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Abstract

Conventional block-based image classification algorithms, such as CART and VQ based clas-
sification, ignore the statistical dependency among image blocks. Consequently, these algorithms
often suffer from over-localization. In order to benefit from the inter-block dependency, an image
classification algorithm based on a hidden Markov model (HMM) is developed. An HMM for
image classification, a two dimensional extension of the one dimensional HMM used for speech
recognition, has transition probabilities conditioned on the states of neighboring blocks from
both directions. Thus, the dependency in two dimensions can be reflected simultaneously. The
HMM parameters are estimated by the EM algorithm. A two dimensional version of the Viterbi
algorithm is also developed to classify optimally an image based on the trained HMM. An ap-
plication of the HMM algorithm to document image and aerial image segmentation shows that
the algorithm outperforms CART and Bayes VQ.

I Introduction

For most block based image classification algorithms, such as CART [1], images are divided into
blocks and decisions are made independently for the class of each block. This approach leads to an
issue of choosing block sizes. We do not want to choose a too large block size since this obviously
causes crude classification. On the other hand, if we choose a small block size, only very local
properties belonging to the small block are examined in classification. The penalty then comes
from losing information about surrounding regions. A well known method in signal processing to
attack this type of problem is to use context information. Trellis coding [2] in image compression is
such an example. How to introduce “context” into classifiers is what is of interest to us. Previous
work [3, 4] has looked into ways of taking advantage of context information to improve classification
performance for document image segmentation. Both block sizes and classification rules can vary
according to context. The improvement achieved demonstrates the potential of context information
to help classification. The purpose of this paper is to introduce a two dimensional hidden Markov
model (2-D HMM) as a general framework for context dependent classifiers.

The theory of hidden Markov models in one dimension (1-D HMMs) was developed in the 1960s
by Baum, Eagon, Petrie, Soules, and Weiss [5, 6, 7, 8]. HMMs have earned their popularity mostly
from successful application to speech recognition [9, 10, 11, 12, 13]. Underlying an HMM is a basic
Markov chain [14]. In fact, an HMM is simply a “Markov Source” as defined by Gallager [15]:
a conditionally independent process on a Markov chain or, equivalently, a Markov chain viewed
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through a memoryless channel. Thus, at any discrete unit of time the system is assumed to
exist in one of a finite set of states. Transitions between states take place according to a fixed
probability depending only on the state of the system at the unit of time immediately preceding
(1-step Markovian). In an HMM, at each unit of time a single observation is generated from the
current state according to a probability distribution depending only on the state. Thus in contrast
to a Markov model, since the observation is a random function of the state, it is not in general
possible to determine the current state by simply looking at the current observation. HMMs owe
both their name and modeling power to the fact that these states represent abstract quantities that
are themselves never observed. They correspond to ”clusters” of contexts having similar probability
distributions of the observation.

Suppose that there are M states {1,..., M} and that the probability of transition between states
¢ and j is a;;. Hence the probability that at time ¢ the system will be in the state j given that
at time ¢ — 1 it was in state 4 is a;;. Define z; as the observation of the system at time #. This
observation is generated according to a probability distribution dependent only on the state at time
t. Let b;(x) be the probability distribution of x in state 7. If m; is the probability of being in state
i at time t = 1, then the likelihood of observing the sequence {z;}._; is given by

L(z) = Z 7781b81(ml)aslwbsz(xQ)"aSTflsTbT(xT)
51,52,-,8T

where s; represents the state at time ¢. The above formula can be evaluated more efficiently by the
following recursive formula, the so-called forward procedure:

M
L(z) = 0r(i)
=1
01(2) = mibi(z1) 1<i<M
M
Or1(j) = bj(m141) Y Ou(i)as 1<t<T-1,1<j<M
i=1

0;(7) is the likelihood of the observations xi..x; given that at time ¢ the state is i.

For details, see any of the references on speech recognition [10, 11, 12, 16].

Of particular interest to this paper is the most likely sequence of states {s} thl given the
observation sequence {z;}._;. This is typically computed using dynamic programming (the Viterbi
algorithm [17]).

Estimation of 1-D HMM model parameters is usually performed according to the Baum-Welch
algorithm (a special case of the EM algorithm [18]). Details of the iterative algorithm can be
found in any of the references on speech recognition. One way to think of this algorithm is as
a reestimation of the state parameters from each training observation sequence, weighted by the
likelihood of each possible state sequence that could have caused it. This results in maximum
likelihood parameter estimates. An approximation to maximum likelihood training is what is often
termed Viterbi training [16], in which each observation is assumed (with weight of 1) to have
resulted from the single most likely state sequence that might have caused it. While more efficient
computationally, Viterbi training does not in general result in maximum likelihood estimates. Note
that an intermediate technique often used is to consider only the N most likely state sequences for
each observation sequence for likelihood weighted training.

To apply the HMM to images, previous work extended the 1-D HMM to the pseudo 2-D
HMM [19, 20]. The model is pseudo 2-D in the sense that it is not a fully connected 2-D HMM.



The basic assumption is that there exists a set of “superstates” that are Markovian. Within each
superstate there is a set of simple Markovian states. For 2-D images, first the superstate is chosen
using a first order Markov transition probability based on the previous superstate. This superstate
determines the simple Markov chain to be used by the entire row. A simple Markov chain is then
used to generate observations in the row. Thus, superstates relate to rows and simple states to
columns. In particular applications, this model works better than the 1-D HMM [19], but we expect
the pseudo 2-D HMM to be much more effective with regular images, such as documents. Since the
effect of the state of a pixel on the state below it is distributed across the whole row, the pseudo
2-D model is too constrained for normal image classification. We thus propose using a truly 2-D
HMM.

