
Information and Software Technology 52 (2010) 436–445
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Identification of non-functional requirements in textual specifications:
A semi-supervised learning approach

Agustin Casamayor *, Daniela Godoy, Marcelo Campo
ISISTAN Research Institute, UNICEN University, Campus Universitario, Paraje Arroyo Seco, B7001BBO, Tandil, Bs. As., Argentina
CONICET, National Council for Scientific and Technical Research, C1033AAJ, Bs. As., Argentina

a r t i c l e i n f o
Article history:
Received 25 March 2009
Received in revised form 5 September 2009
Accepted 27 October 2009
Available online 10 November 2009

Keywords:
Non-functional requirements
Requirement classification
Semi-supervised text learning
0950-5849/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.infsof.2009.10.010

* Corresponding author. Address: ISISTAN Research
Campus Universitario, Paraje Arroyo Seco, B7001BBO,
+54 2293 439681/439682x42; fax: +54 2293 439681

E-mail address: acasamay@exa.unicen.edu.ar (A. C
a b s t r a c t

Context: Early detection of non-functional requirements (NFRs) is crucial in the evaluation of architec-
tural alternatives starting from initial design decisions. The application of supervised text categorization
strategies for requirements expressed in natural language has been proposed in several works as a
method to help analysts in the detection and classification of NFRs concerning different aspects of soft-
ware. However, a significant number of pre-categorized requirements are needed to train supervised text
classifiers, which implies that analysts have to manually assign categories to numerous requirements
before being able of accurately classifying the remaining ones.
Objective: We propose a semi-supervised text categorization approach for the automatic identification
and classification of non-functional requirements. Therefore, a small number of requirements, possibly
identified by the requirement team during the elicitation process, enable learning an initial classifier
for NFRs, which could successively identify the type of further requirements in an iterative process.
The goal of the approach is the integration into a recommender system to assist requirement analysts
and software designers in the architectural design process.
Method: Detection and classification of NFRs is performed using semi-supervised learning techniques.
Classification is based on a reduced number of categorized requirements by taking advantage of the
knowledge provided by uncategorized ones, as well as certain properties of text. The learning method
also exploits feedback from users to enhance classification performance.
Results: The semi-supervised approach resulted in accuracy rates above 70%, considerably higher than
the results obtained with supervised methods using standard collections of documents.
Conclusion: Empirical evidence showed that semi-supervision requires less human effort in labeling
requirements than fully supervised methods, and can be further improved based on feedback provided
by analysts. Our approach outperforms previous supervised classification proposals and can be further
enhanced by exploiting feedback provided by analysts.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Non-functional requirements (NFRs) constrain the behavior and
development of a software system as they specify overall qualities
or attributes the resulting system should have. Examples of NFRs
include security, performance, availability, extensibility and porta-
bility, among others. NFRs play a critical role in architectural de-
sign, so that the early detection of these expected software
quality attributes is crucial in order to take them into consideration
starting from initial design decisions. Despite this may seem to be
an easy task, it can be really difficult and time consuming, espe-
ll rights reserved.

Institute, UNICEN University,
Tandil, Bs. As., Argentina. Tel.:
x52.
asamayor).
cially considering that most NFRs are somehow hidden across
requirements that mainly specify functionality, and could be easily
ignored.

Methods for the elicitation of non-functional requirements of-
ten involve the use of questionnaires, checklists or templates for
inquiring stakeholders concerning quality issues [12,22]. Further
classification of the elicited requirements could be assisted by do-
main-specific knowledge (i.e. the Language Extended Lexicon or
LEL, which uses the vocabulary of the domain together with a
NFR knowledge base [10]) or by ontologies representing quality as-
pects that should be taken into consideration [2,20].

For textual requirements expressed in natural language, the
detection and classification of NFRs have been approached using
supervised learning techniques [7,8] and, in some cases, integrated
into recommender systems [6,4]. From the supervised learning
perspective, a set of previously categorized requirements is used

http://dx.doi.org/10.1016/j.infsof.2009.10.010
mailto:acasamay@exa.unicen.edu.ar
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

A. Casamayor et al. / Information and Software Technology 52 (2010) 436–445 437
to train a classifier to recognize the type of novel requirements (i.e.
security, portability, etc.). The main shortcoming of supervised
classification is the high number of examples or already catego-
rized requirements needed to generalize a hypothesis with certain
level of confidence. Even though requirements belonging to past
software projects can be used for training, the variability in the
vocabulary employed by different elicitation teams and system do-
mains prevent the resulting text classifiers from obtaining accurate
results.

