
Image Classi�cation by a Two Dimensional Hidden Markov ModelJia Li, Amir Najmi and Robert M. Gray �November 25, 1998AbstractConventional block-based image classi�cation algorithms, such as CART and VQ based clas-si�cation, ignore the statistical dependency among image blocks. Consequently, these algorithmsoften su�er from over-localization. In order to bene�t from the inter-block dependency, an imageclassi�cation algorithm based on a hidden Markov model (HMM) is developed. An HMM forimage classi�cation, a two dimensional extension of the one dimensional HMM used for speechrecognition, has transition probabilities conditioned on the states of neighboring blocks fromboth directions. Thus, the dependency in two dimensions can be reected simultaneously. TheHMM parameters are estimated by the EM algorithm. A two dimensional version of the Viterbialgorithm is also developed to classify optimally an image based on the trained HMM. An ap-plication of the HMM algorithm to document image and aerial image segmentation shows thatthe algorithm outperforms CART and Bayes VQ.I IntroductionFor most block based image classi�cation algorithms, such as CART [1], images are divided intoblocks and decisions are made independently for the class of each block. This approach leads to anissue of choosing block sizes. We do not want to choose a too large block size since this obviouslycauses crude classi�cation. On the other hand, if we choose a small block size, only very localproperties belonging to the small block are examined in classi�cation. The penalty then comesfrom losing information about surrounding regions. A well known method in signal processing toattack this type of problem is to use context information. Trellis coding [2] in image compression issuch an example. How to introduce \context" into classi�ers is what is of interest to us. Previouswork [3, 4] has looked into ways of taking advantage of context information to improve classi�cationperformance for document image segmentation. Both block sizes and classi�cation rules can varyaccording to context. The improvement achieved demonstrates the potential of context informationto help classi�cation. The purpose of this paper is to introduce a two dimensional hidden Markovmodel (2-D HMM) as a general framework for context dependent classi�ers.The theory of hidden Markov models in one dimension (1-D HMMs) was developed in the 1960sby Baum, Eagon, Petrie, Soules, and Weiss [5, 6, 7, 8]. HMMs have earned their popularity mostlyfrom successful application to speech recognition [9, 10, 11, 12, 13]. Underlying an HMM is a basicMarkov chain [14]. In fact, an HMM is simply a \Markov Source" as de�ned by Gallager [15]:a conditionally independent process on a Markov chain or, equivalently, a Markov chain viewed�The authors are with the Information Systems Laboratory, Department of Electrical engineering, Stanford Uni-versity, CA 94305, U.S.A. Email: jiali@isl.stanford.edu, zaalim@leland.stanford.edu, rmgray@stanford.edu. Thiswork was supported by the National Science Foundation under NSF Grant No. MIP-931190 and by gifts fromHewlett-Packard, Inc., and SK Telecom, Inc. 1



through a memoryless channel. Thus, at any discrete unit of time the system is assumed toexist in one of a �nite set of states. Transitions between states take place according to a �xedprobability depending only on the state of the system at the unit of time immediately preceding(1-step Markovian). In an HMM, at each unit of time a single observation is generated from thecurrent state according to a probability distribution depending only on the state. Thus in contrastto a Markov model, since the observation is a random function of the state, it is not in generalpossible to determine the current state by simply looking at the current observation. HMMs oweboth their name and modeling power to the fact that these states represent abstract quantities thatare themselves never observed. They correspond to "clusters" of contexts having similar probabilitydistributions of the observation.Suppose that there areM states f1; :::;Mg and that the probability of transition between statesi and j is aij. Hence the probability that at time t the system will be in the state j given thatat time t � 1 it was in state i is aij . De�ne xt as the observation of the system at time t. Thisobservation is generated according to a probability distribution dependent only on the state at timet. Let bi(x) be the probability distribution of x in state i. If �i is the probability of being in statei at time t = 1, then the likelihood of observing the sequence fxtgTt=1 is given byL(x) = Xs1;s2;::;sT �s1bs1(x1)as1s2bs2(x2)::asT�1sT bT (xT )where st represents the state at time t. The above formula can be evaluated more e�ciently by thefollowing recursive formula, the so-called forward procedure:L(x) = MXi=1 �T (i)�1(i) = �ibi(x1) 1 � i �M�t+1(j) = bj(xt+1) MXi=1 �t(i)aij 1 � t � T � 1; 1 � j �M�t(i) is the likelihood of the observations x1::xt given that at time t the state is i.For details, see any of the references on speech recognition [10, 11, 12, 16].Of particular interest to this paper is the most likely sequence of states fs�t gTt=1 given theobservation sequence fxtgTt=1. This is typically computed using dynamic programming (the Viterbialgorithm [17]).Estimation of 1-D HMM model parameters is usually performed according to the Baum-Welchalgorithm (a special case of the EM algorithm [18]). Details of the iterative algorithm can befound in any of the references on speech recognition. One way to think of this algorithm is asa reestimation of the state parameters from each training observation sequence, weighted by thelikelihood of each possible state sequence that could have caused it. This results in maximumlikelihood parameter estimates. An approximation to maximum likelihood training is what is oftentermed Viterbi training [16], in which each observation is assumed (with weight of 1) to haveresulted from the single most likely state sequence that might have caused it. While more e�cientcomputationally, Viterbi training does not in general result in maximum likelihood estimates. Notethat an intermediate technique often used is to consider only the N most likely state sequences foreach observation sequence for likelihood weighted training.To apply the HMM to images, previous work extended the 1-D HMM to the pseudo 2-DHMM [19, 20]. The model is pseudo 2-D in the sense that it is not a fully connected 2-D HMM.2



