysis

In the Adjoint method, storage of the equations of motion states, q, v, a, and λ

is required during forward integration of the DAE of motion, to be used for assembling

and solving the Adjoint DAE using backward integration. In the Piecewise Adjoint

method, at each time tj, j = 1, 2, . . . , Nj; i.e., the beginning of the fine-grid interval

Ij and also the end point of the backward integration of the Adjoint CPUODE on

fine-grid interval Ij, the fundamental matrix Y j
0 (tj) and the particular solution vj(tj)

need to be stored, in order to construct and solve the linear system of Eq. (5.78),

after final time t2 ≡ tNj+1 is reached. Also, matrix Tj defined by Eq. (5.114) and

vector τ =
∑Nj

j=1 τj, which accumulates the sum of vectors τj defined by Eq. (5.113)

for each fine-grid interval Ij, need to be stored in order to assemble the gradient of

the functional after final time is reached, as shown by the algorithm in Figs. 5.7 and

5.8.

Consider a multibody system with nb bodies, m constraints (including the

186

Euler parameter normalization constraints), and nβ design parameters. Also, consider

Nj fine-grid intervals Ij, j = 1, 2, . . . , Nj. Each fine-grid interval consists of ρ mesh

points. For the Adjoint method, when final time is reached Nj × ρ sets of motion

states q, v, a, and λ are stored, resulting in a total of

NA = (3n + m)×Nj × ρ (5.166)

double precision numbers, where n = 7× nb.

For the Piecewise Adjoint method, the dimension of fundamental matrices Y j
0

is 2d × 2d, where d = n − m; the dimension of vectors vj is 2d; the size of vector

τ is nβ; and the dimension of matrices Tj is nβ × 2d. Therefore, when final time is

reached a total of

NPA = (nβ(2d + 1) + 4d2 + 4d)×Nj (5.167)

double precision numbers are stored.

For the slider-crank model, with n = 28, m = 27, and d = 1; nβ = 10 design

parameters; and Nj = 40 fine-grid intervals, each with ρ = 10 mesh points, the

Adjoint method requires storage of NA = 44, 400 double precision points, while the

Piecewise Adjoint method requires storage of NPA = 1520 double precision points,

resulting in less than 3.5% of the Adjoint method memory consumption. For nβ = 100

design parameters, NPA = which is less than a third of the Adjoint method memory

consumption.

For the HMMWV 13 model, with n = 91, m = 81, and d = 10; nβ = 10

design parameters; and Nj = 40 fine-grid intervals, each with ρ = 10 mesh points,

187

the Adjoint method requires storage of NA = 141, 600 double precision points, while

the Piecewise Adjoint method requires storage of NPA = 26, 000 double precision

points, resulting in less than a fifth of the Adjoint method memory consumption. For

nβ = 100 design parameters, NPA = 57600 which is less than half of the Adjoint

method memory consumption.

188

CHAPTER 6
NUMERICAL IMPLEMENTATION AND PRELIMINARY RESULTS

This Chapter is organized as follows: Section 6.1 shows error control of the

quadrature methods that are used; Section 6.2 presents the slider-crank and the

vehicle models; Sections 6.3 and 6.4 show validation results of the implementation

of the Direct Differentiation, Adjoint, and Piecewise Adjoint methods; and Section

6.5 presents (1) parallel implementation attempts on the two parallel architectures,

(2) an analysis of the sequential and parallel Piecewise Adjoint methods, and (3)

predictions of the pipelined parallel Piecewise Adjoint method on multiprocessors

architectures with adequate number of processors. Numerical results are presented

for two multibody systems, a slider-crank and a vehicle. For each model, the following

equations are solved:

1. The index-1 DAE of motion of Eq. (4.20), presented in Section 4.2.

2. The index-1 Direct Differentiation DAE of Eq. (4.113), presented in Section

4.3.

3. The index-1 Adjoint DAE of Eq. (4.194), presented in Section 4.4.

4. The non-homogeneous and homogeneous Adjoint CPUODE of Eq. (5.31), using

the integrate-recover-assemble algorithm presented in Section 5.2.

189

The solutions of these equations are used to integrate gradients of functionals of the

form

Ψ =

∫ t2

t1
(α1q

>q + α2q
′>q′)dt (6.1)

where α1 and α2 are constant scalars. Sequential and parallel experiments are per-

formed on computers with the following configurations of microprocessor type (CPU),

microprocessor speed, random access memory (RAM), and operating system (OS):

1. single-processor computer with CPU: AMD Athlon XP 2500+, speed: 1.8 GHz,

RAM: 512 MB RAM, and OS: Suse Linux 9.0;

2. dual-processor computer with 2× CPU: Intel Xeon , speed: 3 GHz, RAM: 1GB

RAM, and OS: Windows XP;

3. quad-processor computer with 4× CPU: AMD Opteron Processor 850, speed:

2.4 GHz, RAM: 21 GB, and OS: Suse Linux 9.1;

6.1 Error Control

The absolute and relative tolerances for the integration of the DAE of motion

of Eq. (4.20); the DAE of Eq. (4.113) of the Direct Differentiation method, presented

in Section 4.3; and the DAE of Eq. (4.194) of the Adjoint and the Piecewise Adjoint

methods, of Sections 4.4 and 5.2, respectively, are controlled by the IDA DAE solver

[31] through a variable step-size and variable order constant leading coefficient algo-

rithm [13]. For the control of the error in the integration of the functional and its

190

gradient through the Direct Differentiation, Adjoint, and Piecewise Adjoint methods,

two options are implemented:

1. Error control by using Richardson extrapolation [25];

2. Error control by using the IDA integrator;

Let If
[t1,t2] be a numerical integration method applied to function f(t) on in-

terval [t1, t2]; e.g., Simpson method [8]. Using Richardson extrapolation, an estimate

of the local error of the integration is obtained by evaluating the difference between

integrating with step-size h = t2− t1, and integrating with half of the step-size h; i.e.,

e[t1,t2] = If
[t1,t2] − (If

[t1,
t1+t2

2
]
+ If

[
t1+t2

2
,t2]

)

If e[t1,t2] is less than a prescribed error-per-length, obtained by dividing the tolerance

by the length of the interval, (t2 − t1), then If
[t1,t2] is accepted; otherwise, If

[t1,t2] is

rejected, the interval is divided in half, and the result is obtained by recursively

applying the same algorithm to each sub-interval, and add results on sub-intervals.

For the second method of error control in the integration of function f(t) on

interval [t1, t2], consider

z(t) =

∫ t

t1

f(τ)dτ

Since I = z(t2), the integration of function f(t) on interval [t1, t2] is performed by

solving the ODE

z′(t) = f(t)

with initial conditions z(t1) = 0. Using the IDA solver, the local error is controlled by

the IDA integrator. Tests with both methods resulted in the same order of accuracy,

191

although the IDA solver, which uses an implicit integration method, is less efficient

in terms of execution speed.

6.2 Slider-Crank and Vehicle Models

In this Section the topology graphs [52] of the spatial slider-crank and the

thirteen-body High mobility multipurpose wheeled vehicle (HMMWV) are presented.

The nodes of the graphs represent bodies and the edges represent joints in the set

{D, S, R, U, T}, where labels D, S, R, U , and T represent distance, spherical, revolute,

universal, and translational joints, respectively.

Figure 6.1 presents the spatial slider-crank. It consists of the following four

bodies:

1. ground;

2. crank;

3. connecting rod (CONROD);

4. slider;

The bodies are connected through a set of four joints. Table 6.1 presents the set of

joints of the spatial slider-crank, where each entry presents the type of the joint and

the bodies it connects.

192

Type Body i Body j

1 Spherical CRANK CONROD

2 Universal CONROD SLIDER

3 Translational SLIDER GROUND

4 Revolute GROUND CRANK

Table 6.1: The joints of the spatial slider-crank.

Figure 6.2 presents the spatial slider-crank topology graph.

ground

ground

X

Z

Y

crank

 rod
connecting

slider

Figure 6.1: The spatial slider-crank

193

CRANK

S U

TR

CONROD

SLIDER

GROUND

Figure 6.2: The slider-crank topology

The thirteen bodies HMMWV model (HMMWV 13) is similar to the fourteen

bodies HMMWV model (HMMWV 14) presented by Negrut [41]. Tires are mod-

eled as vertical translational-spring-damper elements between bodies and the terrain,

which is modeled as a planar surface. In order to fix the steering rack, the HMMWV

14 model [41] has a translational and a distance joint between the chassis and the

steering rack. In the HMMWV 13 model, the steering rack is removed and its mass

and inertia are transfered to the chassis. In both HMMWV models, stiffness is in-

troduced by prescribing very large values for the stiffness and damping coefficients

of the Tire and TSDA force elements; i.e., the stiffness coefficient of each TSDA is

2.0e + 7 N/m and the damping coefficient is 2.0e + 6 Ns/m. The stiffness coefficients

of the tires are 296325 N/m and the damping coefficients are 3502 Ns/m. Figure 6.3

194

presents the HMMWV 13 model. It consists of the following thirteen bodies:

1. chassis;

2. front left lower control arm (FLLCA);

3. front left upper control arm (FLUCA);

4. front left wheel assembly (FLWA);

5. front right lower control arm (FRLCA);

6. front right upper control arm (FRUCA);

7. front right wheel assembly (FRWA);

8. rear left lower control arm (RLLCA);

9. rear left upper control arm (RLUCA);

10. rear left wheel assembly (RLWA);

11. rear right lower control arm (RRLCA);

12. rear right upper control arm (RRUCA);

13. rear right wheel assembly (RRWA);

Table 6.2 presents the set of joints of the HMMWV 13, where each entry presents the

type of the joint and the bodies it connects.

195

Type Body i Body j Type Body i Body j

1 Distance CHASSIS FLWA 11 Distance CHASSIS RRWA

2 Revolute CHASSIS FLUCA 12 Revolute CHASSIS RRUCA

3 Revolute CHASSIS FLLCA 13 Revolute CHASSIS RRLCA

4 Spherical FLWA FLUCA 14 Spherical RRWA RRUCA

5 Spherical FLWA FLLCA 15 Spherical RRWA RRLCA

6 Distance CHASSIS FRWA 16 Distance CHASSIS RLWA

7 Revolute CHASSIS FRUCA 17 Revolute CHASSIS RLUCA

8 Revolute CHASSIS FRLCA 18 Revolute CHASSIS RLLCA

9 Spherical FRWA FRUCA 19 Spherical RLWA RLUCA

10 Spherical FRWA FRLCA 20 Spherical RLWA RLLCA

Table 6.2: The joints of the HMMWV 13.

Figure 6.4 presents the HMMWV 13 model topology graph.

196

Figure 6.3: The HMMWV

R

S

R

DS

R

R

R

RR

R

S

S

S

SS

S

D

DD

FLUCA
FLWA

FLLCA

RLLCA

RLUCARLWA

CHASSIS

FRUCA FRWA

FRLCA

RRLCA

RRWARRUCA

Figure 6.4: The HMMWV 13 topology

197

6.3 Validation of Kinematic and Force Deriva-

tives

Analytic evaluation of kinematic and force derivatives has been validated by

comparison with centered [8] finite differences,

∂f(x)

∂x
=

f(x + h)− f(x− h)

2h
+ O(h2) (6.2)

where h = 10−6. Tables 6.3 and 6.4 show the absolute error between kinematic

derivatives evaluated analytically and corresponding derivatives evaluated with finite

differences, where the FD superscript stands for finite differences. The validation tests

have been performed on the single-processor AMD Athlon computer. The vector norm

used is the l1 norm [9]

‖x‖1 ≡
nx∑
i

|xi|

where x is a nx-dimensional vector.

198

‖ΦFD
q − Φq‖1

‖(Φqγ)FD
q − (Φqγ)q‖1

Distance 1.75e-09 1.21e-07

Spherical 9.77e-11 7.67e-09

Revolute 9.77e-11 7.67e-09

Universal 2.08e-10 6.45e-09

Translational 2.30e-10 1.77e-08

Table 6.3: Kinematic derivatives: Φq and Θ(Φ, γ)

‖((Φqγ1)qγ2)
FD
q − ((Φqγ1)qγ2)q‖1

‖(Φq
>ζ)FD

q − (Φq
>ζ)q‖1

Distance 2.42e-06 4.51e-09

Spherical 0.0 7.36e-10

Revolute 1.80e-07 2.55e-09

Universal 7.86e-08 2.27e-09

Translational 3.66e-07 6.67e-09

Table 6.4: Kinematic derivatives: (Φq
>ζ)q and Υ(Φ, γ1, γ2)

Table 6.5 presents maximum error between analytic and finite difference eval-

uation of derivatives with respect to model parameters, Φβ, (Φqγ)β, ((Φqγ1)qγ2)β, and

199

(Φq
>γ)β. The vector β of model parameters depends on the type of joint for which

derivatives are evaluated. For Distance and Spherical joints

β =

(
s′Pi

>
s′Pj

>
)>

for Revolute and Universal joints

β =

(
s′Pi

>
s′Pj

>
h′i
> h′j

>
)>

and for the Translational joint

β =

(
s′Pi

>
s′Pj

>
h′i
> h′j

> f ′i
> g′i

>
)>

max{‖ΦFD
β − Φβ‖1

, ‖(Φqγ)FD
β − (Φqγ)β‖1

,

‖((Φqγ1)qγ2)
FD
β − ((Φqγ1)qγ2)β‖1

, ‖(Φq
>γ)FD

β − (Φq
>γ)β‖1

}

Distance 3.41e-06

Spherical 8.74e-08

Revolute 8.74e-08

Universal 1.23e-07

Translational 6.30e-07

Table 6.5: Joint derivatives with respect to model parameters

Tables 6.6 and 6.7 present errors between analytic and finite difference eval-

uation of derivatives of forces with respect to generalized coordinates q and q′ and

200

model parameters β. The vectorβ of model parameters depends on the type of force

for which derivatives are evaluated. For constant applied forces

β =

(
FA

i
>

s′Ci
>

)>

for TSDA forces

β =

(
s′Pi

>
s′Pj

>
k c l0 F

)>

for Tire forces

β =

(
s′Pi

>
k c l0

)>

for RSDA forces

β =

(
f ′i
> f ′j

> g′i
> h′i

> h′j
> k c N

)>

and for Coriolis forces, Li, i = 1, 2, . . . , nb,

β =

(
mi s′Ci

>
(J ′i)11 (J ′i)12 (J ′i)13 (J ′i)22 (J ′i)23 (J ′i)33

)>

‖QFD
q −Qq‖1

‖QFD
q′ −Qq′‖1

‖QFD
β −Qβ‖1

Constant 2.34e-09 0.00 2.00e-06

Tire 9.10e-09 8.85e-09 1.00e-08

TSDA 2.81e-08 3.63e-08 2.74e-06

RSDA 5.69e-10 1.22e-10 1.15e-05

Coriolis 9.95e-09 9.62e-09 1.58e-08

Table 6.6: Force derivatives

201

‖(Qq′γ)FD
q − (Qq′γ)q‖1

‖(Qq′γ)FD
q′ − (Qq′γ)q′‖1

Constant 0.00 0.00

Tire 2.34e-08 0.00

TSDA 8.95e-07 0.00

RSDA 2.08e-09 0.00

Coriolis 8.28e-08 6.05e-08

Table 6.7: Force derivatives

Table 6.8 presents errors between analytic and finite difference evaluation of

derivatives involving the mass matrix with respect to generalized coordinates q and

model parameters β. The vector of model parameters for the mass matrix is

β =

(
mi s′Ci

>
(J ′i)11 (J ′i)12 (J ′i)13 (J ′i)22 (J ′i)23 (J ′i)33

)>

‖(Mγ)FD
q − (Mγ)q‖1

‖((Mγ1)qγ2)
FD
q − ((Mγ1)qγ2)q‖1

‖MFD
β −Mβ‖1

8.95e-09 1.37e-07 6.56e-09

Table 6.8: Mass matrix derivatives

The main source of the errors is the truncation error in the finite differences

evaluation of derivatives [8]. There is no accumulation of round-off errors [8] in the

202

analytic evaluation of derivatives because derivatives are evaluated pointwise; i.e.,

their evaluation does not require summation over a time interval.

