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E�cient Time Series Matchingby Waveletssubmitted byCHAN, Kin Pongfor the degree of Master of Philosophyat the Chinese University of Hong KongAbstractTime series indexing has aroused much interest recently. Time series storedas feature vectors can be indexed by multi-dimensional index trees like R-Treefor fast retrieval. Due to the dimensionality curse problem, transformationsare applied to time series to reduce the number of dimensions of the featurevectors while preserving most of the information. The transformation commonlyused is the Discrete Fourier Transform (DFT) which maps the time series to thefrequency domain. There are also di�erent transformations available like DiscreteWavelet Transform (DWT), Karhunen-Loeve (K-L) transform or Singular ValueDecomposition (SVD).While the use of DFT and K-L transform or SVD have been studied in theliterature, to our knowledge, there is no in-depth study on the application ofDWT on this problem. In this paper, we propose to use Haar Wavelet Transformfor time series indexing.The major contributions are: (1) we show that Euclidean distance is pre-served in the Haar transformed domain and no false dismissal will occur, (2) weshow that Haar transform can outperform DFT through experiments, (3) a newsimilarity model is suggested to accommodate vertical shifts of time series, (4)iii



a two-phase method is proposed for e�cient n-nearest neighbor query in timeseries databases, and (5) we propose two e�cient strategies for approximationof time warping distance and show experimentally that they achieve signi�cantspeedup; The approximation function is also shown to be e�ective in suppressingthe number of false alarms when acting as �ltering function.
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Chapter 1IntroductionTime series data are of growing importance in many new database applications,such as data warehousing and data mining [4, 13, 2]. A time series (or timesequence) 1 is a sequence of real numbers, each number representing a value foran interested attribute at a time point. Typical examples include stock prices orcurrency exchange rates, the volume of product sales, biomedical measurements,weather data, etc . . . collected over time. Hence, time series databases supportingfast retrieval of time series data and similarity queries are desired. For instance,we maywant to retrieve stock prices around February 1997; or look for stocks thathave a sharp drop after some price consolidations; or �nd stocks with similar pricemovements for a given stock. For these types of queries, approximate matchingrather than an exact matching is needed.In order to depict the similarity between two time series, we have to de�nea similarity measurement during the matching process. Given two time series~x = (x0; x1; :::; xn�1) and ~y = (y0; y1; :::; yn�1), a standard approach is to computethe Euclidean distance D(~x; ~y) between time series ~x and ~yD(~x; ~y) =  n�1Xi=0 jxi � yij2! 12 (1.1)1We shall use the terms time series and time sequence interchangeably.1



Chapter 1 Introduction 2By using this similarity model, we can retrieve similar time series by consideringdistance D(~x; ~y).In order to support e�cient retrieval and matching of time series, we resortto indexing to speed up the searching time. The general strategy in time seriesindexing and matching is depicted in Figure 1.1.
Querying:Index Creation:
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Reference of sequencesFigure 1.1: Time Series IndexingFor index creation, the time series are pre-processed, the pre-processing mayinclude normalization, transformation, noise reduction, etc . . . to produce a set offeature vectors. These vectors are then inserted into a multi-dimensional indextree, on which user can raise query. Upon the arrival of a query, pre-processingis done the same way as for the time series database in index creation. Thefeature vector acquired is matched against the index tree, which results in a setof candidate sequences. Non-quali�ed sequences or false alarms are �ltered in a



Chapter 1 Introduction 3post-processing step, by matching with the query sequence in time domain usingfull dimension. Quali�ed sequences are thus reported to the user.In the pre-processing step of time series, some important issues have to beconsidered:1. Dimensionality reduction { Many multi-dimensional indexing methods [19,12, 9, 28] such as the R-Tree and R�-Tree [28, 9, 17] scale exponentiallyfor high dimensionalities, eventually reducing the performance to that ofsequential scanning or worse. Therefore, transformation is applied to mapthe time sequences to a new feature space of a lower dimensionality. Theenergy of the time sequence should be concentrated on as few coe�cientsas possible in the new space so that they are su�cient to di�erentiatebetween two sequences. These coe�cients constitute a feature vector of atime sequence, which are inserted into multi-dimensional index tree.2. Completeness and E�ectiveness { In many cases, Euclidean distance is usedas a similarity measure. When the number of dimensions is reduced, toavoid missing any qualifying object, the Euclidean distance in the reducedk-dimensional space should thus be less than or equal to the Euclidean dis-tance between the two original time sequences. One of the transformationsthat satis�es this condition is theDiscrete Fourier Transform (DFT) [2, 36].It is shown by Parseval's Theorem [36] that the Euclidean distance is pre-served in both frequency and time domains. The power concentration of atransformation on the reduced dimensionality should be e�ective to ensurea small amount of false alarms, which are �ltered in the post-processingstep.3. Nature of data series { The e�ectiveness of power concentration of a particu-lar transformation depends on the nature of the time series. The worst-casesignal for DFT is white noise, where DFT fails to concentrate energy into



Chapter 1 Introduction 4the �rst few coe�cients and leads to tremendous amounts of false alarms.It is believed that only brown noise or random walks exists in real signals.In particular, stock movements and exchange rates can be modeled suc-cessfully as random walks in [16], for which a skewed energy spectrum canbe obtained.Discrete Fourier Transform (DFT) has been one of the most commonly usedtechniques. However, it misses the important feature of time localization. Piece-wise Fourier Transform 2 [36] is proposed to mitigate this problem, but the sizeof the pieces leads to other problems. While large pieces reduce the power ofmulti-resolution, small pieces have weakness in modeling low frequencies.1.1 Wavelet TransformWavelet Transform (WT), or Discrete Wavelet Transform (DWT) [15, 26] hasbeen found to be e�ective in replacing DFT in many applications in computergraphics[43], image [35], speech [1] and signal processing [10, 5]. We propose toapply this technique in time series for dimension reduction and content-basedsearch. DWT is a discrete version of WT for numerical signal. Although thepotential application of DWT in this problem was pointed out in [33], no furtherinvestigation has been reported to our knowledge. Hence, it is of value to con-duct studies and evaluations on time series retrieval and matching by means ofwavelets.The advantage of using DWT is multi-resolution representation of signals. Ithas the time-frequency localization property. Thus, DWT is able to give locationin both time and frequency. For instance, the wavelet representation of a musicalscore can tell when the tones occur and what their frequencies are. Therefore,2or short-time Fourier Transform (STFT)



Chapter 1 Introduction 5wavelet representations of signals bear muchmore information than that of DFT,in which only frequencies are considered. While DFT extracts the lower harmon-ics which represent the general shape of a time sequence, DWT encodes a coarserresolution of the original time sequence with its preceding coe�cients.The di�erences between matching signals of coarser resolutions and matchingonly their frequency contents are discussed and we show by experiments thatHaar Wavelet Transform 3, [15], which is a commonly used wavelet transform,can outperform DFT signi�cantly.We propose a similarity de�nition to handle the problem of vertical shiftsof time series. We propose an algorithm on n-nearest neighbor query for theproposed wavelet method. The algorithm makes use of the range query anddynamically adjusts the range by the property of Euclidean distance preservationof the wavelet transformation.1.2 Time WarpingFor the sake of robustness, Euclidean distance is frequently adopted as the sim-ilarity model in time series matching. Other similarity models may also be em-ployed. The choice of appropriate model, in accordance with a particular kindof time series, gives rise to better interpretation and semantics of the similaritybetween two sequences. In the speech recognition �eld, time warping techniques[37, 13] are used extensively for similarity matching. The idea of time warpingis that word recognition is usually based on matching pre-stored word templatesagainst a waveform of continuous speech, converted into a discrete time series.Successful recognition strategies are based on the ability to match words ap-proximately in spite of wide variations in timing and pronunciation. The time3We shall use Haar wavelet transform and DWT interchangeably throughout this paper,unless speci�ed particularly.



Chapter 1 Introduction 6warping approach tries to align the time series and a speci�c word template sothat some distance measure is minimized. On the contrary, Euclidean distancefails to o�er time axis alignment since it matches linearly two time sequencesbased on the same, �xed time axis.Algorithms for time warping are proposed in [41, 40, 34]. Although they areable to match sequences with time shifts, the computations involved are ratherhigh. This imposes a restriction to use this technique in an online system whereprompt response is demanded. In general, index tree supporting time warpingdistance could be built following the model in Figure 1.1. Unfortunately, unlikeEuclidean distance, timewarping distance does not satisfy the triangle inequality.The consequence is that we are unable to guarantee the retrieval of all quali�edsequences for a given query, thus giving rise to false dismissals.The details of time warping technique based index are described and itsdrawbacks are identi�ed. We propose a novel approximation function basedon wavelets for time warping distance, which results in lower time complexityby trading o� tiny amount of accuracy. On the other hand, this approximationfunction can also be employed as the �ltering function in the post-processingstep of the querying model of Figure 1.1, which is shown to be both e�ective ande�cient experimentally.1.3 Outline of the ThesisThe thesis is organized as follows.In Chapter 2, we will give some backgrounds and state the previous works intime series retrieval, including the similarity models used in time series matchingand various indexing methodologies. We will pay particular attention to dimen-sion reduction applied to time series database. Moreover, we will introduce other



Chapter 1 Introduction 7time series retrieval approaches.In Chapter 3, we will describe our proposed approach, time series matchingby means of wavelets. First of all, two similarity models are de�ned for ourtime sequence matching technique. We will introduce wavelets transform, inparticular the Haar wavelet transform. Important properties of feature extractionby Haar transform are discussed. Second, the overall strategy of applying DWTto dimension reduction is given and the method for nearest neighbor query indimension reduction problem is proposed. Third, performance evaluations usingreal and synthetic data, together with scalability test are given.In Chapter 4, we will give the details of time warping techniques, and describeour strategy in approximating time warping distance between two time series.Moreover, approximation function is applied to post-processing step as �lteringfunction. Experiments are carried out to evaluate the performance.We will give a conclusion and summarize our future work in Chapter 5.



Chapter 2Related WorkTime series is primarily concerned with the study of the time variations of pro-cess. The states for a duration of n time units of a process can be representedby a vector of real numbers ~x = 26666666666666664 x0x1...xt...xn�1
37777777777777775 (2.1)where xt is the state recorded at time t. For the sake of convenience, we depicttime series in Equation (2.1) as ~x = fx0; x1; :::; xn�1g unless otherwise speci�ed.2.1 Similarity Models for Time SeriesThe matching of text subsequences [8] is considered as one kind of time seriesmatching. In [8], algorithms are presented to �nd all the occurrences of a pattern8



Chapter 2 Related Work 9in a text. There are various similarity models [14, 20, 18, 3] proposed in timeseries matching. A similarity function that can deal with outliers and di�erentscaling factors is introduced in [14]. The basic idea is to �nd two longest commonsubsequences ~sx and ~sy in ~x and ~y respectively, with distance between ~sx and ~syunder �. Scaling and outliers can be tolerated by applying di�erent linear trans-formation to ~sx and ~sy to maximize the length l of the common sequence whichis an indication of the similarity. A more detailed version of [14] can be found in[20]. The computation incurred in �nding the linear transformation is quadratic,which can be modi�ed to a linear-time randomized approximation of the trans-formation. If a quadratic algorithm is used, it seems that the computation timewill be too long when searching the whole database. If a linear algorithm ischosen, accuracy is sacri�ced. In real practice, a linear algorithm can be used asa pruning strategy and a post-processing step should be introduced to �lter outfalse alarms.In [18], the slope of sequence is considered. The slope of segments fxi; xi+1gand fyi; yi+1g for sequences ~x and ~y should be con�ned within a range [-�; �].Two sequences are slope similar if�� � (yi+1 � yi)� (xi+1 � xi) � � (2.2)Linear scale of sequence can be dealt with by comparing the slope of non-consecutive sequence points�� � (yi � yi�1)� (xd ise � xd is e�1) � � s � 1 (2.3)�� � (yd is e � yd is e�1)� (xi � xi�1) � � 0 < s < 1 (2.4)where s is a scaling factor, ratio of the length of ~x to ~y is 1 : s. This similaritymeasure can reect human interpretations in matching similar sequences to ahigher extent. The upward and downward trends are emphasized. However,



Chapter 2 Related Work 10dimension reduction of the �rst derivative of sequences are not possible. Whitenoises will certainly exist in slope of segments of sequences. It is not very e�cientto index by multi-dimensional index tree through DFT [2]. Instead, the authoruses a dynamic hashing function for accessing sequences in order to reduce thenumber of disk accesses.In [3], a similarity model with noise tolerance and translation is introduced.Two subsequences ~x and ~y of equal length are considered similar if one can beenclosed within an envelop of a speci�ed width by allowing the amplitude ofone of the two sequences to be scaled by any suitable amount and its o�setadjusted appropriately such that the distance between them is within threshold�. The similarity between two sequences with 'gap' has also been addressed. Fora maximum gap size , a stitching window of size !, two sequences ~x and ~y aresaid to be similar if after some removal of non-matching gap with size � , thetotal length of similar subsequence pairs with size equal to ! is greater than� times the total length of ~x and ~y. Small atomic sequence sets are indexedon R-Tree [28] family of structure that can represent all the original sequencesup to amplitude scaling and o�set. As a result, all atomic subsequence matcheswithin a user-speci�ed distance � can be e�ciently computed by doing self-join onthis structure. The methodology to process sequences with gaps and amplitudevariations is novel. Unfortunately, there is no experimental result provided inthe original paper. We have no way to evaluate the e�ectiveness of the similaritymodel and the time complexity involved in self-join.A general framework for similarity queries for time series is introduced in[31]. A pattern language, a transformation rule language, and a query languageare de�ned in this framework which enable a formal de�nition of the notion ofsimilarity. To specify objects that match a pattern approximately, we attach topatterns in some transformation rules de�ned in a transformation language. Anobject A is considered to approximate an object B, if B can be reduced to it