The 2-D HMM for images assumes that the probability of the system entering a particular
state depends upon the state of the system at the adjacent observations in both horizontal and
vertical directions. A transition from any state to any state is allowed. As in the case of speech, the
probability distribution of the feature vector is modeled as a fixed Gaussian distribution for any
given state. The extension is non-trivial since certain entities that correspond to single states in the
1-D case may correspond to entire state sequences in 2-D. The main difficulty with using a genuine
2-D HMM is its computational complexity, so we develop approximation methods for estimating
and applying the 2-D HMM in order to achieve computational feasibility. In our applications,
simulations show that classification performance approaches limits rather quickly with increasing
approximation accuracy. Hence, the benefit of using the 2-D HMM is realized at reasonably low
computational complexity.

In Section II, we provide a mathematical formulation of the basic assumptions of the 2-D
HMM. Section III derives the iterative estimation algorithm for the model according to the general
EM algorithm. Computational complexity is analyzed in Section IV. In Section IV, backward
and forward probabilities in the 2-D case are introduced to efficiently estimate the model. Our
algorithm further lowers the computational complexity by using the Viterbi training. The 2-D
version of the Viterbi algorithm is described in Section V. Two applications of classification based
on the 2-D HMM are presented in Section VI. We conclude in Section VII.

II Basic Assumptions of 2-D HMM

As in all block based classification systems, an image to be classified is divided into blocks and
feature vectors are evaluated as the statistics of the blocks. The image is then classified according
to the feature vectors.

The 2-D HMM assumes that the feature vectors are generated by a Markov model which may
change state once every block. Suppose there are M states, {1,..., M}, the state of block (i, j)
is denoted by s; ;. The feature vector of block (i,7) is v;; and the class is ¢; ;. We use P(-) to
represent the probability or likelihood of an event. We denote (i, 5') < (4,7), or (i,7) > (¢, 5"), if
i’ <iori =i, and j' < j; in which case we say that block (i', j') is before block (i, 7). For example,
in the left panel of Fig. 1, the blocks before (i, j) are the shaded blocks. This sense of order is the
same as the raster order of row by row. We would like to point out, however, that we introduce this
order only for stating the assumptions. In classification, we do not classify blocks one by one in
such an order. Our classification algorithm tries to find the optimal combination of classes jointly
for many blocks at once. A one dimensional approach of joint classification, assuming a scanning
order in classification, is usually suboptimal.
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Figure 1: Markovian property of the transition of states

The first assumption we make is that

P(SZ,]|\I/) = ammn,l
where W = {s; 1, vy ji, (i',5") < (4,5)}

and m=s;_1j, n=s;;_1,andl = s;;

The above assumption can be summarized by two points. First, the state s; ; is a sufficient statistic
for (si jo, vy jr) for estimating transition probabilities, i.e., v are conditionally memoryless. Second,
the state transition is first order Markovian in a two dimensional sense. Shown in the left panel
of Fig. 1, knowing the states of all the shaded blocks, we only need the states of the two adjacent
blocks in the darker shade to calculate the transition probability to a next state. We also assume
that there is a unique mapping from states to classes. Thus, the classes of the blocks are determined
once the states are known.

The second assumption is that for every state, the feature vectors follow a Gaussian mixture
distribution. Once the state of a block is known, the feature vector is conditionally independent
of the other blocks. Since any state with an M-component Gaussian mixture can be split into M
substates with single Gaussian distributions, we restrict ourselves to single Gaussian distributions.
For a block with state s and feature vector x, the distribution is

bs(V) = ;pfé(vfﬂs)lzsil(vfﬂs)

vV (2m)" 2] ‘ ’

where ¥ is the covariance matrix and pg is the mean vector.

The Markovian assumption on state transitions can simplify significantly the evaluation of the
probability of the states, i.e., P{s;;,(i,7) € N}, where N = {(7,7),0 < i < m,0 < j < z} refers
to all the blocks in an image. To expand efficiently this probability by the conditional probability
formula, we first prove that a rotated form of the two dimensional Markovian property holds given
the two assumptions. Recall that we define (i, ') < (4,7) if i’ <i or i =4, and j' < j. We then
define a rotated relation of “<”, denoted by “<”, which specifies (i, j')<(4, 5), or (i,7)>(i', '), if
' <jorj =j, and 7' <i. An example is shown in the right panel of Fig. 1. To prove that

P(sij|9) = ampns
where W = {sp 1, vy i, (i',5")<(i, 5)}

and m=s; 1, n=s;;1,andl=s5;; |,
we define U = {s; j, vy jr, (7', 5') < (4,7)} and introduce the following notation:

‘iJ Uw = {Si’,j’avi’,j'u (ilujl) < (Zvj) or (217.7,)%(27.7)} 3
\il nw = {Si’,j’avi’,j’a (ila.j’) < (7‘77) and (2,17’)%(%7)} s
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Figure 2: Blocks on diagonals of an image

v—w= {Si’,j’avi’,j’u (Z,ajl)g(’lu]) and (ilujl) > (Zaj)}
Note that ¥ = (U U W) U (U — ¥). We can then derive

P(Si,j,‘i/ﬂ‘lf,\i/—\lf)

P(si;| V) = P3)

PV NO)P(si; | VNT)P(V— T[T NT,s; ) M
P(1)

_ P(\if N \I/)P(Si’j Si—1,55 Si’jfl)P(\if — v ‘ \if N \I/, Si,j) (2)

P(1)

_ Plsigsiongsig-)P(ENU) PV - [ ¥ NY) 3)
P(¥)

= P(sij|si-1,j;8ij-1)

= Aam,n,l

where m = s;_1 4, n = s;;1, and | = s; ;. Equality (1) follows from the expansion of conditional
probability. Equality (2) follows from the Markovian assumption. Equality (3) holds due to both
the Markovian assumption and the assumption that the feature vector of a block is conditionally
independent of other blocks given its state.