The basic assumption is that there exists a set of \superstates" that are Markovian. Within eachsuperstate there is a set of simple Markovian states. For 2-D images, �rst the superstate is chosenusing a �rst order Markov transition probability based on the previous superstate. This superstatedetermines the simple Markov chain to be used by the entire row. A simple Markov chain is thenused to generate observations in the row. Thus, superstates relate to rows and simple states tocolumns. In particular applications, this model works better than the 1-D HMM [19], but we expectthe pseudo 2-D HMM to be much more e�ective with regular images, such as documents. Since thee�ect of the state of a pixel on the state below it is distributed across the whole row, the pseudo2-D model is too constrained for normal image classi�cation. We thus propose using a truly 2-DHMM.The 2-D HMM for images assumes that the probability of the system entering a particularstate depends upon the state of the system at the adjacent observations in both horizontal andvertical directions. A transition from any state to any state is allowed. As in the case of speech, theprobability distribution of the feature vector is modeled as a �xed Gaussian distribution for anygiven state. The extension is non-trivial since certain entities that correspond to single states in the1-D case may correspond to entire state sequences in 2-D. The main di�culty with using a genuine2-D HMM is its computational complexity, so we develop approximation methods for estimatingand applying the 2-D HMM in order to achieve computational feasibility. In our applications,simulations show that classi�cation performance approaches limits rather quickly with increasingapproximation accuracy. Hence, the bene�t of using the 2-D HMM is realized at reasonably lowcomputational complexity.In Section II, we provide a mathematical formulation of the basic assumptions of the 2-DHMM. Section III derives the iterative estimation algorithm for the model according to the generalEM algorithm. Computational complexity is analyzed in Section IV. In Section IV, backwardand forward probabilities in the 2-D case are introduced to e�ciently estimate the model. Ouralgorithm further lowers the computational complexity by using the Viterbi training. The 2-Dversion of the Viterbi algorithm is described in Section V. Two applications of classi�cation basedon the 2-D HMM are presented in Section VI. We conclude in Section VII.II Basic Assumptions of 2-D HMMAs in all block based classi�cation systems, an image to be classi�ed is divided into blocks andfeature vectors are evaluated as the statistics of the blocks. The image is then classi�ed accordingto the feature vectors.The 2-D HMM assumes that the feature vectors are generated by a Markov model which maychange state once every block. Suppose there are M states, f1; :::;Mg, the state of block (i; j)is denoted by si;j. The feature vector of block (i; j) is vi;j and the class is ci;j. We use P (�) torepresent the probability or likelihood of an event. We denote (i0; j0) < (i; j), or (i; j) > (i0; j0), ifi0 < i or i0 = i, and j0 < j; in which case we say that block (i0; j0) is before block (i; j). For example,in the left panel of Fig. 1, the blocks before (i; j) are the shaded blocks. This sense of order is thesame as the raster order of row by row. We would like to point out, however, that we introduce thisorder only for stating the assumptions. In classi�cation, we do not classify blocks one by one insuch an order. Our classi�cation algorithm tries to �nd the optimal combination of classes jointlyfor many blocks at once. A one dimensional approach of joint classi�cation, assuming a scanningorder in classi�cation, is usually suboptimal. 3



