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Abstract We are just beginning to understand the me-
tabolism of heavy metals and to use their metabolic
functions in biotechnology, although heavy metals
comprise the major part of the elements in the periodic
table. Because they can form complex compounds, some
heavy metal ions are essential trace elements, but, es-
sential or not, most heavy metals are toxic at higher
concentrations. This review describes the workings of
known metal-resistance systems in microorganisms. Af-
ter an account of the basic principles of homoeostasis for
all heavy-metal ions, the transport of the 17 most im-
portant (heavy metal) elements is compared.

Introduction: heavy-metal toxicity, tolerance
and resistance

Heavy metals are metals with a density above 5 g/cm3,
thus the transition elements from V (but not Sc and Ti)
to the half-metal As, from Zr (but not Y) to Sb, from
La to Po, the lanthanides and the actinides can be
referred to as heavy metals. Of the 90 naturally occur-
ring elements, 21 are non-metals, 16 are light metals and
the remaining 53 (with As included) are heavy metals
(Weast 1984).

Most heavy metals are transition elements with in-
completely ®lled d orbitals. These d orbitals provide
heavy-metal cations with the ability to form complex
compounds which may or may not be redox-active.
Thus, heavy-metal cations play an important role as
``trace elements'' in sophisticated biochemical reactions.
At higher concentrations, however, heavy-metal ions

form unspeci®c complex compounds in the cell, which
leads to toxic e�ects. Some heavy-metal cations, e.g.
Hg2+, Cd2+ and Ag+, form strong toxic complexes,
which makes them too dangerous for any physiological
function. Even highly reputable trace elements like Zn2+

or Ni2+ and especially Cu2+ are toxic at higher con-
centrations. Thus, the intracellular concentration of
heavy-metal ions has to be tightly controlled, and heavy-
metal resistance is just a speci®c case of the general
demand of every living cell for some heavy-metal
homoeostasis system.

To have any physiological or toxic e�ect, most heavy-
metal ions have to enter the cell. At ®rst glance, divalent
heavy-metal cations are structurally very similar; the
divalent cations Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and
Zn2+ have ionic diameters between 138 pm and 160 pm
(Weast 1984), a di�erence of 14%, and all, of course,
carry a double positive charge. Oxyanions like chro-
mate, with four tetrahedrally arranged oxygen atoms
and two negative charges, di�er mostly in the size of the
central ion, so the structure of chromate resembles that
of sulfate. The same is true for arsenate and phosphate.
Thus, uptake systems for heavy-metal ions have to bind
those ions tightly if they want to di�erentiate between a
couple of structurally very similar ions. However, tight
binding costs both time and energy.

Most cells solve this problem by using two types of
uptake system for heavy-metal ions: one is fast, unspe-
ci®c and, since it is used by a variety of substrates,
constitutively expressed. These fast systems are usually
driven only by the chemiosmotic gradient across the
cytoplasmic membrane of bacteria. The second type of
uptake system has a high substrate speci®city, is slower
and often uses ATP hydrolysis as the energy source,
sometimes in addition to the chemiosmotic gradient, and
these expensive uptake systems are only produced by the
cell in times of need, starvation or a special metabolic
situation; they are inducible (Nies and Silver 1995).

Ni2+, Co2+, Zn2+, and Mn2+ are accumulated by
the fast and unspeci®c CorA (metal inorganic transport,
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MIT, family; Table 1) magnesium uptake system in
gram-negative bacteria (Smith and Maguire 1995; Tao
et al. 1995), archaea (Smith et al. 1998) and baker's
yeast (MacDiarmid and Gardner 1998). Arsenate is
transported by the fast Pit (phosphate inorganic trans-
port) system and chromate by the fast sulfate-uptake
system (Nies and Silver 1995). In addition (Table 1),
there are inducible P-type ATPases for magnesium up-
take, ATP-binding cassette (ABC) transporters for
Mn2+, Zn2+ and Ni2+, slow and speci®c chemiosmotic
transporters of the HoxN family for Ni2+ and Co2+,
and also ABC transporters for sulfate and phosphate in
bacteria (Table 1).

When a cell faces a high concentration of any heavy
metal that is accumulated by such an unspeci®c system,
the speci®c heavy-metal ion is transported into the cy-
toplasm in spite of its high concentration, because these
unspeci®c transporters are constitutively expressed.
Thus, the gate cannot be closed. This ``open gate'' is the
®rst reason why heavy-metal ions are toxic (Nies and
Silver 1995).

Of course, expression of the gene for the fast and
unspeci®c transporter may be diminished by mutation,
and the resulting mutants are metal-tolerant. In fact,
corA mutants were found because they were cobalt-tol-
erant (Nelson and Kennedy 1971; Park et al. 1976), and
pit mutants are tolerant to arsenate (Rosen 1996).
However, tolerant mutants are less robust than the wild
type in a growth medium without the toxic heavy-metal
ion, and are thus rapidly overgrown by revertant strains.

Once inside the cell, heavy-metal cations, especially
those with high atomic numbers, tend to bind to SH
groups, e.g. Hg2+, Cd2+ and Ag+. The minimal in-
hibitory concentration (Table 2) of these metal ions is a
function of the complex dissociation constants of the

respective sul®des (data not shown). By binding to SH
groups, the metals may inhibit the activity of sensitive
enzymes. Other heavy-metal cations may interact with
physiological ions, Cd2+ with Zn2+ or Ca2+, Ni2+ and
Co2+ with Fe2+, Zn2+ with Mg2+ thereby inhibiting
the function of the respective physiological cation.
Heavy-metal cations may bind to glutathione in gram-
negative bacteria and the resulting bisglutathionato
complexes tend to react with molecular oxygen to form
oxidized bisglutathione (GS-SG) (Kachur et al. 1998),
the metal cation and hydrogen peroxide (H2O2). Since

Table 1 Protein families important for heavy-metal transport. For
references see the respective section in the ``The microbiologist's
walk through the periodic system''. CPM cytoplasmic membrane,
ABC ATP-binding cassette (Fath and Kolter 1993), RND re-

sistance, nodulation, cell division (Saier et al. 1994; Saier 1994),
CHR chromate transport (Nies et al. 1998), MIT metal inorganic
transport (Paulsen et al. 1998), CDF cation-di�usion facilitators
(Nies and Silver 1995; Paulsen and Saier 1997)

Family Direction of
transport

Energy Metal ions Composition

ABC Uptake ATP Mn2+, Zn2+, Ni2+, Fe2+ 2 membrane-integral partsa + 2 ATPase parts =
ABC core + periplasmic binding protein

E�ux ATP ± ABC core + membrane fusion protein and
outer membrane factor

P-typeb Both ATP Mg2+, Mn2+, Ca2+, K+, Cu2+,
Zn2+, Cd2+, Pb2+, Ag+

1 membrane-bound protein as core

A-typec E�ux ATP Arsenite 1 membrane-integral protein + a dimeric
ATPase subunit

RND E�ux Proton gradient Co2+, Zn2+, Cd2+, Ni2+,
Cu2+?, Ag+?

1 CPM proton/cation antiporter + membrane
fusion protein (dimer?) + outer membrane
factor: CBA transport systems

HoxN Uptake Chemiosmotic Co2+, Ni2+ Membrane-Integral protein
CHR Antiport? Chemiosmotic Chromate Membrane-integral protein (ChrA)
MIT Uptake Chemiosmotic Most cations Membrane-integral protein (CorA)
CDF E�ux Chemiosmotic Zn2+, Cd2+, Co2+, Fe2+? Membrane-integral protein (CzcD, ZRC1p, ZnT1)

a ``Parts'' are proteins or protein domains, depending on the speci®c transporter
b Fagan and Saier 1994
c Saier 1994

Table 2 Toxicity of heavy-metal ions in Escherichia coli. The
minimal inhibitory concentration (MIC) was determined on TRIS-
bu�ered mineral salts medium (Mergeay et al. 1985), starting pH
7.0, containing 2 g sodium gluconate/l as carbon source, and 1 g
yeast extract/l to complement E. coli auxotrophies. The plates were
incubated for 2 days at 30 °C

MIC (mM) Heavy-metal ions

0.01 Hg2+

0.02 Ag+, Au3+

0.2 CrO2ÿ
4 , Pd2+

0.5 Pt4+, Cd2+

1.0 Co2+, Ni2+, Cu2+, Zn2+

2.0 Tl+, UO2ÿ
2 , (La3+, Y3+, Sc3+)a, (Ru3+, Al3+)b

5.0 Pb2+, (Ir3+, Os3+, Sb3+, Sn2+, In3+, Rh2+,

Ga3+, Cr3+, V3+, Ti3+, Be2+)b

10.0 (Cr2+)b

20.0 Mn2+

aWeak acidi®cation of the medium had to be allowed to keep the
metal ion in solution
bAcidi®cation of the medium had to be allowed to keep the metal
ion in solution
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the oxidized bisglutathione has to be reduced again in an
NADPH-dependent reaction and the metal cations
immediately bind another two glutathione molecules,
heavy-metal cations cause a considerable oxidative
stress. Finally, heavy-metal oxyanions interfere with
the metabolism of the structurally related non-metal
(chromate with sulfate, arsenate with phosphate) and
reduction of the heavy-metal oxyanion leads to the
production of radicals, e.g. in case of chromate.