In this paper we introduce a semi-supervised approach [5] for
the automatic detection and classification of NFRs aiming at
exploiting uncategorized requirements to reduce the number of
examples needed for learning. For text classification, unlabeled
data (requirements with no assigned class labels) used in conjunc-
tion with a small amount of labeled data (requirements with as-
signed class labels) can produce a considerable improvement in
learning accuracy taking advantage of natural word co-occurrence
in texts [32]. The resulting classifiers can be used for requirement
analysis in software projects in which analysts are able to provide
an initial set of categorized requirements detected, for example,
during interviews or using an alternative method. In this scenario,
analysts will receive suggestions about a possible classification of
the remaining requirements and they can give feedback to refine
classification in an iterative process.

In the experiments conducted and summarized in this paper,
high performance rates obtained with the semi-supervised classifi-
ers materialized through the Expectation Maximization strategy
[32] suggest that this approach may be successfully used for
requirement analysis in software development projects, remark-
ably reducing the effort of manual identification and classification
of requirement documents written in natural language. In addition,
the proposed approach outperforms several supervised algorithms
it was compared to.

The remaining of this paper is organized as follows: Section 2
discusses related works in the use of linguistic techniques for ana-
lyzing textual requirements and detecting different types of non-
functional requirements. Section 3 presents the proposed approach
to semi-supervised categorization of textual requirements. Empir-
ical evaluation of this approach is summarized in Section 4. Finally,
concluding remarks are stated in Section 5.
2. Related works

Informal textual descriptions written in natural language are a
common means for specifying requirements in early phases of soft-
ware projects [30]. Numerous attempts have been made to con-
struct automatic tools for assisting developers during the
analysis of textual specifications of requirements. Both information
retrieval (IR) and natural language processing (NLP) techniques
have been applied in the development of tools supporting more
efficient (semi-) automatic requirement analysis.

Park et al. [36] proposed a requirement support system that
evaluates the resemblance of requirement sentences using similar-
ity measures stemming from IR field to identify possible redundan-
cies and inconsistencies as well as to detect potentially ambiguous
requirements. ReqSimile [33] supports the manual linkage between
customer wishes and product requirements by suggesting potential
links based on standard query-retrieval techniques. In this system it
is assumed that customer wishes and product requirements refer to
the same functionality with the same terminology, so that potential
links for an incoming requirement are obtained according to their
similarity with preexisting requirements. Two-Tiered Clustering
(TTC) algorithm [35] indexes and clusters requirement specifica-
tions by functionality. Reuse-Assisted Requirements Elicitation
(RARE) [9] implements a scheme that combines natural language
processing, in which texts are parsed for building a semantic net-
work with the assistance of a domain-mapping thesaurus, with fac-
eted classification for the analysis and refinement of requirements.

The problem of assessing the quality of textual requirements
has also been approached using linguistic techniques. Experiences
of using lightweight formal methods for partial validation of
requirement documents show that not even simple errors but also
more subtle ones, sometimes overlooked by a human inspection,
can be detected [16]. Likewise, the use of logic for identifying
and analyzing inconsistencies in requirements from multiple
stakeholders has been found to be effective in a number of studies
[17]. Fantechi et al. [14] discussed the application of linguistic
techniques aiming to collect quality metrics and spot defects re-
lated to the inherent ambiguity of textual descriptions. NLP tech-
niques have also been explored as a means for bridging the gap
between informal and formal requirement specifications in several
works [23,15].

Text categorization methods applied to requirement documents
can also provide a good basis for efficient requirements analysis.
Ko et al. [24,25] propose an automatic requirement classification
method to be applied in a Web-based analysis-supporting system.
To automatically classify the collected informal requirements into
several views or topics, the system requires as input a set of words
representing the viewpoint of each analyst. This initial set is after-
wards expanded based on co-occurrence of words in the require-
ment texts to construct topic centroids allowing the classification
of novel requirements. The main shortcoming of this method is
its reliance on analysts for extracting topic words for the different
views of the software to be developed. Ormandjieva et al. [34] ap-
plied text classification techniques to build a system for automatic
detection of ambiguity in requirements based on several quality
indicators defined in a pre-defined quality model.