6.4 Validation of the Evaluation of Ψβ Through

Direct Differentiation, Adjoint, and Piece-

wise Adjoint Methods

In this Section the gradient of the functional of Eq. (6.1) is computed through

the Direct Differentiation (DD), Adjoint (A), and Piecewise Adjoint (PA) meth-

ods and compared against the gradient of the same functional obtained with finite

differences (FD). The numerical experiments have been performed on the single-

processor AMD Athlon computer, the dual Intel Xeon computer, and the quad AMD

Opteron computer. The time interval chosen is [0, 2] sec, α1 = α2 = 1, and relative

and absolute tolerances for the IDA solver are [31] of 10−5 and 10−6, respectively.

The tolerance used for integration of Ψβ is 10−7. The finite differences evaluation

of Ψβ uses the centered finite differences formula of Eq. (6.2) where h = 10−6; i.e.,

the functional Ψ+h is first integrated with each model parameter βl, l = 1, 2, . . . , nβ,

perturbed to βl + h, then Ψ−h is integrated with each model parameter βl perturbed

to βl − h, and

ΨFD
β =

Ψ+h −Ψ−h

2h
(6.3)

Tables 6.9 through 6.11 present comparative results for the absolute errors between

the Direct Differentiation, Adjoint, Piecewise Adjoint, and the finite differences meth-

203

ods for the slider-crank sensitivity with respect to sixteen model parameters. The

validation results for the gradient of the functional are shown for each of the three

computers because the different architectures and operating systems may influence

the round-off errors [8]. The vector norm used is the l1 norm. The spatial slider-crank

sensitivity validation test case uses the following 16-dimensional vector of model pa-

rameters:

βS =

(
sPrev

>
mCRANK (J ′CONROD)i,j=1,2,3,i 6=j (J ′SLIDER)i,j=1,2,3,i6=j

)>
(6.4)

where sPrev is the 3-dimensional position vector of the revolute joint between ground

and crank with respect to ground. Parameter mCRANK is the crank mass. The

six parameters (J ′CONROD)i,j=1,2,3,i 6=j are the elements of the inertia tensor of the

connecting rod. The six parameters (J ′SLIDER)i,j=1,2,3,i6=j are the elements of the

inertia tensor of the slider.

DD A PA

‖ΨFD
β −Ψβ‖1

5.03e-3 9.25e-3 7.12e-3

‖ΨDirect
β −ΨPiecewise

β ‖
1

‖ΨDirect
β −ΨAdjoint

β ‖
1

1.32e-2 9.86e-3

Table 6.9: The absolute error of Ψβ with respect to FD, for the sensitivity of the
slider-crank with sixteen model parameters on the AMD Athlon computer

204

DD A PA

‖ΨFD
β −Ψβ‖1

1.27e-3 2.04e-3 1.8e-3

‖ΨDirect
β −ΨPiecewise

β ‖
1

‖ΨDirect
β −ΨAdjoint

β ‖
1

5.76e-3 2.55e-3

Table 6.10: The absolute error of Ψβ with respect to FD, for the sensitivity of the
slider-crank with sixteen model parameters on the Intel Xeon computer

DD A PA

‖ΨFD
β −Ψβ‖1

8.13e-4 9.63e-4 9.98e-4

‖ΨDirect
β −ΨPiecewise

β ‖
1

‖ΨDirect
β −ΨAdjoint

β ‖
1

1.39e-3 1.15e-3

Table 6.11: The absolute error of Ψβ with respect to FD, for the sensitivity of the
slider-crank with sixteen model parameters on the AMD Opteron computer

Tables 6.12 through 6.17 present comparative results for the absolute errors be-

tween the Direct Differentiation, Adjoint, Piecewise Adjoint, and the finite differences

methods for the HMMWV 13 sensitivity with respect to sixteen model parameters.

The time interval chosen for the simulation is [0, 2]s for the comparison between the

Direct Differentiation, Adjoint, and finite differences methods. The time interval

205

chosen for the simulation is only [0, 0.05]s for the comparison between the Piecewise

Adjoint method and Direct Differentiation, Adjoint, and finite differences methods

because the execution time of the Piecewise Adjoint method for the HMMWV 13

model is significantly larger, as will be explained in Section 6.5.2. The HMMWV

13 sensitivity validation test case uses the following 16-dimensional vector of model

parameters:

βH =

(
βH

mass
>

(J ′CHASSIS)i,j=1,2,3,i 6=j (J ′RLLCA)i,j=1,2,3,i6=j

)>
(6.5)

where vector

βH
mass =

(
mCHASSIS mRLLCA mRLWA mRRWA

)>

consists of the masses of the chassis mCHASSIS, rear left lower control arm mRLLCA,

rear left wheel assembly mRLWA, and rear right wheel assembly mRRWA. The six

parameters (J ′CHASSIS)i,j=1,2,3,i6=j are the elements of the inertia tensor of the chassis.

The six parameters (J ′RLLCA)i,j=1,2,3,i6=j are the elements of the inertia tensor of the

rear left lower control arm.

DD A

‖ΨFD
β −Ψβ‖1

3.61e-03 7.25e-03

‖ΨDirect
β −ΨAdjoint

β ‖
1

4.44e-04

Table 6.12: The absolute error of Ψβ with respect to FD, for the sensitivity of the
HMMWV 13 with sixteen model parameters on the AMD Athlon computer for the
time interval of [0, 2]s

206

Method DD A FD

‖ΨPA
β −ΨMethod

β ‖
1

1.05e-03 8.17e-04 9.65e-03

Table 6.13: The absolute error of Ψβ with respect to PA, for the sensitivity of the
HMMWV 13 with sixteen model parameters on the AMD Athlon computer for the
time interval of [0, 0.05]s

DD A

‖ΨFD
β −Ψβ‖1

2.88e-03 6.61e-03

‖ΨDirect
β −ΨAdjoint

β ‖
1

2.07e-04

Table 6.14: The absolute error of Ψβ with respect to FD, for the sensitivity of the
HMMWV 13 with sixteen model parameters on the Intel Xeon computer for the time
interval of [0, 2]s

Method DD A FD

‖ΨPA
β −ΨMethod

β ‖
1

8.77e-03 5.39e-04 7.1e-03

Table 6.15: The absolute error of Ψβ with respect to PA, for the sensitivity of the
HMMWV 13 with sixteen model parameters on the Intel Xeon computer for the time
interval of [0, 0.05]s

207

DD A

‖ΨFD
β −Ψβ‖1

7.97e-04 6.56e-04

‖ΨDirect
β −ΨAdjoint

β ‖
1

5.13e-04

Table 6.16: The absolute error of Ψβ with respect to FD, for the sensitivity of the
HMMWV 13 with sixteen model parameters on the AMD Athlon computer for the
time interval of [0, 2]s

Method DD A FD

‖ΨPA
β −ΨMethod

β ‖
1

5.11e-04 8.17e-04 1.82e-03

Table 6.17: The absolute error of Ψβ with respect to PA, for the sensitivity of the
HMMWV 13 with sixteen model parameters on the AMD Athlon computer for the
time interval of [0, 0.05]s

In addition to the truncation error in the finite differences evaluation of the

gradient of the functional, there are more significant round-off errors. There is ac-

cumulation of the round-off errors [8] in the evaluation of the gradient because it

requires summation over a time interval.

208

6.5 Initial Assessment of the Parallel Implemen-

tation

Parallel experiments with the Piecewise Adjoint method for the slider-crank

and HMMWV 13 models have been performed on the dual Intel Xeon computer and

the quad AMD Opteron computer. Both parallel workstations have a shared memory

architecture. POSIX threads (p-threads) [15] have been used as independent threads

of computation. The parallel experiments have been performed using only a limited

number of parallel processors (two and four, respectively). Therefore, the pipelined

parallel Piecewise Adjoint method of Figs. 5.7 and 5.8 could not be tested effectively.

The execution times of both the slider-crank and the HMMWV 13 models

show significant differences between the dual Intel Xeon computer and the quad

AMD Opteron computer. This is explained not only by the different number of

processors; i.e., two on to the dual Intel Xeon computer and four on the quad AMD

Opteron computer, but also by the different types of processors and the different

types of operating systems [54]; i.e., Windows XP on the dual Intel Xeon computer

and Suse Linux 9.1 on the quad AMD Opteron computer.

The experiments with the implemented parallel Piecewise Adjoint method, on

the limited parallel architectures that were available, show very low speed-ups or even

slow-downs, when the number of independent threads is much larger than the number

of parallel processors. However, given an adequate number of processors, the pipelined

Piecewise Adjoint algorithm shows an improved predicted speed-up. Therefore, the

209

Piecewise Adjoint method may show benefits when the number of parallel processors

is large enough to run the pipelined Piecewise Adjoint algorithm.

6.5.1 Parallel Experiments

Tables 6.18 and 6.19 and Figs. 6.5 and 6.6 present parallel and sequential

results for the sensitivity of the slider-crank with 1, 2, 4, 8, and 16 parameters.

Execution times are shown for the parallel Piecewise Adjoint method vs. sequential

Direct Differentiation, Adjoint, and Piecewise Adjoint methods, on the dual Intel

Xeon computer and the quad AMD Opteron computers, respectively. The simulated

time interval for the slider-crank is [0, 2]s.

1 2 4 8 16

DD 101.00 324.00 661.00 1436.00 2650.00

A 295.00 302.00 307.00 308.00 349.00

PAseq 409.00 424.00 454.00 518.00 707.00

PAparallel 297.00 313.00 349.00 393.00 536.00

Table 6.18: Parallel vs. sequential execution times for the slider-crank on the dual
Intel Xeon computer

210

1 2 4 8 16

DD 19.74 48.33 97.12 212.63 436.48

A 61.99 62.14 62.44 63.95 66.45

PAseq 391.57 407.06 436.74 497.09 619.34

PAparallel 152.14 169.5 177.98 195.06 243.49

Table 6.19: Parallel vs. sequential execution times for the slider-crank on the quad
AMD Opteron computer

Tables 6.20 and 6.21 and Figs. 6.7 and 6.8 present parallel and sequential

results for the sensitivity of the HMMWV 13 with 1, 2, 4, 8, and 16 parameters.

Execution times are shown for the parallel Piecewise Adjoint method vs. sequential

Direct Differentiation, Adjoint, and Piecewise Adjoint methods, on the dual Intel

Xeon computer and the quad AMD Opteron computers, respectively. The simulated

time interval for the HMMWV 13 is [0, 0.05]s.

211

1 2 4 8 16

DD 146.00 235.00 397.00 811.00 1605.00

A 2149.00 2246.00 2279.00 2378.00 2435.00

PAseq 57274.00 59279.00 63310.00 71540.00 88709.00

PAparallel 150956.00 156994.00 174264.00 195175.00 261535.00

Table 6.20: Parallel vs. sequential execution times for the HMMWV 13 on the dual
Intel Xeon computer

1 2 4 8 16

DD 45.06 69.00 111.73 210.127 402.42

A 254.02 254.42 257.9 258.33 259.3

PAseq 32436.92 34869.69 37755.71 43041.51 52510.64

PAparallel 42168.72 46385.59 48704.87 55036.5 69346.00

Table 6.21: Parallel vs. sequential execution times for the HMMWV 13 on the quad
AMD Opteron computer

212

1 2 4 8 16
0

500

1000

1500

2000

2500

3000

Execution times for the slider−crank model
on the dual processor computer (2s of simulation)

Number of parameters

t[s
]

DD
A
PA

seq

PA
parallel

Figure 6.5: Execution times for the slider-crank model on the dual Intel Xeon com-
puter

213

1 2 4 8 16
0

100

200

300

400

500

600

700

Execution times for the slider−crank model
on the quad processor computer (2s of simulation)

Number of parameters

t[s
]

DD
A
PA

seq

PA
parallel

Figure 6.6: Execution times for the slider-crank model on the quad AMD
Opteron computer

214

1 2 4 8 16
0

0.5

1

1.5

2

2.5

3
x 10

5
Execution times for the HMMWV 13 model

on the dual processor computer (50 ms of simulation)

Number of parameters

t[s
]

DD
A
PA

seq

PA
parallel

Figure 6.7: Execution time for the HMMWV 13 model on the dual Intel Xeon com-
puter

215

1 2 4 8 16
0

1

2

3

4

5

6

7
x 10

4
Execution times for the HMMWV 13 model

on the quad processor computer (50 ms of simulation)

Number of parameters

t[s
]

DD
A
PA

seq

PA
parallel

Figure 6.8: Execution time for the HMMWV 13 model on the quad AMD
Opteron computer

It should be noted that the parallel experiments on the dual Intel Xeon and

the quad AMD Opteron architectures could not take advantage of an exclusive use

of the computers; i.e., the experiments were performed in a multi-tasking and multi-

user environment [54] with other users running parallel tasks, too. Therefore, the

execution times of Tables 6.18 through 6.21 may not accurately reflect the duration

of the implemented parallel Piecewise Adjoint method on the corresponding parallel

architectures. Also, there was not enough information available about the task load

on each of the two parallel architectures to make a significant comparison between

the execution times on the dual Intel Xeon and the quad AMD Opteron computers.