This potential for heavy-metal ion toxicity in con-
nection with the ``open gate'' situation has forced life in
its early evolution to develop metal-ion homoeostasis
factors and metal-resistance determinants. Since heavy-
metal ions cannot be degraded or modi®ed like toxic
organic compounds, there are only three possible
mechanisms for a heavy-metal resistance system. First,
the accumulation of the respective ion can be diminished
by e�ux, an active extrusion of the heavy-metal ion
from the cell (Nies and Silver 1995). Second, cations,
especially the ``sulfur lovers'', can be segregated into
complex compounds by thiol-containing molecules.
Third, some metal ions may be reduced to a less toxic
oxidation state. Finally, for many metals, resistance and
homoeostasis involve a combination of two or three of
the basic mechanisms mentioned.

To be detoxi®ed by reduction, the redox potential of
a given heavy metal should be between that of the hy-
drogen/proton couple ()421 mV) and that of the oxy-
gen/hydrogen couple (+808 mV) [calculated from
Weast (1984) at 30 °C and pH 7.0], which is the physi-
ological redox range for most aerobic cells. Thus, Hg2+

(+430 mV), chromate (+929 mV), arsenate (+139 mV)
and Cu2+ ()268 mV) may be reduced by the cell,
but Zn2+ ()1.18 V), Cd2+ ()824 mV), Co2+ ()701 mV)
and Ni2+ ()678 mV) may not. A metal compound that
can be reduced should be able to di�use out o� the cell
or it might re-oxidize itself; however, most reduction
products are quite insoluble (Cr3+) or even more toxic
(AsOÿ2 ) than the educts. Thus, if the cell chooses to de-
toxify such a compound by reduction, an e�ux system
should be present to export the reduced products. Only
in the case of mercury do reducibility and a low vapour
pressure of the metallic reduction product ®t together;
mercury is thus detoxi®ed by reduction of Hg2+ to Hg0

with di�usional loss of the Hg0.
If a heavy-metal compound cannot be reduced by

cellular means or reduction is not desirable, the only
choice is between complexation and e�ux, or both.
However, the cost of complexation is huge compared to
e�ux if a fast-growing cell is considered: assuming that
an aerobic cell detoxi®es Cd2+ by forming CdS, sulfate
has to be taken up (1 ATP), PAPS (Phosphoadenosin-5¢-
phosphosulfate) has to be formed (3 ATP) and reduced
to sul®te (2 electrons lost, which may yield 3 ATP during
respiration) and ®nally sul®de (6 electrons = 9 ATP).
This amounts to about 16 ATP for the formation of 1
sul®de, which complexes 1 Cd2+. If glutathione, its de-
rivatives or even a ribosomally synthesized protein like
metallothionein is considered, these costs are immense.

The e�ux of 1 Cd2+ by an e�ux system only costs
about 1 ATP, but a futile cycle of uptake and e�ux may
be formed. Complexation would only be ``cheaper'' than
e�ux if all the cadmium in the direct environment were
complexed by the bacterial population in the end, which
is usually not the case. Thus, complexation is only an
e�cient way of metal detoxi®cation in cells exposed to
low concentrations of heavy metals. Since reduction is
not possible or may not be sensible as the sole mecha-
nism of detoxi®cation, heavy-metal ions have to be
detoxi®ed by e�ux, alone or in combination, in any
organism growing fast in an environment contaminated
with high concentrations of heavy metals. Heavy-metal
metabolism is therefore transport metabolism.

Ecology of heavy metals: which heavy metals
are biologically important?

Before starting a microbiologist's walk through the pe-
riodic system, a few short cuts can be taken: fortunately,
not all of the 53 heavy metals have a good or bad bio-
logical function. This is simply because some heavy
metals are not available to the living cell in the usual
ecosystems; they may be present in the earth's crust only
in very low amounts, or the ion of a particular heavy
metal may not be soluble.

To summarize these two factors, the composition of
sea water may be used as a kind of ``average environ-
ment''. Depending on their concentration in sea water
(Weast 1984), four classes of heavy metal can be easily
di�erentiated as possible trace elements: frequent ele-
ments with concentrations between 100 nM and 1 lM
(Fe, Zn, Mo), elements with concentrations between
10 nM and 100 nM (Ni, Cu, As, V, Mn, Sn, U), rare
elements (Co, Ce, Ag, Sb) and ®nally elements just be-
low the 1 nM level (Cd, Cr, W, Ga, Zr, Th, Hg, Pb). The
remaining 31 elements, e.g. gold, present at 55.8 pM in
sea water, are not likely to become trace elements; if an
element has a concentration of 1 nM in an ecosystem
containing a bacterial population of 109/ml, each cell
would receive only 600 ions. Thus, elements at an
average concentration smaller than 1 nM are very un-
likely ever to be useful or toxic, and it would not pay to
harbour metabolic genes for these metals.

Which of these 22 heavy metals is of some biological
importance is simply based on the solubility function
under physiological conditions and the toxicity, which
involves its a�nity to sulfur plus interaction with macro-
bioelements. Because of the low solubility of the tri- or
tetravalent cations (Weast 1984), Sn, Ce, Ga, Zr and Th
have no biological in¯uence. Of the remaining 17 heavy
metals, Fe, Mo and Mn are important trace elements
with low toxicity and Zn, Ni, Cu, V, Co, W and Cr are
toxic elements with high to moderate importance as
trace elements; As, Ag, Sb, Cd, Hg, Pb and U have
limited bene®cial function, but have to be considered as
toxins (Table 2). Thus, these 17 heavy metals will be
discussed.
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A microbiologist's walk through the periodic system
of the elements

Vanadium (V): mostly toxic

Vanadium mostly exists as V(V), the trivalent oxyanion
vanadate. Vanadate is structurally similar to phosphate
and is thus known as an inhibitor of ATPases, and it
may be taken up by phosphate-uptake systems (Mah-
anty et al. 1991; Rehder 1992). Because of its toxicity,
the bene®cial use of vanadate is an exception: bacteria
like Azotobacter chroococcum are able to form a vana-
date-dependent nitrogenase for nitrogen ®xation if mo-
lybdate is not present in the ecosystem (Chatterjee et al.
1997; Eady 1995; Joerger and Bishop 1988; Pau 1989;
Thiel 1996). Further trace-element functions are obscure
(Nielsen 1991), but vanadate can be used as an electron
acceptor for anaerobic respiration (Lyalikova and
Yurkova 1992; Yurkova and Lyalikova 1990). Physio-
logical work on vanadate resistance has only been done
in Saccharomyces cerevisiae (Nakamura et al. 1995).
Sulfolobus has a minimal inhibitory concentration of
20 mM vanadate (Grogan 1989). However, the detailed
mechanism of vanadate resistance remains elusive.

Chromium (Cr): bene®cial only as an exception

Chromium mainly occurs as Cr(VI) in the divalent
oxyanion chromate and as Cr(III), the trivalent cation.
Reduction/oxidation reactions between the two states
are thermodynamically possible under physiological
conditions (Weast 1984), thus chromate and Cr3+ are
both biologically important ions. Chromate is more
toxic than Cr3+ (Table 2), so bene®cial functions of
chromium can only be performed by Cr3+. In man, the
chromium cation binds to a low-molecular-mass binding
substance, a small polypeptide, at a ratio of 4 Cr/peptide
(Davis and Vincent 1997b). The resulting Cr-containing
peptide is able to activate speci®cally the insulin receptor
tyrosine kinase (Davis and Vincent 1997a). These new
®ndings explain why chromium starvation in man leads
to reduced glucose tolerance with a physiological con-
dition similar to diabetes. Chromate, on the other hand,
is toxic, carcinogenic and allergenic (mason's allergy) to
man (Costa 1997).

In microorganisms, no bene®cial in¯uence of chro-
mium was found. Chromate enters the cell of Ralstonia
sp. strain CH34 (formerly Alcaligenes eutrophus) (Brim
et al. 1999) by the sulfate-uptake system (Nies and Silver
1989a), which is normal for many microorganisms (Nies
and Silver 1995). Chromate resistance is probably based
on an interaction of chromate reduction and chromate
e�ux. The ®rst bacterium found to be resistant to
chromate, Pseudomonas ¯uorescens strain LB300, was
shown to reduce chromate (Bopp and Ehrlich 1988), and
a broad variety of bacteria able to reduce chromate have
since been found (Cervantes and Silver 1992). Chromate

resistance was then mainly thought to be based on
chromate e�ux; however, recent data for Ralstonia sp.
CH34 suggest that both processes, e�ux and reduction,
are involved (Peitzsch et al. 1998).