More recently, the problem of detection and classification of NFR
requirements was tackled from a supervised classification point of
view [7,8]. In these works a NFR classifier uses a training set of pre-
classified requirements to discover a set of weighted indicator
terms for each NFR type, i.e. security, performance, etc. Hence, the
likelihood of a new requirement to suit a certain NFR type is com-
puted as a function of the occurrence of the corresponding indicator
terms within the text of this requirement. The NFR classifier outper-
forms the results of other supervised classifiers such as naïve Bayes
and standard decision trees, even considering different schemes for
feature subset selection [19]. These ideas were taken even further
by designing an automatic speech recognition technique for captur-
ing non-functional requirements during meetings with stakehold-
ers using a context-free grammar to recognize the indicator terms
[43]. The principal drawback of applying supervised methods to
NFR detection is related to the amount of pre-categorized require-
ments needed to reach good levels of precision in the classification
process. The NFR classifier uses data from past projects to classify
novel requirements in ongoing projects. However, the use of dis-
tinctive vocabulary, domain terminology and writing styles across
different projects as well as requirement elicitation teams hinder
the application of this method. Conversely, the approach proposed
in this paper iteratively classifies requirements gathered for a single
project starting from a few categorized requirements and exploit-
ing statistical properties of texts.

3. Semi-supervised classification of NFRs

Non-functional requirements are one of the hardest problems
analysts and designers have to deal with during software design.
NFRs usually specify critical and highly important quality attri-
butes the client asked for his software, and they not only have to
be identified within a possible large set of requirements docu-
ments, but also classified and prioritized.

Fig. 1. Overview of the semi-supervised approach for NFRs classification.

438 A. Casamayor et al. / Information and Software Technology 52 (2010) 436–445
In a real-world scenario, the analyst of a software development
project needs to go through all the requirement documents gath-
ered by a requirement elicitation team in order to decide whether
they specify functional or non-functional requirements, as well as
the categories or classes NFRs belong to (i.e. security, availability,
scalability, etc.), with the ultimate goal of prioritizing and mapping
them into architectural concerns.

This is an enormously time consuming task which requires a lot
of effort from analysts since every requirement document must be
read and manually classified. In order to deal with the problem of
detecting and classifying non-functional requirements into a set of
pre-defined categories or classes, we propose a semi-supervised
text learning approach. In this approach, a classifier automatically
recognizes different types of NFRs within a set of documents, each
describing a requirement for the system written in natural lan-
guage, and presents them to analysts for their inspection.

Fig. 1 depicts an overview of the proposed scheme. Initially,
some categorized requirements are used in conjunction with
non-categorized ones to learn a text classifier using a semi-super-
vised learning algorithm. The Expectation Maximization (EM)
strategy was implemented with naïve Bayesian classifiers to
accomplish this goal. An initial set of categorized requirements
can be either detected by the requirement team as they perform
interviews with users, or established with some alternative ap-
proach such as the simple method of using a pre-defined fixed
set of keywords for classification proposed in [8]. Once a classifier
is learned, it is used to categorize further unlabeled requirements.
Optionally, the requirements classified with the highest confidence
and/or those which received feedback from the analysts can be
used as labeled requirements to repeat the process.

In the following subsections we firstly describe how unstruc-
tured documents describing requirements are transformed into
suitable representations to be used as input for machine learning
algorithms through the application of a number of well-known
pre-processing steps. Then, an introduction to classic Bayesian
classification is followed by an explanation of an existing semi-
supervised learning method used in our approach for the identifi-
cation and classification of NFRs. It worth noticing that these are
well-known notions in the machine learning area that are used
as part of the proposed requirement management approach.

3.1. Pre-processing

The most common method in the information retrieval (IR) field
to obtain effective representations of documents is the vector
space model (VSM) [40]. In this model, each document is identified
by a feature vector in a space in which each dimension corresponds
to a distinct term associated with a numerical value or weight indi-
cating its importance.