(i, j)(i, j)Figure 1: Markovian property of the transition of statesThe �rst assumption we make is thatP (si;jj	) = am;n;l ;where 	 = fsi0;j0 ;vi0;j0; (i0; j0) < (i; j)gand m = si�1;j; n = si;j�1; and l = si;j :The above assumption can be summarized by two points. First, the state si0;j0 is a su�cient statisticfor (si0;j0 ;vi0;j0) for estimating transition probabilities, i.e., v are conditionally memoryless. Second,the state transition is �rst order Markovian in a two dimensional sense. Shown in the left panelof Fig. 1, knowing the states of all the shaded blocks, we only need the states of the two adjacentblocks in the darker shade to calculate the transition probability to a next state. We also assumethat there is a unique mapping from states to classes. Thus, the classes of the blocks are determinedonce the states are known.The second assumption is that for every state, the feature vectors follow a Gaussian mixturedistribution. Once the state of a block is known, the feature vector is conditionally independentof the other blocks. Since any state with an M -component Gaussian mixture can be split into Msubstates with single Gaussian distributions, we restrict ourselves to single Gaussian distributions.For a block with state s and feature vector x, the distribution isbs(v) = 1p(2�)nj�sje� 12 (v��s)0��1s (v��s) ;where �s is the covariance matrix and �s is the mean vector.The Markovian assumption on state transitions can simplify signi�cantly the evaluation of theprobability of the states, i.e., Pfsi;j; (i; j) 2 Ng, where N = f(i; j); 0 � i < m; 0 � j < zg refersto all the blocks in an image. To expand e�ciently this probability by the conditional probabilityformula, we �rst prove that a rotated form of the two dimensional Markovian property holds giventhe two assumptions. Recall that we de�ne (i0; j0) < (i; j) if i0 < i or i0 = i, and j0 < j. We thende�ne a rotated relation of \<", denoted by \~<", which speci�es (i0; j0) ~<(i; j), or (i; j) ~>(i0; j0), ifj0 < j or j0 = j, and i0 < i. An example is shown in the right panel of Fig. 1. To prove thatP (si;j j ~	) = am;n;l ;where ~	 = fsi0;j0;vi0;j0 ; (i0; j0) ~<(i; j)gand m = si�1;j; n = si;j�1; and l = si;j ;we de�ne 	 = fsi0;j0;vi0;j0 ; (i0; j0) < (i; j)g and introduce the following notation:~	 [	 = fsi0;j0 ;vi0;j0; (i0; j0) < (i; j) or (i0; j0) ~<(i; j)g ;~	 \	 = fsi0;j0 ;vi0;j0; (i0; j0) < (i; j) and (i0; j0) ~<(i; j)g ;4
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.  .  .  .  .  Figure 2: Blocks on diagonals of an image~	�	 = fsi0;j0 ;vi0;j0; (i0; j0) ~<(i; j) and (i0; j0) > (i; j)g :Note that ~	 = (~	 [	) [ ( ~	�	). We can then deriveP (si;j j ~	) = P (si;j; ~	 \	; ~	�	)P ( ~	)= P ( ~	 \	)P (si;j j ~	 \	)P ( ~	�	 j ~	 \	; si;j)P ( ~	) (1)= P ( ~	 \	)P (si;j j si�1;j ; si;j�1)P ( ~	�	 j ~	 \	; si;j)P ( ~	) (2)= P (si;j j si�1;j; si;j�1)P ( ~	 \	)P ( ~	�	 j ~	 \	)P ( ~	) (3)= P (si;j j si�1;j; si;j�1)= am;n;lwhere m = si�1;j, n = si;j�1, and l = si;j. Equality (1) follows from the expansion of conditionalprobability. Equality (2) follows from the Markovian assumption. Equality (3) holds due to boththe Markovian assumption and the assumption that the feature vector of a block is conditionallyindependent of other blocks given its state.According to the derivation, there actually exists a stronger statement, which is P (si;j j ~	[	) =P (si;j j si�1;j ; si;j�1). The reason is that in the derivation, if we change ~	\	 to 	 and ~	 to ~	[	,all the equalities still hold. This property implies the original Markovian assumption and its rotatedversion. We refer to this property as a stronger Markovian property.We now simplify the expansion of Pfsi;j ; (i; j) 2 Ng:Pfsi;j; (i; j) 2 Ng = P (T0) � P (T1 jT0) � � �P (Tm+z�2 jTm+z�3; Tm+z�4; : : : ; T0) ; (4)where Ti denotes the sequence of states for blocks lying on diagonal i, i.e., (si;0; si�1;1; � � � ; s0;i), asshown in Fig. 2.We next show that P (Ti jTi�1; : : : ; T0) = P (Ti jTi�1). Without loss of generality, supposeTi = fsi;0; si�1;1; : : : ; s0;ig, then Ti�1 = fsi�1;0; si�2;1; : : : ; s0;i�1g andP (Ti jTi�1; : : : ; T0) = P (si;0; si�1;1; : : : ; s0;i jTi�1; Ti�2; : : : ; T0)= P (si;0 jTi�1; : : : ; T0) � P (si�1;1 j si;0; Ti�1; : : : ; T0)� � �P (s0;i j s1;i�1; : : : ; si;0; Ti�1; : : : ; T0)= P (si;0 j si�1;0) � P (si�1;1 j si�2;1; si�1;0) � � �P (s0;i j s0;i�1) :5



The last equality is obtained from the stronger Markovian property. Since all the states si;j whichappear in the conditions are in Ti�1, we conclude thatP (Ti jTi�1; : : : ; T0) = P (Ti jTi�1) :Equation (4) is simpli�ed toPfsi;j; (i; j) 2 Ng = P (T0) � P (T1 jT0) � � �P (Tm+z�2 jTm+z�3) : (5)The state sequence Ti thus serves as an \isolating" element in the expansion of P (si;j; (i; j) 2 N),which plays the role of a state at a single unit of time in the case of a one dimensional Markovmodel. As we shall see, this property is essential for developing our algorithm. We may noticethat, other than diagonals, there exist geometric forms which can serve as \isolating" elements aswell, for example, state sequences on rows or columns. We prefer state sequences Ti on diagonalsbecause conditioned on Ti�1, all the states in Ti are statistically independent. This fact is a directresult of the stronger Markovian property. The conditional independence of the states in Ti givenTi�1 signi�cantly reduces computation.The task of our classi�er is to estimate the 2-D HMM from training data and to classify imagesby �nding the combination of states with the maximum posterior probability given the observedfeature vectors.We point out that the underlying state process we have de�ned is a special Markov random�eld (MRF) [21, 22], which was referred to as Markov Mesh and proposed by Abend, Harley andKanal [23, 24] for the classi�cation of binary random patterns. It is an extension of a Markovchain into two dimensions so that a much larger class of spatial dependencies can be taken intoconsideration. In our assumption of the Markovian property, the states in condition are the statesof blocks above and to the left of a current block, thus there exists a certain sense of \past". Thistype of Markov random �elds is called the \causal" MRF [25, 24, 26]. The causality enables thederivation of an analytic iterative algorithm to estimate an HMM and to estimate states with themaximum a posteriori probability.III Estimation of the ModelFor the assumed HMM, we need to estimate the following parameters: transition probabilitiesam;n;l, where m;n; l = 1; :::;M , and M is the total number of states, the mean vectors �m, andthe covariance matrices �m of the Gaussian distributions, m = 1; :::;M . We de�ne the set M =f1; :::;Mg. The parameters are estimated by the maximum likelihood criterion (ML) using the EMalgorithm [18, 27, 8]. We �rst introduce briey the EM algorithm as described in Dempster, Lairdand Rubin [18]. Then we apply the algorithm to our case to derive a speci�c formula.The EM algorithm provides an iterative computation of maximum likelihood estimation in thecase of the observed data being incomplete. The term \incomplete" reects the fact that we needto estimate the distribution of x, in sample space X , but we can only observe x indirectly throughy, in sample space Y. In many cases, there is a mapping x ! y(x) from X to Y, and x is onlyknown to lie in a subset of X , denoted by X (y), which is determined by the equation y = y(x).We postulate a family of distribution f(x j�), with parameters � 2 
, on x. The distribution of y,g(y j�), can be derived as g(y j�) = ZX (y) f(x j�)dx :6