Since chromate resistance in Ralstonia sp. CH34 is
inducible by chromate, a biological chromate sensor has
been developed on the basis of the luciferase system
(Peitzsch et al. 1998). Any chromate remediation of soils
or water that uses chromate-reducing bacteria has to
take account of the fact that any chromate remaining in
an ecosystem may be rapidly oxidized again (James et al.
1997), thus, any detoxi®cation would not be permanent.
Since chromium may be present in at least two oxidation
states in an ecosystem (Aide and Cummings 1997;
Armienta et al. 1996; Baron et al. 1996; Palmer and
Wittbrodt 1991; Rinehart et al. 1997), plants may be
better suited for biological leaching than bacteria
(Kleiman and Cogliatti 1997). Because chromate was
intensively used in tanneries, soils with quite high
chromate contents (several grams of chromate per ki-
logram of soil) are ``available'' (Snyder et al. 1997), and
an inexpensive bioremediation process may be interest-
ing from a commercial point of view. Chromate, how-
ever, is immediately reduced to Cr3+ in the roots, which
is rarely transported further into the shoots (Zayed et al.
1998). This makes phytoremediation of chromate a
complicated process, and further research, on plants as
well as on the physiology of chromium metabolism in
bacteria, is required to develop a functional system for
chromium detoxi®cation.

Manganese (Mn): essential for oxygen production
during photosynthesis

Manganese exists in various oxidation states; from
Mn(II) to Mn(VII) every state is possible with the Mn2+

cation being the predominant form. Therefore, it seems
logical that manganese is used by bacteria as an electron
acceptor in anaerobic respiration processes (Langenho�
et al. 1997). The toxicity of manganese is very low
(Table 2), but it has been shown to be toxic to the cen-
tral nervous system (Ingersoll et al. 1995).

The power of manganese, and of all heavy-metal
cations following manganese in the ®rst transition group
of the periodic system, lies in their ability to form
complex compounds. Manganese complexes in the low-
spin form are relatively inert as redox compounds, and
manganese may thus be a substitute for magnesium in
general. In a high-spin complex, manganese functions as
a kind of ``electron bu�er''. Its most important function
is the catalysis of water cleavage during oxygenic pho-
tosynthesis (Abramowicz and Dismukes 1984). In pho-
tosystem II, responsible for this process, four manganese
ions are bound in a tetranuclear complex (Brudvig
1987), together with calcium and chlorine (Yachandra
et al. 1993). In this complex, manganese may alternate
between the Mn(III) and Mn(IV) oxidation state, with
Mn(II) probably also being present in the complex
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(Ahrling et al. 1997). Ultimately driven by light energy,
water is oxidized to molecular oxygen in a ®ve-step cy-
clic process (Dekker and van Gorkom 1987). The
manganese ions are bound to histidine (Tang et al. 1994)
and are located close to a tyrosine radical residue, which
may be required for the abstraction of protons from
water (Gilchrist et al. 1995; Hoganson and Babcock
1997; Noguchi et al. 1997).

Mn2+ is taken up into Ralstonia sp. by the Mg-up-
take system (Nies and Silver 1989a). In Salmonella typhi-
murium, heavy-metal cations are mainly accumulated by
the fast and unspeci®c CorA system (MIT family,
Table 1) and the inducible, slower, and more speci®c P-
type ATPases MgtA and MgtB (Smith et al. 1993;
Snavely et al. 1989a, b, 1991); all of them are magnesium
uptake systems. These systems transport Mn2+ too, but
under housekeeping conditions bacterial cells may be
mainly supplied with Mn2+ by the CorA system (Smith
et al. 1998; Smith and Maguire 1995). MIT systems also
exist in S. cerevisiae (MacDiarmid and Gardner 1998),
besides other manganese transport systems (Farcasanu
et al. 1998; Paulsen et al. 1998). Under manganese
starvation, Mn2+ uptake in bacteria may be mainly
catalysed by transporters of the ABC (Table 1) family
(Bartsevich and Pakrasi 1995, 1996; Dintilhac et al.
1997; Kolenbrander et al. 1998).

Iron (Fe) is biologically the most important
heavy metal cation

Iron is the only macro-bioelement of the heavy metals.
The dissociation constant of iron hydroxides is
1.8 ´ 10)15 for Fe(II) and 6 ´ 10)38 for Fe(III) (Weast
1984). Thus, Fe(III) became almost unavailable with
the accumulation of oxygen on earth. The solution of
this ``iron crisis'' was the evolution of speci®c iron-
binding complex compounds which bind Fe(III) and
shuttle it to the cell: the siderophores (Braun et al.
1998). Because of its low solubility, Fe3+ is not toxic to
aerobic bacteria.

In addition to the siderophore-mediated uptake of
Fe3+, Fe2+ is also transported into bacterial cells.
Fe2+ is similar in ionic diameter and charge to Mg2+,
thus, it is also accumulated by the fast and unspeci®c
CorA magnesium transport system (MIT, Table 1) in
Escherichia coli (Hantke 1997). However, E. coli pos-
sesses in addition a high-a�nity ABC transport system
(Table 1) for ferrous iron encoded by feoABC
(Kammler et al. 1993). The presence of ferrous iron
uptake systems seems to be important for bacteria that
live, mostly or occasionally, under anaerobic condi-
tions. Because anaerobic bacteria may use Fe3+ as an
electron acceptor (Ehrenreich and Widdel 1994), Fe2+

should be the main ionic form of this metal under
anaerobic conditions.

S. cerevisiae, which lives aerobically or anaerobically,
uses a complicated mechanism for iron uptake: Fe3+ is
®rst reduced by the ferric reductases, Fre1p to Fre6p.

These genes are transcriptionally induced by iron de-
pletion (Georgatsou et al. 1997; Martins et al. 1998). In
S. cerevisiae and Schizosaccharomyces pombe (Askwith
and Kaplan 1997), Fe2+ is then taken up by a copper-
dependent ferrous iron oxidase, Fet3p, and the permease
Ftr1p or related proteins (Dancis et al. 1994a, b). In
addition, S. cerevisiae harbours a low-a�nity Fe2+ up-
take system, Fet4p (Liu et al. 1997; Paulsen et al. 1998).
Fe2+ is transported into the mitochondria by MNT1p
and MNT2p (Paulsen et al. 1998) [also called MFT1p
and MFT2p (Li and Kaplan 1997)], which may belong
to of the cation di�usion facilitator (CDF) transport
protein family. From the many connections between
yeasts, plants and man (Askwith and Kaplan 1998; Eide
1997), iron transport in eukaryotes becomes clear: it is
probably a combination between low-a�nity uptake of
Fe2+ backed up by high-a�nity uptake involving cop-
per-dependent oxidation of Fe2+ to Fe3+.

Cobalt (Co): always important

Cobalt is found mainly in the Co2+ form, Co3+ is only
stable in complex compounds. Co2+ is of medium tox-
icity (Table 2), but cobalt dust may cause lung diseases
(Nemery et al. 1994). Cobalt occurs mainly in the co-
factor B12, which mostly catalyses CAC, CAO and CAN
rearrangements. In addition, a new class of cobalt-con-
taining enzymes, nitrile hydratases, has been recently
described (Kobayashi and Shimizu 1998).

Co2+ is rapidly accumulated by the CorA system in
most bacterial cells (Smith et al. 1993; Snavely et al.
1989a, b, 1991). No inducible ATP-driven uptake system
has yet been identi®ed that is induced when the cobalt
concentration is too low, but a system related to the
nickel transporter HoxN from Ralstonia eutropha was
found in Rhodococcus rhodochrous (Komeda et al.
1997), a bacterium containing a nitrile hydratase. Thus,
this HoxN homologue seems to supply Co2+ for the
production of a non-B12-cobalt protein.