Each document d from a document collection D is identified by
a vector in the t-dimensional space, in which each vector compo-
nent wij represents the weight of term ti in the document dj:

~dj ¼ ðw1j;w2j; . . . ;wjTjjÞ ð1Þ

Each term t 2T, where jTj represents the total number of dis-
tinctive terms in the document collection or vocabulary, is
weighted using the term frequency–inverse document frequency
(TF–IDF) [39] term weighting function shown in the following
equation:

tf —idf ðti;djÞ ¼ #ðti; djÞ � log
jDj

#DðtiÞ

� �
ð2Þ

where ti denotes a term, dj denotes a document, D is the complete
set of documents in the collection, #ðti;djÞ denotes the term fre-
quency, that is, the number of times the term ti occurs in dj, jDj de-
notes the total number of documents in D, and #DðtiÞ denotes the
document frequency, that is, the number of documents in D in which
ti occurs. This measure formalizes two empirical observations. First,
the more times a term occurs in a document, the more relevant it
would be to determine the document class. Second, the more times
the term occurs along the collection of documents, the less power-
ful it is to discriminate among documents.

Several pre-processing steps are followed to transform textual
requirements into vectors according to the vector space model.
When dealing with unstructured text documents, the most com-
mon pre-processing tasks are normalization (including changing
cases of letters, digits, hyphens and punctuation marks), stop-word
removal and stemming.

In a first step, normalization is performed on the documents
describing requirements. This step includes removing numbers
and terms that contain digits, breaking hyphens to get individual
words, removing punctuation marks, and finally converting letters
to lower case.

The next pre-processing task is stop-word removal. Stop-words
are words that occur frequently in a given language, which help to
construct sentences or phrases but have little or no inherent
semantic content (common stop-words in English include a, about,
an, are, as, etc.). Some of these words are articles, prepositions, con-
junctions, pronouns and very common verbs. Usually, stop-words
are removed using a standard list or negative dictionary composed
of a set of words that, due to their frequency or semantics, do not

A. Casamayor et al. / Information and Software Technology 52 (2010) 436–445 439
possess sufficient discriminative power [26]. In this work, we used
a standard English stop-word list1 composed of 319 different words.

After stop-word removal, a stemming algorithm is applied in
order to reduce the morphological variants of the remaining words
to their common roots, considering plural nouns, verb tenses, ger-
unds, pronouns, etc. Stemming or conflation algorithms can be de-
fined as processes of linguistic normalization in which
morphological variants of words are reduced to their root form,
also known as stem. Stemming allows to reduce the dimensionality
of the vector space by mapping several morphologically similar
words into their common word stem. Porter algorithm [37] was
applied for stemming words in the documents describing
requirements.

Finally, the last pre-processing step involves the assignment of
weights to all the resulting terms (actually stems) based on the tf–
idf weighting function defined in Eq. (2).

3.2. Bayesian classification

The problem of learning classifiers that can predict the class
labels of new, previously unseen examples based on a set of
labeled training examples is known as supervised learning.
Supervised learning in text domains is usually referred to as
text learning, text classification or text categorization. It in-
volves assigning a set of documents to one or more pre-de-
fined classes or categories C ¼ fc1; c2; . . . ; cjCjg, where each
class is supposed to contain documents with certain common
properties. In a learning phase, a supervised learning algorithm
is applied to induce a classifier, model or hypothesis, which is
in turn used to predict the class of new documents in a clas-
sification phase.

Naïve Bayesian classification is one of the most popular tech-
niques for text classification and has been reported as performing
extremely well in practice in many research studies [29]. The
Bayesian approach for classification consists in finding the most
probable class for a a new example within a finite set of classes gi-
ven the attributes that describe this example.

In the Bayesian learning framework for text classification it is
assumed that text data was generated by a parametric model
and training data is used to calculate Bayes optimal estimates for
the model parameters. Based on these estimates, new test docu-
ments are classified using Bayes rule to calculate the posterior
probability that a class would have generated the test document
in question. In consequence, classification consists simply in the
selection of the most probable class.

From the several variants of naïve Bayes classifiers, it has been
shown that the multinomial model is most often the best choice for
text categorization applications since it captures word frequency
information in documents [29,13]. In this model, documents are
assumed to have been generated by a mixture model parameter-
ized by H, being each document an ordered list of words drawn
from the vocabulary V ¼ hw1;w2; . . . ;wjv ji.