216

6.5.2 Analysis of Results of Experiments with the Se-

quential Piecewise Adjoint Method

On the dual Intel Xeon computer the data resulting from running the sequen-

tial Piecewise Adjoint method applied to the slider-crank, with n = 28, m = 27,

nβ ∈ {1, 2, 4, 8, 16}, and c = 2
3
, on the [0, 2]s interval, is the following:

1. for the integration of the DAE of motion NEOM
steps = 1110, NEOM

J = 556, NEOM
r =

1791, NEOM
Cf = 0 have been reported by the IDA integrator;

2. for the integration of one Adjoint DAE an average of NADAE
steps = 294, NADAE

J =

25, NADAE
r = 534, NADAE

Cf = 0 have been reported by the IDA integrator;

3. a total of Ngrid = 400 mesh points have been used;

4. an average of |∆j|j=1,2,...,Nj
= 10 mesh points in the set of meshes {∆j, j =

1, 2, . . . , Nj};

It should be noted that in addition to the DAE of motion, a number of 2d + 1

Adjoint DAE are integrated. The DAE of motion and the Adjoint DAE do not

depend on the design parameters nβ. Consequently, the integrator resulting from

running the sequential Piecewise Adjoint method applied to a given model on a given

architecture does not change with the number of design parameters nβ. However, the

estimated number of flops of the sequential Piecewise Adjoint method does depend

on the number of design parameters nβ, as it is shown by Eq. (5.151). The predicted

217

number of flops NPA
[0,2]
slider of the sequential Piecewise Adjoint method on the slider-

crank is obtained by substituting for this data into Eq. (5.151).

On the dual Intel Xeon computer the data resulting from running the sequen-

tial Piecewise Adjoint method applied to the HMMWV 13, with n = 91, m = 81,

nβ ∈ {1, 2, 4, 8, 16}, and c = 2
3
, on the [0, 0.05]s interval, is the following:

1. for the integration of the DAE of motion NEOM
steps = 18, NEOM

J = 5, NEOM
r = 25,

NEOM
Cf = 0 have been reported by the IDA integrator;

2. for the integration of one Adjoint DAE an average of NADAE
steps = 93, NADAE

J = 42,

NADAE
r = 128, NADAE

Cf = 12 have been reported by the IDA integrator;

3. a total of Ngrid = 400 mesh points have been used;

4. an average of |∆j|j=1,2,...,Nj
= 10 mesh points in the set of meshes {∆j, j =

1, 2, . . . , Nj};

The predicted number of flops of the sequential Piecewise Adjoint method on the

HMMWV 13 is obtained by substituting for this data into Eq. (5.151). Since the

[0, 2]s interval is 40 times larger than the [0, 0.05]s interval, the estimated number of

flops for the [0, 2]s interval is NPA
[0,2]
HMMWV = 40×NPA

[0,0.05]
HMMWV .

Therefore, the predicted ratio of the execution time of sequential Piecewise

Adjoint method applied to the HMMWV 13 model and the execution time of sequen-

tial Piecewise Adjoint method applied to the slider-crank model, on the dual Intel

Xeon computer, is

ρXeon =
NPA

[0,2]
HMMWV

NPA
[0,2]
slider

218

For a number of design parameters nβ ∈ {1, 2, 4, 8, 16}, the average value of the

predicted ratio is ρXeon = 4940. Hence, the execution time of the sequential Piecewise

Adjoint method applied to the HMMWV 13 model is therefore expected to be at least

4940 times more expensive than the sequential Piecewise Adjoint method applied to

the slider-crank model, on the same interval of [0, 2]s. The results of the experiments

with the two models on the dual Intel Xeon computer, presented in Tables 6.18 and

6.20 show that the actual ratio of the execution time of the sequential Piecewise

Adjoint method applied to the HMMWV 13 and the execution time of the sequential

Piecewise Adjoint method applied to the slider-crank is on average 5462.

On the quad AMD Opteron computer the data resulting from running the

sequential Piecewise Adjoint method applied to the slider-crank, with n = 28, m = 27,

nβ ∈ {1, 2, 4, 8, 16}, and c = 2
3
, on the [0, 2]s interval, is the following:

1. for the integration of the DAE of motion NEOM
steps = 1108, NEOM

J = 525, NEOM
r =

1601, NEOM
Cf = 0 have been reported by the IDA integrator;

2. for the integration of one Adjoint DAE an average of NADAE
steps = 270, NADAE

J =

22, NADAE
r = 525, NADAE

Cf = 0 have been reported by the IDA integrator;

3. a total of Ngrid = 400 mesh points have been used;

4. an average of |∆j|j=1,2,...,Nj
= 10 mesh points in the set of meshes {∆j, j =

1, 2, . . . , Nj};

The predicted number of flops NPA
[0,2]
slider of the sequential Piecewise Adjoint method

on the slider-crank is obtained by substituting for this data into Eq. (5.151).

219

On the quad AMD Opteron computer the data resulting from running the

sequential Piecewise Adjoint method applied to the HMMWV 13, with n = 91,

m = 81, nβ ∈ {1, 2, 4, 8, 16}, and c = 2
3
, on the [0, 0.05]s interval, is the following:

1. for the integration of the DAE of motion NEOM
steps = 13, NEOM

J = 4, NEOM
r = 19,

NEOM
Cf = 0 have been reported by the IDA integrator;

2. for the integration of one Adjoint DAE an average of NADAE
steps = 59, NADAE

J = 32,

NADAE
r = 95, NADAE

Cf = 7 have been reported by the IDA integrator;

3. a total of Ngrid = 400 mesh points have been used;

4. an average of |∆j|j=1,2,...,Nj
= 10 mesh points in the set of meshes {∆j, j =

1, 2, . . . , Nj};

The predicted number of flops of the sequential Piecewise Adjoint method on the

HMMWV 13 is obtained by substituting for this data into Eq. (5.151). Since the

[0, 2]s interval is 40 times larger than the [0, 0.05]s interval, the estimated number of

flops for the [0, 2]s interval is NPA
[0,2]
HMMWV = 40×NPA

[0,0.05]
HMMWV .

Therefore, the predicted ratio of the execution time of sequential Piecewise

Adjoint method applied to the HMMWV 13 model and the execution time of sequen-

tial Piecewise Adjoint method applied to the slider-crank model, on the quad AMD

Opteron computer, is

ρOpteron =
NPA

[0,2]
HMMWV

NPA
[0,2]
slider

For a number of design parameters nβ ∈ {1, 2, 4, 8, 16}, the average value of the pre-

dicted ratio is ρOpteron = 3264. Hence, the execution time of the sequential Piecewise

220

Adjoint method applied to the HMMWV 13 model is therefore expected to be at least

3264 times more expensive than the sequential Piecewise Adjoint method applied to

the slider-crank model, on the same interval of [0, 2]s. The results of the experiments

with the two models on the quad AMD Opteron computer, presented in Tables 6.19

and 6.21 show that the actual ratio of the execution time of the sequential Piecewise

Adjoint method applied to the HMMWV 13 and the execution time of the sequential

Piecewise Adjoint method applied to the slider-crank is on average 3410.

It should be noted that the predicted number of flops of the sequential Piece-

wise Adjoint method does not account for floating-point additions, integer operations,

or the input-output operations in the intialization part of the algorithm. Hence, the

prediction of the ratio of execution times for the sequential Piecewise Adjoint method

for the two models is confirmed by the actual results on both the dual Intel Xeon and

the quad AMD Opteron computers.

6.5.3 Analysis of Results of Experiments with the Par-

allel Piecewise Adjoint Method and Predictions of

Speed-Up on an Adequate Multiprocessor Archi-

tecture

The parallel experiments with the slider-crank model on the dual Intel Xeon com-

puter required 4 threads and only 2 processors were available. The parallel exper-

iments with the slider-crank model on the quad AMD Opteron computer required

221

4 threads and 4 processors were available. For the slider-crank model the speed-up

of the implemented parallel Piecewise Adjoint algorithm, defined as the ratio of the

execution time of the sequential Piecewise Adjoint algorithm and the execution time

of the implemented parallel Piecewise Adjoint algorithm, is on average 1.3 for the

dual Intel Xeon computer and 2.5 for the quad AMD Opteron computer, as shown in

Tables 6.18 and 6.19. According to Amdahl’s law [29], the theoretical speed-up that

can be obtained for computing task X on a computer with np processors is

S(np) =
1

1− r + r
np

(6.6)

where r is the percentage of the computing task X that is perfectly parallelizable;

i.e., it does not require synchronization. Therefore, the maximum theoretical speed-

up that can be achieved is Smax(np) = np, when r = 100%. In practice, however,

the parallelizable part of a computing task is never r = 100% and it always requires

synchronization [15, 29].

For the slider-crank model with 16 parameters, an estimation of the speed-up of

the pipelined Piecewise Adjoint algorithm relative to the sequential Piecewise Adjoint

algorithm is obtained by substituting the data on the dual Intel Xeon computer

into Eq. (5.164) and ignoring the synchronization time. Therefore, if a number of

npipelined
th = 15 processors would be available, where npipelined

th is defined by Eq. (5.165),

then the predicted speed-up is

Spipelined
slider =

τ seq
PA

τ pipelined
PA

(6.7)

where τ seq
PA is defined by Eq. (5.152) and τ pipelined

PA is defined by Eq. (5.164). For

222

the data reported by the integrator when running the sequential Piecewise Adjoint

algorithm, the predicted speed-up of the pipelined Piecewise Adjoint algorithm is

Spipelined
slider = 5 (6.8)

The parallel experiments with the HMMWV 13 model on the dual Intel

Xeon computer required 22 threads and only 2 processors were available. The paral-

lel experiments with the HMMWV 13 model on the quad AMD Opteron computer

required 22 threads and only 4 processors were available. For the HMMWV 13 model

the implemented parallel Piecewise Adjoint algorithm shows an average slow-down,

defined as the ratio of the execution time of the implemented parallel Piecewise Ad-

joint algorithm and the sequential Piecewise Adjoint algorithm, of 2.8 on the dual Intel

Xeon computer and 1.3 on the quad AMD Opteron computer, as shown in Tables 6.20

and 6.21. The slow-down seen in the HMMWV 13 model is due to the fact that the

operating system is synchronizing 2d + 2 = 22 threads on two processors on the dual

Intel Xeon computer and on four processors on the quad AMD Opteron computer.

When the number of threads is much larger than the number of available processors,

the operating system spends a large amount of time scheduling the threads [54]. For

the slider-crank model, which requires only 2d + 2 = 4 threads, synchronization is

substantially less expensive, especially on the quad AMD Opteron computer, which

explains the speed-up seen when running the slider-crank parallel experiments.

For the HMMWV 13 model with 16 parameters, an estimation of the speed-up

of the pipelined Piecewise Adjoint algorithm relative to the sequential Piecewise Ad-

joint algorithm is obtained by substituting the data on the dual Intel Xeon computer

223

into Eq. (5.164) and ignoring the synchronization time. Therefore, if a number of

npipelined
th = 33 processors would be available, where npipelined

th is defined by Eq. (5.165),

then the predicted speed-up is

Spipelined
HMMWV =

τ seq
PA

τ pipelined
PA

(6.9)

where τ seq
PA is defined by Eq. (5.152) and τ pipelined

PA is defined by Eq. (5.164). For

the data reported by the integrator when running the sequential Piecewise Adjoint

algorithm, the predicted speed-up of the pipelined Piecewise Adjoint algorithm is

Spipelined
HMMWV = 21 (6.10)

224

CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The stability result of Chapter 3 shows that the backward integration of the

index-3 Adjoint DAE is well-posed. This is an important theoretical result. In the

past, there were only stability results for backward integration of Adjoint DAE of

index up to two in Hessenberg form [16]. By showing stability of the index-3 Adjoint

DAE of a multibody system, it follows that any underlying ODE or any lower index

DAE obtained from the original index-3 Adjoint DAE through an index reduction

method [13] has the same backward stability properties as the original. In particular,

the Hiller-Anantharaman stabilized index-1 formulation [2] of the index-3 Adjoint

DAE is backward stable.

Chapter 4 presents Hiller-Anantharaman stabilized index-1 formulations for

the DAE of motion, Direct Differentiation DAE, and Adjoint DAE. Convergence of

BDF methods applied to these formulations is proven, by showing that the resulting

DAE are uniform index-1. It should be noted that Hiller and Anantharaman [2] did

not prove convergence of any numerical integration method for the stabilized index-1

method they originally proposed.

Chapter 5 presents a new method, the Piecewise Adjoint method, that com-

bines features of the Direct Differentiation method and the Adjoint method. The

parallel computational structure and the forward time evolution of the Piecewise Ad-

225

joint method are also features seen in the Direct Differentiation method. The small

number of DAE that need to be integrated in the Piecewise Adjoint method is also

a feature seen in the Adjoint method. The Piecewise Adjoint method essentially is a

multiple shooting [4] algorithm. In the Piecewise Adjoint method, the Adjoint prob-

lem is treated as a BVP, instead of a set of two IVP; i.e., the forward DAE of motion

and the backward Adjoint DAE, as the classical multibody systems Adjoint method

[26] is formulated.

The expression of the gradient of a functional of Eq. (5.103) is expanded as a

function of the fundamental matrix and the particular solution of the linear Adjoint

CPUODE and a set of unknown constant vectors. The fundamental matrix and the

particular solution are obtained by backward integration of the Adjoint CPUODE, us-

ing the integrate-recover-assemble algorithm presented in Section 5.2 on a sequence of

fine-grid time intervals that advance forward in time. After the final time is reached,

the set of unknown vectors is solved for and the gradient is assembled. As a result, the

Piecewise Adjoint method has a forward time evolution structure. Since the columns

of the fundamental matrix and the particular solution can be integrated indepen-

dently, the Piecewise Adjoint method has a coarse grained parallel computational

structure.