According to the derivation, there actually exists a stronger statement, which is P(s; ; | \ilU\Il) =
P(s;j|si—1;,58ij-1). The reason is that in the derivation, if we change TN to W and ¥ to ¥ U,
all the equalities still hold. This property implies the original Markovian assumption and its rotated
version. We refer to this property as a stronger Markovian property.

We now simplify the expansion of P{s; . (i,7) € N}:

P{s;j,(i,j) € N} = P(Tp) - P(T1 | To) - P(Twsz—2 | Tnyo—3, Tmgz—as-- -, To) (4)

where T denotes the sequence of states for blocks lying on diagonal i, i.e., (Si0,8i-1,1,",S0,), as
shown in Fig. 2.
We next show that P(T;|T;-1,...,Ty) = P(T;|T;—1). Without loss of generality, suppose

T; = {8i,0,8i-1,15--- 50,4}, then T;_y = {s;_1.0,8i-2,1,.-.,50,i—1} and
P(T; | Ti—y,...,Ty) = P(si0,5i-1,1,---,504| Tic1,Ti—2,...,Tp)
= P(sio|Tim1,-..,T0) - P(si—1,118i0,Ti-1,...,T0)

o P(soi|S1i-15-+-58i0.Ti—1,-..,Tp)

P(sio|si—1,0) - P(si—1,1]8i—2,1,%i-1,0) - P(S0,i

50,i—1)



The last equality is obtained from the stronger Markovian property. Since all the states s; ; which
appear in the conditions are in T;_ 1, we conclude that

P(T;|T;-1,...,Ty) = P(T;|Ti-1)
Equation (4) is simplified to
P{s;j, (i,7) € N} = P(Tp) - P(T1 | To) - - - P(Twtz—2 | Tmtz—3) - (5)

The state sequence T; thus serves as an “isolating” element in the expansion of P(s; j, (¢,5) € N),
which plays the role of a state at a single unit of time in the case of a one dimensional Markov
model. As we shall see, this property is essential for developing our algorithm. We may notice
that, other than diagonals, there exist geometric forms which can serve as “isolating” elements as
well, for example, state sequences on rows or columns. We prefer state sequences T; on diagonals
because conditioned on T;_1, all the states in 7T; are statistically independent. This fact is a direct
result of the stronger Markovian property. The conditional independence of the states in 7; given
T; 1 significantly reduces computation.

The task of our classifier is to estimate the 2-D HMM from training data and to classify images
by finding the combination of states with the maximum posterior probability given the observed
feature vectors.

We point out that the underlying state process we have defined is a special Markov random
field (MRF) [21, 22], which was referred to as Markov Mesh and proposed by Abend, Harley and
Kanal [23, 24] for the classification of binary random patterns. It is an extension of a Markov
chain into two dimensions so that a much larger class of spatial dependencies can be taken into
consideration. In our assumption of the Markovian property, the states in condition are the states
of blocks above and to the left of a current block, thus there exists a certain sense of “past”. This
type of Markov random fields is called the “causal” MRF [25, 24, 26]. The causality enables the
derivation of an analytic iterative algorithm to estimate an HMM and to estimate states with the
maximum a posteriori probability.

IIT1 Estimation of the Model

For the assumed HMM, we need to estimate the following parameters: transition probabilities
@mn,l, Where m,n,l = 1,..., M, and M is the total number of states, the mean vectors p,,, and
the covariance matrices 3, of the Gaussian distributions, m = 1,..., M. We define the set M =
{1,..., M}. The parameters are estimated by the maximum likelihood criterion (ML) using the EM
algorithm [18, 27, 8]. We first introduce briefly the EM algorithm as described in Dempster, Laird
and Rubin [18]. Then we apply the algorithm to our case to derive a specific formula.

The EM algorithm provides an iterative computation of maximum likelihood estimation in the
case of the observed data being incomplete. The term “incomplete” reflects the fact that we need
to estimate the distribution of x, in sample space X, but we can only observe x indirectly through
y, in sample space ). In many cases, there is a mapping x — y(x) from X to Y, and x is only
known to lie in a subset of X', denoted by X'(y), which is determined by the equation y = y(x).
We postulate a family of distribution f(x | ¢), with parameters ¢ € Q, on x. The distribution of y,
g(y | ¢), can be derived as

o(y|d) = /XUf(xlqﬁ)dx



The EM algorithm is aimed at finding a ¢ which maximizes g(y | ¢) given an observed y.
Before we describe the algorithm, we introduce a function [18]

Q(¢'1¢) = E(ogf(x|¢)]y.¢) ,

which is assumed to exist for all pairs (¢, ¢). In particular, we assume that f(x|¢$) > 0 almost ev-
erywhere in ¢ € Q. The function Q(¢' | ¢) is the expected value of log f (x| ¢’) with the distribution
of x being the conditional distribution given y and parameter ¢. The EM iteration ¢®) — ¢#+1)
is defined in [18] as follows

1. E-step: Compute Q(¢ | ¢®)).

2. M-step: Choose (P! to be a value of ¢ € Q which maximizes Q(¢ | ¢®)).

We define the following notation.