The estimate of H, denoted bH, is made based on the available
training data. Given a set of training documents D ¼ fD1;D2;

. . . ;DjCjg, where Dj is the subset of data for class cj and jCj is the
number of classes, the estimate probability of a word wt given class
cj is the number of times that wt occurs in the training data Dj di-
vided by the total number of occurrences in the training data for
that class. Considering Laplacian smoothing to handle zero counts
for infrequent words this can be formulated as follows:

Pðwtjcj; bHÞ ¼ 1þ
PjDj

i¼1NtiPðcjjdiÞ
jV j þ

PjV j
s¼1

PjDj
i¼1NsiPðcjjdiÞ

ð3Þ
1 www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words.
where Nti is the number of times that the word wt occurs in the doc-
ument di and PðcjjdiÞ ¼ 1 for each document in Dj and PðcjjdiÞ ¼ 0 for
documents of other classes.

The class prior probabilities can be also calculated using train-
ing data as follows:

Pðcjj bHÞ ¼ 1þ
PjDj

i¼1PðcjjdiÞ
jCj þ jDj ð4Þ

More informally, Eqs. (3) and (4) can be re-written as:

Pðwt jcj; bHÞ ¼ 1þ No: of occurrences of wt in class j
jV j þ No: of words in class j

ð5Þ

Pðcjj bHÞ ¼ 1þ No: of documents in class j
jCj þ jDj ð6Þ

Given estimates of both parameters calculated from training
documents, classification can be performed on test documents by
calculating the posterior probability of each class given the evi-
dence of the test document, and selecting the class with the high-
est probability. Using Bayes rule this can be formulated as follows:

Pðcjjdi; bHÞ ¼ Pðcjj bHÞPðdijcj; bHÞ
Pðdij bHÞ ð7Þ

¼ Pðcjj bHÞQjdi j
k¼1Pðwdi ;kjcj; bHÞPjCj

r¼1Pðcrj bHÞQjdi j
k¼1Pðthough wdi ;kjcr; bHÞ ð8Þ

where wdi ;k is the word in position k of the document di. In order to
reduce computation in evaluating Pðdijcj; bH:Þ, the class conditional
independence assumption is made in naïve Bayesian classification.
This presumes that words are conditionally independent of one an-
other given the class label, accounting for the substitutions in Eq.
(8).

The most probable class is called a maximum a posteriori (MAP)
hypothesis, denoted cMAP , and can be determined by using the
Bayes theorem to calculate the posterior probability of each candi-
date class in C. For each possible class cj, cMAP is selected as follows:

cMAP ¼ arg max
cj2C

Pðcjjdi; bHÞ ð9Þ
3.3. Semi-supervised classification with EM

In supervised learning, the selected algorithm (for example,
naïve Bayes, k-NN, etc.) uses some labeled training examples from
every class to generate a classification function or hypothesis. The
problem of this approach is the large number of labeled examples
required to learn a classifier capable of accurately predicting the la-
bel of a novel example. Furthermore, labeling is a time and cost
consuming as well as error prone task since it has to be performed
manually by domain experts.

Partially-supervised classification implies that there is no need
for full supervision, considerably reducing the labeling effort re-
quired from users or experts. One of the possible strategies for par-
tial supervision, commonly known as semi-supervised learning,
consists of learning from both labeled and unlabeled examples or
documents in the case of text categorization. This strategy is also
known as LU learning (L stands for labeled and U for unlabeled).
LU learning algorithms are based on a small set of labeled examples
belonging to each class and a considerably larger set of unlabeled
examples that are used to improve learning [28]. Although small,
every class must have a set of labeled examples in order to enable
learning.

The Expectation Maximization (EM) algorithm [11] is a popular
class of iterative algorithms for maximum likelihood estimation in
problems with incomplete data. It consists of two steps, the Expec-

http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words

 0

 10

 20

 30

 40

 50

 60

 70

Availability
Legal

Look−And−Feel
Maintainability
Operational
Performance
Scalability
Security
Usability
Features
Portability

of

 re
qu

ire
m

en
ts

 (d
oc

um
en

ts
)

Fig. 2. Examples distribution in the collection of textual requirements.

440 A. Casamayor et al. / Information and Software Technology 52 (2010) 436–445
tation step or E-step and the Maximization step or M-step. Basically,
the first step fills in the missing data based on the current estima-
tion of the parameters and the second step re-estimates the
parameters maximizing the likelihood [28]. Unlabeled documents
can be regarded as having missing data because of their lack of
class labels. The parameters found on the M-step are in turn used
to begin another E-step, and the process is repeated until EM con-
verges to a local minimum when the model parameters stabilize.