Chapter 2 Related Work 11by a sequence of transformations. Moreover, a calculus-based query language isdevised that is an extension of the tuple relational calculus with function symbols,and with some built-in predicates. The framework is further specialized in [22] toadapt to real-valued sequences. It shrinks the data sequences into signatures, andthe signatures are searched instead of the real sequences, with further comparisonbeing required only when a possible match is indicated. Comparisons can bemade faster with shorter signatures than the original sequences. Frameworkthat facilitates a broad class of approximate queries over sequences is proposedin [42], where a more general notion of approximation appropriate for the complexqueries is presented. For this kind of framework, there is no general rule to seekan appropriate transformation for a particular type of time series. Therefore, thee�ort still remains to the domain experts.2.2 Dimensionality ReductionDiscrete Fourier Transform is often used for dimension reduction [2, 23] to achievee�cient indexing. An index built by means of DFT is also called an F-index[2]. It works as follows. Given N sequences, all of the same length n, we applythe n-point DFT to sequence ~xXf = 1=pn n�1Xt=0 xt exp(�j2�ftn ) f = 0; 1; : : : ; n � 1 (2.5)where j is the imaginary unit j = p�1. The original signal can be recovered bythe inverse transformxt = 1=pn n�1Xf=0Xf exp(j2�ftn ) t = 0; 1; : : : ; n� 1 (2.6)



Chapter 2 Related Work 12Xf is a complex number (with the exception of X0, which is real provided thatthe signal ~x is real). Suppose the DFT of a time sequence ~x is denoted by ~X.There is a mapping of signals from n-dimensional time domain to n-dimensionalfrequency domain. For many applications such as stock data, the low frequencycomponents are located at the preceding coe�cients of ~X which represent thegeneral trend of the time sequence ~x where most energy is concentrated. Thesecoe�cients can be indexed in an R-Tree or R�-Tree for fast retrieval. In a query,a time sequence of length n and a tolerance � are given. To resolve the query,n-point DFT is applied to the query sequence and again �rst fc features are usedfor similarity matching by F-index, which returns all sequences within Euclideandistance �. In most previous work, range querying is considered. A range query(or epsilon query) evaluation returns sequences with Euclidean distance within� from the query point.Parseval's Theorem [36] shows that the Euclidean distance between two sig-nals ~x and ~y in time domain is the same as their Euclidean distance in frequencydomain k~x� ~yk2 � k ~X � ~Y k2 (2.7)Therefore, F-index may raise false alarms, but guarantees no false dismissal. Af-ter a range query in the F-index, quali�ed sequences are then checked against thequery sequence in the original time domain. This post-processing step eliminatesthe false alarms.F-index is further generalized and subsequence matching are proposed in [23].This is called the ST-index which permits sequence query of varying length.Instead of mapping directly the whole sequence into the k-dimensional space,a sliding window of size ! is covered on the original sequence. Upon a shiftof the sliding window, !-point DFT is applied to the covered sequence and fccoe�cients are extracted as feature vector. Each time sequence is broken upinto pieces of subsequences by a sliding window with a �xed length ! for DFT.



Chapter 2 Related Work 13In view of the fact that feature points in nearby o�sets will form a trail due tothe e�ect of stepwise sliding window, the minimum bounding rectangle (MBR)of a trail is being indexed in an R-Tree instead of the feature points themselves.When a query arrives, all MBRs that intersect the query region are retrievedand their trails are matched. However, additional false alarms are introducedas there are cases where sub-trails do not intersect the query region while theirMBRs do.New similarity models are applied to F-index based time series matchingin [38]. It achieves time warping, moving average, and reversing by applyingtransformations to feature points in the frequency domain. Given a query ~q, anew index is built by applying a transformation to all points in the original indexand feature points with a distance less than � from ~q are returned. However, alot of computations are involved in building the new index, which has a greatimpact on the actual query performance.Another method that has been employed for dimension reduction isKarhunen-Loeve (K-L) transform [46]. (This method is also known as Singular Value De-composition (SVD) [33], and is called Principle Component analysis in statisticalliterature.) Given a collection of n-dimensional points, we project them on a k-dimensional sub-space where k < n, maximizing the variances in the chosen di-mensions. The key weakness of K-L transform is the deterioration of performanceupon incremental update of the index, as the projection axes are pre-determined(static) by the covariance matrix in the �rst collection of feature vectors. Al-though the projection is optimal for a �xed set of vectors, new projection matrixshould be re-calculated and the index tree has to be reorganized periodically tokeep up the search performance. E�cient methods for incremental update ofSVD-based index are discussed in [32].Clustering with Singular Value Decomposition (CSVD) is introduced in [44]



Chapter 2 Related Work 14to improve the e�ciency of standard SVD. Generally, SVD relies on global in-formation derived from all the vectors in the dataset, which is more e�ective fordatasets consisting of homogeneously distributed feature vectors. For databaseswith heterogeneously distributed vectors, more e�cient representation can begenerated by subdividing the vectors into more similar groups such that thepoints in each group or cluster are more amenable to dimensionality reductionthan the original dataset by SVD. It is shown experimentally that CSVD achieveshigher dimensionality reduction than SVD in terms of total variance preserved.However, the overhead in updating the clusters as well as the SVD axes makesit less attractive to other dynamic-based methods.The Pyramid-Technique adapting well to high dimensional data queries isintroduced in [11]. In contrast with all other index structures, the performanceof the Pyramid-Technique does not deteriorate when processing range queries ondata of high dimensionality. It is based on a special partitioning strategy, whichdivides the data space into pyramids sharing the center point of the space as atop. Single pyramid is cut into slices parallel to the basis of the pyramid whichis shown in Figure 2.1.
Pyramid

Partition

center

pointFigure 2.1: Partitioning the data space into pyramids (2-dimensional data)This partition enables a mapping from the given d-dimensional space to a1-dimensional space which can be handled e�ciently by B+-Tree. An entry inB+-Tree composes of the 1-dimensional index key and the original d-dimensional



Chapter 2 Related Work 15feature. However, it is shown in [11] that this technique performs worse than thesequential scan for very skewed queries. Moreover, range query is evaluated onlyand no insight into nearest neighbor query has been shown.2.3 Wavelet TransformWavelets are basis functions used in representing data or other functions. Wavelet-based algorithms process data at di�erent scales or resolutions in contrast withDFT where only frequency components are considered. The origin of waveletscan be traced to the work of Karl Weierstrass [45] in 1873. The constructionof the �rst orthonormal system by Haar [29] is an important milestone. Haarbasis is still a foundation of modern wavelet theory. Another signi�cant advanceis the introduction of a nonorthogonal basis by Dennis Gabor in 1946 [24]. Inthis work we shall advocate the use of the Haar wavelets in the problem of timeseries search.To get some idea of what wavelet transform is, lets consider its loose de�-nition. A signal or a function f(t) can often be better analyzed, described, orprocessed if expressed as a linear decomposition byf(t) =Xl al l(t) (2.8)where l is an integer index for the �nite or in�nite sum, al are the real-valuedexpansion coe�cients, and  l(t) are a set of real-valued functions of t called theexpansion set. If the expansion in Equation (2.8) is unique, the set is called abasis for the class of functions that can be so expressed. If the basis is orthogonal,meaning



Chapter 2 Related Work 16h k(t);  l(t)i = Z  k(t) l(t) dt = 0 for k 6= l (2.9)then the coe�cients can be calculated by the inner productak = hf(t);  k(t)i = Z f(t) k(t) dt (2.10)One can see that substituting Equation (2.8) into Equation (2.10) and usingEquation (2.9) gives the single ak coe�cient. For a Fourier series, the orthogonalbasis functions  k(t) are sin(k!0t) and cos(k!0t) with frequencies of k!0t.For the wavelet expansion, a two-parameter system is constructed such thatEquation (2.8) becomes f(t) =Xk Xj aj;k j;k(t) (2.11)where both j and k are integer indices and the  j;k(t) are the wavelet expansionfunctions that usually form an orthogonal basis. The set of expansion coe�cientsaj;k are called the DiscreteWavelet Transform (DWT) of f(t) and Equation (2.11)is the inverse transform.2.4 Similarity Search under Time WarpingThe ability of time warping to match sequences with time shifts makes it animportant similarity model in speech recognition, since human speech consists ofvarying durations and paces.The time warping distance for two sequences ~x and ~y is de�ned as



Chapter 2 Related Work 17Dtimewarp(hi; hi) = 0;Dtimewarp(~x; hi) = Dtimewarp(hi; ~y) = 1;Dtimewarp(~x; ~y) = Dbase(Head(~x); Head(~y))+min8>>>><>>>>: Dtimewarp(~x;Rest(~y)) x - stutterDtimewarp(Rest(~x); ~y) y - stutterDtimewarp(Rest(~x); Rest(~y)) no stutter 9>>>>=>>>>; (2.12)where hi denotes a null sequence. Dbase can be any of the distance functions, likethe city-block distance, although our primary concern is the Euclidean distance.Also note that this de�nition does not require two sequences to be of the samelength. The symbols can be looked up in Table 2.1.Symbol De�nitionDbase base distance function, e.g., D1 and D2Dtimewarp time warping distance function~x, ~y time sequenceshi null time sequenceHead(~x) the �rst element of ~xRest(~x) the remaining elements of ~x other than the �rstTable 2.1: Notations in the de�nition of time warping distanceAs for Euclidean distance, searching techniques are proposed to support theretrieval of similar time series based on the increasingly important time warpingdistance. In [47], a time series database supporting time warping is proposedwhose strategy is shown in Figure 2.2.It follows the architecture of the general strategy shown in Figure 1.1, byfurther specifying the transformation used in index creation/pre-processing andthe �ltering functions in post-processing. To elaborate, two steps are involved.First, K-L transform is applied to map the original time sequences to lowerdimension feature vectors, then a multi-dimensional index is built (Fastmap in-dex). If we are looking for set of sequences ~y within time warping distance
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Figure 2.2: Time series indexing supporting time warping distance



Chapter 2 Related Work 19�timewarp of query ~x, i.e. Dtimewarp(~x; ~y) � �timewarp, then the Fastmap index isqueried using the same search range �timewarp with Euclidean distance function,i.e. D(~x; ~y0) � �fastmap = �timewarp, where ~y0 are set of candidate sequences con-taining some false alarms as well as false dismissals. As time warping distancedoes not satisfy the triangle inequality, any indexing technique which assumesthe triangle inequality, can not avoid producing false dismissals, so does theFastmap index. We just use �timewarp as an estimation to the search range ofEuclidean distance function D in order to retrieve a smaller set of candidate se-quences in the database. Second, a �ltering function is proposed to prune awayfalse alarms from the candidate sequences in a post-processing step. This lowerbound distance function Dlb underestimates the time warping distance function,such that Dlb(~x; ~y) � Dtimewarp(~x; ~y). To get a better intuition and insight ofDlb, consider an illustration in Figure 2.3, with time sequences ~x (solid) and ~y(dashed), having corresponding vertical ranges R~x and R~y overlapped.
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yFigure 2.3: Intuitive idea behind DlbThe shaded region between the two sequences is separated into two disjointparts A and B. A is the shaded region above max(~y) and below min(~x), and Blies in between. Note that Dtimewarp(~x; ~y) is equal to area(A) + area(B) aftertime warping. Time warping attempts to minimize this area sum, however, it



Chapter 2 Related Work 20may reduce area(B), but not area(A). The reason is that the horizontal spanof Region A is widen upon stuttering (refer to Equation (2.12)), leading to anincrease in area(A). As time warping attempts to minimize area(A) + area(B),area(B) should only decrease as area(A) increases, such that the area sum canbe reduced. This gives rise to the following observationarea(A) � area(A0) � area(A0) + area(B 0) = Dtimewarp(~x; ~y)where A0 and B 0 denote A and B after time warping respectively. This obser-vation provides the fundamentals to the de�nition of the lower bound distancefunctionDlb(~x; ~y) =8>>>><>>>>: Pxi>max(~y) jxi �max(~y)j+Pyj<min(~x) jyj �min(~x)j if R~x and R~y overlapPxi>max(~y) jxi �max(~y)j+Pxi<min(~y) jxi �min(~y)j if R~x encloses R~ymax(Pmi=1 jxi �max(~y)j;Pnj=1 jyj �min(~x)j) if R~x and R~y are disjoint(2.13)Instead of merely using Dtimewarp (O(k~xk�k~yk) complexity),Dlb (linear com-plexity) can be used as a �lter in addition to prune away quickly non-quali�edtime series in the candidate sequences set ~y0. As a result of Dtimewarp underesti-mation, some false alarmsmay not be pruned byDlb, and any remained sequencesin ~y0 are checked against the Dtimewarp to obtain the answer set ~y. Experimentsin [47] show that a signi�cant speedup can be achieved by trading o� a tinyamount of false dismissals. We will describe the drawbacks of this approach indetail in Chapter 4 and suggest a more e�cient mechanism.