The EM algorithm is aimed at �nding a � which maximizes g(y j�) given an observed y.Before we describe the algorithm, we introduce a function [18]Q(�0 j�) = E(log f(x j�0) jy; �) ;which is assumed to exist for all pairs (�0; �). In particular, we assume that f(x j�) > 0 almost ev-erywhere in � 2 
. The function Q(�0 j�) is the expected value of log f(x j�0) with the distributionof x being the conditional distribution given y and parameter �. The EM iteration �(p) ! �(p+1)is de�ned in [18] as follows1. E-step: Compute Q(� j�(p)).2. M-step: Choose �(p+1) to be a value of � 2 
 which maximizes Q(� j�(p)).We de�ne the following notation.1. The set of observed feature vectors for the whole image is �v = fvi;j ; (i; j) 2 Ng.2. The states for the image are s = fsi;j; (i; j) 2 Ng.3. The classes for the image are c = fci;j ; (i; j) 2 Ng.4. The mapping from a state m to its class is C(m), and the set of classes mapped from statess is denoted by C(s).Speci�c to our case, the complete data x are fsi;j ;vi;j; (i; j) 2 Ng and the incomplete data yare fci;j ;vi;j; (i; j) 2 Ng. The function f(x j�0) isf(x j�0) = P (s j�0) � P (�v j s; �0)= P (s j a0m;n;l;m; n; l 2M) � P (�v j s; �0m;�0m;m 2M)= Y(i;j)2N a0si�1;j ;si;j�1;si;j � Y(i;j)2N P (vi;j j�0si;j ;�0si;j ) :We then havelog f(x j�0) = X(i;j)2N log a0si�1;j ;si;j�1;si;j + X(i;j)2N logP (vi;j j�0si;j ;�0si;j ) : (6)Given y, x can only take �nite number of values, corresponding to di�erent sets of states swhich have classes consistent with y. The distribution of x isP (x jy; �(p)) = 1�I(C(s) = c) � P (s j�(p)) � P (�v j s; �(p))= 1�I(C(s) = c) � Y(i;j)2N a(p)si�1;j ;si;j�1;si;j � Y(i;j)2N P (vi;j j�(p)si;j ;�(p)si;j ) ;where � is a normalization constant, and the function I(�) is the indicator function which equals oneif its argument is true and zero otherwise. From this point, we write P (x jy; �(p)) as P (s jy; �(p)),assuming that all the vi;j in x are the same as those in y, since otherwise the conditional probabilityof x given y is zero. 7



In the M-step, we set �(p+1) to the �0 which maximizesE(log f(x j�0) jy; �(p)) = 1�Xs P (s jy; �(p)) � X(i;j)2N log a0si�1;j ;si;j�1;si;j +1�Xs P (s jy; �(p)) � X(i;j)2N logP (vi;j j�0si;j ;�0si;j ) : (7)Equation (7) follows directly from (6).We can thus maximize the two items in (7) separately by choosing a0m;n;l and �0m, �0m respec-tively. Consider the �rst itemXs P (s jy; �(p)) � X(i;j)2N log a0si�1;j ;si;j�1;si;j= Xs P (s jy; �(p)) � Xm;n;l2M X(i;j)2N log a0m;n;l � I(m = si�1;j; n = si;j�1; l = si;j)= Xm;n;l2M log a0m;n;l � X(i;j)2NXs P (s jy; �(p)) � I(m = si�1;j; n = si;j�1; l = si;j) : (8)Denote H(p)m;n;l(i; j) =Ps I(m = si�1;j; n = si;j�1; l = si;j)P (s jy; �(p)), which is the probabilityof being in state m at block (i � 1; j), state n at block (i; j � 1), and state l at block (i; j) giventhe observed feature vectors, classes, and model �(p). Expression (8) becomesXm;n;l2M log a0m;n;l X(i;j)2NH(p)m;n;l(i; j) :To maximize it under the constraintMXl=1 a0m;n;l = 1 ; for all m;n 2M ;use the Lagrangian multiplier and take derivatives with respect to a0m;n;l. We then conclude thata0m;n;l / X(i;j)2NH(p)m;n;l(i; j) ;which in turn yields a0m;n;l = P(i;j)2N H(p)m;n;l(i; j)PMl=1P(i;j)2N H(p)m;n;l(i; j) :Now we discuss the maximization of the second term in equation (7).Xs P (s jy; �(p)) � X(i;j)2N logP (vi;j j�0si;j ;�0si;j )= Xs P (s jy; �(p)) � MXm=1 X(i;j)2N logP (vi;j j�0m;�0m)I(m = si;j)= MXm=1 X(i;j)2NXs I(m = si;j)P (s jy; �(p)) � logP (vi;j j�0m;�0m) :8