Resistance to cobalt in gram-negative bacteria is
based on transenvelope e�ux driven by a resistance,
nodulation, cell division (RND) (Table 1) transporter.
Cobalt resistance seems always to be the by-product of
resistance to another heavy metal, either nickel
(Liesegang et al. 1993; Schmidt and Schlegel 1994) or
zinc (Nies et al. 1987). Members of the CDF protein
family (Table 1) have also been found to transport
cobalt. The COT1p protein from S. cerevisiae trans-
ports Co2+ across a mitochondrial membrane (Conk-
lin et al. 1994, 1992) and the ZntA protein brings
about Co2+ e�ux in the gram-positive bacterium
Staphylococcus aureus (Xiong and Jayaswal 1998).
Thus, cobalt is taken up by CorA transporters or ex-
ceptionally by a HoxN-type transporter. Co2+ is de-
toxi®ed by RND-driven systems in gram-negative
bacteria and by CDF transporters in eukaryotes and
gram-positive bacteria.
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Nickel (Ni): used only for a few important reactions

Free nickel occurs mostly in the Ni2+ cationic form;
Ni3+ is even more unstable than Co3+. Nickel toxicity is
comparable to that of cobalt (Table 2), but its toxic ef-
fect on man is better documented. Nickel allergy (con-
tact dermatitis), especially to cheap jewellery, is very
common; up to 20% of the population in industrially
developed countries have positive results in epicutaneous
testing (Savolainen 1996).

Nickel-mediated catalysis is the catalysis of complex
rearrangements; small molecules are bound to the cation
and split or, vice versa, two small molecules or atoms are
fused. The best known examples for nickel catalysis are
NiFe hydrogenases, which split molecular hydrogen into
protons and electrons, urease, which splits urea into
carbon dioxide and ammonia, cofactor F430 (Thauer and
Bonacker 1994) in methanogenic bacteria, which re-
leases methane from a methyl group, and the acetyl-
SCoA synthase in anaerobic bacteria where nickel ac-
cepts a methyl group from B12 and fuses it together with
CO and HSCoA to acetyl-SCoA (Goubeaud et al. 1997;
Hausinger 1987; Thauer et al. 1983, 1980).

In the best-known nickel-containing enzymes, hy-
drogenase, urease and CO dehydrogenase, nickel is
bound in the active site mainly to cysteine or histidine.
In all three enzymes, nickel is added to the polypeptide
by a complicated reaction involving GTPases (Maier
et al. 1993). In addition, C-terminal processing of the
pre-protein is required to form the mature enzyme
(Cheesman et al. 1989; Gollin et al. 1992; Mulrooney
and Hausinger 1990), as well as chaperones. The UreE
protein, which binds six nickel cations, functions as the
nickel donor for urease (Lee et al. 1993), and UreD as
the chaperone (Park et al. 1994). The nickel donor
HypB for hydrogenase binds four to nine Ni atoms
(Rey et al. 1994) and is also a GTPase (Fu et al. 1995).
The proteins involved in nickel incorporation into the
CO dehydrogenase are homologous to the helper pro-
teins for hydrogenase and urease (Kerby et al. 1997;
Watt and Ludden 1998). A novel Ni-containing protein
is a superoxide dismutase, and synthesis of this protein
seems also to involve protein processing (Kim et al.
1998).

Nickel enters the cell (Fig. 1A) mainly by the CorA
system, in bacteria and S. cerevisiae (Hmiel et al. 1989;
MacDiarmid and Gardner 1998; Snavely et al. 1989a, b).
An additional nickel transporter, part of the hydroge-
nase gene cluster, was identi®ed in R. eutropha (Eberz
et al. 1989; Eitinger and Friedrich 1991; Eitinger et al.
1997) and found to be an archetype of the new HoxN
class of transport proteins. Uptake of nickel [and cobalt
in the related protein (Komeda et al. 1997)] is probably
driven by the chemiosmotic gradient. For hydrogenase
formation in E. coli, nickel is supplied by an ABC
transporter and a periplasmic nickel-binding protein (de
Pina et al. 1995; Navarro et al. 1993; Wu et al. 1991). In
its natural environment, the gut, the nickel concentra-
tion may be too small to allow su�cient nickel uptake

by HoxN-type transporters, which are driven only by
the chemiosmotic gradient.

Nickel is detoxi®ed by sequestration and/or trans-
port. It is bound to polyphosphate in S. aureus (Gonz-
alez and Jensen 1998) and to free histidine in nickel-
hyperaccumulating plants (Kramer et al. 1996). In S.
cerevisiae, nickel is disposed of and probably bound to
histidine in the vacuole (Joho et al. 1992). The transport
into the vacuoles requires a proton-pumping ATPase
(Nishimura et al. 1998); thus, this kind of nickel trans-
port may also be driven by a chemiosmotic gradient.
Other yeasts and fungi probably detoxify nickel by
similar mechanisms and also by mutation of the CorA
uptake system (Joho et al. 1995; Ross 1995).

The best-known nickel resistance in bacteria, in Ral-
stonia sp. CH34 and related bacteria, is based on nickel
e�ux driven by a RND transporter (Fig. 1A). Two
systems have been described, a nickel/cobalt resistance
Cnr (Liesegang et al. 1993) and a nickel/cobalt/cadmium
resistance Ncc (Schmidt and Schlegel 1994). Both are
closely related to the cobalt/zinc/cadmium resistance
system Czc from strain CH34, which will be described in
the zinc section.

Nickel has an important function in the pathogenicity
of Helicobacter pylori, a gram-negative bacterium caus-
ing gastritis and peptic ulcer disease in humans. For the
colonization of the gastric mucosa, H. pylori needs to
produce urease to deal with the acidic environment by
producing ammonia from urea (Mobley et al. 1995b).
Urease production and function depend on the avail-
ability of nickel (Evans et al. 1991; Hawtin et al. 1991;
Hu and Mobley 1993; Mobley 1996; Mobley et al.
1995a). Thus, H. pylori has an extensive array of nickel
transport proteins: Ni2+ is accumulated by NixA of the
HoxN family (Bauerfeind et al. 1996; Fulkerson et al.
1998) and an ABC uptake system. It is speci®cally
bound by heat-shock proteins (Amini et al. 1996; Gil-
bert et al. 1995; Kansau and Labigne 1996; Suerbaum
et al. 1994). H. pylori harbours the genes for at least
three RND transporters, which may drive Cnr-related
nickel-e�ux systems (Tomb et al. 1997). Moreover, a
P-type ATPase (ATPase 439) was recently described,
which binds Ni2+, Cu2+ and Co2+ to its amino termi-
nus (Melchers et al. 1998). This may be the ®rst example
of a nickel P-type ATPase in bacteria. Including CorA,
H. pylori contains all nickel transport systems known for
bacteria today (Fig. 1).

Copper (Cu): a sword with two edges

The electrochemical potential of Cu2+/Cu+ is )268 mV,
well within the physiological range. Copper easily in-
teracts with radicals, best with molecular oxygen. Its
radical character makes copper very toxic (Table 2), and
many organisms are more sensitive to copper (Gordon
et al. 1994) than E. coli. Copper toxicity is based on the
production of hydroperoxide radicals (Rodriguez
Montelongo et al. 1993) and on interaction with the cell
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Fig. 1A±F Protein families involved in bacterial heavy-metal metab-
olism. A Ni2+ is accumulated by the fast and unspeci®c CorA (metal
transport system, MIT) Mg2+ transport system. Highly speci®c
nickel transporters are either HoxN chemiosmotic transporters or
ATP-binding cassette (ABC) uptake transporters, which use a
periplasmic nickel-binding protein, depending on the bacterial species.
Characterized nickel resistance systems are based on inducible,
resistance-, nodulation-, cell division (RND)-driven transenvelope
transporters. Moreover, a nickel-e�ux P-type ATPase (drawn in grey)
may exist in Helicobacter pylori. B Cu2+ is possibly accumulated by
the CorA-Mg2+ transporter, and additionally by P-type ATPases
under copper starvation (shown in Enterococcus hirae). The mecha-
nism of resistance systems similar to the Pseudomonas Cop system is
still elusive but, in gram-positive bacteria, P-type ATPases seem to
detoxify copper via e�ux. The copper-resistance systems of the
Pseudomonas type usually encode four proteins (circles with A, B, C,
or D), which bind copper in the periplasm or close to the outer
membrane. C Zn2+ is accumulated by the fast and unspeci®c CorA
(MIT) Mg2+ transport system in some bacterial species, and by the
fast and unspeci®c MgtE system in others. Inducible, high-a�nity
ABC transporters supply zinc in times of need. P-type ATPases may

transport zinc in both directions, bringing about its uptake as a by-
product of Mg2+-uptake again, and its e�ux as detoxi®cation. Slow
e�ux is catalysed by cation-di�usion facilitator (CDF) transporters,
high-e�ciency transenvelope e�ux by inducible RND-driven trans-
porters like Czc. D Arsenate is accumulated by the constitutive, fast
and unspeci®c Pit (phosphate inorganic transport) and the phosphate-
inducible Pst (phosphate-speci®c transport) systems. Inside the cell, it
is reduced by ArsC to arsenite, which is removed from the cell by
ArsB, either acting alone or together with the A-type ATPase ArsA. E
Magnesium (MIT) and/or manganese uptake systems are responsible
for the uptake of Cd2+. Only in cyanobacteria have metallothionein-
like proteins been characterized (Smt). E�ux is carried out in gram-
positive bacteria by P-type ATPases; in gram-negative bacteria it takes
the form of RND-driven transenvelope transport, and possibly also
carried out by CDF transporters. F For mercury, the resistance
determinants encode the transport systems. MerT interacts with a
periplasmic mercury-binding protein, MerP. Transport by MerC may
be in addition to that by MerT or may substitute for MerT transport,
depending on the respective resistance determinant. Inside the cell,
Hg2+ is reduced to metallic mercury, which di�uses out of the cell and
its environment
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membrane (Suwalsky et al. 1998). Every person in the
world may have a contact with copper in coins daily;
however, one has to digest about 275 coins for a lethal
e�ect (Yelin et al. 1987), as has been shown in the case
of a mentally disturbed individual. This person died
from copper intoxication following a massive ingestion
of coins (Yelin et al. 1987).