Chapter 3Dimension Reduction byWavelets3.1 The Proposed ApproachFollowing a trend in the disciplines of signal and image processing, we proposeto study the use of wavelet transformation for the time series indexing problem.Before we go into the details of our proposed techniques, we would �rst like tode�ne the similar models used in sequence matching. The �rst de�nition is basedon the Euclidean distance D(~x; ~y) between time sequences ~x and ~y.De�nition 1 Given a pre-determined threshold �, two time sequences ~x and ~yof equal length n are said to be similar ifD(~x; ~y) =  n�1Xi=0(yi � xi)2! 12 � � (3.1)A shortcoming of De�nition 1 is demonstrated in Figure 3.1. Consider the twotime sequences ~x and ~y. From human interpretation, ~x and ~y may be quite21



Chapter 3 Dimension Reduction by Wavelets 22similar because ~y can be shifted up vertically to obtain ~x. However, if De�nition1 is used as the similarity measure, they will be considered not similar becauseerrors are accumulated at each pair of xi and yi. Hence, we attempt to introduceanother similarity model.De�nition 2 Given a pre-determined threshold �, two time sequences ~x and ~yof equal length n are said to be v-shift similar ifD(~x; ~y) =  n�1Xi=0((yi � xi)� (yA � xA))2!12 � � (3.2)where xA = 1n n�1Xi=0 xi and yA = 1n n�1Xi=0 yiFrom De�nition 2, any two time sequences are said to be v-shift similar if theEuclidean distance is less than or equal to a threshold � neglecting their verticalo�sets from x-axis. This de�nition can give a better estimation of the similar-ity between two time sequences with similar trends running at two completelydi�erent levels.
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ueFigure 3.1: Example of vertical shifts of time sequences



Chapter 3 Dimension Reduction by Wavelets 233.1.1 Haar WaveletsWe want to have a decomposition that is fast to compute, requires little storagefor each sequence. The Haar wavelet is chosen for the following reasons: (1) itallows good approximation with a subset of coe�cients, (2) it can be computedquickly and easily, requiring linear time in the size of the sequence and simplecoding, and (3) it preserves Euclidean distance (see Section 3.1.3).The Haar wavelets are de�ned as ji (x) =  (2jx� i) i = 0; : : : ; 2j � 1 (3.3)where  (t) = 8>>>>><>>>>>: 1 0 < t < 0:5�1 0:5 < t < 10 otherwise (3.4)together with a scaling function'(t) = 8><>: 1 0 < t < 10 otherwise (3.5)
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0.0 Figure 3.2: Haar wavelet for  00(t)They are shown graphically in Figure 3.2 and Figure 3.3 respectively.
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Chapter 3 Dimension Reduction by Wavelets 25Example For the piecewise constant function f(t), we illustrate with an exampletaken from [15]: f(t) = 8>>>>>>>><>>>>>>>>: 9 0 � t < 0:257 0:25 � t < 0:53 0:5 � t < 0:755 0:75 � t � 1 (3.6)We can express f(t) as a linear combination of  and 'f(t) = c'(x) + d00 00(x) + d10 10(x) + d11 11(x) (3.7)which is shown in Figure 3.4. We notice that c = 6; d00 = 2; d10 = 1, and d11 = �1.These coe�cients f6,2,1,-1g are actually the Haar transform of the discretefunction f(x) = f9,7,3,5g. It should be pointed out that c is the overall averagevalue of the whole time sequence, which is equal to (9 + 7 + 3 + 5)=4 = 6.Concrete mathematical foundations can be found in [15, 27] and related im-plementations in [21].Haar transform can be seen as a series of averaging and di�erencing operationson a discrete time function. We compute the average and di�erence betweenevery two adjacent values of f(x). The procedure to �nd the Haar transform ofa discrete function f(x) = f9,7,3,5g is shown below.Example Resolution Averages Coe�cients4 f9,7,3,5g2 f8,4g f1,-1g1 f6g f2gResolution 4 is the full resolution of the discrete function f(x). In Resolution 2,f8,4g are obtained by taking averages of f9,7g and f3,5g at Resolution 4 respec-tively. f1,-1g are the di�erences of f9,7g and f3,5g divided by two respectively.



Chapter 3 Dimension Reduction by Wavelets 26This process is continued until a resolution of 1 is reached. The Haar trans-form H(f(x)) = fc; d00; d10; d11g = f6,2,1,-1g is obtained which composes of thelast average value 6 and the coe�cients found on the right most column, 2, 1,and -1. It should be pointed out that c is the overall average value of the wholetime sequence, which is equal to (9 + 7 + 3 + 5)=4 = 6. Di�erent resolutionscan be obtained by adding di�erence values back to or subtract di�erence froman average. For instance, f8,4g = f6+2,6-2g where 6 and 2 are the �rst andsecond coe�cients respectively. This process can be done recursively until thefull resolution is reached.Haar transform can be realized by a series of matrix multiplications as illus-trated in Equation (3.8). Envisioning the example input signal ~x as a columnvector with length 1 n= 4, an intermediate transform vector ~w as another columnvector and Haar transform matrix H2666666664 x00d10x01d11 3777777775 = 12 2666666664 1 1 0 01 �1 0 00 0 1 10 0 1 �1 3777777775� 2666666664 x0x1x2x3 3777777775 (3.8)The factor 1/2 associated with the Haar transformmatrix can be varied accordingto di�erent normalization 2 conditions. After the �rst multiplication of ~x andH, half of the Haar transform coe�cients can be found which are d10 and d11 in ~winterleaving with some intermediate coe�cients x00 and x01. Actually, d10 and d11are the last two coe�cients of the Haar transform. x00 and x01 are then extractedfrom ~w and put into a new column vector ~x0 = [x00 x01 0 0]T . ~x0 is treated as thenew input vector for transformation. This process is done recursively until oneelement is left in ~x0. In this particular case, c and d00 can be found in the second1As for DFT, the length of the signal is restricted to numbers which are power of 2.2The normalization is described in Section 3.1.3.



Chapter 3 Dimension Reduction by Wavelets 27iteration.The complexity of Haar transform can be evaluated by considering the num-ber of operations involved in the recursion process.Lemma 1 Given a time sequence of length n where n is an integral power of 2,the complexity of Haar transform is O(n).Proof: There are totally n matrix additions or subtractions in the �rst iterationof matrix operation. The size of the input vector is halved in each iterationsonwards. The total number of operations are formulated aslog2 nz }| {n+ n=2 + � � �+ 2 = 22log2 n � 12 � 1 = 2(n� 1)which is bounded by O(n).3.1.2 DFT versus Haar TransformOur motivation of using Haar transform to replace DFT is based on severalevidences and observations, some of which are also the reasons why the use ofwavelet transforms instead of DFT is considered in areas of image and signalprocessing.1. Better Pruning PowerThe nature of the Euclidean distance preserved by Haar transform andDFT are di�erent. In DFT, comparison of two time sequences is basedon their low frequency components, where most energy is presumed to beconcentrated on. On the other hand, the comparison of Haar coe�cientsis matching a gradually re�ned resolution of the two time sequences. Thetime-frequency localization property possessed by DWT may probably be



Chapter 3 Dimension Reduction by Wavelets 28the reason for more e�ective pruning of Haar wavelets, such that fewerfalse alarms are produced which is con�rmed by experiments in Section3.3. This in turn can save disk accesses as well as computation, especiallywhen the time sequences are long and the size of the database is large.2. Lower ComplexityThe complexity of Haar transform is O(n) whilst O(n log n) computationis required for Fast Fourier Transform (FFT) [25]. Both impose restric-tion on the length of time sequence which must be an integral power of2. Although these computations are all involved in pre-processing stage,the complexity of the transformation can be a concern especially when thedataset is large. From experiments, the pre-processing time for DFT is 3to 4 times longer than Haar transform.3. Better Similarity ModelApart from Euclidean distance, our model can easily accommodate v-shiftsimilarity of two time sequences (De�nition 2) at a little more cost. Thatis, the situation where vertically shifted signals can match is accommo-dated. On the contrary, previous study on F-index did not make use ofthis similarity model.Note that similar to DFT, DWT will not requiremassive index re-organizationbecause of database updating, which is a major drawback in using the K-L trans-form or SVD approach.



Chapter 3 Dimension Reduction by Wavelets 293.1.3 Guarantee of no False DismissalFor FT and DFT, it is shown by Parseval's Theorem [36] that the energy of asignal conserves in both time and frequency domains. Parseval's Theorem alsoshows that this situation is true for wavelet transforms. Moreover, the Euclideandistances of both time and frequency domains are the same for DFT by Equation(2.7). This is a very important property in order that dimension reduction ofsequence data is possible. It guarantees that no quali�ed time sequence will berejected, thus no false dismissal. However, this property has not been shown forDWT in general, and not for the Haar wavelets. The following lemmas showhow the Euclidean distance in time domain can be formulated in terms of thecoe�cients of Haar wavelet transform.Lemma 2 Given a sequence ~x = fx0; x1g and a sequence ~y = fy0; y1g. TheHaar transforms of ~x and ~y are H(~x) = ~s = fs0; s1g and H(~y) = ~r = fr0; r1grespectively. Lengths of ~x, ~y, ~s, and ~r are all equal to 2. Then Euclidean distanceD(~x; ~y) is 2 12 times of Euclidean distance D(~s; ~r)D(~x; ~y) = 2 12D(~s; ~r) (3.9)Proof: Express ~s in terms of ~x and ~r in terms of ~y by applying Equation (3.8)accordingly, ~s = �x0 + x12 , x0 � x12 �~r = �y0 + y12 , y0 � y12 �Square of Euclidean distance of ~s and ~rD2(~s; ~r) = �x0 + x12 � y0 + y12 �2 + �x0 � x12 � y0 � y12 �2



Chapter 3 Dimension Reduction by Wavelets 30= �x0 � y02 + x1 � y12 �2 + �x0 � y02 � x1 � y12 �2= �x0 � y02 �2 + �x1 � y12 �2 + �x0 � y02 �2 + �x1 � y12 �2= (x0 � y0)22 + (x1 � y1)22= (x0 � y0)2 + (x1 � y1)22= D2(~x; ~y)2Thus, D2(~s; ~r) = D2(~x; ~y)2D(~x; ~y) = 2 12D(~s; ~r)
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Figure 3.5: Hierarchy of Haar wavelet transform of sequence ~x of length nLemma 3 Given two sequences ~x and ~y, and the Haar transforms of ~x, ~y are ~s,~r respectively. Lengths of ~x, ~y, ~s, and ~r are all n (n � 2 and n is a power of 2).



Chapter 3 Dimension Reduction by Wavelets 31~r - ~s = fC;D1;D2; : : : ;Dn�1g. The Euclidean distance D(~x; ~y) = Slog2 n can beexpressed in terms of fC;D1;D2; : : : ;Dn�1g recursively bySi+1 = 2 12 � f(S2i +D22i +D22i+1 + � � � +D22i+1�1)g 12 for 0 � i � log2 n� 1S0 = C (3.10)Proof: In Figure 3.5, the original sequence ~x is represented at level log2 n. Thevalues of xi;j and d2i+j are de�ned byxi;j = xi+1;2j + xi+1;2j+12d2i+j = xi+1;2j � xi+1;2j+12The Haar transform of ~x, H(~x) is represented by fx0;0,d1,d2,. . . ,d2i+j ,d2i+j+1,. . . ,dn�1g. A similar hierarchy exists for another sequence ~y. Denote C = x0;0�y0;0 and Di = di of sequence ~x� di of sequence ~y, where 1 � i � n� 1.We can treat the elements at each horizontal level of the hierarchy to be adata sequence. Hence the sequence at level Si contains data fxi;0; xi;1; :::; xi;2i�1g.Let us de�ne Si to be Si = 8<:2i�1Xj=0 (xi;j � yi;j)29=; 12Si can be seen as the Euclidean distance between the data sequences at level iin the hierarchies for ~x and ~y. Also, Slog2 n is the Euclidean distance between thegiven time series.Next we prove the following statement:



Chapter 3 Dimension Reduction by Wavelets 32Si+1 = 2 12 � f(S2i +D22i +D22i+1 + � � � +D22i+1�1)g 12 for 0 � i � log2 n� 1S0 = C (3.11)The base case is shown true by Equation (3.9) of Lemma 2 when i = 0,S1 = 2 12 � f(S20 +D21)g 12We next prove the case for i = k > 0. In order to do this, we �rst note thatin the given hierarchy, for a pair of adjacent elements at a level > 0 of the formfxi+1;2j; xi+1;2j+1g, we have the following relation(xi+1;2j � yi+1;2j)2 + (xi+1;2j+1 � yi+1;2j+1)2= 2�(xi;j � yi;j)2 + �d2i+j � d02i+j�2� (3.12)where d02i+j is the element in the hierarchy for ~y corresponding to d2i+j .This can be shown by repeating the proof in Lemma 2, replacing ~x by fxi+1;2j,xi+1;2j+1g, ~y by fyi+1;2j; yi+1;2j+1g, ~s by fxi;j; d2i+jg, and ~r by fyi;j; d02i+jg. Notethat �d2i+j � d02i+j�2 = D22i+j.For i = k, Sk+1 = 8<:2k+1�1Xj=0 (xk+1;j � yk+1;j)29=; 12= f(xk+1;0 � yk+1;0)2 + (xk+1;1 � yk+1;1)2 + � � � +(xk+1;2k+1�1 � yk+1;2k+1�1)2g 12By Equation (3.12), we haveSk+1 = n2 h(xk;0 � yk;0)2 +D22ki+ 2 h(xk;1 � yk;1)2 +D22k+1i+ � � �+2 h(xk;2k�1 � yk;2k�1)2 +D22k+2k�1io 12