An advantage of the Piecewise Adjoint method is that the fundamental matrix

Y j
0 (t), t ∈ Ij, does not depend on the functional Ψ, since the columns of the funda-

mental matrix are obtained by integrating the homogeneous Adjoint DAE, through

the integrate-recover-assemble algorithm. As a result, Y j
0 (t) can be used for construct-

226

ing gradients of different functionals. Furthermore, the fundamental matrix can be

used for solving the second order design sensitivity problem [26] through the Piece-

wise Adjoint method, because the homogeneous DAE of the second order Adjoint

design sensitivity problem is the same as the homogeneous Adjoint DAE [26].

An efficiency analysis is performed by estimating the number of flops of the

Piecewise Adjoint method. The efficiency analysis is used to predict the execution

times of the sequential and Piecewise Adjoint algorithm and to predict the speed-up

of the pipelined parallel Piecewise Adjoint method on multiprocessor architectures

with adequate number of parallel processors. Also, a memory load analysis shows an

advantage of the Piecewise Adjoint method over the Adjoint method.

The Piecewise Adjoint method may become more efficient than the Direct

Differentiation method, if the number of design parameters is much larger than 2d+2

and the number of available processors is close to 2d + 2, where d represents the

degrees of freedom [27] of the multibody system. The advantage of the Piecewise

Adjoint method over the Adjoint method is a decreased memory load, resulting from

the overall forward time evolution of the algorithm, as shown in Section 5.6. The

disadvantage of the Piecewise Adjoint method relative to the Adjoint method is the

increased execution time. If the number of processors is too small relative to the

number 2d + 2 of necessary threads then the parallel Piecewise Adjoint method may

become too expensive. The parallel and sequential numerical experiments confirm

the efficiency analysis predictions.

On a computer architecture with a sufficient number of parallel processors,

227

the pipelined Piecewise Adjoint algorithm of Figs. 5.7 and 5.8 may be used. It re-

quires an additional number of |∆j|j=1,2,...,Nj
+1 processors, where |∆j|j=1,2,...,Nj

is the

average number of mesh points in the set of meshes {∆j, j = 1, 2, . . . , Nj}. The effi-

ciency analysis, which is validated by the numerical experiments with the sequential

Piecewise Adjoint algorithm and the implemented parallel Piecewise Adjoint algo-

rithm, shows an increased theoretical speed-up for the pipelined Piecewise Adjoint

algorithm. The speed-up of the the pipelined Piecewise Adjoint algorithm relative

to the sequential Piecewise Adjoint algorithm, whose estimation for the HMMWV

13 model is shown by Eq. (6.10), can be substantially larger than the speed-up of

the implemented Piecewise Adjoint algorithm. Although this estimation does not

account for the synchronization time, if there are enough processors; e.g., 33 for the

HMMWV 13 model, the amount spent on synchronization may be minimized [1, 19].

7.2 Recommended Future Work

The fundamental matrices computed through the Piecewise Adjoint method

can be used to solve the linear DAE resulting from the second order design sensitiv-

ity analysis of multibody dynamics [26]. Therefore, extending the Piecewise Adjoint

method to the second order design sensitivity analysis may increase the fraction of

the computing effort that can benefit from parallelism. As a result, the Piecewise Ad-

joint method may provide some efficiency gain for the second order design sensitivity

analysis.

On the practical side, it is worth implementing the pipelined version of the

228

Piecewise Adjoint method doing more careful experiments with the algorithm and

including parallel architectures with more processors and perhaps experimenting how

the approach would perform on a distributed-memory parallel architecture [45]. A

comparison between the shared memory and the distributed memory parallel archi-

tectures may provide information on how well the two parallel architectures scale with

the size of the problem.

Taking advantage of the cache memory architecture can be a powerful method

for increasing efficiency of the numerical algorithms [29]. Therefore, memory cache

management and adapting the numerical algorithms to a given cache architecture

should be investigated.

229

APPENDIX A

A.1 Evaluation of Derivatives of Matrices

Consider a n×m matrix function X(w(t), t) depending explicitly on indepen-

dent variable t and implicitly through vector w(t),

X(w(t), t) =

(
x1(w(t), t) . . . xm(w(t), t)

)
(A.1)

where xi(w(t), t) is the i-th column of matrix X, i = 1, 2, . . . , m. Assume that X

has continuous first and second partial derivatives. Differentiation of X with respect

to independent variable t yields

dX(w(t), t)

dt
=

(
dx1(w(t),t)

dt
. . . dxm(w(t),t)

dt

)
(A.2)

Applying the chain rule of differentiation, the derivative of each column xi, i =

1, 2, . . . ,m, is

xi
′ =

dxi(w(t), t)

dt
=

∂xi

∂w

dw(t)

dt
+

∂xi

∂t
= xiww′ + xit (A.3)

where xiw represents the partial differentiation of vector xi with respect to vector w

and xit represents the partial differentiation of vector xi with respect to independent

variable t. Substituting xi
′, i = 1, 2, . . . , m, in Eq. (A.2),

X ′ =
dX(w(t), t)

dt
=

(
x1ww′ + x1t . . . xmww′ + xmt

)
(A.4)

Let ui be the m-dimensional unit vector with all elements zero except the i-th element,

which is one. Multiplying matrix X by unit vector ui

Xui = xi (A.5)

230

As a result,

xi
′ = xiww′ + xit

= (Xui)ww′ + (Xui)t (A.6)

Substituting the derivative of matrix xi of Eq. (A.6) into Eq. (A.4), the first derivative

of X is re-written as

X ′ =
(

(Xu1)ww′ + (Xu1)t . . . (Xum)ww′ + (Xum)t

)
(A.7)

In order to evaluate the second derivative of X, Eq. (A.7) is differentiated,

d2X(w(t), t)

dt2
=

(
dx1

′
dt

. . . dxm
′

dt

)
(A.8)

where each column xi
′, i = 1, 2, . . . , m, is a function of w, w′, and t of the form of Eq.

(A.3). Applying the chain rule of differentiation,

xi
′′ =

d

dt
(xi

′(w(t), w′(t), t)) = (xi
′)ww′ + (xi

′)w′w
′′ + (xi

′)t (A.9)

Substituting xi
′ of Eq. (A.3) into Eq. (A.9),

xi
′′ = ((xi)ww′ + (xi)t)ww′

+ ((xi)ww′ + (xi)t)w′w
′′

+ ((xi)w
ˆ(w′) + (xi)t)t

(A.10)

where terms of the form (A(η)ξ̂)η indicate that variable ξ is treated as a constant for

differentiation with respect to variable η. For a function xi with continuous second

partial derivatives, (xi)t,w = (xi)w,t. Moreover, ((xi)t)w′ = 0, since xi does not depend

231

on w′, and ((xi)ww′)
w′ = (xi)w. As a result, xi

′′ is re-written as

xi
′′ = ((xi)ww′)

w
w′ + (xi)ww′′ + 2(xi)w,tw

′ + (xi)t,t (A.11)

Therefore,

X ′′ =
(

x1
′′ . . . xm

′′
)

(A.12)

where, using Eq. (A.5),

xi
′′ = ((Xui)ww′)ww′ + (Xui)ww′′ + 2(Xui)w,tw

′ + (Xui)t,t (A.13)

A.2 Differentiation of the Constraint Jacobian

Φq

Let the constraint function be

Φ(q, β, t) =




ϕ1

...

ϕm




(A.14)

where

q(β, t) =

(
q1
> . . . qn

>
)>

is the generalized coordinate depending on the vector of design parameters β and

time t. Therefore, the constraint Jacobian is

Φq =




ϕ1q1
. . . ϕ1qn

...
...

ϕmq1
. . . ϕmqn




=

(
Φq1 . . . Φqn

)
(A.15)

232

where

Φqi
=




ϕ1qi

...

ϕmqi




, i = 1, 2, . . . , n (A.16)

In order to calculate the first derivative of the constraint Jacobian, the identity of

Eq. (A.4) is used, where X ≡ Φq, w ≡ q, and xi ≡ Φqi
, i = 1, 2, . . . , n. As a result,

Φq
′ =

(
Φq1qq

′ + Φq1 t . . . Φqnqq
′ + Φqn t

)

=

(
Φq1qq

′ . . . Φqnqq
′
)

+ Φq,t (A.17)

where

Φq,t =

(
Φq1 t . . . Φqn t

)

=




ϕ1q1,t . . . ϕ1qn,t

...
...

ϕmq1,t . . . ϕmqn,t




(A.18)

is the partial derivative of the constraint Jacobian with respect to independent vari-

able t. Using the notation

Φq,q(γ) ≡
(

Φq1qγ . . . Φqnqγ

)

=




ϕ1q1,qγ . . . ϕ1qn,qγ

...
...

ϕmq1,qγ . . . ϕmqn,qγ




(A.19)

where γ is a n-dimensional vector, the derivative of the constraint Jacobian of Eq.

(A.17) is re-written as

Φq
′ = Φq,q(q

′) + Φq,t (A.20)

233

Proposition A.1. Let γ be a n-dimensional vector that does not depend on q. If

Φ(q, β, t) is at least twice continously differentiable with respect to qi, i = 1, 2, . . . , n,

then matrix Φq,q(γ) has the property

Φq,q(γ) = (Φqγ)q

Proof.

(Φqγ)q =
∂

∂q







ϕ1q1
. . . ϕ1qn

...
...

ϕmq1
. . . ϕmqn




γ




=
∂

∂q







ϕ1q

...

ϕmq




γ




=
∂

∂q







ϕ1qγ

...

ϕmqγ







=




(ϕ1qγ)q

...

(ϕmqγ)q




=




(ϕ1qγ)q1 . . . (ϕ1qγ)qn

...
...

(ϕmqγ)q1 . . . (ϕmqγ)qn




=




ϕ1q,q1
γ . . . ϕ1q,qn

γ

...
...

ϕmq,q1
γ . . . ϕmq,qn

γ




(A.21)

Since Φ is at least twice continously differentiable with respect to variables qi, i =

1, 2, . . . , n, the following identities hold [44]:

∂2ϕj

∂qi∂qk

=
∂2ϕj

∂qk∂qi

234

for i, k ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}. Therefore, ϕjq,qi
= ϕjqi,q . Hence,

(Φqγ)q =




ϕ1q,q1
γ . . . ϕ1q,qn

γ

...
...

ϕmq,q1
γ . . . ϕmq,qn

γ




=




ϕ1q1,qγ . . . ϕ1qn,qγ

...
...

ϕmq1,qγ . . . ϕmqn,qγ




= Φq,q(γ) (A.22)

¥

Substituting for Φq,q(q
′) by (Φqq

′)q, the derivative of the constraint Jacobian

is

Φq
′ = (Φqq

′)q + Φq,t (A.23)

The second derivative of the constraint Jacobian is obtained using Eq. (A.12),

where X ≡ Φq, w ≡ q, and xi ≡ Φqi
, i = 1, 2, . . . , n. Thus,

Φq
′′ =

(
Φq1

′′ . . . Φqn

′′
)

(A.24)

According to Eq. (A.11),

Φqi

′′ = ((Φqi
)qq

′)
q
q′ + (Φqi

)qq
′′ + 2(Φqi

)q,tq
′ + (Φqi

)t,t (A.25)

for i = 1, 2, . . . , n. Substituting for Φqi

′′ in Eq. (A.24),

Φq
′′ =

(
((Φq1)qq

′)
q
q′ . . . ((Φqn)qq

′)
q
q′

)

+

(
(Φq1)qq

′′ . . . (Φqn)qq
′′

)

+ 2

(
(Φq1)q,tq

′ . . . (Φqn)q,tq
′
)

+

(
(Φq1)t,t . . . (Φqn)t,t

)
(A.26)

235

Defining matrices

Φq,q,q(γ, ζ) ≡
(

((Φq1)qγ)
q
ζ . . . ((Φqn)qγ)

q
ζ

)
(A.27)

Φq,q,q′′ ≡
(

(Φq1)qq
′′ . . . (Φqn)qq

′′
)

(A.28)

Φq,q,t ≡
(

(Φq1)q,tq
′ . . . (Φqn)q,tq

′
)

(A.29)

Φq,t,t ≡
(

(Φq1)t,t . . . (Φqn)t,t

)
(A.30)

(A.31)

where γ and ζ are n-dimensional vectors, the second derivative of the Jacobian is

re-written as

Φq
′′ = Φq,q,q(q

′, q′) + Φq,q,q′′ + 2Φq,q,t + Φq,t,t (A.32)

Matrix Φq,t,t, of Eq. (A.30),

Φq,t,t =

(
(Φq1)t,t . . . (Φqn)t,t

)
=

∂2

∂t2
(Φq) (A.33)

is the second partial derivative of the Jacobian with respect to time. For a general

matrix A(t) and vector γ(t), (∂
∂t

(A(t)))γ(t) = ∂
∂t

(A(t)γ̂). Therefore,

Φq,q,t =

(
∂
∂t

((Φq1)q
ˆ(q′)) . . . ∂

∂t
((Φqn)q

ˆ(q′))

)

=
∂

∂t

((
(Φq1)q

ˆ(q′) . . . (Φqn)q
ˆ(q′)

))

=
∂

∂t
(Φq,q(ˆ(q′))) (A.34)

Substituting for Φq,q(ˆ(q′)) by its expression given in Proposition A.1, Φq,q,t is re-

written as

Φq,q,t =
∂

∂t
((Φq

ˆ(q′))q) = (Φq
ˆ(q′))q,t (A.35)

236

Matrix Φq,q,q′′ , defined by Eq. (A.28), is

Φq,q,q′′ =

(
(Φq1)qq

′′ . . . (Φqn)qq
′′

)
= Φq,q(q

′′) (A.36)

Using the identity proved in Proposition A.1,

Φq,q,q′′ = Φq,q(q
′′) = (Φqq

′′)q (A.37)

Proposition A.2. Let γ and ζ be n-dimensional vectors not depending on q. If

Φ(q, β, t) is at least three times continously differentiable with respect to variables qi,

i = 1, 2, . . . , n, then matrix Φq,q,q(γ, ζ) has the property

Φq,q,q(γ, ζ) = ((Φqγ)qζ)
q

Proof.