1. The set of observed feature vectors for the whole image is v = {v; ;. (i,7) € N}.
2. The states for the image are s = {s;j, (i,j) € N}.

3. The classes for the image are ¢ = {c; ;, (¢,7) € N}.

4. The mapping from a state m to its class is C(m), and the set of classes mapped from states
s is denoted by C(s).

Specific to our case, the complete data x are {s; ;,v;;,(¢,7) € N} and the incomplete data y
are {c¢; j, vij, (1,7) € N}. The function f(x|¢') is

flxl¢) = P(s|d)-P(v]s,¢)
= P(s|al m,n,l € M)-P(v|s,u,. X meM)

",

- H a/Si—l,iji,j—hSi,j ' H P(vi “ISi,]" E’SW,)
(4,5)EN (4,5)EN
We then have
log f(x|¢') = Z log a,si—l,j75i,j—175i,j + Z log P(vj | u'sz_’]_,Z'sz_’j) ) (6)
(i,j)EN (i,5)EN

Given y, x can only take finite number of values, corresponding to different sets of states s
which have classes consistent with y. The distribution of x is

1
P(x|y,¢") = —I(C(s)=c)  P(s| ") P(v|s,¢”)
1
= EI(O(S) = C) ’ H a‘gzld,sm,l,sm ’ H P(vi,j |:U‘g€)]72g{))])

(i,7)eN (i,7)eEN

where « is a normalization constant, and the function I(-) is the indicator function which equals one
if its argument is true and zero otherwise. From this point, we write P(x |y, $)) as P(s|y, "),
assuming that all the v; ; in x are the same as those in y, since otherwise the conditional probability
of x given y is zero.



In the M-step, we set ¢(Pt1) to the ¢' which maximizes

1
E(log f(x ‘ d)l) ‘ Y’ d)(p)) = a Z ‘P(S | y7 qs(p)) ’ Z log a;i—l,j,si,]'fl,si,]‘ +

(4,7)EN
1
EZ‘P(S|y7 Z long’L]“J‘s” s,]) . (7)
s (4.5)eN

Equation (7) follows directly from (6).
We can thus maximize the two items in (7) separately by choosing a;, , , and p,, 37, respec-
tively. Consider the first item

Y Plsly.d®)- D logal,

= Y P6ly,¢") - Y D logap, - Im = sioijn = sijo1,l = sig)

m,n,leM (i,5)eN

= Z IOg (Im ol Z Z P ‘y, ( = 8i-1,5,1 = Si’jfl,l = Si,j) . (8)

m,n,le M (,J)EN s

Denote Hfﬂ a(60) =g I(m = si1j,n = s 1,1 = sij)P(s |y, #®)), which is the probability
of being in state m at block (1 — 1,7), state n at block (i,7 — 1), and state [ at block (4,7) given
the observed feature vectors, classes, and model ¢(”). Expression (8) becomes

Z logamnl Z mnlzj

m,n,leM (4,7)EN

To maximize it under the constraint

M
Za'm,n’l =1, forallmneM |,
=1

use the Lagrangian multiplier and take derivatives with respect to a! . We then conclude that
A, X Z m,n l U 7 )
(i,4)EN

which in turn yields
) (s
! Z(’])GN Hmanzl(Z7j)
amznal (p) - -
Zl 1 Z (i,7)eEN Hm,n,l(za])
Now we discuss the maximization of the second term in equation (7).

Y P(sly.¢®)- > log P(vi

('J)GN

/ /
Hsi j> Bs ;)

= Y Pisly. ¢ Z > 108 P(Vig |ty Sip) (= 51)

=1 (,j)eN

- Z Z ZI m = si;) (S‘Ya¢(p))'IOgP(Vi,j\u'm,Z'm)

m=1(i,j)eN s



Denote L%)) (i,7) = >4 I(m = s;5)P(s]y, #®)), which is the probability of being in state m
at block (i,7) given the observed feature vectors, classes and model #®). The above expression is
simplified to

M
ST LG, j)log P(vi | 1y, By
m=1 (3,5)EN

It is known that for Gaussian distributions, the ML estimation of u! is the sample average of the
data , and the ML estimation of X/ is the sample covariance matrix of the data [28]. Since in our

case, the data is weighted by Lgﬁ)(i,j), the M.L.E. of u), and X! are
u, . Zi,j L%)) (iuj)vi,j
m .o
S L ,9)
i Lt (1:3)(Vig = 1) (Vi = 1)
S LW ()

In summary, the estimation algorithm iteratively improves the model estimation by the following

=, =

two steps.