Chapter 3 Dimension Reduction by Wavelets 33= n2 h(xk;0 � yk;0)2 + (xk;1 � yk;1)2 + � � � + (xk;2k�1 � yk;2k�1)2i+2 hD22k +D22k+1 + � � �+D22k+2k�1io 12Finally by the de�nition of Sk,Sk+1 = 2 12 � f(S2k +D22k +D22k+1 + � � �+D22k+1�1)g 12which completes the proof.Example To illustrate, consider two sequences ~x = f1,4,5,6,3,2,4,5g and ~y =f2,5,4,3,2,5,6,8g with Euclidean distanceD(~x; ~y) = (12 + 12 + 12 + 32 + 12 + 32 + 22 + 32) 12 = 35 12Their Haar transform are found to beH(~x) = ~s = f3:75; 0:25;�1:5;�1:0;�1:5;�0:5; 0:5;�0:5gH(~y) = ~r = f4:375;�0:875; 0:0;�1:75;�1:5; 0:5;�1:5;�1:0gMoreover,~r�~s = fC;D1;D2; : : : ;D7g = f0:625;�1:125; 1:5;�0:75; 0:0; 1:0;�2:0;�0:5gFrom Equation (3.10),D(~x; ~y) = f((((((0:6252 + 1:1252)� 2) + 1:52 + 0:752)� 2)+0:02 + 1:02 + 2:02 + 0:52)� 2)g 12= 35 12which shows its correctness.The expression of the Euclidean distance between time sequences in termsof their Haar coe�cients is not su�cient for proper use in multi-dimensional



Chapter 3 Dimension Reduction by Wavelets 34index trees until Euclidean distance preserves in both Haar and time domains,as for DFT in Equation (2.7). This can be achieved by a normalization stepwhich replaces the scaling factor in Equation (3.8) from 1=2 to 1=2 12 in theHaar transformation. After the normalization step, Euclidean distance betweensequences in Haar domain will be equivalent to Slog2 n in Equation (3.10). Thepreservation of Euclidean distance of Haar transform ensures the completenessof feature extraction as in DFT.If only the �rst hc dimensions (1 � hc � n) of Haar transform are used incalculation of Euclidean distance in Equation (3.10), then we should replace 0'sin the Haar transformed sequences. This replacement starts from hc+1 th ton th coe�cients in the transformed sequences.Lemma 4 If the �rst hc (1 � hc � n) dimensions of Haar transform are used,no false dismissal will occur for range queries.Proof: Considering the inequality in De�nition 1 and Lemma 3D(~x; ~y) = Slog2 n � � (3.13)Using the �rst hc dimensions as index, the value of Di in Equation (3.10) willbecome zero for i � hc. Thus the Euclidean distance between two sequences is� Slog2 n � �. This completes the proof.3.2 The Overall StrategyIn this section, we present the overall strategy of our time series search and pro-pose our own method for nearest neighbor query. Before querying is performed,we shall do some pre-processing to extract the feature vectors with reduced di-mensionality, and to build the index. After the index is built, content-based



Chapter 3 Dimension Reduction by Wavelets 35search can be performed for two types of querying: range querying and n-nearestneighbors querying.3.2.1 Pre-processing1. Similarity Model SelectionAccording to their applications users may choose to use either the simpleEuclidean distance (De�nition 1) or the v-shift similarity (De�nition 2) astheir similarity measurements. For De�nition 1, Haar transform is appliedto time series. For De�nition 2, Haar transform is applied to time series,but the �rst Haar coe�cient will not be used in indexing, as there is noneed to match their average values anymore.2. Index ConstructionGiven a database of time series of varying lengths. We pre-process thetime series as follows. We obtain the !-point Haar transform by applyingEquation (3.8) with normalized factor, to each subsequences with a slidingwindow of size ! for each sequence in the database.An index structure such as an R-Tree is built, using the �rst hc 3 Haarcoe�cients where hc is an optimal value found by experiments based onthe number of page accesses. This is because of a trade o� between post-processing cost and index dimension.3.2.2 Range QueryAfter we have built the index, we can carry out range query or nearest neighborquery evaluation. For range queries, two steps are involved:3Using De�nition 2, one dimension can be saved in the index tree.



Chapter 3 Dimension Reduction by Wavelets 361. Similar sequences with distance � � from the query are looked up in theindex and returned.2. A post-processing step is applied to these sequences to obtain the actualdistance in time domain to remove all false alarms.3.2.3 Nearest Neighbor QueryFor nearest neighbor query, we propose a two-phase evaluation as follows. Aviewgraph is shown in Figure 3.6.� Phase 1In the �rst phase, n nearest neighbors of query ~q are found in the R-Treeindex using the algorithm in [39]. The Euclidean distances D in timedomain (full dimension) are computed between the query sequence and alln nearest neighbors obtained which are D(~q; ~nn1i ), where ~nn1i denotes thenearest neighbor i (1 � i � n), with ~nn1n farthest from the query ~q. Notethat the nearest neighbors found in current phase are not the �nal answerto the query, since the number of dimensions of sequences is reduced in theindex tree. We just aim at acquiring a range that will be employed in theepsilon search in next phase.� Phase 2A range query evaluation is then performed on the same index by setting� = D(~q; ~nn1n) initially. During the search, we keep a list of n nearestsequences ~nn2i found so far and their Euclidean distances in time domain(full dimension) D(~q; ~nn2i ) with query ~q (1 � i � n). The post-processingstep mentioned in Section 3.2.2 is avoided since the Euclidean distancesare found already in time domain during the search.



Chapter 3 Dimension Reduction by Wavelets 37During the search we keep updating 4 the value of � by D(~q; ~nn2n) which isthe distance of the current farthest neighbor.The n nearest neighbors stored in the list are returned as answers whenthe range query evaluation is �nished. The distance of the farthest nearestneighbor with query ~q is D(~q; ~nnansn ).
Query

N-nearest neighbor query

Phase 1:

Query

Range query

Phase 2:

Set Epsilon = Distance of
farthest nearest neighbor

R-Tree index

R-Tree index

N nearest neighbors

Result sequencesFigure 3.6: Two-phase nearest neighbor queryThe correctness of the above algorithm can be shown by considering two cases,which are shown in Figure 3.7. For the �rst case (upper diagram), assume the4The updating process begins only when the list storing the nearest neighbors has been�lled up already.



Chapter 3 Dimension Reduction by Wavelets 38n nearest neighbors in the �nal answer all appear in the results in Phase 1, ~nn1i= ~nnansj , where 1 � i; j � n and i need not be equal to j. Obviously, D(~q; ~nn1n)= D(~q; ~nnansn ). In the second case (lower diagram), assume some or no nearestneighbor obtained in the �nal answer appears in the results in Phase 1, ~nn1i 6=~nnansj , where 1 � i; j � n for some i and j. Thus, D(~q; ~nn1n) > D(~q; ~nnansn ).Therefore, combining the two cases, D(~q; ~nn1n) � D(~q; ~nnansn ) and by Lemma4 there are only false alarms produced in the range query of Phase 2 since thevalue of � upper bounds the distance of the farthest neighbor ~nnansn .
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Assume ’3’ does not appear in Phase 1

Figure 3.7: Epsilon used in the second phase ensures no false dismissalThe e�ectiveness of this n-nearest neighbor search algorithm arises from thevalue of D(~q; ~nn1n) found in Phase 1 which provides a su�cient small query rangeto prune away a large amount of candidates in Phase 2. No false dismissal willoccur in Phase 2 as D(~q; ~nn1n) gives the upper bound distance for D(~q; ~nnansn )which is the farthest n nearest neighbor in the �nal answer.The extra step introduced in Phase 2 to update � can enhance the performanceby pruning more non-quali�ed MBRs during the traversal of R-Tree.



Chapter 3 Dimension Reduction by Wavelets 393.3 Performance EvaluationExperiments using real stock data and synthetic random walk data have beencarried out. All experiments are conducted on a Sun UltraSPARC-1 workstationwith 686MBytes of main memory. Page size is set to 1024 bytes. A branchingfactor of 20 is chosen for the R-Tree so that the index tree nodes can be �ttedwithin one disk page. We have pointed out earlier that pre-processing time forHaar wavelet is much less than that for DFT. Here we shall compare the queryingperformance.3.3.1 Stock DataReal data are extracted from di�erent equities of Hong Kong stock market from12/7/90 to 7/11/96. The data have been collected daily over the time period.Totally 10k feature vectors are extracted by a sliding window of size ! = 512and inserted into an R-Tree.Both range and nearest neighbor queries are examined and the results areshown from Figure 3.8 to Figure 3.15. Random queries are applied with varyingepsilons �, which range from 0.5% to 5% of the database size. The number ofnearest neighbors for nearest neighbor query is between 20 and 40. All resultsare obtained from the average of 100 trials. In each �gure, transformationsusing De�nition 1 as similarity model are denoted by their abbreviations, whiletransformations using De�nition 2 are denoted by (V-shift) in addition. Forinstance, Haar transforms using De�nition 1 and De�nition 2 as similaritymodelsare denoted as 'Haar' and 'Haar(V-shift)' respectively.In Figure 3.8, precision against the �rst tenth indexed coe�cients/dimensionsof range query is investigated using De�nition 1 (non-v-shift similarity model).
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Figure 3.8: Precision of range query (Non-v-shift)
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Figure 3.9: Precision of range query (V-shift)
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Figure 3.10: Precision of range query (Haar)
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Figure 3.11: Page accesses of range query
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Figure 3.12: Node accesses of R-Tree for range query
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Figure 3.13: Precision of nearest neighbor query
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Figure 3.14: Page accesses of nearest neighbor query
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Figure 3.15: Node accesses of R-Tree for nearest neighbor query



Chapter 3 Dimension Reduction by Wavelets 43It is de�ned as Precision = StimeStransform (3.14)where Stime refers to the number of time sequences quali�ed in time domain whileStransform is the number of time sequences quali�ed in the transformed domain.As we can observe, K-L transform gives the best precision at each dimension.On the other hand, the precision attained by Haar transform is close to thebest and it outperforms DFT signi�cantly at all except the �rst dimension. Theenhancement in precision of Haar transform over DFT increases with the numberof dimensions.Moreover, we evaluate the precision of the three transformations using Def-inition 2 (v-shift similarity model). For Haar transform, we can achieve v-shiftsimilarity matching by removing the �rst Haar coe�cient prior to indexing, asthe �rst coe�cient stores the average value of the time series. Unfortunately,there is no evidence or result at present showing that we can apply this tech-nique to DFT or K-L transform. Therefore, we achieve v-shift similarities forDFT and K-L transform in a static way by normalizing/shifting the time seriesin database, resulting in zero average value of each sequence.The precision of the three transformations using v-shift model is shown inFigure 3.9. We observe that DFT(V-shift), Haar(V-shift), and K-L(V-shift)report a loss in precision when compared with their non-v-shift counterparts.The main reason is that the time series of �nancial data consist of a sequence oftime values uctuating around a relative constant level, which is the average valueof a time sequence. This average value is very e�ective in discriminating timeseries in the sense that every sequence distributes farther away in the x-axis. Asa result, its removal will cause a sudden drop in precision. Another observation isthat the gain of precision upon addition of extra coe�cients diminishes after theremoval of average value. K-L using two coe�cients in indexing gains 12% moreprecision, contrasting with that using one coe�cient. However, only 9% more can



Chapter 3 Dimension Reduction by Wavelets 44be gained for K-L(V-shift). With reference to the same �gure, despite the loss inprecision in v-shift model, K-L(V-shift) still gives the highest precision, and theprecision of Haar(V-shift) is close to that of K-L(V-shift). The performance gapbetween DFT and Haar in Figure 3.8 still exists for v-shift model in this case.For clarity, the precision of Haar and Haar(V-shift) is shown in Figure 3.10.Obviously, the precision of the non-v-shift model outperforms the v-shift modelby 20% at most. The large di�erence is attributed to the removal of the �rstHaar coe�cient to achieve v-shift similarity, which poses a loss of discriminationpower addressed in previous paragraph. From another point of view, precisionis traded for a better similarity model.As most of the page accesses 5 of a query are devoted to remove false alarmsand only a small proportion arises from index accesses, the precision is crucialto the overall performances of query evaluation. This agrees with the resultdepicted in Figure 3.11, where the page accesses of the best dimensions of DFT,Haar and Haar(V-shift) are shown. Page accesses increase linearly with �. Haarhas the minimum page accesses while DFT performs the worst. Page accessesof Haar(V-shift) model have been traded for better similarity model. Even so,it outperforms DFT. The page accesses of K-L transform are not shown. K-L transform is static-based as opposed to Haar transform and DFT, which aredynamic transformations. Therefore, it is more appropriate to compare only theperformances between Haar transform and DFT. Nevertheless, the evaluation ofprecision in Figure 3.8 and Figure 3.9 give us some idea for the close performanceof Haar and K-L transforms.In Figure 3.12, the percentage of node access of R-Tree against � is shown. Allresults follow a linear trend and have approximately the same value. Therefore,5Performance is measured in terms of page access due to I/O time domination over com-putation time in database applications. Page accesses = non-leaf node accesses + leaf nodeaccesses + post processing page accesses



Chapter 3 Dimension Reduction by Wavelets 45the page accesses involved in index traversal are the same. The di�erence inperformances is dominated by the precision of transformations. The percentageof node access for Haar(V-shift) is slightly higher than that of DFT and Haarbecause Haar(V-shift) needs more dimensions to attain su�cient precision inbuilding the R-Tree. The best dimension of DFT (dimension 5) is smaller thanHaar (dimension 7) and Haar(V-shift) (dimension 10) as there is no signi�cantgain in precision with additional dimensions.Results of nearest neighbor query are shown from Figure 3.13 to Figure 3.15.Figure 3.13 shows the precision of nearest neighbor query of DFT, Haar, andHaar(V-shift). In nearest neighbor search, the result is similar to that of rangesearch. Haar attains the highest precision among the three. As expected, Haaroutperforms Haar(V-shift) in the nearest neighbor query according to the sameargument. There is no observable improvement with additional coe�cients forDFT.The trends for page access 6 in Figure 3.14 are consistent with those in rangequery in Figure 3.11, Haar and Haar(V-shift) still outperform DFT. The nodeaccesses in Figure 3.15 are higher than that of Figure 3.12 since the number ofnodes that are accessed must be relatively high for nearest neighbor than rangequery.3.3.2 Synthetic Random Walk DataSince many real data like stock movements and exchange rates can be modeledsuccessfully by random walks [16], we study here the performance of our pro-posed technique for random walk data. Synthetic random walk data consistingof 30k time sequences are generated. As we want to show the e�ectiveness ofour approach for di�erent sequence lengths, we set ! = 1024. The same set of6Page accesses = non-leaf node accesses + leave node accesses