((Φqγ)qζ)
q

=

(
((Φqγ)qζ)

q1
. . . ((Φqγ)qζ)

qn

)

=

(
(Φqγ)q,q1

ζ . . . (Φqγ)q,qn
ζ

)

=

(
(Φq,q1γ)qζ . . . (Φq,qnγ)qζ

)

=

(
(Φq1,qγ)qζ . . . (Φqn,qγ)qζ

)

=

(
((Φq1)qγ)

q
ζ . . . ((Φqn)qγ)

q
ζ

)
= Φq,q,q(γ, ζ) (A.38)

Interchanging the differentiation order Φq,qi
= Φqi,q, i = 1, 2, . . . , n, is possible because

function Φ is assumed to be more than twice continously differentiable. ¥

Substituting for Φq,q,q(q
′, q′) the expression ((Φqq

′)qq
′)

q
, according to Propo-

sition A.2; for Φq,q,q′′ the expression of Eq. (A.37); for Φq,q,t the expression of Eq.

(A.35); and for Φq,t,t the expression of Eq. (A.33) in Eq. (A.32), the second derivative

237

of the Jacobian is

Φq
′′ = ((Φqq

′)qq
′)

q
+ (Φqq

′′)q + 2(Φq q̂′)q,t +
∂2

∂t2
(Φq) (A.39)

The Hessian (ϕiq
>)

q
of ϕi, i = 1, 2, . . . , m, is symmetric, (ϕiq

>)
q

= ((ϕiq
>)

q
)
>
,

and the Hessian (ϕiq,t
>)

q
of ϕit ≡ ∂ϕi

∂t
, i = 1, 2, . . . , m, is also symmetric. As a result,

the following identities hold:

Φq,q(q
′) = (Φqq

′)q =







ϕ1q

...

ϕmq




q′




q

=




ϕ1qq
′

...

ϕmqq
′




q

=




(q′>ϕ1q
>)

q

...

(q′>ϕmq
>)

q




=




q′>(ϕ1q
>)

q

...

q′>(ϕmq
>)

q




=




q′>((ϕ1q
>)

q
)
>

...

q′>((ϕmq
>)

q
)
>




= Θ (A.40)

where Θ was introduced in Eq. (3.63) of Chapter 3;

(Φq,q(q
′))t = (Φqq

′)q,t = ((Φqq
′)q)t

= Θt (A.41)

Φq,q(q
′′) = (Φqq

′′)q =







ϕ1q

...

ϕmq




q′′




q

=




ϕ1qq
′′

...

ϕmqq
′′




q

=




(q′′>ϕ1q
>)

q

...

(q′′>ϕmq
>)

q




=




q′′>(ϕ1q
>)

q

...

q′′>(ϕmq
>)

q




=




q′′>((ϕ1q
>)

q
)
>

...

q′′>((ϕmq
>)

q
)
>




= Z (A.42)

238

where Z was introduced in Eq. (3.86) of Chapter 3; and

Φq,q,tq
′ = (Φq,tq

′)q =







ϕ1q,t

...

ϕmq,t




q′




q

=




ϕ1q,tq
′

...

ϕmq,tq
′




q

=




(q′>ϕ1q,t
>)

q

...

(q′>ϕmq,t
>)

q




=




q′>(ϕ1q,t
>)

q

...

q′>(ϕmq,t
>)

q




=




q′>((ϕ1q,t
>)

q
)
>

...

q′>((ϕmq,t
>)

q
)
>




= T (A.43)

where T was introduced in Eq. (3.82) of Chapter 3. Let θi = q′>((ϕiq
>)

q
)
>

be a

row-vector of matrix Θ, i ∈ {1, 2, . . . ,m}. Then,

(θi
>)q = ((ϕiq

>)
q
q′)

q
=







ϕiq1,q1
. . . ϕiq1,qn

...
. . .

...

ϕiqn,q1
. . . ϕiqn,qn







q1
′

...

qn
′







q

=




∑n
j=1 ϕiq1,qj ,q1

qj
′ . . .

∑n
j=1 ϕiq1,qj ,qn

qj
′

...
. . .

...

∑n
j=1 ϕiqn,qj ,q1

qj
′ . . .

∑n
j=1 ϕiqn,qj ,qn

qj
′




(A.44)

and, since ϕiqk,qj ,ql
= ϕiql,qj ,qk

, k, l = 1, 2, . . . , n, matrix (θi
>)q is symmetric; i.e.,

239

(θi
>)q = ((θi

>)q)
>
. Therefore,

((Φqq
′)qq

′)
q

= (Θq′)q =







θ1

...

θm




q′




q

=




θ1q
′

...

θmq′




q

=




(q′>θ1
>)q

...

(q′>θm
>)q




=




q′>(θ1
>)q

...

q′>(θm
>)q




=




q′>((θ1
>)q)

>

...

q′>((θm
>)q)

>




= Υ (A.45)

where Υ was introduced in Eq. (3.76) of Chapter 3.

As a result of the identities of Eqs. (A.40) through (A.45), the following

identities hold:

K21 ≡ d

dt
(Φq) = Φq,t + (Φqq

′)q = Φq,t + Θ

=

(
Φu,t Φv,t

)
+

(
Θu Θv

)
=

(
Φu,t + Θu Φv,t + Θv

)
(A.46)

K31 ≡ d2

dt2
(Φq) = Φq,tt + (Φq,tq

′)q + (Φq q̂′)q,t + ((Φqq
′)qq

′)
q
+ (Φqq

′′)q

= Φq,tt + T + Θt + Υ + Z (A.47)

=

(
Φu,tt + T u + Θt

u + Υu + Zu Φv,tt + T v + Θt
v + Υv + Zv

)

If the constraint function Φ is at least twice continously differentiable with respect

to q and t, then T = Θt; i.e.,

(Φq,tq
′)q = (Φq q̂′)q,t (A.48)

Consider a partitioning q =

(
um×1

> vd×1
>

)>
of the generalized coordinate

vector q into dependent part u and independent part v, such that the multibody

240

system constraint Jacobian Φq is correspondingly partitioned as

(
Φu Φv

)
, with

Φu non-singular. Since the constraint Jacobian is assumed to have full row-rank at all

times, such a partition always exists [58]. In general, there is a m×m row permutation

constant matrix Pr and a n × n column permutation constant matrix Pc, such that

[58]

PrΦqPc =

(
Φu Φv

)
(A.49)

Define n× d matrix

X0 =



−Φu

−1Φv

Id


 (A.50)

and n×m matrix

X1 =




Φu
−1

0


 (A.51)

In order to compute derivatives of matrix X0, the identity

PrΦqPcX0 =

(
Φu Φv

)


−Φu

−1Φv

Id


 = 0 (A.52)

is differentiated with respect to time. Differentiating Eq. (A.52) once with respect to

time,

Pr(Φq)
′PcX0 + PrΦqPcX0

′ = Pr(Φq)
′PcX0 +

(
Φu Φv

)



(−Φu
−1Φv)

′

0


 = 0

(A.53)

Consequently,

(−Φu
−1Φv)

′
= −Φu

−1Pr(Φq)
′PcX0 (A.54)

241

As a result,

X0
′ =




(−Φu
−1Φv)

′

0


 =



−Φu

−1Pr(Φq)
′PcX0

0




=



−Φu

−1Pr(Φq)
′Pc

0


 X0 = X2X0 (A.55)

where

X2 ≡



−Φu

−1Pr(Φq)
′Pc

0


 =



−Φu

−1

0


 Pr(Φq)

′Pc (A.56)

Using matrix X1 defined by Eq. (A.51), matrix X2 is re-written as

X2 = −X1Pr(Φq)
′Pc (A.57)

Differentiating Eq. (A.53) once with respect to time,

Pr(Φq)
′′PcX0 + 2Pr(Φq)

′PcX0
′ + PrΦqPcX0

′′

= Pr(Φq)
′′PcX0 + 2Pr(Φq)

′PcX0
′

+

(
Φu Φv

)



(−Φu
−1Φv)

′′

0


 = 0 (A.58)

Using matrix X2 defined by Eq. (A.57),

(−Φu
−1Φv)

′′
= −Φu

−1
(
2Pr(Φq)

′PcX2X0 + Pr(Φq)
′′PcX0

)
(A.59)

As a result,

X0
′′ =




(−Φu
−1Φv)

′′

0


 =



−Φu

−1
(
2Pr(Φq)

′PcX2X0 + Pr(Φq)
′′PcX0

)

0




=



−Φu

−1
(
2Pr(Φq)

′PcX2 + Pr(Φq)
′′Pc

)

0


 X0 = X3X0 (A.60)

242

where

X3 ≡



−Φu

−1
(
2Pr(Φq)

′PcX2 + Pr(Φq)
′′Pc

)

0




=



−Φu

−1

0




(
2Pr(Φq)

′PcX2 + Pr(Φq)
′′Pc

)

= −X1

(
2Pr(Φq)

′PcX2 + Pr(Φq)
′′Pc

)
(A.61)

Substituting for X2 of Eq. (A.57) in Eq. (A.61)

X3 = 2X1Pr(Φq)
′PcX1Pr(Φq)

′Pc −X1Pr(Φq)
′′Pc (A.62)

In order to compute the first derivative X1
′ of matrix X1 defined by Eq. (A.51),

the identity

PrΦqPcX1 =

(
Φu Φv

)



Φu
−1

0


 = Im (A.63)

in which Im is the m×m identity matrix, is differentiated once with respect to time,

Pr(Φq)
′PcX1 + PrΦqPcX1

′ = Pr(Φq)
′PcX1 +

(
Φu Φv

)



(Φu
−1)

′

0


 = 0 (A.64)

Consequently,

(Φu
−1)

′
= −Φu

−1Pr(Φq)
′PcX1 (A.65)

As a result,

X1
′ =




(Φu
−1)

′

0


 =



−Φu

−1Pr(Φq)
′PcX1

0




=



−Φu

−1

0


 Pr(Φq)

′PcX1 = −X1Pr(Φq)
′PcX1 = X2X1 (A.66)

243

Differentiating Eq. (A.64) once with respect to time,

Pr(Φq)
′′PcX1 + 2Pr(Φq)

′PcX1
′ + PrΦqPcX1

′′

= Pr(Φq)
′′PcX1 + 2Pr(Φq)

′PcX1
′

+

(
Φu Φv

)



(Φu
−1)

′′

0


 = 0 (A.67)

Consequently,

(Φu
−1)

′′
= −Φu

−1
(
2Pr(Φq)

′Pc(−X1Pr(Φq)
′PcX1) + Pr(Φq)

′′PcX1

)
(A.68)

As a result,

X1
′′ =




(Φu
−1)

′′

0


 =



−Φu

−1
(
2Pr(Φq)

′Pc(−X1Pr(Φq)
′PcX1) + Pr(Φq)

′′PcX1

)

0




= 2




Φu
−1

0


 Pr(Φq)

′PcX1Pr(Φq)
′PcX1 +



−Φu

−1

0


 Pr(Φq)

′′PcX1 (A.69)

=
(−X1Pr(Φq)

′′Pc + 2X1Pr(Φq)
′PcX1Pr(Φq)

′Pc

)
X1 = X3X1

A.3 Boundedness of Matrix S

Stability results of Theorems 3.3 and 3.6 rely on boundedness of matrix S,

constructed such that it meets the properties of Eqs. (3.11) and (3.12).

Theorem A.3. Matrix S, having the properties of Eqs. (3.11) and (3.12), is bounded.

Proof. Matrix

(
R> C>

)

n×n

is nonsingular [5], where R has the properties

of Eqs. (3.6) through (3.9), ‖R‖ > kR, κ(RR>) < KRR> < ∞, and C = −Φq.

244

Therefore, the linearly independent columns r1, . . . , rd, c1, . . . , cm, of matrices

R> ≡
(

r1 . . . rd

)

and

C> ≡
(

c1 . . . cm

)

form a basis of Rn. Since Bn ≡ {r1, . . . , rd, c1, . . . , cm} is a basis, any vector ξ ∈ Rn is

a linear combination of vectors in the basis,

ξ =
d∑

i=1

αR
i ri +

m∑
j=1

αC
j cj = R>αR + C>αC

in which the d × 1 vector αR is defined as αR ≡
(

αR
1 . . . αR

d

)>
, and the m × 1

vector αC is defined as αC ≡
(

αC
1 . . . αC

m

)>
. As a result, each of the d column

vectors si, i = 1, 2, . . . , d, of matrix S =

(
s1 . . . sd

)
are linear combinations of

vectors in the basis,

si = R>γR
i + C>γC

i

Therefore, matrix S is written as

S = R>ΓR + C>ΓC (A.70)

where ΓR ≡
(

γR
1 . . . γR

d

)
and ΓC ≡

(
γC

1 . . . γC
d

)
. Pre-multiplying Eq.

(A.70) by matrix R, and accounting for the fact that RC> = RB = 0, the following

identity is obtained:

Id = RS = RR>ΓR

245

Matrix RR> is positive-definite, due to the property of Eq. (3.8) that rank(R) = d.