Besides copper/zinc superoxide dismutases, the most
important function of copper is in the cytochrome c
oxidase and related enzymes, which are oxygen-depen-
dent terminal oxidases in the respiratory chain of many
organisms. Two copper centres exist in the cytochrome c
oxidase (Iwata et al. 1995) and they have di�erent roles
in the catalytic cycle. The CuA center is responsible for
the uptake of electrons from the soluble cytochrome c
and for delivery to the haem aa3/CuB complex, which
®nally reduces molecular oxygen to water (Ostermeier
and Michel 1997); the resulting energy is used to pump
protons across the cytoplasmic membrane (Michel et al.
1998).

Plasmid-encoded copper resistance in E. coli strongly
interacts with chromosomally encoded functions (Fong
et al. 1995; Gupta et al. 1995, 1997; Rogers et al. 1991),
and the actual mechanism may depend on the growth
phase (Brown et al. 1995). Although the copper resis-
tance determinants were shown to be homologous in
E. coli and Pseudomonas species, the phenotype of the
two copper-resistant bacteria is di�erent. While E. coli
remains colourless, resistant Pseudomonas strains turn
blue on high-copper-containing media because copper is
accumulated in the periplasm and outer membrane
(Cooksey 1993, 1994) (Fig. 1B). The periplasmic CopA
protein shows conservation of several predicted copper-
binding sites. In addition, the CopC and CopD proteins
seem to catalyse copper uptake into the cytoplasm.
Related copper-resistance determinants were found in
various Pseudomonas (Lin and Olson 1995; Vargas et al.
1995) strains and in Xanthomonas campestris (Lee et al.
1994).

In the gram-positive bacterium Enterococcus hirae,
copper metabolism seems to be much clearer than in
gram-negative bacteria (Fig. 1B). E. hirae contains a cop
operon with two structural genes, both encoding a
P-type ATPase. While CopA is probably responsible for
copper uptake and copper nutrition, CopB (35% iden-
tical to CopA) is responsible for copper e�ux and de-
toxi®cation (Odermatt et al. 1992, 1993). Both proteins
seem to transport silver as well as copper (Odermatt
et al. 1994). Obviously, monovalent cations are being
transported (Solioz and Odermatt 1995).

Copper-transporting P-type ATPases have been
found in a variety of organisms, in cyanobacteria
(Kanamaru et al. 1995; Phung et al. 1994) and in eu-
karyotes; however, in S. cerevisiae, the copper P-type
ATPase does not transport copper across the cytoplas-
mic membrane (Fig. 2A). For uptake into the yeast cell,
Cu2+ is ®rst reduced by the iron/copper-speci®c reduc-
tases FRE1p, FRE2p and FRE7p to Cu+ (Georgatsou
et al. 1997; Hassett and Kosman 1995; Martins et al.
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Fig. 2A±C Protein families involved in heavy-metal metabolism in
yeast. A In Saccharomyces cerevisiae, a MIT system takes up Cu2+,
while CTRp systems transport Cu+, which has been previously
reduced by FREp systems. Copper is bound to glutathione (GSH)
and metallothioneins (MT's). P-type ATPases transport copper into
the trans-Golgi system, and may detoxify copper by e�ux in
mammalian cells. B Zinc is taken up by ZIP and MIT transporters,
and CDF proteins may detoxify the mitochondrion. C MIT- and
possibly LCT1-like transporters take up the toxic heavy-metal
cation. It is complexed by metallothioneins (MT) and glutathione/
phytochelatin (GSH/PC), and the resulting bisglutathionato com-
plexes (or PC complexes) are sequestered into the vacuole by ABC
transporters. CDF proteins may protect the mitochondrion
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1998), which is transported into the cell by the CTR1p
transporter (Dancis et al. 1994a, b; Hassett and Kosman
1995). CTR1p is a novel protein with two related pu-
tative copper transporters (CTR2p, CTR3p) in yeast
(Paulsen et al. 1998) and a homologue in man (Zhou
and Gitschier 1997). In addition, Cu2+ is accumulated
by the CorA-related transporters ALR1p and ALR2p
(Dancis et al. 1994a, b; 1994; Hassett and Kosman
1995).

Inside the yeast cell, copper may be bound by various
compounds, and a copper-bisglutathionato complex is
likely to be formed. The metallothioneins of yeast,
CUP1p and CRS5p (Presta and Stillman 1997), proba-
bly store copper. For synthesis of cytochrome c oxidase,
copper is delivered into the mitochondria by COX1p
(Amaravadi et al. 1997; Beers et al. 1997; Glerum et al.
1996). ATX1p, CCSp and the copper P-type ATPase
CCC2p are required for copper insertion into proteins of
the trans-Golgi network (Casareno et al. 1998; Lin and
Culotta 1995; Lin et al. 1997; Yuan et al. 1997, 1995).

The progress of understanding copper homoeostasis
in yeast also sheds some light on copper homoeostasis in
general (Askwith and Kaplan 1998). E. coli also har-
bours a P-type ATPase, probably required for copper
homoeostasis (AtcU, gb 1786691), besides the plasmid-
mediated copper-resistance determinant, which is ho-
mologous to the Pseudomonas system. P-type ATPases
also seem to control copper ¯ow in H. pylori (Ge et al.
1995) and Listeria monocytogenes (Francis and Thomas
1997), two pathogens. In man, defects in the function or
expression of copper-transporting P-type ATPases are
responsible for two hereditary diseases, Menke's and
Wilson's. As in yeast, the two proteins reside in the
trans-Golgi network at low copper concentrations, but
appear in the cytoplasm and cytoplasmic membrane at
higher concentrations (Dierick et al. 1997; Francis et al.
1998; LaFontaine et al. 1998; Vulpe and Packman
1995). Obviously, although alternative splicing of the
Menke's gene and protein isoforms seems to exist, the
protein itself is reversibly transported, and this transport
may be regulated by copper (Petris et al. 1996). In ad-
dition to the copper P-type ATPase in man, more genes
for homologous P-type ATPases have been identi®ed in
mouse, rat, and Caenorhabditis elegans (Koizumi et al.
1998; Schilsky et al. 1998; Yoshimizu et al. 1998). Thus,
the copper-dependent transport of the P-type ATPase
may occur in all eukaryotes.

No life without zinc (Zn)

Zinc occurs exclusively as the divalent cation Zn2+.
With its completely ®lled d orbitals, the zinc cation is not
able to undergo redox changes under biological condi-
tions. It is used to complex polypeptide chains, for ex-
ample, when redox reactions are not desired, and, as a
Lewis base, mainly to activate water (Coleman 1998).
Zinc is a component in such a variety of enzymes and
DNA-binding proteins, such as zinc-®nger proteins,

which also exist in bacteria (Chou et al. 1998), that life
seems not to be possible without this redox-inactive
former of tight complexes.

The toxicity of zinc to E. coli is similar to the toxicity
of copper, nickel and cobalt (Table 2). Zinc toxicity in
man may be based on zinc-induced copper de®ciency
(Fosmire 1990). Zinc is less toxic than copper, in a
mentally disturbed human, 461 zinc-containing coins
were required for a lethal e�ect (Bennett et al. 1997).
Zinc may be complexed by various cellular components
(Daniels et al. 1998; DiazCruz et al. 1998; Jiang et al.
1998; Palmiter 1998), and is transported by members of
a variety of protein families (Fig. 1C). Unspeci®c and
fast uptake of Zn2+ is mediated by Mg2+ transport
systems, as shown in Ralstonia sp. CH34 (Nies and Sil-
ver 1989a). Three transporter groups contribute to the
observed zinc transport by those systems: the CorA MIT
transporter transports zinc in S. cerevisiae (MacDiarmid
and Gardner 1998), and CorA has been shown to be
present in archaea and many bacteria (Smith et al. 1998;
Smith and Maguire 1995), but magnesium transport by
CorA was not inhibited by Zn2+ (Snavely et al. 1989a,
b). A second type of potential chemiosmotically driven
transporter forms the MgtE family (Smith et al. 1995),
which also seems to transport zinc. This protein is
present in Providencia stuartii and a few other gram-
negative and gram-positive bacteria; however, it is not as
broadly distributed as CorA (Townsend et al. 1995).