Chapter 3 Dimension Reduction by Wavelets 46experiments as for the real data are performed and the results are shown fromFigure 3.16 to Figure 3.23.
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Figure 3.16: Precision of range query (Non-v-shift)
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Figure 3.17: Precision of range query (V-shift)The precision of non-v-shift model is shown in Figure 3.16. As the valueof ! is doubled, more dimensions have to be used to attain su�cient precision.Therefore, we show the �rst twentieth dimensions. Similarly, the precision ofHaar is near optimal while DFT ats out starting at dimension 8. The di�erencein performances among various transformations enlarges for longer time series.The precision of v-shift model is depicted in Figure 3.17. The precision drops ofall transformations are consistent with the experiment using real dataset, which
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Figure 3.18: Precision of range query (Haar)
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Figure 3.19: Page accesses of range query
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Figure 3.20: Node accesses of R-Tree for range query
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Figure 3.21: Precision of nearest neighbor query
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Figure 3.22: Page accesses of nearest neighbor query
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Figure 3.23: Node accesses of R-Tree for nearest neighbor query



Chapter 3 Dimension Reduction by Wavelets 49is caused by the deterioration of discriminating power without the average value.In Figure 3.18, Haar(V-shift) has 20% loss of precision with respect to Haarwhich agrees with Figure 3.10.Page access of range query is shown in Figure 3.19, Haar outperforms bothHaar(V-shift) and DFT, with DFT performs the worst. Haar scales the bestwith epsilon. The di�erences in performances of the three methods enlarge sincewe use a larger dataset size and longer time sequences of synthetic data. Figure3.20 shows the percentage of node access with Haar(V-shift) being the worst.Although Haar(V-shift) accesses at most 10% more index nodes than DFT, itstill outperforms DFT in terms of page accesses. This con�rms our expectationsthat the number of page accesses associated with index node is relatively small.The precision of nearest neighbor query of DFT, Haar, and Haar(V-shift)is shown in Figure 3.21. As in Figure 3.13, Haar outperforms the others. Anexception is that the precision of DFT outperforms Haar(V-shift) a tiny amountin the �rst eight dimensions. However, this will not a�ect the overall performanceof Haar(V-shift) in terms of number of page accesses, as the optimal numberof dimension is found to be greater than 10. Again, both Haar and Haar(V-shift) outperform DFT in nearest neighbor query which is shown in Figure 3.22,agreeing with the results in range query. Haar outperforms DFT signi�cantly inparticular. On the other hand, Figure 3.23 depicts a similar result as in Figure3.15.Therefore, our approach using Haar or Haar(V-shift) for time series match-ing justi�es for real and synthetic datasets in both range and nearest neighborqueries. Moreover, the two-phase nearest neighbor query is shown to be e�ectiveby considering the low page access associated with both datasets.
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Figure 3.24: Database size (Range query)
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Figure 3.25: Database size (Nearest neighbor query)
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Figure 3.26: Sequence length (Range query)
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Figure 3.27: Sequence length (Nearest neighbor query)3.3.3 Scalability TestWe study the scalability of our method by varying the size (Figure 3.24 andFigure 3.25) or the length (Figure 3.26 and Figure 3.27) of synthetic time seriesdatabase. For scalability in database size, di�erent time sequence databases ofsize ranges from 5k to 30k are generated as described in Section 3.3.2. Lengthof sequence is �xed to 512. For scalability in sequence length, databases withsequence of length 256, 512, 1024, and 2048 are generated. Size of each databaseis �xed to 10k sequences.Figure 3.24 and Figure 3.25 show the scalability of both range and nearestneighbor queries. In both cases, Haar and Haar(V-shift) have a better scalingwith database size increase than DFT. The di�erence in the amount of pageaccesses is tremendous and signi�cant for large database size. A similar situationexists for database with long sequences which is shown in Figure 3.26 and Figure3.27. The di�erence in page accesses is enormous for sequence of length 2048.As revealed from previous experiments, a considerable portion of page accessesis devoted to the post-processing step. The poorer precision of DFT createsmore works in the post-processing step and this a�ects the overall performance,especially in terms of the amount of disk accesses for large databases with long
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Figure 3.28: Visualization of query and result time sequencesFigure 3.28 shows the best time sequences matching a query using both non-v-shift and v-shift models. The reader may judge that the upper sequence returnedby v-shift model has a more similar shape to the query, while the time sequencereturned by non-v-shift model fails to follow a consistent shape with the queryat some regions. This phenomenon can be explained by their di�erences in thesimilarity model de�nition. In the extreme case, an identical shape sequencecan not be returned with the simple non-v-shift model if its vertical o�set withrespect to the query is large.3.3.4 Other WaveletsThere are many kinds of known wavelets, we have tried some other waveletsin our experiments. The precision of di�erent wavelets is compared using bothreal (Figure 3.29) and synthetic (Figure 3.30) data. Daub4 corresponds to theDaubechies wavelets with 4 coe�cients in wavelet �lter while Coif6 correspondsto the Coiet wavelets with 6 coe�cients in wavelet �lter. We observe that Haar
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Figure 3.29: Precision of range query (Real data)
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Figure 3.30: Precision of range query (Synthetic data)



Chapter 3 Dimension Reduction by Wavelets 54wavelets performs better than the Daubechies and Coiet wavelets. Moreover,it is computationally less expensive than the other wavelets.We have discovered that not all the wavelets are suitable for dimensionalityreduction for time series data. From our experiments, not all the wavelets areable to concentrate energy at the �rst few coe�cients. Haar, Daub4, and Coif6are the best wavelets we have found so far in their families. From experiments, we�nd that the other wavelets seem to also preserve Euclidean distances, however,so far we have a proof of this property only for the Haar wavelets. It will beinteresting to see if we can apply di�erent kinds of wavelets to di�erent dataseries.



Chapter 4Time WarpingMost of the time series similaritymodels are based on Euclidean distance betweentwo time sequences. This linear matching process ignores the vertical (y-axis)and time (x-axis) shifts of sequences, which are indispensable to practical timeseries matching in reality. The problem of vertical shifts can be handled by thev-shift similarity model that we have proposed. On the other hand, time shiftsof sequences can be coped with by means of time warping techniques [37, 13].Time warping is widely used in speech and word recognition �elds, in whichhuman speech consists of varying durations and paces. The problem associatedwith sequence comparison for speech comes from the fact that di�erent acousticrenditions, or tokens, of the same speech utterance (e.g., word, phrase, sentence)are seldom realized at the same speed (speaking rate) across the entire utterance.Thus, when comparing di�erent tokens of the same utterance, speaking ratevariations as well as duration variation should not contribute to the linguisticdissimilarity. Hence, there is a need to normalize speaking rate uctuation inorder for the utterance comparison to be meaningful before a recognition decisioncan be made.Figure 4.1 shows two time series before time warping. When matched bytime warping, the two sequences are aligned according to their peaks and valleys55
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Figure 4.1: Time series ~x and ~y before time warping
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Figure 4.2: Time series ~x and ~y after time warping



Chapter 4 Time Warping 57Algorithm 4.1 TimeWarpDistance(~x,~y)1 xlen = k~xk;2 ylen = k~yk;3 Cmatrix[0][0] = 0.0;4 for (1 � i � xlen)5 Cmatrix[i][0] = 1;6 for (1 � j � ylen)7 Cmatrix[0][j] = 1;8 for (1 � i � xlen)9 for (1 � j � ylen)10 Cmatrix[i][j] =11 fD2(xi; yj)+min2(Cmatrix[i�1][j]; Cmatrix[i][j�1]; Cmatrix[i�1][j�1])g 12 ;12 return Cmatrix[xlen][ylen];Figure 4.3: Algorithm for �nding time warping distance
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Chapter 4 Time Warping 58by extending time values in order to minimize the distance between the series,this is shown in Figure 4.2. This is very di�erent from simple Euclidean distancematching, where values of two sequences are matched based on the same timeaxis. Therefore, time warping is capable of extracting time series with similarshapes in di�erent phases. Additional constraints [41] may also be applied torestrict the degree of freedom of the warping process for di�erent applications.An algorithm for time warping by dynamic programming method [47] canbe found in Figure 4.3. The general principle is to �nd the shortest cumulativedistance for each pair of time values between sequences ~x and ~y, starting fromthe �rst pair (x0; y0), till the last pair (xxlen; yylen). The time warping distance isactually the shortest cumulative distance of the whole sequences.ExampleTo illustrate, consider two sequences ~x = f4,3,1,2,3,0g and ~y = f1,2,0,-1,1,2g from Figure 4.1, the corresponding cumulative distance matrix is foundusing algorithm in Figure 4.3 and is shown in Figure 4.4. Each box correspondsto an entry in the cumulative distance matrix Cmatrix[i][j]. Those pairs consti-tuting the overall shortest cumulative distance are in grey, and the time warpingdistance is found to be Dtimewarp(~x; ~y) = 4.2 (upper right corner of the matrix).Though time warping technique can accommodate time shifts of sequences,it is not as popular as Euclidean distance in time series matching. There aretwo limitations in using time warping distance. First, for length n sequences,the complexity of time warping distance function is O(n2) 1 as revealed from thedistance matrix calculation, compared with O(n) of Euclidean distance matching.This hinders the use of timewarping distance for similarity searching in enormoustime series databases where response time is a critical issue. Second, we cannotdirectly apply indexing techniques for time warping distance as in [23, 2] tospeed up sequences retrieval. For multi-dimensional index trees like R-Tree,1Strictly speaking, the complexity should be O(k~xk � k~yk)



Chapter 4 Time Warping 59the distance function under consideration is assumed to be a metric, and timewarping distance fails to ful�ll this requirement. The de�nition of metric spaceis given as follows.De�nition 3 Given a nonempty set X , a distance function or metric D on Xis a function which assigns to each pair of points a non-negative real numbersatisfying the following for all x,y 2 X :1. D(x,y) � 0 and D(x,y) = 0 if and only if x = y;2. D(x,y) = D(y,x);3. For all x,y,z 2 X , D(x,y) � D(x,z) + D(y,z), (triangle inequality).The pair(X ,D) is called a metric space. Di�erent metrics de�ned on the sameset can produce di�erent metric spaces.The most widely used distance function for similarity search in time seriesdatabase is the Euclidean distance L2 of the Lp metric family of distance functionDp(~x; ~y) =  n�1Xi=0 jxi � yijp! 1p (4.1)We can show that time warping distance violates the triangle inequality bythe following example.Example Given three time sequences ~x = f0,1,3g, ~y=f3,2,2g, and ~z = f2,3,2g.Dtimewarp(~x; ~y) = 11 � Dtimewarp(~x; ~z) +Dtimewarp(~y; ~z) = 6 + 1 = 7It is inappropriate to employmulti-dimensional index trees for direct indexingbased on time warping distance, since it may give rise to false dismissals.



Chapter 4 Time Warping 60To deal with the problem of high time complexity, we propose approximationfunctions to time warping distance, which results in less computation by tradingo� tiny amount of accuracy. Before looking into our solution to the secondproblem of false dismissals, we would �rst elaborate on an index-based similaritysearch supporting time warping distance.4.1 Similarity Search based on K-L TransformAn approach [47] that makes use of K-L transform and lower bound distancefunction to support matching with time warping is described in Section 2.4. K-Ltransformed sequences is inserted into an index tree (Fastmap index), and lowerbound distance function �lters false alarms in the post-processing step. The maindrawback of this technique is that the search range of time warping distance�timewarp, when used in extracting sequences in the Fastmap index, i.e D(~x; ~y0) ��fastmap = �timewarp, is not e�ective in �nding a relatively small candidate set withlittle false dismissals 2. Therefore, large amounts of sequences have to be checkedwith the lower bound distance function Dlb and then the time warping distancefunction Dtimewarp to obtain the answer. To demonstrate the ine�ectiveness ofusing �timewarp as the search range for the Fastmap index, we have conductedexperiments based on precision and recall (excluding the pruning step by Dlb).Precision and recall are de�ned as follows.Precision = SRetrievedAndQualifiedSRetrieved (4.2)Recall = SRetrievedAndQualifiedSQualified (4.3)2In fact, the value of �fastmap is increased to �2timewarp in [47] to reduce the number of falsedismissals.



Chapter 4 Time Warping 61where SRetrieved is the number of sequences retrieved from Fastmap index, SQualifiedis the number of sequences quali�ed, and SRetrievedAndQualified is the number ofsequences retrieved and quali�ed.Totally 50 random sequences are queried on a database of 5k synthetic randomwalk sequences of length 256. The value of �timewarp is �xed such that the numberof quali�ed sequences in the result set is 2.75% of the database size. On the otherhand, the value of �fastmap is varied such that 1 quali�ed sequence is extractedat the minimum range and all quali�ed sequences are extracted at the maximumrange. Result is shown in Figure 4.5.
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Figure 4.5: Precision and recall of range query on Fastmap indexIt is observed that when we want to have higher recall, the value of �fastmapshould be increased. However, precision drops rapidly with �fastmap, which resultsin large amounts of false alarms. The consequence is that more processing timeis devoted to matching of candidate sequences with Dlb and Dtimewarp. As thecomplexity of Dtimewarp is O(n2), the performance drops drastically with lengthytime series, which is con�rmed in [47].Even worse, Dlb underestimates Dtimewarp to a great extent. For the sametime series database we use, the fraction of distance estimated by Dlb is shown in



Chapter 4 Time Warping 62Figure 4.6. The pruning power of Dlb is low such that only 25% to 35% of timewarping distance on the average can be estimated. Therefore large amounts ofremaining sequences still should be checked with Dtimewarp, which involves themost computations.
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Figure 4.6: Fraction of distance estimated by Dlb (Dlb / Dtimewarp)We observe no simple solution to the second problem of false dismissals oc-currence. Even for the K-L transform based index we have mentioned, the searchrange �fastmap should be enlarged with respect to �timewarp to avoid possible falsedismissals. Rather than modifying Fastmap index to guarantee no false dis-missals, we try to improve the overall performance of the similarity querying ofFastmap index, by replacing the lower bound distance function with our pro-posed approximation function as a more e�ective �lter in the post-processingstep, which is capable of pruning a large number of false alarms arising fromlarge �fastmap. Two approximation functions are suggested, which are Low Res-olution Time Warping and Adaptive Time Warping. The former one can act asboth an approximation and a �ltering functions, while the latter one is solely fortime warping distance approximation.