1. Given the current model estimation qﬁ(”) and the observed feature vectors v; ; and classes ¢; ;,
the mean vectors and covariance matrices are updated by

Zi,jL%)) (4,79) Vi

(p+1)
i (9)
i LW (i, )
;o +1 +1
s — Sl ) = k)i =) (10)

Ei,jL%)) (4, 7)
The probability ng) (i,7) can be calculated by

LE(.g) = Y Im=sij)

WP B0y (1)

SN

1
_I(C(S) = c) ’ H ag{"zl’j,si,]‘,l,si,]‘ ’ H P(VZ,]

o
(4,7)EN (4,7)EN

2. The transition probabilities are updated by

) Dy o lind)
n,d — .o
ZZI\;II > Hr(rlz),)n,l(z’j)

where Hg’)n’l(i,j) can be calculated by
Hﬁf,)n,l(i,j) = Zf(m =811 = Sij-1,l = 8ij) -
1
106 =) I 0@, sy 11 Pvisle),30) . (12)
(4.5)EN (i,5)eN



In the case of one dimensional HMM as used in speech recognition, computationally efficient
formulas exist for calculating L,,(k) and H,, (k) [16]. For 2-D HMM, however, the computation
of Ly, (i,j) and Hy, (2, 7) is not feasible, due to the two dimensional transition probabilities. The
next section will discuss why this is so and how to reduce the computational complexity.

IV Computational Complexity
()

As shown in previous section, the calculation of the probabilities Ly’ (i,7) and Héfy)n,l(z’,j) is the
key for the iterative estimation of the model parameters. If we calculate L%)) (1,7) and H?Sf)n (4, 9)
directly according to equation (11) and (12), we need to consider all the combinations of states
which yield the same classes as those appeared in the training set. The large number of such
combinations of states results in infeasible computation. Let us take L,(f;)(i,j) as an example.
Suppose there are M, states for each class and the number of blocks in an image is w X z as
previously assumed, then the number of admissible combinations of states which satisfy C'(s) = ¢
and s;; =m, is (w X z — 1)Mo, When applying the HMM algorithm, although we often break one
image into many sub-images such that w, or z, is the number of blocks in one column, or one row,
in a sub-image, we need to keep w and z sufficiently large to ensure an adequate amount of context
information being incorporated in classification. In the limit, if w = z = 1, the algorithm is simply
a parametric classification algorithm performed independently on each block. It is normal to have
w = z = 8. In this case, if we have 4 states for each class, the number of the combinations of
states is (w x z — 1)Mo = 634, which is prohibitive for a straight-forward calculation of ng)(i,j).
Similar difficulty occurs for estimating one dimensional HMM. The problem is solved by a recursive
calculation of forward and backward probabilities [16].

The idea of using forward and backward probabilities can be applied to the two dimensional
HMM to simplify the computation. Recall equation (5) in Section II,

P(sij, (i,5) €N) = P(Ty) - P(T1 | To) -+ P(Tot2—2 | Tw+2—3)

The fact that the state sequence 7; on a diagonal is an “isolating” element in the expansion of
P(sij,(i,7) € N) enables us to define the forward and backward probabilities and to evaluate them
by recursive formulas.

Let us clarify notation first. In addition to the notation we provide in the list in section III, we
need to use the following definitions.

1. The diagonal on which block (7, j) lies is denoted by A(i, 5).
2. The feature vectors on diagonal d, {v; ;, (4,7) : A(4,j) = d}, is denoted by v(d).
3. The state sequence on diagonal d, {s; ;. (¢,7) : A(4, j) = d}, is denoted by s(d).
4. For a state sequence T on diagonal d, its value at block (i, 75) is T'(4, 7).
The forward probability 67(d) for some model M is defined as

Or(d) = P(vi, (i) : Ali.g) < d. s(d) = T| M)

The forward probability 67(d) is the joint distribution of observing the vectors lying on or above
diagonal d and having state sequence T for blocks on diagonal d.

10



The backward probability Gr(d) is defined as
ﬁT(d) = P(vi,ja (7’77) : A(Za7) > d‘S(d) = T7 M)

That is, By (d) is the conditional distribution of observing the vectors lying below diagonal d given
the state sequence on diagonal d is T'.

Similar to the case of 1-D HMM, we can derive recursive formulas for calculating 07 (d) and
Br(d), which are listed below

HTd (d) = Z HTd,l(d - 1) ) P(Td | Td*lu M) : P(\?(d) |Td7 M) 3 (13)
Tq 1

Bry(d) = Y P(Tyr|Ty, M) - P(V(d+ 1) Typr, M) - Br,,, (d+1) . (14)
Tay1

We can then calculate L,,(i,7) given model M by

Lm(2a7) = P(S’i,j =m | v.c, M)
_ { ZTd:Td(i,j):m P(Ty|v,e, M) , ifC(m) =c;;
0

, otherwise

Let us consider the case C(m) = ¢; ;. It is assumed in the derivation below that the summation
over T, only covers T,; which yields consistent classes with the training data.

L P(Ty, v | M)
Lm(laj) - Z P(\?,C|M)
Td:Td(l,]):m

_ 01, (A1) - Br(Ai. )
2 (v.c[M) | 19

Ta:Ty(i,5)=m

The subscript ’d’ in Ty denotes the diagonal d on which block (7,j) locates. In the following
calculation of Hy, ,,(i,7), the summations are always over state sequences with the same classes
as those appeared in the training data.

Hm,n,l(iaj)
= P(Sifl’j =m,Sjj—1="N,8; = l | v, C, M)

{ ZTd ZT(Z71 P(Ty,Ty—1|v,e, M) . ifC(m)= Ci—1,45 C(n) = Cij—1, c(l) = Ci,j
0

, otherwise

We then consider the case C(m) = ¢;—1,5, C(n) = ¢;j—1, and C(I) = ¢; j. In the following derivation,
the summations over T; and T, 1 are constrained to the T, satisfying Ty(i,j) = [ and the Ty 1
SatiSfying Td*l(i o 177) =m, Td*l(iaj - 1) =n.