Therefore,

ΓR = (RR>)
−1

(A.71)

Pre-multiplying Eq. (A.70) by matrix C and accounting for the fact that CR> =

(RB)> = 0, the following identity is obtained:

0 = CS = CC>ΓC

Matrix = CC> is positive definite, because C has full row-rank. Therefore,

ΓC = 0 (A.72)

As a result of the Eqs. (A.71) and (A.72), matrix S is re-written as

S = R>(RR>)
−1

Therefore,

‖S‖ ≤ ‖R>‖‖(RR>)
−1‖ ≤ ‖R>‖ KRR>

‖RR>‖ ≤ K
KRR>

kR
2

¥

A.4 Definitions of Orientation Matrices

Consider p ∈ R4 the vector of Euler parameters of a body; i.e., a four-

dimensional normalized vector, ‖p‖2 = 1,

p =

(
e0 e1 e2 e3

)>
=

(
e0 e>

)>
(A.73)

246

where e =

(
e1 e2 e3

)>
. The orientation matrix of a body is uniquely defined by

its Euler parameter vector p [27],

A(p) ≡ (e2
0 − e>e)I + 2ee> + 2e0ẽ

=




e2
0 + e2

1 − e2
2 − e2

3 2(e1e2 − e0e3) 2(e1e3 + e0e2)

2(e1e2 + e0e3) e2
0 − e2

1 + e2
2 − e2

3 2(e2e3 − e0e1)

2(e1e3 − e0e2) 2(e2e3 + e0e1) e2
0 − e2

1 − e2
2 + e2

3




(A.74)

Matrix A(p) is orthogonal ; i.e.,

AA> = A>A = (p>p)2I = I (A.75)

Other matrices depending on p, which are used to define the orientation matrixA(p)

and kinematic terms; e.g., the mass matrix Mi and the Coriolis vector Li of a body

i, are matrices E(p) and G(p) [27],

E(p) ≡
(
−e ẽ + e0I

)
(A.76)

G(p) ≡
(
−e −ẽ + e0I

)
(A.77)

with properties [27]

Ep = 0 (A.78)

Gp = 0 (A.79)

The following identities hold between the orientation matrices A(p), E(p), and G(p)

[27]:

A = EG> (A.80)

247

EE> = GG> = p>pI = I (A.81)

E>E = G>G = p>pI − pp> = I − pp> (A.82)

A.5 Partial Derivatives of Orientation Matrices

Consider vectors a, a′, b∈R3 and γ∈R4, not normalized. The following identi-

ties hold [50]:

(
E(p)γ

)
p

= −E(γ) (A.83)

(
E>(p)a

)
p

= (a)+ (A.84)

where matrix (a)+ is defined [43] as

(a)+≡




0 −a>

a ã


 (A.85)

and has the following properties:

(a)+p = E>(p)a (A.86)

(
G(p)γ

)
p

= −G(γ) (A.87)

(
G>(p)a

)
p

= (a)− (A.88)

where matrix (a)− is defined [43] as

(a)−≡




0 −a>

a −ã


 (A.89)

and has the property

(a)−p = G>(p)a (A.90)

248

The derivative of the product (A(p)a′) with respect to vector p is [50]

B(p, a′)≡(
A(p)a′

)
p

= 2

(
(e0I + ẽ)a′ ea′> − (e0I + ẽ)ã′

)
(A.91)

where the 3× 4 matrix B(p, a′) has the following properties [50]:

B(pi, a
′)pj = B(pj, a

′)pi (A.92)

(
B(pi, a

′)pj

)
pi

= B(pj, a
′) (A.93)

(
B(pi, a

′)pj

)
pi

= B(pj, a
′) (A.94)

The derivative of the product (A>(p)a′) with respect to vector p is [50]

C(p, a)≡(
A>(p)a

)
p

= 2

(
(e0I − ẽ)a ea> + (e0I − ẽ)ã

)
(A.95)

where the 3× 4 matrix C(p, a) has the following properties [50]:

C(pi, a)pj = C(pj, a)pi (A.96)

(
C(pi, a)pj

)
pi

= C(pj, a) (A.97)

The derivative of the product (B(pi, a
′
i)pj) with respect to vector a′ is [50]

N(pi, pj)≡
(
B(pi, a

′
i)pj

)
a′i

= 2{E(pi)G
>(pj)} (A.98)

where the 3× 3 matrix N(pi, pj) has the following properties [50]:

N>(pi, pj) =
(
C(pi, ai)pj

)
ai

(A.99)

N(pi, pj) = N(pj, pi) (A.100)

249

The derivative of the product B>(p, a′)b with respect to vector a′ is [50]

(
B>(p, a′)b

)
a′ = C>(p, b) (A.101)

and the derivative of the product C>(p, b)a′ with respect to vector b is [50]

(
C>(p, b)a′

)
b
= B>(p, a′) (A.102)

A.6 Equations of Motion in a Non-Centroidal

Coordinate Frame

The centroid of a body is located [27], relative to a body-fixed coordinate

frame,

s̃′
C

=
1

m

∫

m

s′P dm(P) (A.103)

where m is the mass of the body and dm(P) is the differential mass element located

at point P . The inertia tensor is defined [27] as

J ′ = −
∫

m

s̃′
P
s̃′

P
dm(P) (A.104)

The variational form of the equations of motions is [27]

δr>
(
mr′′ + m(Aω̃′ + Aω̃ω̃)− FA

)

+ δπ>
(
ms̃′

C
A>r′′ + J ′ω′ + ω̃J ′ωω̃ − n′A

)
= 0 (A.105)

where [27] δr is the virtual displacement of the origin of the body-fixed coordinate

frame, δπ is the virtual rotation of the body, ω is the angular velocity of the body-fixed

coordinate frame,

FA =

∫

m

F (P)dm(P) (A.106)

250

is the applied force acting on the body, and

n′A =

∫

m

s̃′
P
F ′(P)dm(P) (A.107)

is the applied torque resulting from the applied force acting on the body. The force-

per-unit of mass F (P) is a function of the position of a point P inside the body,

expressed in the global coordinate frame. The force-per-unit of mass F ′(P) and the

applied torque n′A are expressed in the body-fixed coordinate frame. Hence,

F (P) = AF ′(P) (A.108)

and, pre-multiplying Eq. (A.108) by A−1 = A>,

F ′(P) = A>F (P) (A.109)

Substituting for F ′(P) in Eq. (A.107), the applied torque is re-written as

n′A =

∫

m

s̃′
P
A>F (P)dm(P) (A.110)

It is to be noted that the applied torque depends on the applied force through Eq.

(A.110); e.g., for a constant force-per-unit of mass

F (P) =
F

m
(A.111)

the applied torque is

n′A =

∫

m

s̃′
P
A>F

m
dm(P) =

1

m

(∫

m

s̃′
P)

A>F (A.112)

Using the definition of the centroid, of Eq. (A.103), the applied torque resulting from

a constant force-per-unit of mass is

n′A =
1

m

(∫

m

s̃′
P)

A>F =
1

m
ms̃′

C
A>F = s̃′

C
A>F (A.113)

251

Using the following identities [27]:

ω′ = 2δpGp′′

δπ = 2Gδp

ω = 2Gp′

ω̃ = A>A′ = −A′>A

and

ω̃s′C = −s̃′
C
ω

the variational equation of motion is re-written as

δr>
(
mr′′ − 2mAs̃′

C
Gp′′ −mAA>A′A′>As′C − FA

)

+ 2δp>G>(
ms̃′

C
A>r′′ + 2J ′Gp′′ + 2A>A′J ′Gp′ − n′A

)
= 0 (A.114)

Since [27] A = EG>, A′ = 2EG′>, and E>E = I − pp>,

A>A′ = GE>2EG′> = 2G(I − pp>)G′>

Using the identity [27] Gp = 0, it follows that

A>A′ = 2GG′>

Substituting for A>A′ in Eq. (A.114)

δr>
(
mr′′ − 2mAs̃′

C
Gp′′ −mAA>A′A′>As′C − FA

)

+ δp>
(
2mG>s̃′

C
A>r′′ + 4G>J ′Gp′′ + 8G>GG′>J ′Gp′ − 2G>n′A

)
= 0(A.115)

252

and using the identities [27] G>G = I−pp> and A′ = 2EG′>, the variational equation

of motion is re-written as

δq>







mI −2mAs̃′
C
G

2mG>s̃′
C
A> 4G>J ′G


 q′′ −




4mEG′>G′G>s′C

−8G′>J ′Gp′







− δq>







0

8pp>G′>J ′Gp′


 +




FA

2G>n′A





 = 0 (A.116)

Defining

M0 ≡




mI −2mAs̃′
C
G

2mG>s̃′
C
A> 4G>J ′G


 (A.117)

L0 ≡




4mEG′>G′G>s′C

−8G′>J ′Gp′


 (A.118)

L0,1 ≡




0

8pp>G′>J ′Gp′


 (A.119)

Q0 ≡




FA

2G>n′A


 (A.120)

and noting that

δq>L0,1 = 0

since [27] δp>p = 0, the variational equation of motion reduces to

δq>
(
M0q

′′ − L0 −Q0

)
= 0 (A.121)

This equation must hold for all kinetically admissible δq; i.e., for all δq such that

Φqδq
> = 0 (A.122)

253

There must exist [27] a Lagrange multiplier vector λ such that

δq>
(
M0q

′′ − L0 −Q0 + Φq
>λ

)
= 0 (A.123)

for an arbitrary virtual displacement vector δq. Thus, its coefficient must be zero,

yielding

M0q
′′ + Φq

>λ = S1
0 (A.124)

where S1
0 = L0 + Q0.

For a multibody system comprising nb bodies, the equations of motion for each

body have the same form,

Miqi
′′ + Φqi

>λ = S1
i (A.125)

where

Mi ≡




miI −2miAis̃′
C

i Gi

2miGi
>s̃′

C

i Ai
> 4Gi

>J ′iGi


 (A.126)

S1
i = Li + Qi (A.127)

Li ≡




4miEiGi
′>Gi

′Gi
>s′Ci

−8Gi
′>J ′iGipi

′


 (A.128)

and

Qi ≡




FA
i

2Gi
>n′Ai


 (A.129)

in which mi is the i-th body mass; J ′i is the i-th body inertia tensor; s′Ci is the i-th

body position of the center of mass with respect to its body-fixed coordinate frame;

qi =

(
ri
> pi

>
)>

, ri being the position of the i-th body body-fixed coordinate

frame origin with respect to global coordinate frame and pi being the Euler parameters

254

vector of the i-th body; Ai ≡ A(pi), Ei ≡ E(pi), and Gi ≡ G(pi); FA
i is the applied

force acting on body i; and n′Ai is the applied torque acting on body i, resulting form

the applied force FA
i . Defining

q ≡
(

q1
> . . . qnb

>
)>

(A.130)

M ≡ diag(Mi, i = 1, 2, . . . , nb) (A.131)

L ≡
(

L1
> . . . Lnb

>
)>

(A.132)

Q ≡
(

Q1
> . . . Qnb

>
)>

(A.133)

and S1 = L + Q, the multibody system equation of motion, obtained by collecting

equations of the form of Eq. (A.125) and using the definitions of Eqs. (A.130) through

(A.133), is

Mq′′ + Φq
>λ = S1 (A.134)

This equation of motion and the constraint equation

Φ(q, β, t) = 0 (A.135)

represent the non-centroidal formulation of the equations of motion of a multibody

system. They constitute an index-3 DAE [48, 27].

255

A.7 Partial Derivatives of Mass Matrix and

Coriolis Blocks

As shown in the previous Section, the body i-th 7 × 7 mass matrix block Mi

is

Mi =




miI −2miA(pi)s̃′
C

i G(pi)

2miG(pi)
>s̃′

C

i A(pi)
> 4G(pi)

>J ′iG(pi)




The product of Mi and a seven-dimensional constant vector

γi =

(
γi,r> γi,p>

)>

is

Miγ
i =




miγ
i,r − 2miA(pi)s̃′

C

i G(pi)γ
i,p

2miG(pi)
>s̃′

C

i A(pi)
>γi,r + 4G(pi)

>J ′iG(pi)γ
i,p


 (A.136)

The product Miγ
i depends only on the body i Euler parameters vector pi.

Therefore,

(Miγ
i)ri

=




0

0


 (A.137)

The partial derivative of the upper-block of Eq. (A.136) with respect to pi is

M1,i = mi(γ
i,r)pi

− 2mi(A(pi)s̃′
C

i G(pi)γ
i,p)pi

(A.138)

where the fact that the mass of body i does not depend on pi is accounted for. Since

γi is assumed to be a constant vector

mi(γ
i,r)pi

= 0 (A.139)

256

Using the product and chain rules of differentiation,

(A(pi)s̃′
C

i G(pi)γ
i,p)pi

= (A(pi)
̂

(s̃′
C

i G(pi)γi,p))pi
+ A(pi)s̃′

C

i (G(pi)γ
i,p)pi

(A.140)

and using the differentiation identities of Eqs. (A.91) and (A.87),

(A(pi)s̃′
C

i G(pi)γ
i,p)pi

= B(pi, s̃′
C

i Giγ
i,p)− Ais̃′

C

i G(γi,p) (A.141)

Substituting expressions of Eqs. (A.139) through (A.141) in Eq. (A.138),

M1,i = −2miB(pi, s̃′
C

i Giγ
i,p) + 2miAis̃′

C

i G(γi,p) (A.142)

The partial derivative of the lower-block of Eq. (A.136) with respect to pi is

M2,i = 2mi(G(pi)
>s̃′

C

i A(pi)
>γi,r)pi

+ 4(G(pi)
>J ′iG(pi)γ

i,p)pi
(A.143)

Using the product and chain rules of differentiation,

M2,i = 2mi(G(pi)
> ̂
(s̃′

C

i A(pi)
>γi,r))pi

+ 2miG(pi)
>s̃′

C

i (A(pi)
>γi,r)pi

+ 4(G(pi)
> ̂(J ′iG(pi)γi,p))pi

+ 4G(pi)
>J ′i(G(pi)γ

i,p)pi
(A.144)

and using the differentiation identities of Eqs. (A.88), (A.95) and (A.87),

M2,i = 2mi(s̃′
C

i Ai
>γi,r)

−
+ 2miGi

>s̃′
C

i C(pi, γ
i,r) + 4(J ′iGiγ

i,p)
− − 4Gi

>J ′iG(γi,p)

(A.145)

As a result, matrix (Miγ
i)qi

is

(Miγ
i)qi

=




0 M1,i

0 M2,i


 (A.146)

257

The partial derivative ((Miγ1
i)qi

γ2
i)qi

, where γ1
i and γ2

i are constant 7-dimensional

vectors, is

((Miγ1
i)qi

γ2
i)qi

=




0 M3,i

0 M4,i


 (A.147)

where

M3,i = −2mB(γi,p
2 , s̃′CGγ1

i,p) + 2mN(pi, γ
i,p
2)s̃′CG(γi,p

1) + 2mB(pi, s̃
′CG(γi,p

1)γi,p
2)

and

M4,i = 2mG>(γi,p
2)s̃′CC(pi, γ1

i,r) + 2m(s̃′CC(pi, γ1
i,r)γi,p

2)
−

+ 2mG>s̃′CC(γi,p
2 , γ1

i,r)− 4G>(γi,p
2)J ′G(γi,p

1)− 4(J ′G(γi,p
1)γi,p

2)
−

The derivatives of Coriolis term Li, defined in Eq. (A.128), with respect to ri

and ri
′ are zero, since Li depends only on pi and pi

′. The derivative of Li with respect

to pi is

Lipi
=




4mi(E(pi)G(pi
′)>G(pi

′)G>(pi)s
′C
i)pi

−8(G(pi
′)>J ′iG(pi)pi

′)pi


 (A.148)

The upper-block of Eq. (A.148) is

Li1,pi
= 4mi(E(pi)

̂(G(pi
′)>G(pi

′)G>(pi)s′Ci))pi

+ 4miE(pi)G(pi
′)>G(pi

′)(G>(pi)s
′C
i)pi

(A.149)