Chapter 4 Time Warping 634.2 Low Resolution Time WarpingIn order to reduce the time complexity of sequence matching in time warpingdistance, we propose to obtain a lower resolution version of the time sequencessuch that an approximation to the time warping distance can be found using anacceptable computation time. To achieve low resolution time warping, two stepsare involved, resolution reduction and distance compensation.4.2.1 Resolution Reduction of SequencesTo achieve di�erent resolutions of sequences, we employ the technique in multi-resolution representation of Haar wavelets 3. Upon application of Haar transformon time sequences, Haar coe�cients can be obtained. Conversely, we may alsoreconstruct time sequences by applying an inverse Haar transform to Haar coef-�cients.For a time sequence, its Haar transformation, or decomposition can be foundby Equation (3.8) in Section 3.1.1. The inverse Haar transformation, or re-construction goes in a similar manner, but actually reversing what we do indecomposition. It is shown in Equation (4.4),2666666664 x0x1x2x3 3777777775 = 2666666664 1 1 0 01 �1 0 00 0 1 10 0 1 �1 3777777775� 2666666664 x00d10x01d11 3777777775 (4.4)with Haar coe�cients ~w = [x00 d10 x01 d11]T as input and ~x = [x0 x1 x2 x3]T as3Restriction is imposed on the length of time series. However, the problem of inconsistentsequence lengths was not addressed in [47] such that K-L transform can be applied properly.



Chapter 4 Time Warping 64output 4. The number of iterations for recovering the original sequence in thereconstruction is exactly the same as needed in decomposition. Note that theinverse Haar transform matrixH0 is equal to two times the Haar transform matrixH, i.e. H0 = 2H, H�H0 = 2H�H = I. Di�erent resolutions of time series canbe achieved by varying the number of iterations performed in Equation (4.4) ofthe reconstruction process. The more the iterations, the higher the resolutionwe can obtain.Referring to Figure 4.7, we show di�erent resolutions of an input sequence~z = f3,1,0,2,-3,-4,1,2g. Decomposition and reconstruction correspond to down-ward and upward traversals of the tree respectively, with upper levels repre-senting higher resolutions. By reconstruction of Haar coe�cients of ~z, we canobtain 4 di�erent resolutions which are f0.25,0.25,0.25,0.25,0.25,0.25,0.25,0.25g,f1.5,1.5,1.5,1.5,-1.0,-1.0,-1.0,-1.0g, f2.0,2.0,1.0,1.0,-3.5,-3.5,1.5,1.5g, and ~z itself.Note that the lengths of sequences are preserved at di�erent resolutions. Themain drawback of this approach is the insu�ciency of diversity of resolutionsfor a sequence. Even for a sequence of length 256, there are only 8 resolutionsavailable. This is not very exible and e�cient for practical use in databaseindex where diverse variations of resolutions are desired. Therefore, we allow theresolution reached by each branch to be di�erent, i.e. the resolutions of sequencesegments can vary. For instance, we can obtain a �ner resolution of sequencef2.0,2.0,1.0,1.0,-3.5,-3.5,1.5,1.5g by expanding the last two values f1.5,1.5g tof1.0,2.0g, which becomes f2.0,2.0,1.0,1.0,-3.5,-3.5,1.0,2.0g. A systematic way toachieve this variety of resolutions is described below.Instead of running di�erent number of iterations of Equation (4.4), we obtaindi�erent resolutions of ~z by �rst truncating Haar coe�cientsH(~z), then perform-ing a full reconstruction (a full iteration of matrix multiplication) of Equation(4.4). The number of coe�cients truncated determines the resolution of sequence4Normalization can be achieved by adding a scaling factor of 1=2 12 in Equation (4.4).
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Figure 4.7: Resolution reduction by variations of iterations
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Chapter 4 Time Warping 67~z. Possible resolutions of sequence ~z are shown in Figure 4.8, with no truncationat Level 0, and 7 coe�cients truncated at Level 7. The underlining signi�es thevalue pair with resolution reduced.Although we obtain lower resolution versions of a sequence, their lengthsare still equal to the original sequence length. This does not constitute anyimprovement on time complexity as the lengths of sequences remain unchanged.Therefore, sampling is introduced for sequence length reduction.From Figure 4.8, there exists some repeated values in di�erent resolutions ofsequences. One sample value can thus be taken out of those repeated ones. Con-sider the same �gure, the sequence at Level 2 is sampled from f3.0,1.0,0.0,2.0,-3.5,-3.5,1.5,1.5g to f3.0,1.0,0.0,2.0,-3.5,1.5g, with the last two value pairs sampleddown to one value each. By the same rule, the sampled sequence at the last levelwill be of length 1 which is f0.25g. Figure 4.9 shows the result after sampling ofsequences in Figure 4.8.4.2.2 Distance CompensationWith reduced sequence length, the computations involved in time warping dis-tance can be drastically reduced. However, it is still inappropriate to estimatethe original distance by the distance of lower resolution sequences, as distancesarose from discarded value pairs are lost owing to the down sampling process,leading to severe underestimation of original time warping distance. The aim ofusing lower resolution sequences, down sampling, and then time warping is to�rst pair up as rapidly as possible the peaks and valleys of the two sequencesaccordingly. Afterwards, we should compensate for the distances lost owing tothe down sampling process.The compensation process is done as follows. Given two sequences ~x and ~y of
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Chapter 4 Time Warping 69length > 4, without loss of generality, we denote their low resolution versions as~X = fX0;X1;X2;X3g and ~Y = fY0; Y1; Y2; Y3g, and assume that they have a timewarping path shown in grey on the distance matrix in Figure 4.10. The length ofthe path corresponds to the number of pairs of matching values in time warping,which are �ve pairs in this case, namely, (X0; Y0), (X1; Y1), (X2; Y1), (X3; Y2), and(X3; Y3). They are visualized in lower part of the �gure consisting of �ve di�erentstates, with arrows pointing to the matched pairs. The positions of these arrowsare able to indicate where and how we make the distance compensation.
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arrowYFigure 4.11: Distance compensationThere are two possible movements of the arrow pair when proceeding fromone state to the next: either one arrow moves a unit forward, or both arrows movea unit forward. These situations are shown in Figure 4.11. For any consecutiveelements Xi, Xi+1 and Yj, Yj+1 of sequences ~X and ~Y respectively, where ineed not equal j, there exists some repeated values or elements which are in-between (removed by down sampling), represented as Xi and Yj . Denote thearrows pointing sequences ~X and ~Y as Xarrow and Yarrow respectively.� Case 1Either Xarrow or Yarrow moves forward. Without loss of generality, weassume Yarrow moves a step forward pointing Yj+1 (shown in hollow arrow).



Chapter 4 Time Warping 70As the only movement is Yarrow, we just need to compensate for distancesbetween point Xi and subsequence fYj ; : : : ; Yjg, which isDC = f(Xi � Yj)2 � kfYj; : : : ; Yjgkg 12such that the transition of Yarrow from Yj to Yj+1 is in continuity.� Case 2Both Xarrow and Yarrow move a unit forward. Distances from both sub-sequences fXi; : : : ;Xig and fYj; : : : ; Yjg should be considered. Euclideandistance between fXi; : : : ;Xig and fYj ; : : : ; Yjg could be used, however, abetter estimation involves the use of time warping distance. It is computedas follows.DC = fD2timewarp(fXi;Xi; : : : ;Xi;Xi+1g; fYj; Yj ; : : : ; Yj ;Yj+1g)�(Xi �Yj)2 � (Xi+1 �Yj+1)2g 12Using time warping distance is a better estimation to compensate for dis-tances as it gives closer approximation to the original distance between thetwo time series. As the length of the repeated segment for a sample pointis relatively short, the amount of computation involved is small.Knowing how to compensate distance may lead us to the formula for �ndingthe overall low resolution time warping distance between two time series ~x and~y which is shown in the following equationDlowresTW (~x; ~y) = 8<:D2timewarp( ~X; ~Y ) + No:ofstatesXs=1 DC2s9=; 12 (4.5)where ~X and ~Y are the lower resolution versions of sequences ~x and ~y respectively,and DCs is the distance compensated at state s. We can thus use DlowresTW toapproximate Dtimewarp closely. The procedures in �nding low resolution timewarping distance are summarized in Figure 4.12.
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Figure 4.12: Procedures in �nding low resolution time warping distance



Chapter 4 Time Warping 72Example To obtain the low resolution time warping distance between two se-quences ~x = f3,1,0,2,-3,-4,1,2g and ~y = f2,3,1,-3,-4,1,0,1g of length n = 8, thefollowing procedures are taken.First we obtain the lower resolution versions of both ~x and ~y by �ndingtheir Haar coe�cients using Equation (3.8), which are H(~x) = f0.71,3.54,1.0,-5.0,1.41,-1.41,0.71,-0.71g and H(~y) = f0.35,1.77,3.5,-2.0,-0.71,2.83,-3.54,-0.71grespectively. In order to determine the best ksam, we employ both Equation(4.7) and Equation (4.10) and then take the average, ksam = (n 12 + �n22 � 13 )=2 =3. Therefore, we replace the (8-3)=5 right most Haar coe�cients each in H(~x)and H(~y) with zeros, resulting in H(~x) = f0.71,3.54,1.0,0,0,0,0,0g and H(~y)= f0.35,1.77,3.5,0,0,0,0,0g. Haar reconstructions are then performed using themodi�ed H(~x) and H(~y) to obtain lower resolution sequences of ~x and ~y, whichare f2.0,2.0,1.0,1.0,-1.0,-1.0,-1.0,-1.0g and f2.5,2.5,-1.0,-1.0,-0.5,-0.5,-0.5,-0.5g re-spectively. They are then reduced to ~X = f2.0,1.0,-1.0g and ~Y = f2.5,-1.0,-0.5gseparately after sampling of duplicated time values.Next, we �nd the value of Dtimewarp( ~X; ~Y ) which is 1.66, with time warpingpath ( ~X0; ~Y0), ( ~X1; ~Y0), ( ~X2; ~Y1), and ( ~X2; ~Y2). Afterwards, we perform the dis-tance compensation. According to this path, two Case 1 and one Case 2 distancecompensations are required. The last pair of time values ( ~X2; ~Y2) also needs com-pensation as duplicated values follow after them, i.e. f-1.0,-1.0,-1.0,-1.0g of ~x andf-0.5,-0.5,-0.5,-0.5g of ~y. The procedure for this compensation is nearly the sameas for those described in Case 2. Finally, by substituting Dtimewarp( ~X; ~Y ) = 1.66,DC1 = 0.5, DC2 = 1.5, DC3 = 0, and DC4 = 0.87 into Equation (4.5), we obtainDlowresTW = f1:662 + 0:52 + 1:52 + 0:872g 12 = 2.45.



Chapter 4 Time Warping 734.2.3 Time ComplexitySince the computation time of low resolution time warping depends on the num-ber of samples taken in resolution reduction, we are able to estimate the optimalnumber of sample that leads to minimumcomputation. Denote n as the length oftime series and we reduce the resolution of sequences to only ksam sample points.Hence, nksam corresponds to the length of repeated segment for each sample point.Since it is impossible to exhaust the state space for di�erent paths in the cumu-lative distance matrix, we consider two representative paths that produce closeapproximations to the lower and upper bounds of the true computation, whichare denoted as Poptimistic and Ppessimistic respectively.� Path Poptimistic
Sequence X

Sequence Y ksamFigure 4.13: Cumulative distance matrix of PoptimisticThe �rst path Poptimistic is shown in Figure 4.13. It composes of two shorterlinear paths perpendicular to the x-axis and y-axis respectively. The traceof Poptimistic leads to faster computation time in distance compensation,since only compensation of the �rst case (Figure 4.11) is involved whichhas a linear complexity. With 2n computations in resolution reduction oftime sequence, k2sam computations in �nding the time warping path of theresolution reduced time series, and 2ksam � nksam + � nksam�2 computations



Chapter 4 Time Warping 74involved in distance compensation, the overall computation � is expressedin Equation (4.6).� = 2n + k2sam + 2ksam � nksam + � nksam�2= 4n + k2sam + � nksam �2 (4.6)Di�erentiating � with respect to ksam,d�d(ksam) = 2ksam � 2n2k3sam0 = 2ksam � 2n2k3samk4sam = n2ksam = n 12 (4.7)Moreover, d2�d(ksam)2 = 2 + 6n2(ksam)4 > 0Hence � jksam=n 12 gives the minimum computation, and� jksam=n 12 = 4n+ n+ ( nn 12 )2= 6n� n2 for n � 6 (4.8)� Path PpessimisticFor the second path Ppessimistic in Figure 4.14, it runs along the diagonalof the cumulative distance matrix, which leads to slower computation indistance compensation, since all compensations involved are of Case 2.With the same computations involved in resolution reduction and time
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Sequence X

Sequence Y

Sequence X

Sequence Y ksamFigure 4.14: Cumulative distance matrix of Ppessimisticwarping path selection as for Poptimistic, and ksam � � nksam�2 computationsfor distance compensation, the overall computation is shown in Equation(4.9). � = 2n + k2sam + ksam � � nksam�2= 2n + k2sam + n2ksam (4.9)Di�erentiating � with respect to ksam,d�d(ksam) = 2ksam � � nksam�20 = 2ksam � � nksam�2k3sam = n22ksam = �n22 �13 (4.10)Moreover, d2�d(ksam)2 = 2 + 2n2(ksam)3 > 0Hence � jksam=(n22 ) 13 gives the minimum computation, and



Chapter 4 Time Warping 76� jksam=(n22 ) 13 = 2n + (n22 ) 23 + n2(n22 ) 13= 2n + n 432 23 + 2 13 � n 43= 2n + 2� 23 � 3� n 43= 2n + 1:9� n 43< 2(n + n 43 )< n2 for n � 6 (4.11)
From both Equation (4.8) and Equation (4.11), we discover that the timecomplexity of low resolution time warping is rather linear, � = 6n for ksam = n 12and � = 2n + 1:9 � n 43 for ksam = (n22 ) 13 . In Table 4.1, the estimated andexperimental values of Ksam are compared for various sequence lengths 5.Sequence length ksamn n 12 �n22 �13 Experimental values (n 12 + �n22 � 13 )=264 8 13 8 - 20 11128 11 20 16 - 17 16256 16 32 26 - 32 24512 23 51 34 - 37 37Table 4.1: Optimal number of Ksam in low resolution time warpingIn the table we show our estimated lower and upper bounds of optimal Ksamfor a variety of sequence lengths. On the other hand, the experimental resultsare tabulated and they show the values of ksam that give rise to minimum CPUtime. We observe that the experimental values of ksam are within the range ofthe bounds, except for sequence length of 64, where the maximum value of ksam= 20 exceeds the upper bound value which is 13.5The same experimental setup is used as in Section 4.4.