Denote L(p)m (i; j) = Ps I(m = si;j)P (s jy; �(p)), which is the probability of being in state mat block (i; j) given the observed feature vectors, classes and model �(p). The above expression issimpli�ed to MXm=1 X(i;j)2N L(p)m (i; j) log P (vi;j j�0m;�0m) :It is known that for Gaussian distributions, the ML estimation of �0m is the sample average of thedata , and the ML estimation of �0m is the sample covariance matrix of the data [28]. Since in ourcase, the data is weighted by L(p)m (i; j), the M.L.E. of �0m and �0m are�0m = Pi;j L(p)m (i; j)vi;jPi;j L(p)m (i; j) ;�0m = Pi;j L(p)m (i; j)(vi;j � �0m)(vi;j � �0m)0Pi;j L(p)m (i; j) :In summary, the estimation algorithm iteratively improves the model estimation by the followingtwo steps.1. Given the current model estimation �(p) and the observed feature vectors vi;j and classes ci;j ,the mean vectors and covariance matrices are updated by�(p+1)m = �i;jL(p)m (i; j)vi;j�i;jL(p)m (i; j) (9)�(p+1)m = �i;jL(p)m (i; j)(vi;j � �(p+1)m )(vi;j � �(p+1)m )0�i;jL(p)m (i; j) : (10)The probability L(p)m (i; j) can be calculated byL(p)m (i; j) = Xs I(m = si;j) �1�I(C(s) = c) � Y(i;j)2N a(p)si�1;j ;si;j�1;si;j � Y(i;j)2N P (vi;j j�(p)si;j ;�(p)si;j ) : (11)2. The transition probabilities are updated bya(p+1)m;n;l = Pi;j H(p)m;n;l(i; j)PMl=1Pi;jH(p)m;n;l(i; j) ;where H(p)m;n;l(i; j) can be calculated byH(p)m;n;l(i; j) = Xs I(m = si�1;j; n = si;j�1; l = si;j) �1�I(C(s) = c) � Y(i;j)2N a(p)si�1;j ;si;j�1;si;j � Y(i;j)2N P (vi;j j�(p)si;j ;�(p)si;j ) : (12)9



In the case of one dimensional HMM as used in speech recognition, computationally e�cientformulas exist for calculating Lm(k) and Hm;l(k) [16]. For 2-D HMM, however, the computationof Lm(i; j) and Hm;n;l(i; j) is not feasible, due to the two dimensional transition probabilities. Thenext section will discuss why this is so and how to reduce the computational complexity.IV Computational ComplexityAs shown in previous section, the calculation of the probabilities L(p)m (i; j) and H(p)m;n;l(i; j) is thekey for the iterative estimation of the model parameters. If we calculate L(p)m (i; j) and H(p)m;n;l(i; j)directly according to equation (11) and (12), we need to consider all the combinations of stateswhich yield the same classes as those appeared in the training set. The large number of suchcombinations of states results in infeasible computation. Let us take L(p)m (i; j) as an example.Suppose there are M0 states for each class and the number of blocks in an image is w � z aspreviously assumed, then the number of admissible combinations of states which satisfy C(s) = cand si;j = m, is (w � z � 1)M0 . When applying the HMM algorithm, although we often break oneimage into many sub-images such that w, or z, is the number of blocks in one column, or one row,in a sub-image, we need to keep w and z su�ciently large to ensure an adequate amount of contextinformation being incorporated in classi�cation. In the limit, if w = z = 1, the algorithm is simplya parametric classi�cation algorithm performed independently on each block. It is normal to havew = z = 8. In this case, if we have 4 states for each class, the number of the combinations ofstates is (w � z � 1)M0 = 634, which is prohibitive for a straight-forward calculation of L(p)m (i; j).Similar di�culty occurs for estimating one dimensional HMM. The problem is solved by a recursivecalculation of forward and backward probabilities [16].The idea of using forward and backward probabilities can be applied to the two dimensionalHMM to simplify the computation. Recall equation (5) in Section II,P (si;j; (i; j) 2 N) = P (T0) � P (T1 jT0) � � �P (Tw+z�2 jTw+z�3) :The fact that the state sequence Ti on a diagonal is an \isolating" element in the expansion ofP (si;j; (i; j) 2 N) enables us to de�ne the forward and backward probabilities and to evaluate themby recursive formulas.Let us clarify notation �rst. In addition to the notation we provide in the list in section III, weneed to use the following de�nitions.1. The diagonal on which block (i; j) lies is denoted by �(i; j).2. The feature vectors on diagonal d, fvi;j; (i; j) : �(i; j) = dg, is denoted by �v(d).3. The state sequence on diagonal d, fsi;j ; (i; j) : �(i; j) = dg, is denoted by s(d).4. For a state sequence T on diagonal d, its value at block (i; j) is T (i; j).The forward probability �T (d) for some model M is de�ned as�T (d) = P (vi;j ; (i; j) : �(i; j) � d; s(d) = T jM)The forward probability �T (d) is the joint distribution of observing the vectors lying on or abovediagonal d and having state sequence T for blocks on diagonal d.10