The third magnesium/zinc transporter is MgtA from
S. typhimurium, a P-type ATPase that may transport
zinc better than magnesium (Snavely et al. 1989a, b;
Townsend et al. 1995). MgtA is regulated by magnesium
starvation (Tao et al. 1998, 1995), and zinc may interfere
with this process, which is at least partially dependent on
the PhoPQ two-component regulatory system. However,
the MgtA P-type ATPase is not the inducible high-spe-
ci®city uptake system for zinc. A periplasmic zinc-
binding protein was found in Haemophilus in¯uenzae to
be important for zinc uptake (Lu et al. 1997), and ABC
transporters (or the evidence for such transporters) were
found in Streptococcus pneumoniae, Streptococcus gor-
donii, and E. coli (Dintilhac et al. 1997; Kolenbrander
et al. 1998; Patzer and Hantke 1998). The E. coli
transporter responds to zinc de®ciency and is regulated
by Zur, which is homologous to the Fur main iron
regulator in bacteria (Patzer and Hantke 1998).

In addition to transport by the CorA-related ALR1p
and ALR2p proteins, uptake of zinc into S. cerevisiae is
mediated by ZRT1p high-a�nity and ZRT2p low-
a�nity transporters of the ZIP family (Paulsen et al.
1998; Zhao and Eide 1996a, b). The related proteins
ZIP1, ZIP2, ZIP3 and may be even ZIP4 have now also
been found in Arabidopsis thaliana (Grotz et al. 1998).
Since the ZIP family seems to be present in plants,
protozoa, fungi, invertebrates and vertebrates (Fox and
Guerinot 1998), uptake of zinc should follow the same
pattern in all eukaryotes.

Two systems are used for zinc detoxi®cation in bac-
teria, P-type e�ux ATPases and RND-driven trans-
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porters (Fig. 1C). In E. coli (Beard et al. 1997; Rensing
et al. 1997b) and in the cyanobacterium Synechocystis
(Thelwell et al. 1998), the ZntA or the ZiaA P-type
ATPase respectively may be responsible for zinc e�ux.
Moreover, P-type ATPases mediating cadmium resis-
tance also bring about zinc e�ux in most cases.

While the P-type ATPases transport zinc only across
the cytoplasmic membrane, the RND systems (Table 1)
are thought to transport across the complete cell wall of
gram-negative bacteria, outer membrane included, a
process named ``transenvelope transport'' (Nikaido
1996, Paulsen et al. 1996; Saier et al. 1994). The ®rst
RND system cloned was the cobalt/zinc/cadmium re-
sistance (Czc) system from Ralstonia sp. CH34 (Mergeay
et al. 1985; Nies et al. 1987). Resistance mediated by Czc
is based on energy-dependent metal ion e�ux (Nies and
Silver 1989b). The Czc determinant contains three
structural genes coding for subunits of the membrane-
bound e�ux complex CzcCB2A (Nies et al. 1990; Ren-
sing et al. 1997c). The driving force for the export of the
heavy-metal cations is not ATP, but the proton-motive
force (Nies 1995). As shown with the reconstituted,
puri®ed CzcA protein, the proton gradient itself, and not
the charge gradient, is required to drive zinc transport
(Goldberg et al. in preparation).

In Czc as well as in other transenvelope transporters,
one component transports the substrates across the cy-
toplasmic membrane; this transporter may be a RND,
an ABC (Table 1) or a MFS (major facilitator super-
family) protein or protein complex. In the Czc system,
this transporter is CzcA. CzcB, a membrane fusion
protein (MFP), contains a cytoplasmic anchor, a hy-
drophobic a-helix at its amino terminus, a coil-to-coil
structure that might span the periplasmic space and a
carboxy terminus that may contain a hydrophobic b-
barrel and inserts this protein into the outer membrane.
The third subunit, CzcC, may be an integral outer-
membrane protein or may contact an integral outer-
membrane protein. Together, all three components
could transport Co2+, Zn2+ and Cd2+ across cyto-
plasmic membrane, periplasm and outer membrane
(Rensing et al. 1997c).

A component of the Czc regulatory system, CzcD, is
the patriarch of yet another family of proteins, CDF
(Table 1), which mostly contains zinc transporters (Nies
and Silver 1995; Paulsen and Saier 1997). CDF proteins
have been found in many bacteria. In S. aureus
(Fig. 2B), the CDF transporter ZntA mediates resis-
tance to zinc and cobalt (Xiong and Jayaswal 1998). S.
cerevisiae contains at least two members of the CDF
family, ZRC1p and COT1p. ZRC1p mediates zinc and
cadmium resistance (Kamizomo et al. 1989) and is in-
volved in regulation of the glutathione level (Kobayashi
et al. 1996). COT1p may substitute ZRC1p, although it
is mainly a cobalt transporter, (Conklin et al. 1994,
1992). Since COT1p transports its substrate across a
mitochondrial membrane, both proteins could be
involved in heavy-metal metabolism of the yeast
mitochondrion. By heterologous expression in Ralstonia

sp. CH34, it has been shown that CzcD as well as the
yeast transporters are energy-dependent e�ux systems
(Anton et al. in preparation). Thus, ZRC1p and COT1p
might function in the e�ux of surplus cations from the
mitochondrion.

Four CDF proteins have been found in mammals,
ZnT1, 2, 3, and 4. ZnT2 and ZnT3 are closely related
and transport zinc into vesicles, ZnT2 into lysosomes
(Palmiter et al. 1996a) and ZnT3 into synaptic vesicles
(Palmiter et al. 1996b). ZnT1 detoxi®es zinc by e�ux
across the cytoplasmic membrane (Palmiter and Findley
1995). The recently identi®ed ZnT4 has a di�erent
function because it may be responsible for zinc secretion
into milk (Huang and Gitschier 1997).

Arsenic (As), a well-known toxin

Arsenic is a heavy metalloid and acts sometimes as a
metal, sometimes not. Mainly it occurs as As(V) in
AsO3ÿ

4 , arsenate, and as As(III) in AsOÿ2 , arsenite. Ar-
senate is structurally highly related to PO3ÿ

4 , thus, its
main toxicity results from its interference with the me-
tabolism of the major bioelement phosphorus. In rural
Germany, it was used in historical times to speed up the
inheritance process by disposing of the old owner of the
house, farm and land; it was therefore called ``inheri-
tance powder''. Because of its toxicity, arsenic has no
function as a trace element; however, bacteria may use it
as electron acceptor for anaerobic respiration (Laver-
man et al. 1995). Aerobic bacteria like Alcaligenes fae-
calis are able to oxidize arsenite again; thus, a
geomicrobial redox cycle of arsenic exists, similar to the
iron and sulfur cycles.

After arsenate has been taken up by phosphate
transport systems (Fig. 1D), there is a problem with its
detoxi®cation: the structural similarity makes it di�cult
to export arsenate e�ectively because of the high phos-
phate concentration in the cell (Nies and Silver 1995).
Thus, arsenate detoxi®cation has to involve an initial
step to di�erentiate it from phosphate. This step is the
reduction of arsenate to arsenite (Ji et al. 1994; Ji and
Silver 1992). For the resistance determinant in E. coli,
arsenate reduction by the ArsC protein is coupled to
glutathione (Oden et al. 1994) via glutaredoxin (Glad-
ysheva et al. 1994; Liu and Rosen 1997). For ArsC from
S. aureus, the electron donor is thioredoxin (Ji et al.
1994).

Arsenite then leaves the bacterial cell. Since anion
export from bacterial cells is always driven by the
chemiosmotic gradient, simple arsenite e�ux systems are
composed of just one e�ux protein, the ArsB product
(Wu et al. 1992). Examples are the plasmid-encoded
system from S. xylosus (Rosenstein et al. 1992) and the
chromosomally encoded system in E. coli (Diorio et al.
1995). In addition to the e�ux only mediated by ArsB,
arsenite transporters exist that are composed of an ArsB
pore plus an ArsA ATPase. The best studied example is
the plasmid-encoded arsenical resistance of E. coli (Chen
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et al. 1986). The ArsB protein in these systems is able to
function alone (Kuroda et al. 1997), therefore arsenite
e�ux carried out by the ArsA2B complex is driven
chemiosmotically and by ATP (Dey and Rosen 1995).
ArsA acts as a dimer with four ATP-binding sites, and
related proteins have been found in bacteria, archaea,
fungi, plants and animals (Li et al. 1996; Li and Rosen
1998; Zhou and Rosen 1997). Arsenite transporters re-
lated to ArsB have been found in S. cerevisiae (Rosen-
stein et al. 1992; Wysocki et al. 1997) and also in man
(KurdiHaidar et al. 1998a, b).