Chapter 4 Time Warping 77From another point of view, we are making use of these bounds to �nd optimalksam, therefore, we try to use the averages of these bounds as an estimation, whichare shown in the last column. Excluding the third case, all the average valuescoincide with the experimental values. Though 24 is not the optimal ksam forsequence length of 256, it is close enough to 26 such that the CPU time is nearlyat the minimum.4.3 Adaptive Time WarpingWe propose another method of estimation to time warping distance by splittingthe original time series into subsequences. The overall time warping distanceis then estimated by summations of the partial time warping distances of thesesubsequences. The way of breaking sequence ~x = fx0; x1; x2; x3; x4; x5; x6; x7g isshown in Figure 4.15.
Level log 2 n

Level 0 x 0 x 1 x x2 3 x x6 7x x4 5

x 0 x 1 x x2 3 x x4 5 x x6 7

x 3 x 6 x 7x 5x 4x 21xx 0

x x4 5 x x6 7x x2 3x 0 x 1Figure 4.15: Sequence partition in adaptive time warpingAt each level, each sequence is being partitioned into two equal halves. Thelast level is reached when ~x is splitted into separate time points, fx0g,fx1g,. . . ,fx7g.Denote the subsequences of ~x as ~sx, f ~sxij ~sxi 2 ~x and ~sxi \ ~sxj = ; g. Theadaptive time warping distance is de�ned as



Chapter 4 Time Warping 78DadaptiveTW (~x; ~y) = 8<: X~sxi2~x; ~syi2~yD2timewarp( ~sxi; ~syi)9=; 12 (4.12)Prior to any partition (Level 0), DadaptiveTW = Dtimewarp obviously. If wepartition the sequence into separate time points (Level log2 n), then DadaptiveTW= DEuclidean. Physically, splitting sequences into pieces to achieve adaptive timewarping corresponds to the imposition of restrictions on the original time warp-ing path in cumulative distance matrix. For splitted sequences at Level 1, thesituation is shown in Figure 4.16.
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Figure 4.16: Pair restrictions in adaptive time warping



Chapter 4 Time Warping 79We show the cumulative distance matrix of sequences ~x and ~y in full lengthfor better explanation. As a matter of fact, the time warping path should alwayspass through (x0; y0) and (x7; y7) of the cumulative distance matrix, as they arethe starting and ending points of the two sequences. Partitions at the middleof ~x and ~y restrict this warping path to pass through (x3; y3) and (x4; y4). Thereason is that (x3; y3) becomes the new ending point of the �rst subsequences,whilst (x4; y4) is the new starting point of the second subsequences. These fourrestriction pairs correspond to four di�erent states depicted in the diagram ofFigure 4.16. With these restriction pairs, the search space now has been re-duced by half, which is shown as light grey regions. Therefore, only half of thecomputations are needed. The more the partitions of the sequences, the fasterthe computation time, however, the larger deviation from the real time warpingdistance. This is a trade o� between accuracy in distance estimation and timecomplexity.4.3.1 Time ComplexityThe real time warping distance Dtimewarp always gives the shortest cumulativedistance in the matrix. With more pair restrictions, the cumulative distancewill increase. Therefore, DadaptiveTW would upper bound Dtimewarp all the time.Denote DadaptiveTW obtained at partition Level i as DAi,Dtimewarp � DAi for 0 � i � log2 n (4.13)From the facts that DA0 = Dtimewarp and DAlog2 n = DEuclidean, hence thetime complexity of adaptive time warping isO(n) � ODAi � O(n2) for 0 � i � log2 n



Chapter 4 Time Warping 80Note that we can achieve more exibility of sequence partition by allowingunsynchronized splitting of subsequences, the methodology is similar to the onesintroduced in Section 4.2.1 for low resolution time warping in achieving a diver-sity of resolutions.4.4 Performance EvaluationExperiments using synthetic data have been carried out. All experiments areconducted on a Sun UltraSPARC-1 workstation with 592MBytes of main mem-ory. Synthetic random walk data consisting of 5k time sequences are generated.The length of sequences ranges from 64 to 512. All results are obtained from theaverage of 50 trials.4.4.1 Accuracy versus RuntimeSince we aim to show the accuracy and e�ectiveness of low resolution and adap-tive time warpings for real time warping approximation, query is raised followingby an exhaustive match of each time series in the database. Results are shownfrom Figure 4.17 to Figure 4.21.In Figure 4.17, the fraction of distance to real time warping against samplelength / number of partitions is investigated (original length of time series is 256).To low resolution time warping, sample length refers to the number of samplevalues taken, that isKsam. To adaptive time warping, number of partitions refersto the number of subsequences resulting from partition process.The approximation of low resolution to real time warping distance is accurateas observed, the fraction of estimation is close to 1.0 and is bounded between 1.0and 1.3 on average. The larger the value of Ksam of low resolution time warping,



Chapter 4 Time Warping 81the more accurate the approximation to the real time warping distance. LargerKsam means fewer time values of the original time series are being sampled.Moreover, the number of distance compensations are also reduced. Both of themlead to a closer approximation to the actual time warping distance. DlowresTWwill be equal to Dtimewarp in the extreme when Ksam is the same as the full lengthof the original time series.For adaptive time warping, the distance estimated ranges from 1.0 to 1.75on average and should always be greater than or equal to 1.0 by the upperbounding property in Equation (4.13). With no partition, the fraction is equal to1.0, and rapidly stabilizes to around 1.75 with increasing number of partitions,as more restrictions are imposed on the time warping path. We observe thatthe saturation occurs around 60 partitions and it �nally converges to Euclideandistance of time series.The distance estimated by the lower bound distance function Dlb mentionedin Section 4.1 is also shown for reference. As the lower bound distance functionmakes use of the full time series, the distance estimated is invariant to the samplelength and is found to be around 0.3, i.e 30% of the real time warping distance.
0

0.5

1

1.5

2

50 100 150 200 250

Fr
ac

tio
n 

of
 D

is
ta

nc
e

Sample Length / No. of Partitions

Lowres Time Warping

0

0.5

1

1.5

2

50 100 150 200 250

Fr
ac

tio
n 

of
 D

is
ta

nc
e

Sample Length / No. of Partitions

Lowres Time Warping
Adaptive Time Warping

0

0.5

1

1.5

2

50 100 150 200 250

Fr
ac

tio
n 

of
 D

is
ta

nc
e

Sample Length / No. of Partitions

Lowres Time Warping
Adaptive Time Warping
Lower Bound Function

Figure 4.17: Fraction of distance estimated (Sequence length = 256)The CPU time required by various time warping methods is shown in Figure
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Figure 4.18: CPU time of di�erent time warping methods (Sequence length =256)
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Figure 4.19: Speedup (Sequence length = 256)
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Figure 4.20: Fraction of distance estimated at best CPU time
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Figure 4.21: Best CPU time at various sequence lengths4.18. The real time warping consumes enormous CPU time compared with otherthree methods due to its O(n2) complexity. Initially low resolution time warpingexperiences a drop in CPU time to a minimum, followed by a gradual increaseuntil it reaches the same CPU time required by real timewarping. Low resolutiontime warping using full sample length is equivalent to real time warping, thus,they have the same CPU time and the fraction of distance estimated wouldbe equal to 1.0 which is depicted in Figure 4.17. Minimum CPU time of lowresolution time warping could be obtained by determining the optimal samplelength ksam for time series being described in Section 4.2.3. In this experiment,the optimal dimension ranges from 26 to 32 for sequences of length 256, whichfollows the prediction in Table 4.1 and Figure 4.18.On the other hand, the CPU time required by adaptive time warping de-creases with the number of partitions. The initial drop in CPU time is similar tolow resolution time warping, and it continues to decrease upon further partitionson the sequence. Meanwhile, the complexity goes from O(n2) to O(n). The min-imumCPU time would be the time taken to �nd the Euclidean distance betweentwo time series, which corresponds to the point with number of partitions = fulllength of time sequence. Lower bound distance function requires the least CPUtime by having O(n) complexity and the simplicity in �nding Dlb.



Chapter 4 Time Warping 84The speedup in terms of ratio of CPU time is found in Figure 4.19. Themaximum speedups attained by low resolution and adaptive time warpings are14 and 24 times respectively. At these speedup factors, low resolution timewarping achieves an estimation of distance at 1.21, while adaptive time warpingattains 1.7 on average. The accuracy of adaptive time warping can be improvedby trading o� CPU time. Though the lower bound distance function achieves aspeedup of 36 times, the distance estimated is too low (30%) to be e�ective fordistance approximation or �ltering purpose. Moreover, the inability to trade o�CPU time for accuracy makes it prohibitive.In order to ensure performance at di�erent sequence lengths, we carry out theexperiment as in Figure 4.17 with di�erent lengths of sequences. The fractionof distance estimated at best CPU time for various sequence lengths is shown inFigure 4.20. The fraction of distance that low resolution time warping estimatedis relatively constant around the value 1.2, while the estimation by lower bounddistance function is close to 0.3. In the �gure, it is obvious that low resolutiontime warping is able to give a better approximation to real time warping distance(an +0.2 overestimation) compared with the lower bound distance function (an-0.7 underestimation), and this phenomenon seems to persist in a variety of se-quence lengths. The persistence of fraction of distance is important in the sensethat di�erent lengths of sequences share nearly the same factor, thus other se-quence lengths will produce likely the same amount of overestimation, which isused in turn to estimate the real time warping distance. There is no best CPUtime exists for adaptive time warping as CPU time is a direct trade o� for accu-racy of distance estimation. Therefore, it is inappropriate to make comparisonin this case.Figure 4.21 shows the best CPU time attained for various sequence lengths.Having high complexity, real time warping scales bad in CPU time with sequencelength. Doubling in sequence length gives rise to quadruple of CPU time. In the



Chapter 4 Time Warping 85meantime, both low resolution time warping and lower bound function maintaina linear increase in CPU time and the speedup could be enormous for lengthysequences. The linearity of low resolution time warping is consistent with theestimations in both Equation (4.8) and Equation (4.11).4.4.2 Precision versus RecallThe following experiments are carried out to evaluate the performance of lowresolution time warping when acting as a �ltering function in the post-processingstep of similarity search. Performance is described in terms of precision and recallde�ned in Equation (4.2) and Equation (4.3) respectively. The number of falsealarms as well as the number of false dismissals generated are also studied. Theexperimental setup is all kept the same with only two exceptions. First, we wantto perform a search 6 to look for candidate sequences, rather than exhaustivelymatch all sequences in the database with the query as in Section 4.4.1. Therefore,an appropriate epsilon range �timewarp should be employed to obtain a reasonableamount of candidate sequences. In our experiment, the values of epsilon rangefrom 0.5% to 5% of the database size, and results are drawn from the average ofthese epsilon ranges.Moreover, the original epsilon range �timewarp should be adjusted in accor-dance with the fraction of distance obtained in previous experiments (Figure4.20) when matching sequences using low resolution time warping in the post-processing step, the adjusted epsilon is denoted as �lowresTW . After all, more falsealarms but fewer false dismissals appear for an increase in epsilon range, while adecrease in the range reverses the e�ect. Our task is to obtain a modest rangethat results in a tiny number or none of false dismissal, and at the same timesuppresses the number of false alarms.6Note that we emphasize on the performance comparison of �ltering functions, hence webypass the use of Fastmap index for the sake of simplicity.