-y Or, ,(A(6,7) —1) - P(Tq| Ty—y, M)P(v(d) | T4, M) - b1, (A(G, j))

P(+,c|M) (16)

mnlzj
Ty Tg—1

Although the forward and backward probabilities can significantly reduce the computation for
L (i,j) and Hy, 5, (4, j), computation complexity is still rather high due to the two dimensionality.
Equation (13) and (14) for evaluating the forward and backward probabilities are summation over
all state sequences on diagonal d — 1, or d + 1, with consistent classes with the training data. With
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the increase of blocks on a diagonal, the number of state sequences increase exponentially. The
same problem happens with the calculation of Ly, (i,7) and Hy, (i, j). Consequently, we make an
approximation in the calculation of L,, (i, j) and Hy, (¢, 7) to avoid computing the backward and
forward probabilities. Recall the definitions in section I11

Héf,)n,z(iaj) = ZI(’m =8 1,0 =8;j 1,1 = si,j)P(s ly, qﬁ(”)) ,
S

LP(i,5) =Y I(m = s;;)P(s|y. ")

To simplify the calculation of Ly, (4,5) and Hyy, (4, j), we will assume that the single most likely
state sequence accounts for virtually all the likelihood of the observations. Thus we aim at finding
the optimal state sequence which maximizes P(s|y, ¢®)). This is the Viterbi training algorithm.
The maximization of P(s|y) given model ¢(P) can be achieved by a two dimensional version of the
Viterbi algorithm, which is described in next section.

V  Variable-state Viterbi Algorithm

Our purpose of using the 2-D Viterbi algorithm is to maximize P(s|y), which is equivalent to the
maximization of P(s;;,v;;, (¢,7) € N) constrained to C(s; ;) = ¢;; in the training process. When
we apply the trained model to classify images (testing process), we also aim at finding states s; ;.
(¢,j) € N to maximize P(s;;,Vv;j, (1,j) € N). The states are then mapped into classes. In the
testing process, since ¢; ; is to be decided, the previous constraint is removed.

In the discussion, we consider the unconstrained case, i.e., the testing situation, since in the
constrained case, the only difference is to shrink the search range of s; ; to states corresponding to
class ¢; ;. We can expand P(s; ;,v;;, (i,7) € N) as

P(Si,javi,ja (Zuj) € N) = P(Si,j7 (Zaj) € N) 'P(vi,ja ('L,j) € N‘Si,ju (Zaj) € N)
= P(sij, (i,7) €N) - H P(vi;j|sij)
(4.3)eN
= P(Ty)- P(T|Ty) - P(To|Th) - P(Tuiz2|Twizs) - [ Pvigjlsis)
(4.5)EN

where T; denotes the sequence of states for blocks lying on diagonal :. The last equality comes
from Equation (4).

Since T; serves as an “isolating” element in the expansion of P(s; ;,(i,7) € N), the Viterbi
algorithm can be applied straightforwardly to find the combination of states which maximizes the
likelihood P(s; j,v;;, (¢,7) € N). The difference from the normal Viterbi algorithm is that the
number of possible sequences of states at every position in the Viterbi transition diagram increases
exponentially with the increase of blocks in T;. If there are M states, the amount of computation
and memory are both in the order of M*, where k is the number of states in T;. Fig. 3 shows
an example. Hence, we refer to this version of the Viterbi algorithm as a variable-state Viterbi
algorithm.

The fact that in the two dimension case, only a sequence of states on a diagonal, rather than
a single block, can serve as an “isolating” element in the expansion of P(s; ;, (i,7) € N) causes
computation infeasibility for the variable-state Viterbi algorithm. To reduce computation, at every
position of the Viterbi transition diagram, the algorithm only uses N out of all the M* sequences
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Figure 3: The variable-state Viterbi algorithm

of states, shown in Fig. 4. The paths are constrained to pass one of these IV nodes. To choose the
N sequences of states, the algorithm separates the blocks in the diagonal from the other blocks by
ignoring their statistical dependency. Consequently, the posterior probability of a sequence of states
on the diagonal is evaluated as a product of the posterior probability of every block. Then, the N
sequences with the largest posterior probabilities are chosen as the N nodes allowed in the Viterbi
transition diagram. The implicit assumption in doing this is that the optimal state sequence (the
node in the optimal path of the Viterbi transition diagram) yields high likelihood when the blocks
are treated independently. We also expect that when the optimal state sequence is not among the
N nodes, the chosen suboptimal state sequence coincides with the optimal sequence at most of the
blocks. We refer to the sub-optimal version of the algorithm as the path-constrained variable-state
Viterbi algorithm. This algorithm is different from the M-algorithm introduced for source coding
by Jelinek and Anderson [29] since the N nodes are pre-selected to avoid calculating the posterior
probabilities of the M* state sequences.