The backward probability �T (d) is de�ned as�T (d) = P (vi;j ; (i; j) : �(i; j) > d j s(d) = T; M)That is, �T (d) is the conditional distribution of observing the vectors lying below diagonal d giventhe state sequence on diagonal d is T .Similar to the case of 1-D HMM, we can derive recursive formulas for calculating �T (d) and�T (d), which are listed below�Td(d) = XTd�1 �Td�1(d� 1) � P (Td jTd�1; M) � P (�v(d) jTd; M) ; (13)�Td(d) = XTd+1 P (Td+1 jTd; M) � P (�v(d+ 1) jTd+1; M) � �Td+1(d+ 1) : (14)We can then calculate Lm(i; j) given model M byLm(i; j) = P (si;j = m j �v; c; M)= � PTd:Td(i;j)=m P (Td j �v; c; M) ; if C(m) = ci;j0 ; otherwise :Let us consider the case C(m) = ci;j . It is assumed in the derivation below that the summationover Td only covers Td which yields consistent classes with the training data.Lm(i; j) = XTd:Td(i;j)=m P (Td; �v jM)P (�v; c jM)= XTd:Td(i;j)=m �Td(�(i; j)) � �Td(�(i; j))P (�v; c jM) : (15)The subscript 'd' in Td denotes the diagonal d on which block (i; j) locates. In the followingcalculation of Hm;n;l(i; j), the summations are always over state sequences with the same classesas those appeared in the training data.Hm;n;l(i; j)= P (si�1;j = m; si;j�1 = n; si;j = l j �v; c; M)= � PTdPTd�1 P (Td; Td�1 j �v; c; M) ; if C(m) = ci�1;j ; C(n) = ci;j�1; C(l) = ci;j0 ; otherwise :We then consider the case C(m) = ci�1;j, C(n) = ci;j�1, and C(l) = ci;j. In the following derivation,the summations over Td and Td�1 are constrained to the Td satisfying Td(i; j) = l and the Td�1satisfying Td�1(i� 1; j) = m, Td�1(i; j � 1) = n.Hm;n;l(i; j) =XTd XTd�1 �Td�1(�(i; j) � 1) � P (Td jTd�1; M)P (�v(d) jTd; M) � �Td(�(i; j))P (�v; c jM) : (16)Although the forward and backward probabilities can signi�cantly reduce the computation forLm(i; j) and Hm;n;l(i; j), computation complexity is still rather high due to the two dimensionality.Equation (13) and (14) for evaluating the forward and backward probabilities are summation overall state sequences on diagonal d� 1, or d+1, with consistent classes with the training data. With11