In the pathogenic protozoon Leishmania, a P-glyco-
protein-related ABC transporter is responsible for arse-
nite resistance (Papadopoulou et al. 1994). Cells of these
organisms are able to gain resistance to arsenite and
antimonium by e�ux (Dey et al. 1994). As(III) is most
rapidly detoxi®ed as an As(III)-glutathione conjugate
(Dey et al. 1996) or trypathione conjugate (Mukhopad-
hyay et al. 1996); however, the glutathione conjugate
transporter is di�erent from the P-glycoprotein-related
protein, which seems to export non-conjugated arsenite
(Legare et al. 1997; Papadopoulou et al. 1996).

Molybdate is the biologically most important
heavy metal oxyanion

Molybdenum occurs mostly as Mo(VI) in molybdate.
Molybdenum is an important trace element, since it is
able to perform oxyanion catalysis without being as
toxic as chromate. Although molybdate may also be
transported by sulfate uptake systems, the main import
into bacterial cells is catalysed by an inducible ABC
transporter (Grunden and Shanmugam 1997). For most
enzymes, molybdate is bound to a speci®c molybdate
cofactor (RomaÄ o et al. 1995; Schindelin et al. 1996), a
pterin mono- or dinucleotide. In nitrogenase, however,
the enzyme able to assimilate molecular nitrogen, the
speci®c iron/molybdenum cofactor does not involve a
pterin, and Mo is bound to homocitrate, sulfur and a
histidine residue (Bolin et al. 1993; Chan et al. 1993).

Silver (Ag), a precious metal with medical use

Silver is isoelectronic to copper; however, while the
standard electrochemical potential of the Cu2+/Cu+

pair is )268 mV, the potential of the Ag2+/Ag+ pair is
1.56 V at pH 7. Thus, the main ionic forms of the two
elements are Cu2+ but Ag+. The monovalent silver
cation forms a tight complex with sulfur, the solubility
product of Ag2S being 6.62 ´ 10)50, but only
1.28 ´ 10)36 for CuS, which makes silver very toxic
(Table 2). Because of its toxicity, silver is no trace ele-
ment, but it has been used a long time as an antimi-
crobial agent in medicine (Slawson et al. 1992) and in
coins. In most countries, the eyes of newborn children
are treated with a drop of silver nitrate to prevent
infections with Neisseria strains. Consequently, silver-

resistant bacteria have been evolved, but only recently
have any molecular studies been performed. The copper-
e�uxing ATPase CopB from E. hirae was found to
transport Ag+ as well as Cu+ (Solioz and Odermatt
1995), the Km of both substrates being identical. Silver
resistance in E. coli was recently explained (Gupta et al.
1999). Resistance is catalysed by a RND-type trans-
porter with remarkable similarity to the Czc system from
Ralstonia sp. strain CH34. Thus, silver resistance may be
based on RND-driven transenvelope e�ux in gram-
negative bacteria, e�ux by P-type ATPases in gram-
positive organisms, and additional complexation by
intracellular compounds.

Cadmium (Cd), the best-known toxic heavy metal

The solubility product of CdS is 1.4 ´ 10)29 but
2.91 ´ 10)25 for ZnS (Weast 1984). Thus, cadmium is
more toxic (Ragan and Mast 1990) than zinc (Table 2).
Although a tremendous amount of work has been done,
especially on cadmium toxicity in microorganisms, no
de®ned mechanisms of action have been highlighted.
The e�ects may be summed up under the general
headings ``thiol-binding and protein denaturation'',
``interaction with calcium metabolism and membrane
damage'' and ``interaction with zinc metabolism'', or
loss of a protective function. Only in rare cases has an
important single mechanism been found. Mutation of
dsbA, encoding a product required for disul®de forma-
tion, leads to cadmium sensitivity in E. coli (Rensing
et al. 1997a). Thus, DsbA is a target for cadmium in the
periplasm of gram-negative bacteria. The in¯uence of
the additional proteins induced under cadmium stress in
E. coli is not understood (Ferianc et al. 1998).

On the molecular level, cadmium uptake is barely
understood (Fig. 1E). In Ralstonia sp. CH34 (Nies and
Silver 1989a), and maybe also in S. cerevisiae (Liu et al.
1997), cadmium is accumulated by the magnesium sys-
tem(s). In other bacteria, cadmium enters the cell by
some manganese uptake system (Burke and P®ster 1986;
Laddaga et al. 1985; Tynecka and Malm 1995). In
plants, cadmium is taken up by the calcium uptake
system (Clemens et al. 1998).

Resistance to cadmium in bacteria is based on cad-
mium e�ux. Cyanobacteria, however, contain metal-
lothioneins (Olafson et al. 1979). Ampli®cation of the
smt metallothionein locus increases cadmium resistance
(Gupta et al. 1992) and deletion of it decreases resistance
(Gupta et al. 1993; Turner et al. 1993, 1995). The met-
allothionein gene, smtA, is controlled by the SmtB re-
pressor (Huckle et al. 1993; Morby et al. 1993; Turner
et al. 1996), which also regulates a zinc-transporting
P-type ATPase (Thelwell et al. 1998). Since cyanobac-
teria contain a variety of RNA- and P-type transport
systems, transport may also be important for cadmium
resistance in these bacteria.

In gram-negative bacteria, cadmium seems to be de-
toxi®ed by RND-driven systems like Czc, which is
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mainly a zinc exporter (Nies 1995; Nies and Silver
1989b) and Ncc, which is mainly a nickel exporter
(Schmidt and Schlegel 1994). In gram-positive bacteria,
the ®rst example of a cadmium-exporting P-type ATPase
was the CadA pump from S. aureus (Nucifora et al.
1989; Silver et al. 1989). This protein was the ®rst
member of a subfamily of heavy-metal P-type ATPases,
and all the copper, lead and zinc transporters found later
are related to this protein. Cadmium resistance in other
gram-positive bacteria was also found to be mediated by
CadA-like proteins (Liu et al. 1997).

In S. cerevisiae (Fig. 2C), cadmium is bound by glu-
tathione, and the resulting cadmium-bisglutathionato
complex is transported by the YCF1p transporter, an
ABC transporter, into the vacuole (Li et al. 1997, 1996).
This may be a general principle in all eukaryotes. The
multidrug-resistance-associated protein from man may
complement a YCF1 mutation with respect to cadmium
resistance (Tommasini et al. 1996). If phytochelatins are
formed from the glutathione, the resulting cadmium-
phytochelatin complexes are transported (Inouhe et al.
1996; Wu et al. 1995) by the HMT1p ABC transporter
instead (Ortiz et al. 1992, 1995), and a similar trans-
porter has also been found in A. thaliana (Tommasini
et al. 1996). Although transport by CDF transporters
like ZRC1 and binding by metallothioneins may also be
involved in cadmium metabolism in all eukaryotes, the
main detoxi®cation seems to be mediated by transport of
glutathione/phytochelatin complexes by ABC trans-
porters into the vacuoles.

Antimonite, a rare toxin

Antimonite is isolelectronic to arsenite and has been
mentioned above in the section on arsenical compounds.
Antimonite enters the E. coli cell by the glycerol facili-
tator, GlpF (Sanders et al. 1997). It is detoxi®ed by all
systems giving resistance to arsenite by e�ux (Rosen-
stein et al. 1992; Sanders et al. 1997). Since antimonite
also serves as an inducer of these resistance systems,
biosensors for antimonite and arsenite have been de-
veloped (Ramanathan et al. 1997; Scott et al. 1997;
Tauriainen et al. 1997).

Tungsten (W), the bene®cial exception

Tungsten is by far the heaviest element with any bene-
®cial function. In sea water tungsten is present at 1% of
the concentration of molybdenum (Weast 1984) but, in
some anaerobic environments, WS may be more readily
available than MoS. Thus, all tungsten-containing en-
zymes have been found in bacteria and archaea, mostly
those with an anaerobic metabolism. The ®rst tungsten-
containing enzyme found was a reversible formate de-
hydrogenase (Andreesen and Ljungdahl 1973) and more
groups of proteins followed (Kletzin 1997). Some met-
hanogenic bacteria contain tungsten- and molybdenum-

containing enzymes for the same purpose. Interestingly,
the tungsten enzymes are expressed constitutively while
their Mo counterparts were induced only in the presence
of molybdate (Hochheimer et al. 1998). Like molybde-
num, tungsten may be used as constituent of a tungsten
cofactor; however, tungsten-containing nitrogenases
have not been reported so far.