Using the identities of Eqs. (A.83) and (A.88),

Li1,pi
= −4miE(G(pi

′)>G(pi
′)G(pi)

>s′Ci)

+ 4miE(pi)G(pi
′)>G(pi

′)(s′Ci)
−

(A.150)

258

The lower-block of Eq. (A.148) is

Li2,pi
= −8G(pi

′)>J ′i(G(pi)pi
′)pi

(A.151)

Using the identity of Eq. (A.87),

Li2,pi
= 8G(pi

′)>J ′iG(pi
′) (A.152)

As a result, matrix Liqi
is

Liqi
=




0 Li1,pi

0 Li2,pi


 (A.153)

The derivative of Li with respect to pi
′ is

Lipi
′ =




4mi(E(pi)G(pi
′)>G(pi

′)G>(pi)s
′C
i)pi

′

−8(G(pi
′)>J ′iG(pi)pi

′)pi
′


 (A.154)

The upper-block of Eq. (A.154) is

Li1,pi
′ = 4miE(pi)(G(pi

′)> ̂(G(pi
′)G>(pi)s′Ci))pi

′

+ 4miE(pi)G(pi
′)>(G(pi

′)(G>(pi)s
′C
i))pi

′ (A.155)

Using the identities of Eqs. (A.88) and (A.87),

Li1,pi
′ = 4miE(pi)((G(pi

′)G>(pi)s
′C
i))

−

− 4miE(pi)G(pi
′)>G((G>(pi)s

′C
i)) (A.156)

The lower-block of Eq. (A.154) is

Li2,pi
′ = −8(G(pi

′)> ̂(J ′iG(pi)pi
′))pi

′

− 8G(pi
′)>J ′iG(pi) (A.157)

259

Using the identity of Eq. (A.88),

Li2,pi
′ = −8(J ′iG(pi)pi

′)− − 8G(pi
′)>J ′iG(pi) (A.158)

As a result, matrix Liqi
′ is

Liqi
′ =




0 Li1,pi
′

0 Li2,pi
′


 (A.159)

Partial derivative (Liqi
′γi)qi

is

(Liqi
′γi)qi

=




0 L0,i

0 8G>(γi,p)J ′G(pi
′) + 8(G(pi

′))>J ′G(γi,p)


 (A.160)

where

L0,i = − 4mE(G>(γi,p)G(pi
′)G>s′C) + 4mEG>(γi,p)G(pi

′)(s′C)
−

+ 4mE((G(pi
′))>G(G>s′C)γi,p) + 4mE(G(pi

′))>G(γi,p)(s′C)
−

and partial derivative (Liqi
′γi)qi

′ is

(Liqi
′γi)qi

′ =




0 −4mEG>(γi,p)G(G>s′C)− 4mE(G(G>s′C)γi,p)
−

0 −8G>(γi,p)J ′G− 8(J ′Gγi,p)
−


 (A.161)

A.8 Partial Derivatives of Force Terms

Generalized forces Qi and Qj acting on bodies i and j, have the form [50]

Qi =




FA
i

2Gi
>n′i

A


 + QTSDA

i + QRSDA
i (A.162)

Qj =




FA
j

2Gj
>n′j

A


 + QTSDA

j + QRSDA
j (A.163)

260

Kinematic derivatives of

QA
i =




FA
i

2Gi
>n′i

A


 (A.164)

are

(QA
i)ri

= 0 (A.165)

(QA
i)pi

=




0

2(s̃′CAi
>FA

i)
−

+ 2Gi
>s̃′CC(pi, F

A
i)


 (A.166)

(QA
i)qi

′ = 0 (A.167)

The TSDA forces have the form [50]

QTSDA
i =

f

l




dij

(B>(pi, s
′p
i)dij)


 (A.168)

QTSDA
j = −f

l




dij

(B>(pj, s
′p
j)dij)


 (A.169)

where

f = k(l − l0) + cl′ + F (l, l′) (A.170)

l2 = dij
>dij (A.171)

dij = rj + Ajs
′
j
P − ri − Ais

′
i
P

With qij =

(
qi
> qj

>
)>

, kinematic derivatives of TSDA forces are [50]

QTSDA
iqij

=




(f
l
dij)qij

B>(pi, s
′p
i)(

f
l
dij)qij

+ f
l
Rk=1,...,4(

(
0 dij

>B(ek, s
′p
i) 0 0

)
)




(A.172)

261

QTSDA
jqij

=




−(f
l
dij)qij

−B>(pj, s
′p
j)(

f
l
dij)qij

− f
l
Rk=1,...,4(

(
0 0 0 dij

>B(ek, s
′p
j)

)
)




(A.173)

QTSDA
iq′ij

=




dij(
f
l
)q′ij

B>(pi, s
′p
i)dij(

f
l
)q′ij


 (A.174)

QTSDA
jq′ij

=




−dij(
f
l
)q′ij

−B>(pj, s
′p
j)dij(

f
l
)q′ij


 (A.175)

(QTSDA
iq′ij

γ)qij
=




((
f
l
dij

)
q′ij

γ
)

qij

B>(pi, s
′P
i)

((
f
l
dij

)
q′ij

γ
)

qij

+ Rk=1,...,4(
((

f
l
dij

)
q′ij

γ
)>

)A




(A.176)

(QTSDA
jq′ij

γ)qij
=




−
((

f
l
dij

)
q′ij

γ
)

qij

−B>(pj, s
′P
j)

((
f
l
dij

)
q′ij

γ
)

qij

−Rk=1,...,4(
((

f
l
dij

)
q′ij

γ
)>

)A0




(A.177)

(QTSDA
iq′ij

γ)q′ij = 0 (A.178)

(QTSDA
jq′ij

γ)q′ij = 0 (A.179)

where matrix Rk=1,...,4(γk
>) is defined as

Rk=1,...,4(γk
>) =




γ1
>

γ2
>

γ3
>

γ4
>




(A.180)

γ, γ1, γ2, γ3, and γ4 are 14-dimensional constant vectors of the form

γ =

(
γi,r> γi,p> γj,r> γj,p>

)>
(A.181)

262

and ek is the four-dimensional unit vector with all elements zero except the k-th

component, which is one. Kinematic derivatives of f
l
dij are

(
f

l
dij

)

qij

=

(
−N1 −Ni N1 Nj

)
(A.182)

and
(

f

l
dij

)

q′ij

=
c

l2
dijdij

>
(
−I −B(pi, s

′P
i) I B(pj, s

′P
j)

)
(A.183)

((
f

l
dij

)

q′ij

γ

)

x

=
(c + Fl′)

l2

((
− 2

l2
dijdij

>d′ijq′ij
γdij

> + dij(d
′
ijq′ij

γ)
>

+ dij
>(d′ijq′ij

γ)I
)
dijx + dijdij

>(d′ijq′ij
γ)x

)
(A.184)

where x∈{q, q′} and

N1 =

(
k − f

l
− c

l′

l

)
dijdij

>

l2
+ c

dijd
′
ij
>

l2
+

f

l
I

N2 = c
dijdij

>

l2

Ni = N1B(pi, s
′P
i) + N2B(pi

′, s′Pi)

Nj = N1B(pj, s
′P
j) + N2B(pj

′, s′Pj)

d′ij = r′j + B(pj, s
′P
j)p′j − r′i −B(pi, s

′P
i)p′i (A.185)

dijqij
=

(
−I −B(pi, s

′P
i) I B(pj, s

′P
j)

)
(A.186)

dijq′ij
= 0 (A.187)

(dij
′
q′ij

γ)qij
=

(
0 −B(γi,p, s′Pi) 0 B(γj,p, s′Pj)

)
(A.188)

(dij
′
q′ij

γ)q′ij = 0 (A.189)

263

The RSDA forces have the form [50]

QRSDA
i = 2n




0

(Gi
>h′i)


 (A.190)

QRSDA
j = −2n




0

(Gj
>h′j)


 (A.191)

where

n = kθ(θ + 2nrevπ) + cθθ
′ + N(θ + 2nrevπ, θ′) (A.192)

cos(θ) = f ′i
>
Ai

>Ajf
′
j (A.193)

sin(θ) = g′i
>
Ai

>Ajf
′
j (A.194)

Kinematic derivatives of RSDA forces are [50]

QRSDA
iqij

=




0

2Gi
>h′inqij

+ 2n

(
0 h′i

− 0 0

)


 (A.195)

QRSDA
jqij

=




0

−2Gi
>h′jnqij

− 2n

(
0 0 0 h′j

−
)


 (A.196)

QRSDA
iq′ij

=




0

2Gi
>h′inq′ij


 (A.197)

QRSDA
jq′ij

=




0

−2Gj
>h′jnq′ij


 (A.198)

(QRSDA
iq′ij

γ)qij
=




0

2Gi
>h′i(nq′ijγ)qij

+ 2nq′ijγ

(
0 h′i

− 0 0

)


 (A.199)

264

(QRSDA
jq′ij

γ)qij
=




0

−2Gj
>h′j(nq′ijγ)qij

− 2nq′ijγ

(
0 0 0 h′j

−
)


 (A.200)

(QRSDA
iq′ij

γ)q′ij = 0 (A.201)

(QRSDA
jq′ij

γ)q′ij = 0 (A.202)

where

nqij
=

(
0 npi

0 npj

)
(A.203)

nq′ij =

(
0 npi

′ 0 npj
′

)
(A.204)

and, using the notation ξk = Akξ
′
k, k∈{i, j}, ξ∈{f, g},

npi
= (kθ + Nθ)

(
(fi

>fj)fj
>B(pi, g

′
i)− (gi

>fj)fj
>B(pi, f

′
i)

)

+ (cθ + Nθ′)
(
pj
′>B>(pj, f

′
j)

(
fi
>fjB(pi, g

′
i)− gi

>fjB(pi, f
′
i)

))
(A.205)

+ fj
>(fi

>fj)B(pi
′, g′i)− fj

>(gi
>fj)B(pi

′, f ′i)

npj
= (kθ + Nθ)

(
(fi

>fj)gi
>B(pj, f

′
j)− (gi

>fj)fi
>B(pj, f

′
j)

)

+ (cθ + Nθ′)
(
pi
′>(

fi
>fjB(pi, g

′
i)− gi

>fjB(pi, f
′
i)

))>
B(pj, f

′
i) (A.206)

+ gi
>(fi

>fj)B(pi
′, g′i)− fi

>(gi
>fj)B(pi

′, f ′i)

npi
′ = (cθ + Nθ′)

(
(fi

>fj)fj
>B(pi, g

′
i)− (gi

>fj)fj
>B(pi, f

′
i)

)
(A.207)

npj
′ = (cθ + Nθ′)

(
(fi

>fj)gi
>B(pj, f

′
j)− (gi

>fj)fi
>B(pj, f

′
j)

)
(A.208)

265

(nq′ijγ)qij
= (cθ + Nθ′)

(
− (

f ′j
>
Aj

>Biγ
i,p

+ f ′i
>
Ai

>Bjγ
j,p

) (
0 f ′j

>Aj
>Bgi

0 g′i
>Ai

>Bj

)

− (g′i
>
Ai

>Ajf
′
j)

(
0 λf 0 λγ

)
(A.209)

+ (f ′j
>
Aj

>Bgi
γi,p

+ g′i
>
Ai

>Bjγ
j,p)

(
0 f ′j

>Aj
>Bi 0 f ′i

>Ai
>Bj

)

+ (f ′i
>
Ai

>Ajf
′
j)

(
0 λg 0 λγg

))

λf = f ′j
>
Aj

>B(γi,p, f ′i) + γj,p>Bj
>Bi

λγ = γi,p>Bi
>Bj + f ′i

>
Ai

>B(γj,p, f ′j)

λg = f ′j
>
Aj

>B(γi,p, g′i) + γj,p>Bj
>Bgi

λγg = γi,p>Bgi

>Bj + g′i
>
Ai

>B(γj,p, f ′j)

A.9 Derivatives with Respect to Force Related

Parameters

In this section, partial derivatives of force terms with respect to force related

model parameters are presented [50]. Derivatives of QA
i of Eq. (A.164) with respect

to parameters FA
i and s′Ci are




FA
i

2Gi
>n′Ai




F A
i

=




I

2Gi
>n′Ai F A

i


 (A.210)




F̂A
i

2Ĝ>
i n′Ai




s′Ci

=




F̂A
i

2Ĝ>
i n′Ai




s′Ci

=




0

2Gi
>(n′i

A)s′Ci


 (A.211)

266

Note that FA
i and n′i

A are related through Eq. (A.110); e.g., if FA
i is constant, then

n′i
A = s̃′

C

i Ai
>FA

i and n′i
A

F A
i

= s̃′
C

i Ai
>.