A fast algorithm is developed for choosing such N sequences of states. We do not need to
calculate the posterior probabilities of all the M* sequences in order to choose the largest N from
them. In the following discussion, we consider the maximization of the joint log likelihood of
states with feature vectors, since the maximization of the posterior probability of the states given
the feature vectors is equivalent to maximizing the joint log likelihood. Also note that the log
likelihood of a sequence of states is equal to the sum of the log likelihood of the individual states
because we ignore context information in the pre-selection of nodes. Suppose there are k£ blocks on
a diagonal and each block exists in one of M states. The log likelihood of block 7 being in state m
is ¥im. The pre-selection of the N nodes is simply to find N state sequences {s;,i = 1,...,k} with
the largest Zle Vis;- Denote s = {s;,i = 1,....,k}. Suppose we want to find the state sequence
max, ' Zle Vi,s;» it is unnecessary to calculate Zle Vi,s; for all the M¥* state sequences. We only
need to find max;_1 Vis; for each ¢, then the optimal state sequence s = {max;l Yisi» ¢ = 1,...,k}.
The idea can be extended for finding the N sequences with the largest log likelihood.

To ensure that the path-constrained variable-state Viterbi algorithm yields results sufficiently
close to the variable-state Viterbi algorithm, the parameter N should be larger when there are
more blocks in the 2-D Markov chain. As a result, we usually break an image into sub-images
to avoid too many blocks in one chain. Every sub-image is assumed to be a 2-D Markov chain,
but the dependence between sub-images is ignored. In practice, the degradation of performance is
negligible as long as the sub-images are sufficiently global.
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Figure 4: The computation reduced Viterbi algorithm

VI Applications

V1.1 Feature Selection

Choosing features is a critical issue in classification because features often set the limits of classifi-
cation performance. For a classifier based on the 2-D HMM, we use both intra-block features and
inter-block features. The intra-block features are defined basically according to the pixel intensities
in a block. They are aimed at describing the statistical properties of the block. Features selected
vary greatly for different applications. Widely used examples include moments in spatial domain
or frequency domain and coefficients of transformations, e.g., the discrete cosine transform (DCT).

The inter-block features are defined to represent relations between two blocks, e.g., the difference
between the average intensities of the two blocks. The use of the inter-block features is similar to
that of delta and acceleration coefficients in speech recognition, in which there is ample empirical
justification for the inclusion of these features [16]. The motivation for us to use inter-block features
is to compensate for the strictness of the 2-D HMM. The 2-D HMM assumes state transition
probabilities to be constants. In practice, however, we expect that a transition to a state may
depend on some mutual properties of two blocks. For instances, if the two blocks have close
intensities, they may be more likely to be in the same state. Since it is too complicated to estimate
models with transition probabilities being functions, we retain the constant transition probabilities
and offset this assumption somewhat by incorporating the mutual properties into feature vectors
such that they can influence the determination of states through posterior probabilities. In the
2-D HMM, since the states of adjacent blocks right above or to the left of a block determine the
transition probability to a new state, mutual properties between the current block and these two
neighboring blocks are used as inter-block features.

VI.2 Aerial Image Segmentation

The first application of our algorithm is the segmentation of man-made and natural regions of
aerial images. The images are 512 X 512 gray-scale images with 8 bits per pixel. They are the aerial
images of the San Francisco Bay area provided by TRW (formerly ESL, Inc.) [30]. An example
image and its hand-labeled segmented image are shown in Fig. 6. Four images are used to train a
model and another image outside the training set is used for testing. The testing image is the one
shown in Fig. 6.

We divide the images into 4 x 4 blocks and use DCT coefficients or averages over some of them
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Figure 5: DCT coefficients of a 4 x 4 block.

as described below as features. There are 6 such features. The reason to use DCT coefficients is
that the different energy distributions in the frequency domain can distinguish the two classes more
directly. Denote the DCT coefficients for a 4 x 4 block by {D; ;,i,7 € (0,1,2,3)}. In Fig. 5, the
order of D; ; is given. The definitions of the 6 features are given in the list below.

L. fi=Doo; fo=1|Digol; fz3=|Do

3 1
_ Zi:Q Zj:O‘Di,j‘ .
f4 - 4 )

I

N

w

1 3
_ 2i—o Zj:Q‘Di,j‘ .
- 4

I

s

4 fo= i ZZ:Q\DW‘\ ‘
We also use the spatial derivatives of the average intensity values of blocks as features. In particular,
the spatial derivative refers to the difference between the average intensity of a block and the average
intensity of the block’s upper neighbor or left neighbor.

Hidden Markov models with different number of states are trained and tested. Simulations
show that models with 3 to 6 states for each class yield very similar results. For the result we shall
give in this section, we used a model with 5 states for each class. Setting more than 6 states for
each class results in worse classification performance for two reasons. One is that the model closest
to the truth may not be so sophisticated that each class has more than 6 states. The other reason
is that more complicated models require a larger training set. In the case of a fixed training set,
the model estimation becomes less accurate with the increase of parameters.

When training and applying the HMM using the path-constrained 2-D Viterbi algorithm, we
divide an image into square sub-images each containing 64 blocks. The sub-images are considered as
separate Markov chains. The number of nodes constrained at each position in the Viterbi transition
diagram, N, is chosen as 32 for the result provided in this section. We experiment on several Ns.
For N from 2 to 8, the performance is gradually enhanced. For N greater than 8, the results, with
minor differences, start showing a convergence trend. The classification error rate with N = 8 is
about 1.5% higher than that with N = 32. As classification time is spent mainly on the Viterbi
searching process, and the Viterbi searching time increases at the order of the second power of
the number of nodes at every transition step, the classification time is roughly proportional to N2.
Simulations on one test image show that the CPU time to classify the image on a Pentium Pro
200MHz PC is 17 seconds for N = 8, 60 seconds for N = 16, and 226 seconds for N = 32.