Mercury (Hg), the heavy metal with
the strongest toxicity

The a�nity of Hg2+ to thiol groups is even stronger
than the a�nity of cadmium to sul®de; the solubility
product of HgS is 6.38 ´ 10)53 (Weast 1984). Conse-
quently, it is the most toxic of all the elements tested in
E. coli (Table 2). Mercury has been used in amalgam for
tooth ®llings for decades; however, recent results ques-
tion the use of this element (Lorscheider et al. 1995).

Because of its high toxicity, mercury has no bene®cial
function. However, since bacteria are very likely to be
confronted with toxic Hg2+ concentrations, mercury
resistance determinants, mer, are very widespread (Silver
1996; Silver and Phung 1996). Resistance to mercury
(Fig. 1F) is based on its unique peculiarities: its redox
potential [its electrochemical potential of Hg(II)/Hg(0)
at pH 7 is +430 mV] and the vapour pressure/melting/
boiling point of metallic mercury, which is extraordi-
narily low for a metal [melting point )39 °C, boiling
point 357 °C (Weast 1984)]. Thus, living cells are able to
reduce Hg2+ to the metal, which does not remain inside
the cell with the potential of becoming oxidized again,
but leaves the cell by passive di�usion (Silver 1996; Sil-
ver and Phung 1996). Once outside, however, metallic
mercury may be oxidized again by other bacteria (Smith
et al. 1998).

To prevent toxic e�ects of Hg2+ on periplasmic
proteins in gram-negative bacteria, Hg2+ is transported
into the cell via speci®c uptake systems (Fig. 1F). In
gram-negative bacteria, it is bound by the periplasmic
Hg2+-binding protein MerP as the ®rst step of detoxi-
®cation (Qian et al. 1998). MerP probably delivers the
toxic cation to the mercury transporter MerT for
transport into the cytoplasm (Hobman and Brown
1996). Alternatively, or in addition to MerTP, another
uptake route exists which involves the MerC protein
(Hamlett et al. 1992; Sahlman et al. 1997). Once inside
the cell, Hg2+ is reduced with NADPH to Hg(0) by the
MerA protein, which is related to glutathione reductase
and other proteins (Schiering et al. 1991).

Organomercurials, which are more toxic than Hg2+,
may also be detoxi®ed if the mer resistance determinant
encodes a MerB organomercurial lyase in addition to the
other Mer proteins (Silver 1996; Silver and Phung 1996).
After cleavage by MerB, the resulting Hg2+ is reduced
by MerA. The high toxicity of organomercurials and
other methylated and alkylated heavy-metal compounds
makes it very unlikely that these kinds of chemical
modi®cation of heavy metals are metal-resistance
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mechanisms. Methylation has been observed for arsenic,
mercury, tin, lead, selenium and tellurium (Fatoki 1997).

Because of its high toxicity, and the unique combi-
nation of reducibility and the ability of the product to
volatolise, mercury is an ideal candidate for bioremedi-
ation. To increase the ability of the natural bacterial soil
community to remediate Hg, the bacterial MerA re-
ductase was ®rst actively expressed in yeast (Rensing
et al. 1992), then in plants (Rugh et al. 1998a, 1996),
even in useful plants (Rugh et al. 1998b). Together with
a mer-operator-based lux biosensor (Selifonova et al.
1993), this is the ®rst step towards a real sensing and
remediation of a heavy-metal contamination.

Lead (Pb) is not as bad as its reputation

Lead is no transition element, but belongs to the element
group IVa, C, Si, Ge, Sn, Pb. In sea water, it is even
more rare than mercury (Weast 1984). Owing to its low
solubility (lead phosphate especially is insoluble, with a
solubility product of 10)54) its biologically available
concentration is low. Thus, lead is not extraordinarily
toxic for microorganisms (Table 2).

Lead has been used in large amounts for 2500 years
(Hong et al. 1994), recently as a fuel additive, although
the toxicity of lead for animals and man has been well
known for a long time (Johnson 1998). Lead acts on the
central nervous system, on blood pressure and on re-
production (Goyer 1993). In rural Albania, repair of a
broken mill stone with lead and the resulting contami-
nation of the ¯our recently led to the death of two
people (Panariti and Berxholi 1998).

Lead-tolerant bacteria have been isolated (Traja-
novska et al. 1997), and precipitation of lead phosphate
within the cells of these bacteria has been reported
(Levinson and Mahler 1998; Levinson et al. 1996). In
Ralstonia sp. CH34 it has been shown that resistance to
lead is mediated by a P-type ATPase (Borremans and
van der Lelie, unpublished observation). Moreover, the
CadA P-type ATPase is also able to transport Pb2+

(Rensing et al. 1998). Thus, lead resistance may also be
based predominantly on metal ion e�ux.

Uranium, the radioactive exception

Uranium, the natural element with the highest atomic
number, is an actinide and mainly occurs as U(VI) in
UO2ÿ

2 . In this form, its toxicity to bacteria is low (Ta-
ble 2); however, the deliberate ingestion of 15 g (!) ura-
nium acetate led to acute renal failure in man (Pavlakis
et al. 1996). Various ionic forms are possible, and it may
be used as a substrate for anaerobic respiration (Lovley
et al. 1991). No other bene®cial actions of this radio-
active element are known. As with many heavy metals,
biotechnologically inspired investigations speculate on
bioremediation of uranium by binding to bacteria, e.g.
to Citrobacter (Jeong et al. 1997; Yong and Macaskie

1998), E. coli (Basnakova et al. 1998) or Pseudomonas
aeruginosa (Hu and Reeves 1997).

Biotechnological use of heavy-metal resistance:
an opinion

Biotechnology aims to create value by transforming a
cheap substance into an expensive product. There are
three areas for using heavy-metal resistance in biotech-
nology: ®rst, adding metal resistance to a microorganism
may facilitate a biotechnological process, which may or
may not be linked to heavy metals. Second, heavy-metal-
resistant bacteria may be used for any kind of
bio-mining of expensive metals, directly on ores or by
recovering metals from e�uents of industrial processes.
Third, heavy-metal-resistant bacteria may be used for
bioremeditation of metal-contaminated environments.

How metal resistance can be added to a microor-
ganism of biotechnological use depends on the amount
of control one has over the process, which itself depends
on the increase of value the process creates. In a highly
controlled fermentor reaction, the insertion of a heavy-
metal-resistance determinant into the chromosome of a
particular bacterium is easily brought about by molec-
ular genetics, if the toxic e�ect of a heavy metal has to be
diminished. On the other hand, a sewage plant with
limited control over the cleaning process probably does
not allow the use of a highly modi®ed organism. How-
ever, in these cases, heavy-metal-resistant natural bac-
teria may be established in the sewage plant, or plasmids
with a broad host range of replication and metal-resis-
tance expression could easily be introduced into the
bacterial community. The presence of heavy metals will
cause the plasmids to be stably maintained in the bac-
terial population. In all cases, determinants for e�ux
systems should be used, since detoxi®cation by e�ux is
more economical for bacteria than binding, except in the
case of mercury.

For biomining of ores, either the bacteria must be
able to solubilize the respective metal directly, e.g. by
reduction or oxidation, or the biotechnological trans-
formation of another element, metal or not, is used in an
indirect process. A few metals may be reduced or oxi-
dized by bacteria, e.g. copper and iron. The indirect
interaction with other elements is limited to sulfur, car-
bon, some metals, and the e�ect of the organic acids
excreted by the bacteria. For recycling of metals in an
industrial e�uent, the value of the metal obtained must
be higher than the value of the bacteria used. In most
cases, the high costs of growing bacteria and the low
speci®city of the bacterial accumulation process make
such a cleaning procedure unattractive.

Bacterial bioremediation has many problems. Al-
though the binding of metals to bacteria has been de-
scribed for many years, the commercial use of this
procedure is slow. It is probably too expensive to grow
bacteria and use them to bind metals; simple ion ex-
changers are cheaper and do the same job. There are a
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few exceptions. Owing to their high metabolic power,
bacteria have long been known for their essential func-
tion in the global cycle of elements. The sulfur circle may
be used to remediate metals. First, acidophilic, aerobic
chemolithoautotrophs like Thiobacillus solubilize heavy
metals by producing sulfuric acid and maybe some
complexing agents. In a second step, anaerobic sulfur-
respiring bacteria produce H2S, which precipitates the
heavy-metal cation again. The metal sul®des may ®nally
be used in chemical processes to purify the metal.
However, this process must pay its way, by preventing
expensive waste products and/or by the value of the
metal obtained. Secondly, bacteria may be able to bind
metals from extremely diluted solutions, a procedure
that is only interesting if the metal is expensive or very
toxic and has to be removed. Phytoremediation may be
a third exception; however, the section on chromate
shows the problems involved in getting plants to trans-
port chromium into shoots or leaves. Much work has to
be done to generate plants that grow faster than the
natural accumulators and that might be used with the
existing agricultural techniques.
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