Derivatives of TSDA forces with respect to model parameters

β∈{s′Pi , s′Pj , k, c, l0, F}

are [50]

Qi
TSDA
s′Pi

=




(
f
l
dij

)
s′Pi

B>(pi, s
′P
i)

(
f
l
dij

)
s′Pi

+ f
l
Rk=1,...,4

(
dij

>N(pi, ek)
)


 (A.212)

Qi
TSDA
s′Pj

=




(
f
l
dij

)
s′Pj

B>(pi, s
′P
i)

(
f
l
dij

)
s′Pj


 (A.213)

Qj
TSDA
s′Pi

=




(−f
l
dij

)
s′Pi

−B>(pj, s
′P
j)

(
f
l
dij

)
s′Pi


 (A.214)

Qj
TSDA
s′Pj

=




(−f
l
dij

)
s′Pj

−B>(pj, s
′P
j)

(
f
l
dij

)
s′Pj
− f

l
Rk=1,...,4

(
dij

>N(pj, ek)
)


 (A.215)

and

Qi
TSDA
β =




dij

l

(
kβ(l − l0)− kl0β + cβl′ + Fβ

)

B>(pi, s
′P
i)

dij

l

(
kβ(l − l0)− kl0β + cβl′ + Fβ

)


 (A.216)

Qj
TSDA
β =




−dij

l

(
kβ(l − l0)− kl0β + cβl′ + Fβ

)

−B>(pj, s
′P
j)

dij

l

(
kβ(l − l0)− kl0β + cβl′ + Fβ

)


 (A.217)

267

for β∈{k, c, l0, F}, where

(
f

l
dij

)

β

= − f

l3
dijdij

>dijβ +
dij

l

(k + Fl

l
dij

>dijβ

+ (c + Fl′)
(
− 1

l3
dij

>dij
′dij

>dijβ +
1

l
dij

>dij
′
β +

1

l
dij

′>dijβ

))

+
f

l
dijβ + (kβ(l − l0)− kl0β + cβl′ + Fβ)

dij

l
(A.218)

for β∈{s′Pi , s′Pj , k, c, l0, F}, and

dijs′Pi
= −Ai (A.219)

dijs′Pj
= Aj (A.220)

dij
′
s′Pi

= −N(pi, pi
′) (A.221)

dij
′
s′Pj

= N(pj, pj
′) (A.222)

dijk,c,l0,F = 0 (A.223)

ks′Pi ,s′Pj ,c,l0,F = 0 (A.224)

cs′Pi ,s′Pj ,k,l0,F = 0 (A.225)

l0s′Pi ,s′Pj ,k,c,F = 0 (A.226)

Fs′Pi ,s′Pj ,k,c,l0 = 0 (A.227)

Derivatives of RSDA forces with respect to model parameters

β∈{f ′i , f ′j, g′i, h′i, h′j, k, c,N}

are [50]

Qih′
i

RSDA =




0

2nGi
>


 (A.228)

268

Qih′
j

RSDA = 0 (A.229)

Qjh′
i

RSDA = 0 (A.230)

Qjh′
j

RSDA =




0

−2nGj
>


 (A.231)

and

Qiβ
RSDA =




0

2Gi
>h′inβ


 (A.232)

Qjβ

RSDA =




0

−2Gj
>h′jnβ


 (A.233)

for β∈{f ′i , f ′j, g′i, kθ, cθ, N}, where

nβ = (kθ + Nθ)θβ + (cθ + Nθ′)θ
′
β + kθβ(θ + 2nrevπ) + cθβθ′ + Nβ (A.234)

for β∈{f ′i , f ′j, g′i, kθ, cθ, N}, and

θf ′i = −(g′i
>
Ai

>Ajf
′
j)f

′
j
>
Aj

>Ai (A.235)

θ′f ′i = (f ′j
>
Aj

>B(pi, g
′
i)pi

′ + g′i
>
Ai

>B(pj, f
′
j)pj

′)f ′j
>
Aj

>Ai

− (f ′j
>
Aj

>N(pi, pi
′) + pj

′>B>(pj, f
′
j)Ai)g

′
i
>
Ai

>Ajf
′
j (A.236)

θf ′j = −(g′i
>
Ai

>Ajf
′
j)f

′
i
>
Ai

>Aj + (f ′i
>
Ai

>Ajf
′
j)g

′
i
>
Ai

>Aj (A.237)

θ′f ′j =
(
(f ′i

>
Ai

>Ajf
′
j)pi

′>B>(pi, g
′
i) + f ′j

>
Aj

>B(pi, g
′
i)pi

′f ′i
>
Ai

>

− f ′j
>
Aj

>B(pi, f
′
i)pi

′g′i
>
Ai

> − (g′i
>
Ai

>Ajf
′
j)pi

′>B>(pi, f
′
i)

+ g′i
>
Ai

>B(pj, f
′
j)pj

′f ′iAi
> − f ′i

>
Ai

>B(pj, f
′
j)pj

′g′i
>
Ai

>)
Aj (A.238)

+
(
(f ′i

>
Ai

>Ajf
′
j)g

′
i
>
Ai

> − (g′i
>
Ai

>Ajf
′
j)f

′
i
>
Ai

>)
N(pj, pj

′)

269

θg′i = (f ′i
>
Ai

>Ajf
′
j)f

′
j
>
Aj

>Ai (A.239)

θ′g′i = (f ′i
>
Ai

>Ajf
′
j)f

′
j
>
Aj

>N(pi, pi
′)− f ′j

>
Aj

>B(pi, f
′
i)pi

′f ′j
>
Aj

>Ai

+ pj
′>B>(pj, f

′
j)

(
(f ′i

>
Ai

>Ajf
′
j)− Aif

′
if
′
j
>
Aj

>)
Ai (A.240)

θkθ,cθ,N = 0 (A.241)

θ′kθ,cθ,N = 0 (A.242)

kθf ′i ,f
′
j ,g′i,cθ,N = 0 (A.243)

cθf ′i ,f
′
j ,g′i,kθ,N = 0 (A.244)

Nf ′i ,f
′
j ,g′i,kθ,cθ

= 0 (A.245)

270

REFERENCES

[1] C. Amza, A.L. Cox, S. Dwarkadas, L.J. Jin, K. Rajamani, and W. Zwaenepoel.
Adaptive Protocols for Software Distributed Shared Memory. Proceedings of the
IEEE, Special Issue on Distributed Shared Memory, 1999.

[2] M. Anantharaman and M. Hiller. Numerical Simulation of Mechanical Systems
Using Methods for Differential Algebraic Equations. International Journal for
Numerical Methods in Engineering, 32:1531–1542, 1991.

[3] L. Ascher, U.and Petzold. Projected collocation for higher-order higher-index
differential-algebraic equations. JCAM J. Sci. Comput., 1992.

[4] U. Ascher, R. Mattheij, and R. Russell. Numerical Solution of Boundary Value
Problems for Ordinary Differential Equations. SIAM, 1995.

[5] U. Ascher and L. Petzold. Stability of Computational Methods for Constrained
Dynamics Systems. SIAM J. Sci. Comput., 14:95–120, 1993.

[6] U. Ascher and L. Petzold. Computer Methods for Ordinary Differential Equations
and Differential-Algebraic Equations. SIAM, 1998.

[7] U. Ascher and R. Spiteri. Collocation Software for Boundary Value Differential-
Algebraic Equations. SIAM J. Sci. Comput., 15:938–952, 1995.

[8] K. Atkinson. Introduction to Numerical Analysis. Wiley, New York, second
edition, 1989.

[9] K. Atkinson and W. Han. Theoretical Numerical Analysis. A Functional Analysis
Framework. Springer-Verlag, 2001.

[10] O.L.1 Bandman. Fine-Grained Parallelism in Computational Mathematics.
27(4):170–182, 2001.

[11] E. Bayo, J. Cardenal, J. Cuadrado, and P. Morer. Intelligent Simulation of
Multibody Dynamics: Space-State and Descriptor Methods in Sequential and
Parallel Computing Environments. Multibody System Dynamics, 4:55–73, 2000.

[12] G.E. Blelloch, P.B. Gibbons, and Y. Matias. Provably efficient scheduling for
languages with fine-grained parallelism. Journal of the ACM (JACM), 46(2):144–
155, 1999.

271

[13] K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations. SIAM, second edition, 1996.

[14] K. Burrage. Parallel and Sequential Methods for Ordinary Differential Equations.
Clarendon Press - Oxford, 1995.

[15] D. R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1997.

[16] Y. Cao, S. Li, L. Petzold, and R. Serban. Adjoint Sensitivity Analysis for
Differential-Algebraic Equations: The Adjoint DAE System and its Numerical
Solution. SIAM J. Sci. Comput, 24(3):1076–1089, 2003.

[17] M. Caracotsios and W.E. Stewart. Sensitivity analysis of initial value problems
with mixed ODEs and algebraic constraints. Comput. Chem. Engrg., 9:359–365,
1985.

[18] Chi-Tsong Chen. Linear Systems, Oxford Series in Electrical and Computer
Engineering. Oxford University Press, third edition, 1999.

[19] S. Dwarkadas, P. Keleher, A. Cox, and W Zwaenepcd. Evaluation of Release
Consistent Software Distributed Shared Memory on Emerging Network Tech-
nology. Proceedings of the 20th Annual International Symposium on Computer
Architecture, pages 144–155, 1993.

[20] W.H. Enright and D.J. Higham. Parallel defect control. BIT, 31:647–663, 1991.

[21] W.F. Feehery, J.E. Tolsma, and P.I. Barton. Efficient sensitivity analysis of
large-scale differential-algebraic systems. Applied Numerical Mathematics, 25,
1997.

[22] C. Fuhrer and B.J. Leimkuhler. Numerical solution of differential-algebraic equa-
tions for constrained mechanical motion. Numer. Math, 59:55–69, 1991.

[23] F.R. Gantmacher. Matrix Theory, volume 1. Chelsea Pub Co., second edition,
1990.

[24] C.W. Gear. Differential-Algebraic Equation Index Transformations. SIAM J.
Sci. Stat. Comput., 9:39–47, 1988.

[25] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems. Springer-Verlag, second revised edition edition,
1996.

272

[26] E.J. Haug. Design Sensitivity Analysis of Dynamic Systems. In C.A. Mota-
Soares, editor, Computer-Aided Design: Structural and Mechanical Systems,
Berlin, 1987. Springer-Verlag.

[27] E.J. Haug. Computer-Aided Kinematics and Dynamics of Mechanical Systems,
Volume I: Basic Methods. Allyn and Bacon, Needham Heights, Massachusetts,
1989.

[28] E.J. Haug, S.C. Wu, and S.M. Yang. Dynamics of Mechanical Systems with
Coulomb Friction, Stiction, Impact and Constraint Addition-Deletion-I. Mecha-
nism and Machine Theory, 21(5):401–406, 1986.

[29] J.L. Hennessy and D.A. Patterson. Computer Architecture A Quantitative Ap-
proach. Morgan Kaufmann Publishers, Inc., second edition edition, 1986.

[30] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shu-
maker, and C. S. Woodward. SUNDIALS: Suite of Nonlinear and Differen-
tial/Algebraic Equation Solvers. ACM Transactions on Mathematical Software,
2003.

[31] A. C. Hindmarsh and A. G. Taylor. User Documentation for IDA, A Differential-
Algebraic Equation Solver for Sequential and Parallel Computers. 1999.

[32] L.O. Jay. Inexact Simplified Newton Iterations for Implicit Runge-Kutta Meth-
ods. 1998.

[33] L.O. Jay. Structure preservation for constrained dynamics with Super Partitioned
Additive Runge-Kutta Methods. SIAM J. Sci. Comput., 20(2):416–446, 1998.

[34] L.O. Jay and T. Braconnier. A Parallelizable Preconditioner For the Iterative
Solution of Implicit Runge-Kutta Type Methods. 1999.

[35] Ch Lubich. On projected Runge-Kutta methods for differential-algebraic equa-
tions. BIT, 31:545–550, 1991.

[36] A. Lumsdaine and M.W. Reichelt. Waveform Iterative Techniques for Device
Transient Simulation on Parallel Machines. Proc. Sixth SIAM Conference on
Parallel Processing for Scientific Computing, 237-245, 1993.

[37] T. Maly and L. R. Petzold. Numerical methods and software for sensitivity
analysis of DAE. Applied Numerical Mathematics, 20, 1996.

[38] E. P. Markatos and T. J. LeBlanc. Using processor affinity in loop scheduling on

273

shared-memory multiprocessors. Proceedings of the 1992 ACM/IEEE conference
on Supercomputing, 1992.

[39] R. Marz. Practical Lyapunov Stability Criteria for Differential Algebraic Equa-
tions. Numerical Analysis and Mathematical Modelling Banach Center Publica-
tions, 29, 1994.

[40] T. Muir. A Treatise on the Theory of Determinants. Dover Publications, Inc.,
New York, 1960.

[41] D. Negrut. On the Implicit Integration of Differential-Algebraic Equations of
Multibody Dynamics. PhD thesis, University of Iowa, 1998.

[42] D. Negrut and E.J. Haug. State-space based implicit integration of the
differential-algebraic equations of multibody dynamics. Proceedings of the 1999
ASME Design Engineering Technical Conference, September 12-15, Las Vegas,
Nevada, 1999.

[43] P.E. Nikravesh. Computer-Aided Analysis of Mechanical Systems. Prentice Hall,
Englewood Cliffs, NJ 07632, 1988.

[44] V. Olariu. Analiza Matematica. Editura Didactica si Pedagogica, Bucuresti,
1981.

[45] P.S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1996.

[46] L.R. Petzold. Differential-Algebraic Equations Are Not ODE’s. SIAM Journal
of Scientific and Statistical Computing, 3(3):367–384, 1982.

[47] F.A. Potra and W.C. Rheinboldt. Differential-geometric techniques for solving
differential algebraic equations. Real-Time Integration of Mechanical System
Simulation, 155-191, 1990.

[48] P.J. Rabier and W.C. Rheinboldt. Nonholonomic Motion of Rigid Mechanical
Systems from a DAE viewpoint. SIAM, 2000.

[49] P.J. Roosta. Parallel Processing and Parallel Algorithms: Theory and Compu-
tation. Springer-Verlag, 2000.

[50] R. Serban. Dynamic and Sensitivity Analysis of Multibody Systems. PhD thesis,
University of Iowa, 1998.

[51] R. Serban and E.J. Haug. Analytical Derivatives for Multibody System Analyses.
Mechanics of Structures and Machines, 26(2):145–173, 1998.

274

[52] R. Serban, D. Negrut, E.J. Haug, and F.A. Potra. A Topology Based Approach
for Exploiting Sparsity in Multibody Dynamics in Cartesian Formulation. Me-
chanics of Structures and Machines, 25(3):379–396, 1997.

[53] Y. Stver. Collocation methods for solving linear differential algebraic boundary
value problems. 1991.

[54] A.S. Tanenbaum. Modern Operating Systems. Prentice-Hall, Inc., second edition
edition, 2001.

[55] P.J. van der Houwen and W.A. van der Veen. Solving implicit differential equa-
tions on parallel computers, Technical Report. 1995.

[56] P.J. van der Houwen and W.A. van der Veen. Waveform relaxation methods for
implicit differential equations, Technical Report. 1996.

[57] D. Vanderstraeten. A Stable and Efficient Parallel Block Gram-Schmidt Algo-
rithm. In P. Amestoy et al., editor, Euro-Par’99, LNCS 1685, Berlin, 1999.
Springer-Verlag.

[58] R.A. Wehage and Haug E.J. Generalized Coordinate Partitioning for Dimen-
sion Reduction in Analysis of Constrained Dynamic Systems. ASME Journal of
Mechanical Design, 104:247, 1982.

[59] J. White and Vincentelli A.S. Waveform Relaxation: Theory and Practice.
Transactions of The Society for Computer Simulation, 2(1):95–133, 1985.

	University of Iowa
	Iowa Research Online
	2005

	On the adjoint formulation of design sensitivity analysis of multibody dynamics cs
	Andrei Serban Schaffer
	Recommended Citation

	tmp.1232138404.pdf.uQ18O