the increase of blocks on a diagonal, the number of state sequences increase exponentially. Thesame problem happens with the calculation of Lm(i; j) and Hm;n;l(i; j). Consequently, we make anapproximation in the calculation of Lm(i; j) and Hm;n;l(i; j) to avoid computing the backward andforward probabilities. Recall the de�nitions in section IIIH(p)m;n;l(i; j) =Xs I(m = si�1;j; n = si;j�1; l = si;j)P (s jy; �(p)) ;L(p)m (i; j) =Xs I(m = si;j)P (s jy; �(p)) :To simplify the calculation of Lm(i; j) and Hm;n;l(i; j), we will assume that the single most likelystate sequence accounts for virtually all the likelihood of the observations. Thus we aim at �ndingthe optimal state sequence which maximizes P (s jy; �(p)). This is the Viterbi training algorithm.The maximization of P (s jy) given model �(p) can be achieved by a two dimensional version of theViterbi algorithm, which is described in next section.V Variable-state Viterbi AlgorithmOur purpose of using the 2-D Viterbi algorithm is to maximize P (s jy), which is equivalent to themaximization of P (si;j;vi;j ; (i; j) 2 N) constrained to C(si;j) = ci;j in the training process. Whenwe apply the trained model to classify images (testing process), we also aim at �nding states si;j,(i; j) 2 N to maximize P (si;j;vi;j ; (i; j) 2 N). The states are then mapped into classes. In thetesting process, since ci;j is to be decided, the previous constraint is removed.In the discussion, we consider the unconstrained case, i.e., the testing situation, since in theconstrained case, the only di�erence is to shrink the search range of si;j to states corresponding toclass ci;j . We can expand P (si;j;vi;j ; (i; j) 2 N) asP (si;j;vi;j ; (i; j) 2 N) = P (si;j; (i; j) 2 N) � P (vi;j; (i; j) 2 N j si;j ; (i; j) 2 N)= P (si;j; (i; j) 2 N) � Y(i;j)2N P (vi;j j si;j)= P (T0) � P (T1jT0) � P (T2jT1) � � �P (Tw+z�2jTw+z�3) � Y(i;j)2N P (vi;j j si;j)where Ti denotes the sequence of states for blocks lying on diagonal i. The last equality comesfrom Equation (4).Since Ti serves as an \isolating" element in the expansion of P (si;j; (i; j) 2 N), the Viterbialgorithm can be applied straightforwardly to �nd the combination of states which maximizes thelikelihood P (si;j;vi;j ; (i; j) 2 N). The di�erence from the normal Viterbi algorithm is that thenumber of possible sequences of states at every position in the Viterbi transition diagram increasesexponentially with the increase of blocks in Ti. If there are M states, the amount of computationand memory are both in the order of Mk, where k is the number of states in Ti. Fig. 3 showsan example. Hence, we refer to this version of the Viterbi algorithm as a variable-state Viterbialgorithm.The fact that in the two dimension case, only a sequence of states on a diagonal, rather thana single block, can serve as an \isolating" element in the expansion of P (si;j; (i; j) 2 N) causescomputation infeasibility for the variable-state Viterbi algorithm. To reduce computation, at everyposition of the Viterbi transition diagram, the algorithm only uses N out of all the Mk sequences12
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Figure 3: The variable-state Viterbi algorithmof states, shown in Fig. 4. The paths are constrained to pass one of these N nodes. To choose theN sequences of states, the algorithm separates the blocks in the diagonal from the other blocks byignoring their statistical dependency. Consequently, the posterior probability of a sequence of stateson the diagonal is evaluated as a product of the posterior probability of every block. Then, the Nsequences with the largest posterior probabilities are chosen as the N nodes allowed in the Viterbitransition diagram. The implicit assumption in doing this is that the optimal state sequence (thenode in the optimal path of the Viterbi transition diagram) yields high likelihood when the blocksare treated independently. We also expect that when the optimal state sequence is not among theN nodes, the chosen suboptimal state sequence coincides with the optimal sequence at most of theblocks. We refer to the sub-optimal version of the algorithm as the path-constrained variable-stateViterbi algorithm. This algorithm is di�erent from the M-algorithm introduced for source codingby Jelinek and Anderson [29] since the N nodes are pre-selected to avoid calculating the posteriorprobabilities of the Mk state sequences.A fast algorithm is developed for choosing such N sequences of states. We do not need tocalculate the posterior probabilities of all the Mk sequences in order to choose the largest N fromthem. In the following discussion, we consider the maximization of the joint log likelihood ofstates with feature vectors, since the maximization of the posterior probability of the states giventhe feature vectors is equivalent to maximizing the joint log likelihood. Also note that the loglikelihood of a sequence of states is equal to the sum of the log likelihood of the individual statesbecause we ignore context information in the pre-selection of nodes. Suppose there are k blocks ona diagonal and each block exists in one of M states. The log likelihood of block i being in state mis i;m. The pre-selection of the N nodes is simply to �nd N state sequences fsi; i = 1; :::; kg withthe largest Pki=1 i;si. Denote s = fsi; i = 1; :::; kg. Suppose we want to �nd the state sequencemax�1s Pki=1 i;si , it is unnecessary to calculate Pki=1 i;si for all the Mk state sequences. We onlyneed to �nd max�1si i;si for each i, then the optimal state sequence s = fmax�1si i;si ; i = 1; :::; kg.The idea can be extended for �nding the N sequences with the largest log likelihood.To ensure that the path-constrained variable-state Viterbi algorithm yields results su�cientlyclose to the variable-state Viterbi algorithm, the parameter N should be larger when there aremore blocks in the 2-D Markov chain. As a result, we usually break an image into sub-imagesto avoid too many blocks in one chain. Every sub-image is assumed to be a 2-D Markov chain,but the dependence between sub-images is ignored. In practice, the degradation of performance isnegligible as long as the sub-images are su�ciently global.13
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Figure 4: The computation reduced Viterbi algorithmVI ApplicationsVI.1 Feature SelectionChoosing features is a critical issue in classi�cation because features often set the limits of classi�-cation performance. For a classi�er based on the 2-D HMM, we use both intra-block features andinter-block features. The intra-block features are de�ned basically according to the pixel intensitiesin a block. They are aimed at describing the statistical properties of the block. Features selectedvary greatly for di�erent applications. Widely used examples include moments in spatial domainor frequency domain and coe�cients of transformations, e.g., the discrete cosine transform (DCT).The inter-block features are de�ned to represent relations between two blocks, e.g., the di�erencebetween the average intensities of the two blocks. The use of the inter-block features is similar tothat of delta and acceleration coe�cients in speech recognition, in which there is ample empiricaljusti�cation for the inclusion of these features [16]. The motivation for us to use inter-block featuresis to compensate for the strictness of the 2-D HMM. The 2-D HMM assumes state transitionprobabilities to be constants. In practice, however, we expect that a transition to a state maydepend on some mutual properties of two blocks. For instances, if the two blocks have closeintensities, they may be more likely to be in the same state. Since it is too complicated to estimatemodels with transition probabilities being functions, we retain the constant transition probabilitiesand o�set this assumption somewhat by incorporating the mutual properties into feature vectorssuch that they can inuence the determination of states through posterior probabilities. In the2-D HMM, since the states of adjacent blocks right above or to the left of a block determine thetransition probability to a new state, mutual properties between the current block and these twoneighboring blocks are used as inter-block features.VI.2 Aerial Image SegmentationThe �rst application of our algorithm is the segmentation of man-made and natural regions ofaerial images. The images are 512�512 gray-scale images with 8 bits per pixel. They are the aerialimages of the San Francisco Bay area provided by TRW (formerly ESL, Inc.) [30]. An exampleimage and its hand-labeled segmented image are shown in Fig. 6. Four images are used to train amodel and another image outside the training set is used for testing. The testing image is the oneshown in Fig. 6.We divide the images into 4� 4 blocks and use DCT coe�cients or averages over some of them14
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Figure 5: DCT coe�cients of a 4� 4 block.as described below as features. There are 6 such features. The reason to use DCT coe�cients isthat the di�erent energy distributions in the frequency domain can distinguish the two classes moredirectly. Denote the DCT coe�cients for a 4 � 4 block by fDi;j ; i; j 2 (0; 1; 2; 3)g. In Fig. 5, theorder of Di;j is given. The de�nitions of the 6 features are given in the list below.1. f1 = D0;0 ; f2 = jD1;0j ; f3 = jD0;1j ;2. f4 = P3i=2P1j=0 jDi;j j4 ;3. f5 = P1i=0P3j=2 jDi;j j4 ;4. f6 = P3i=2P3j=2 jDi;j j4 .We also use the spatial derivatives of the average intensity values of blocks as features. In particular,the spatial derivative refers to the di�erence between the average intensity of a block and the averageintensity of the block's upper neighbor or left neighbor.Hidden Markov models with di�erent number of states are trained and tested. Simulationsshow that models with 3 to 6 states for each class yield very similar results. For the result we shallgive in this section, we used a model with 5 states for each class. Setting more than 6 states foreach class results in worse classi�cation performance for two reasons. One is that the model closestto the truth may not be so sophisticated that each class has more than 6 states. The other reasonis that more complicated models require a larger training set. In the case of a �xed training set,the model estimation becomes less accurate with the increase of parameters.When training and applying the HMM using the path-constrained 2-D Viterbi algorithm, wedivide an image into square sub-images each containing 64 blocks. The sub-images are considered asseparate Markov chains. The number of nodes constrained at each position in the Viterbi transitiondiagram, N , is chosen as 32 for the result provided in this section. We experiment on several Ns.For N from 2 to 8, the performance is gradually enhanced. For N greater than 8, the results, withminor di�erences, start showing a convergence trend. The classi�cation error rate with N = 8 isabout 1:5% higher than that with N = 32. As classi�cation time is spent mainly on the Viterbisearching process, and the Viterbi searching time increases at the order of the second power ofthe number of nodes at every transition step, the classi�cation time is roughly proportional to N2.Simulations on one test image show that the CPU time to classify the image on a Pentium Pro200MHz PC is 17 seconds for N = 8, 60 seconds for N = 16, and 226 seconds for N = 32.We compare the 2-D HMM result with that obtained by CART [1]. For the CART algorithm,the feature vectors do not include the inter-block features used in the HMM algorithm becausethe classi�cation is performed independently on blocks. The basic idea of CART is to partitiona feature space by a tree structure and assign a class to every cell of the partition. Feature15