Chapter 4 Time Warping 86The fraction of distances estimated for various sequence lengths are from Fig-ure 4.20 and tabulated in Table 4.2 accompanied with their standard deviations.The value of fraction of distance estimated and its associated standard deviationact e�ectively as an indicator for the adjustment of the epsilon range �lowresTW inlow resolution time warping. The adjustment can be expressed by the followingequation �lowresTW = dist frac� �timewarp + c� s:d: for c � 0 (4.14)where �timewarp is the epsilon range used in real time warping distance, dist fracrepresents the fraction of distance estimated, s:d: is the standard deviation ata particular dist frac. By varying the value of c, the range �lowresTW can besystematically adjusted. The best dimensions used in the experiments for lowresolution time warping are listed in the same table for reference.Sequence length Fraction of Distance S.D. Best Ksamn dist frac64 1.25 0.11 20128 1.24 0.13 17256 1.21 0.10 32512 1.21 0.12 37Table 4.2: Fraction of distance estimated and associated standard deviationFigure 4.22 to Figure 4.25 show the performance with di�erent epsilon ranges�lowresTW . In Figure 4.22, the number of false alarms and false dismissals areshown for querying a database of sequence length of 256. We observe that whenwe scale the value of the epsilon only by a factor of dist frac with zero s:d:, i.e.�lowresTW = 1:21 � �timewarp, there are 85 false dismissals 7 being generated. On7Number of false alarms and dismissals should be compared to the average number ofquali�ed sequences in the answer set, which is = database size � average epsilon �timewarp =5000 � 2.75 = 137.5.
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Figure 4.22: Number of false alarms and false dismissals (Sequence length =256)
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Figure 4.23: Average number of false alarms and false dismissals
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Figure 4.24: Average number of false alarms compared with Dlb
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Figure 4.25: Average precision and recall
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Figure 4.26: Number of false alarms at various sequence lengths
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Figure 4.27: Precision at various sequence lengthsthe contrary, the number of false alarms being generated is small. This seemsto be natural since we are using solely dist frac as the scaling factor, whichmeasures the overestimation on average. As reected in the �gure, the largerthe value of �lowresTW (through increment of c in Equation (4.14)), the fewer thenumber of false dismissals, but the more the number of false alarms. For c = 5,no false dismissal is recorded while the number of false alarms increased to 390sequences.The same experiment is carried out separately for databases of sequencelength of 64, 128, and 512. Their results are averaged and shown in Figure4.23. A similar trend is observed as in Figure 4.22. Moreover, we notice thatfor the same value of c, there are more false alarms in this case than that for256 units long sequence database. It is because more false alarms appearing forshorter sequence lengths (64 and 128), hence more false alarms are observed inthe �gure. This phenomenon is explained later with Figure 4.26.We have demonstrated in Section 4.1 that the fraction of real time warpingdistance estimated by the lower bound distance function is quite small, althoughno false dismissal will be generated. The enormous amounts of false alarmsproduced by Dlb shown in Figure 4.24 con�rms this fact. There are 3k false



Chapter 4 Time Warping 90alarms being generated by Dlb compared with 0.35k (recall = 1.0), i.e. a 8.5times improvement. The amount of false alarms produced by low resolutiontime warping is still tiny for large S.D. value with respect to Dlb.This enables a signi�cant performance gain by low resolution time warpingtechnique, since most computations are involved in the matching between thecandidate sequences and the query in the post-processing step. Having O(n2)complexity, the matching in real time warping distance will consume enormousCPU time if the �ltering function fails to prune away false alarms e�ectively,which is the case for lower bound distance function. In contrast, the �lteringpower of low resolution time warping is overwhelming which results in a conceiv-able signi�cant outperformance.In Figure 4.25, the precision and recall of low resolution time warping areshown. The precision of lower bound function is also included for reference.For low resolution time warping, precision decreases while recall increases with�lowresTW . Their trends correspond to the rise of false alarms and the drop offalse dismissals respectively in Figure 4.23. The value of recall recorded is 0.4 atc = 0, and gradually increases to 1.0 at c = 5, where no false dismissal occurs.Meanwhile, precision drops from 0.82 to 0.25. On the other hand, low boundfunction o�ers a precision of 0.04, meaning that 96% of the retrieved sequencesgo to false alarms, which require a great deal of computations to get rid of.The performance of the two techniques are compared for a variety of sequencelengths in Figure 4.26 and Figure 4.27. For Figure 4.26, we show the number offalse alarms generated by both �ltering functions (recall = 1.0 for low resolutiontime warping). Both methods experience a decline in the number of false alarmswith lengthy sequences. We observe that for lengthy sequences, the alignments ofthose peaks and valleys are rather localized, since the time series of �nancial dataconsist of time values uctuating around some levels, which are relatively con-



Chapter 4 Time Warping 91stant locally without abrupt change. Therefore, it is very unlikely that the headof a sequence will align with its tail. This leads to a more uniform distribution ofDlowresTW and Dlb. In addition, both DlowerTW and Dlb will distribute in neaterproportion to the real time warping distance Dtimewarp, such that large Dtimewarpis less likely to end up with relatively small DlowresTW and Dlb. Thus, morenon-quali�ed sequences can be �ltered yet without appearing as false alarms.The performance gap is maintained for di�erent sequence lengths. Comparedto low resolution time warping, at most 15 times more false alarms are recordedfor lower bound function for sequence length of 512, and at least 8 times im-provement is recorded for sequence length of 64.The precision at various sequence lengths is depicted in Figure 4.27. Whilelower bound function maintains a low precision around 0.04 for di�erent sequencelengths, low resolution time warping o�ers tremendous improvements in preci-sion, ranging from 0.2 to 0.3 at recall = 1.0 (or 100% recall), which is 6 timesbetter on average. The rise in precision for longer sequences directly correspondsto the drop in the number of false alarms in Figure 4.26.In addition, we show the precision of low resolution time warping at recall= 0.98 and 0.95. Smaller recall value provides better precision, since the epsilonrange �lowresTW is reduced, which can suppress the generation of further falsealarms. The results are encouraging, the improvements of low resolution timewarping over lower bound distance function are 8 and 10 times at 98% and 95%recall respectively.4.4.3 Overall RuntimeIn this experiment we measure the overall CPU time of similarity search basedon our strategy. The time measurement commences once the query is raised



Chapter 4 Time Warping 92and ends when all result sequences are returned from the post-processing step.Experimental setup is kept the same as in Section 4.4.2. Results are shown inFigure 4.28 and Figure 4.29.
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Figure 4.28: Overall CPU time (Sequence length = 256)
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Figure 4.29: Overall CPU time at various sequence lengthsFor Figure 4.28, we consider the CPU time with varying epsilon ranges�timewarp at sequence length of 256. We observe 5 times and 3 times improve-ments of low resolution time warping (recall = 1.0) over lower bound function atsearch range �timewarp = 0.5% and 5% respectively. The smaller the �timewarp, thegreater the outperformance. Roughly 50 seconds more CPU time are recordedfor both methods when �timewarp is widen from 0.5% to 5%. Hence, they share



Chapter 4 Time Warping 93a similar linear scaling with epsilon range increase, though a performance gapis maintained between the two methods. The CPU time of low resolution timewarping at recall = 0.98 and 0.95 is shown in addition. Lower recall values re-quire less computation time since fewer quali�ed time sequences are retrieved,thus fewer sequences are being matched using real time warping distance. Thisaccounts for the reduction in CPU time for lower recall values.The CPU time of di�erent time series lengths is shown in Figure 4.29. Lowresolution time warping outperforms lower bound distance function in tremen-dous amounts, especially for lengthy sequences. It has a much better scalingwith sequence length increase. The CPU time is kept relatively low for di�erentsequence lengths by employing low resolution time warping, compared with thedrastic increase for the lower bound distance function. Numerically, a 6 timesimprovement is achieved for sequence length of 512, and at least 2 times improve-ment is recorded for sequence length of 64. Being consistent with the previousexperiment, low recall value of low resolution time warping consumes less overallCPU time at di�erent lengths of sequences.4.4.4 Starting Up EvaluationNote that in our performance evaluation, the two important indicators includ-ing the fraction of distance estimated in Figure 4.17, and the best epsilon range�lowresTW in Equation (4.14) are obtained statistically. These results are valid forour particular time series database. However, for other sets of time series data,results may vary accordingly. Therefore, before starting up a new similarityquerying database based on our strategy, we advise the two kinds of experimentsbeing carried out as in our evaluation to �nd the values of these indicators. Incase for enormous database, sampling of sequences could be adopted to reducethe running time of the evaluation process. Upon incremental update of new



Chapter 4 Time Warping 94time series, evaluation could be carried out again, depending on the number ofnew sequences added and the nature of time series. For database composed ofheterogeneous time series, more re-evaluations are anticipated upon incrementalupdating. In fact, these evaluations could be performed at the same time when-ever Fastmap index is reorganized (Section 2.2), to keep up the performance ofsimilarity search.



Chapter 5Conclusion and Future Work5.1 ConclusionAs time series data are of growing importance, we need to manage sequence datain database systems. For many applications such as prediction, decision making,the system is given a query sequence and we should return similar time sequencese�ciently and precisely.First we propose an e�cient time series matching technique through dimen-sion reduction by Haar Wavelet Transform. The �rst few coe�cients of the Haartransformed sequences can be indexed in an R-Tree or other similar indices forsimilarity search. Experiments show that our method outperforms the F-index(Discrete Fourier Transform) method in terms of pruning power, number of pageaccesses and complexity. In addition, a new similarity model is introduced todeal with vertical shifts of sequences. The proposed v-shift model has a betterdescription of similarity between two sequences and is also shown to have betterperformance when compared with the non-v-shift model of DFT. Furthermore,an e�cient two-phase nearest neighbor search is proposed and its e�ectiveness isdemonstrated by experiments. 95



Chapter 5 Conclusion and Future Work 96Our time series matching strategy is capable of handling Euclidean distanceor v-shift based similarity search e�ectively. For similarity search of time shiftedsequences, we turn to the extensively used time warping techniques. However,the high complexity involved hinders its use. Even worse, false dismissals areproduced when we directly apply indexing techniques for time warping distance.Therefore, we suggest the low resolution and adaptive time warpings to approxi-mate the real time warping. In addition, low resolution time warping can act asa �ltering function in the post-processing step in index-based similarity search.Experiments show that both techniques provide close approximation and achievesigni�cant speedup. Moreover, low resolution time warping is shown to be e�ec-tive in suppressing the number of false alarms generated in the post-processingstep, this in turn consumes fewer computations in matching with real time warp-ing distance that follows. It outperforms the lower bound distance function withan order of magnitude improvement.5.2 Future WorkWe have some suggestions for future work.5.2.1 Application of Wavelets on Biomedical SignalsWe are seeking for opportunity to apply families of wavelets that do not workwell with stock data in biomedical signals, such as electrocardiographs (ECGs)and electrogastrograms (EGGs) for dimension reduction. Stock data are morestationary in the sense that the trends of stocks are gentle without abrupt change.This is totally di�erent from biomedical signals which may be full of chirps. Anexample of ECG is shown in Figure 5.1.
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DurationFigure 5.1: An example of ECG signalThe e�ects on various kinds of signals using di�erent wavelet families mayvary. Haar wavelets are shown to be e�ective in extracting features for stocksequences. But they may fail when applying to ECG sequences. However, thewide choice of wavelet family enables us to select the tailored one for a particularkind of signal, that can maximize the extraction of features. Using DFT orPiecewise Fourier Transform on biomedical signals, is thus less appealing ande�ective.In fact, wavelets have been widely used as analyzing tools in biomedical sig-nals [7, 6] for signal detection, de-noising, compression, and feature extraction.Although wavelets are found to be useful in many areas of biomedical signals,nothing has been done related to signal retrieval. Therefore, we are going to eval-uate wavelet families for these kinds of signals and try to develop mathematicalproperty on Euclidean distance preservation.



Chapter 5 Conclusion and Future Work 985.2.2 Moving Average SimilarityMoving average on time series eliminates short term uctuations by averagingadjacent time values. While the transformation by Haar wavelets is equivalentto averaging the original sequence of adjacent pairs to achieve multi-resolutionrepresentation. This close relationship between moving average and Haar trans-formation suggests us to match Haar coe�cients in order to retrieve similarmoving-averaged sequences. Though Haar coe�cients provide good estimationof moving-averaged distance of two sequences, false dismissals will result as wecan not guarantee the distance of Haar coe�cients lower bounds the moving-averaged distance. We will evaluate the e�ectiveness of this matching strategyby considering both the precision and the recall of query experimentally.5.2.3 Clusters-based Matching in Time Warping
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Figure 5.2: Querying on clustered time series databaseIt has been revealed in Section 4.1 that time warping matching based on K-Ltransform is ine�cient in terms of precision and recall. High precision leads tolow recall, while high recall gives rise to low precision. To mitigate this problem,



Chapter 5 Conclusion and Future Work 99we suggest to partition the time series database into di�erent clusters in a pre-processing step using one of the many clustering methods like K-Mean [30] , whichaims at grouping similar-shaped time series into clusters prior to the building ofFastmap index. Given a query sequence ~x, we try to extract sequences fromthese clusters, Ci where 1 � i � N and N is the total number of clusters. Searchranges for clusters are independent. A heuristic to determine the search rangefor cluster i maybe comparing the time warping distance between the centroidof cluster i and the query point, which is Dtimewarp(~x; ~Centroidi). In addition,the search range should be chosen by taking into the consideration of �timewarp.The advantage of querying in terms of clusters is demonstrated in Figure 5.2.Without loss of generality, we assume the time series database is partitionedinto four clusters. For the given query point, a large search range (outer dotted-lined circle) should be used in the original approach to attain high recall. How-ever, this high recall sacri�ces the precision, so that almost all time series inthe database are retrieved and results in large amounts of false alarms. On thecontrary, if we query time series cluster by cluster, the search range (inner dotted-lined circle) can be reduced tremendously and fewer false alarms will appear fromeach cluster.The performance of this clusters-based approach is enhanced with the replace-ment of the lower bound function, which is shown to be ine�cient in previousexperiment, with the proposed low resolution or adaptive time warping functionsas described before.
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