We compare the 2-D HMM result with that obtained by CART [1]. For the CART algorithm,
the feature vectors do not include the inter-block features used in the HMM algorithm because
the classification is performed independently on blocks. The basic idea of CART is to partition
a feature space by a tree structure and assign a class to every cell of the partition. Feature
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vectors landing in a cell are classified as the class of the cell. CART is a powerful algorithm for
statistical classification. Its applications are not limited to image classification [1]. It enjoys both
efficiency and simplicity, which makes the algorithm popular. When we apply the algorithm to
image classification, we ignore context information and consider each block independently. We
thus use the result as a benchmark for comparison to show that context information can improve
classification performance. The classification results for both methods are shown in Fig. 7. Using
CART, we obtain error rate of 21.12%. However, the 2-D HMM algorithm achieves error rate of
14.68%. A visual difference to note is that the result of CART appears “noisy”, due to the fact
that blocks are classified independently and over-localization causes scattered errors.

Figure 7: Comparison of the classification results of CART and 2-D HMM. Left: CART with
classification error rate 21.12%, Right: HMM with classification error rate 14.68%. White: man-
made, Gray: natural.

The segmentation of aerial images is also studied by Oehler [30] and Perlmutter [31]. In both
cases, The Bayes vector quantizer (BVQ) [30, 31, 32, 33] is used as a classifier. The basic idea of
BVQ is to design a vector quantizer to achieve good compression and classification performance
simultaneously. Unlike ordinary vector quantizers, which aim at minimizing compression distortion,
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the BV(Q algorithm defines a new distortion measure as a weighted sum of the compression distortion
d and the misclassification penalty B, which is usually the classification error rate P,.

To design a quantizer minimizing d+ B, the conditional probability of being in a particular class
given the vector is needed. Since the conditional probabilities are generally unknown in practice,
an empirical distribution given by the relative frequencies of the classes in the training sequence
is used. In the encoding process, as the empirical distribution obtained from the training data
usually does not provide a good estimation for data outside the training set, different approaches
are taken to approximate the Bayes risk. A simple solution, which is the approach taken by Oehler,
et al. [30, 32, 33], is to replace the Bayes risk by the compression distortion in the encoding process,
which is referred to as Bayes VQ with MSE encoding [31], since the mean squared error is normally
taken as the compression distortion. The more sophisticated approach taken by Perlmutter [31, 34]
generates a posterior estimation of the conditional probabilities of the classes in parallel with the
design of the quantizer. This posterior estimation is used by the encoder to evaluate the Bayes
risk. Perlmutter [31, 34| showed that the BVQ with posterior estimation achieves much better
classification performance than that by the Bayes VQ with MSE encoding. In [31, 34], simulations
with different posterior estimations and different weights of classification error in the Bayes risk
are performed. It is found that adding a small portion of compression distortion in the Bayes risk
often benefits classification results. The same test image as shown in Fig. 6 is used. The best result
of the simulations can provide a classification error rate of roughly 21.5%.

VI.3 Document Image Classification

The second application of our algorithm is the classification of document images into the text and
the graph class. By pictures, we mean continuous-tone images such as photographs. By text, we
mean normal text, tables, and graphs [35]. This type of classification is useful in a printing process
for separately rendering different local image types. It is also a tool for efficient extraction of data
from image database. The features we use contain the two features described in detail in [35].
The first one is a measure of the goodness of match between the empirical distribution of wavelet
coefficients in high frequency bands and the Laplacian distribution. It is defined as a x? statistics
normalized by the sample size. The second one measures the likelihood of wavelet coefficients
in high frequency bands being composed by highly concentrated values. We also use the spatial
derivatives of the average intensity values of blocks as features, which is the same as in the previous
application. The block size used is 8 x 8. The HMM has 4 states for each class. Simulations show
that models with 2 to 5 states for each class yield similar results.

We compare the result of HMM with that of CART. The image set is provided by Hewlett
Packard, Inc. [36, 31]. They are RGB color images with size around 1600 x 1300. Each color
component is 8 bits per pixel. In our simulation, we only use the illuminance component (i.e.,
gray-scale images). For most images we tested, both algorithms achieve very low classification
error rates, about 2% on average. More differences between the two algorithms appear with one
sample image shown in Fig. 8 because the picture region in this image is very smooth at many
places, which resembles the text class. The classification results of both CART and the 2-D HMM
algorithm for this image are shown in Fig. 9. We can see that the result using HMM is much
cleaner than the result using CART, especially in the picture regions. This is expected since the
classification based on HMM takes context into consideration. As a result, some smooth blocks in
the picture regions, which locally resemble text blocks can be correctly identified as picture.
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Figure 8: A sample image and its hand-labeled classes. White: photograph, Gray: text.

Figure 9: Comparison of the classification results of CART and 2-D HMM. Left: CART classifica-
tion result. Right: 2-D HMM classification result. White: photograph, Gray: text.
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VII Conclusions

We have proposed a two dimensional hidden Markov model for image classification. The two
dimensional model provides a structured way to incorporate context information into classification.
Using the EM algorithm, we have derived a specific iterative algorithm to estimate the model. As
the model is two dimensional, computational complexity is an important issue. Fast algorithms are
developed to efficiently estimate the model and to perform classification based on the model. The
application of the algorithm to several problems shows better performance than that of existing
algorithms.
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