vectors landing in a cell are classi�ed as the class of the cell. CART is a powerful algorithm forstatistical classi�cation. Its applications are not limited to image classi�cation [1]. It enjoys bothe�ciency and simplicity, which makes the algorithm popular. When we apply the algorithm toimage classi�cation, we ignore context information and consider each block independently. Wethus use the result as a benchmark for comparison to show that context information can improveclassi�cation performance. The classi�cation results for both methods are shown in Fig. 7. UsingCART, we obtain error rate of 21:12%. However, the 2-D HMM algorithm achieves error rate of14:68%. A visual di�erence to note is that the result of CART appears \noisy", due to the factthat blocks are classi�ed independently and over-localization causes scattered errors.

Figure 6: An image and its hand labeled classes. White: man-made, Gray: natural.

Figure 7: Comparison of the classi�cation results of CART and 2-D HMM. Left: CART withclassi�cation error rate 21:12%, Right: HMM with classi�cation error rate 14:68%. White: man-made, Gray: natural.The segmentation of aerial images is also studied by Oehler [30] and Perlmutter [31]. In bothcases, The Bayes vector quantizer (BVQ) [30, 31, 32, 33] is used as a classi�er. The basic idea ofBVQ is to design a vector quantizer to achieve good compression and classi�cation performancesimultaneously. Unlike ordinary vector quantizers, which aim at minimizing compression distortion,16



the BVQ algorithm de�nes a new distortion measure as a weighted sum of the compression distortiond and the misclassi�cation penalty B, which is usually the classi�cation error rate Pe.To design a quantizer minimizing d+�B, the conditional probability of being in a particular classgiven the vector is needed. Since the conditional probabilities are generally unknown in practice,an empirical distribution given by the relative frequencies of the classes in the training sequenceis used. In the encoding process, as the empirical distribution obtained from the training datausually does not provide a good estimation for data outside the training set, di�erent approachesare taken to approximate the Bayes risk. A simple solution, which is the approach taken by Oehler,et al. [30, 32, 33], is to replace the Bayes risk by the compression distortion in the encoding process,which is referred to as Bayes VQ with MSE encoding [31], since the mean squared error is normallytaken as the compression distortion. The more sophisticated approach taken by Perlmutter [31, 34]generates a posterior estimation of the conditional probabilities of the classes in parallel with thedesign of the quantizer. This posterior estimation is used by the encoder to evaluate the Bayesrisk. Perlmutter [31, 34] showed that the BVQ with posterior estimation achieves much betterclassi�cation performance than that by the Bayes VQ with MSE encoding. In [31, 34], simulationswith di�erent posterior estimations and di�erent weights of classi�cation error in the Bayes riskare performed. It is found that adding a small portion of compression distortion in the Bayes riskoften bene�ts classi�cation results. The same test image as shown in Fig. 6 is used. The best resultof the simulations can provide a classi�cation error rate of roughly 21:5%.VI.3 Document Image Classi�cationThe second application of our algorithm is the classi�cation of document images into the text andthe graph class. By pictures, we mean continuous-tone images such as photographs. By text, wemean normal text, tables, and graphs [35]. This type of classi�cation is useful in a printing processfor separately rendering di�erent local image types. It is also a tool for e�cient extraction of datafrom image database. The features we use contain the two features described in detail in [35].The �rst one is a measure of the goodness of match between the empirical distribution of waveletcoe�cients in high frequency bands and the Laplacian distribution. It is de�ned as a �2 statisticsnormalized by the sample size. The second one measures the likelihood of wavelet coe�cientsin high frequency bands being composed by highly concentrated values. We also use the spatialderivatives of the average intensity values of blocks as features, which is the same as in the previousapplication. The block size used is 8� 8. The HMM has 4 states for each class. Simulations showthat models with 2 to 5 states for each class yield similar results.We compare the result of HMM with that of CART. The image set is provided by HewlettPackard, Inc. [36, 31]. They are RGB color images with size around 1600 � 1300. Each colorcomponent is 8 bits per pixel. In our simulation, we only use the illuminance component (i.e.,gray-scale images). For most images we tested, both algorithms achieve very low classi�cationerror rates, about 2% on average. More di�erences between the two algorithms appear with onesample image shown in Fig. 8 because the picture region in this image is very smooth at manyplaces, which resembles the text class. The classi�cation results of both CART and the 2-D HMMalgorithm for this image are shown in Fig. 9. We can see that the result using HMM is muchcleaner than the result using CART, especially in the picture regions. This is expected since theclassi�cation based on HMM takes context into consideration. As a result, some smooth blocks inthe picture regions, which locally resemble text blocks can be correctly identi�ed as picture.
17



Figure 8: A sample image and its hand-labeled classes. White: photograph, Gray: text.

Figure 9: Comparison of the classi�cation results of CART and 2-D HMM. Left: CART classi�ca-tion result. Right: 2-D HMM classi�cation result. White: photograph, Gray: text.
18
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