EM is not an algorithm, strictly speaking, but a strategy or gen-
eral framework in which a base algorithm is ran iteratively. Nigam
et al. [32] proposed the EM algorithm for LU learning with naïve
Bayes classification, which is summarized in Algorithm 1. The
parameters that EM estimates in this case are the probability of
each word given a class and the class prior probabilities as were
formulated in Eqs. (3) and (4) for Bayesian classification.

Algorithm 1. EM algorithm with naïve Bayesian classification

1: Learn an initial naïve Bayesian classifier f from only the labeled set
L (using Eqs. (3) and (4));

2: repeat
// E-Step
3: for each example di in U
4: Using the current classifier f to compute PðcjjdiÞ (using Eq. (7))
5: end for
// M-Step
6: Learn a new naïve Bayesian classifier f from L [U by computing

PrðcjÞ and Prðwt jcjÞ (using Eqs. (3) and (4))
7: until the classifier parameters stabilize
8: Return the classifier f from the last iteration

Initially, the documents in the labeled set L have class labels,
whereas the documents in the unlabeled set U have missing class
labels. EM is used to estimate the missing class labels based on
the current model, i.e. to assign probabilistic class labels to each
document di belonging to U. Thus, in each iteration EM assign to
every document in U a probability distribution on the classes that
it may belong to, i.e. PðcjjdiÞ which takes a value in the ½0;1� inter-
val. Instead, documents in L belong to a single class ck that is
known beforehand, i.e. PðckjdiÞ ¼ 1 and PðcjjdiÞ ¼ 0 for j – k. Using
both the labeled set L and the unlabeled set U with the assignments
of PðcjjdiÞ, a new naïve Bayes classifier is constructed. This gives
place to the next iteration of the algorithm, continuing until the
classifier parameters, i.e. PðwtjcjÞ and PðcjÞ, no longer change or ex-
hibit minimum changes.

The basic EM approach is based on the assumption that there is
one-to-one correspondence between mixture components and
classes. For textual data, a violation of this assumption is equiva-
lent to saying that a class may consist of several different sub-clas-
ses or sub-topics, each best characterized by a different word
distribution. In principle, the assumption holds in the case of
requirements since NFRs focuses in certain software characteristics
instead of multiple topics.

In this work, the EM strategy was implemented as it is de-
scribed in Algorithm 1 using Java with the naïve Bayes algorithm
provided by Classifier4J,2 a Java library designed for text classifica-
tion. Our own implementation was used to carry out an experimen-
tal evaluation of the approach using a dataset of functional and non-
functional requirements.

4. Empirical evaluation

In order to evaluate the proposed approach, we designed and
carried out several experiments aiming at assessing the perfor-
2 http://classifier4j.sourceforge.net/.
mance of semi-supervised classification of requirements as well
as comparing the results with those of supervised approaches
found in the literature. The experimental setting, results and com-
parison with other approaches are detailed in this section.
4.1. Experimental setting

The approach proposed for NFRs identification is focused on
semi-supervised text classification. Thus, the main aspect to eval-
uate is the performance of this kind of classifiers, particularly
materialized through the Expectation Maximization strategy, in
categorizing a set of textual requirements. For comparison pur-
poses, we also tested some other common text classification ap-
proaches, including Rocchio algorithmwhich is also known as TF–
IDF classifier because this is the most frequently used weighting
scheme [21], k-NN and naïve Bayes [42].

NFRs are concerned with different software quality attributes a
system must exhibit, such as accuracy, performance, security and
modifiability. For the N different non-functional properties to be
considered, N binary classifiers are learned, each one trained to dis-
tinguish the requirements belonging to a single class from those in
all of the remaining classes. Hence, during the training process, a
document that belongs to a class is added as a positive example
to the corresponding classifier and as a negative example to the
rest of the binary classifiers. At classification time, every document
is tested against the N classifiers and the classifier with the highest
output function or probability score assigns the class label. This is
also referred to as one-vs.-all scheme in multi-class binary
classification.

In order to perform the experiments, we used a collection of
documents expressing a number of requirements available at
PROMISE Software Engineering repository.3 This dataset was built
by MS students at DePaul University during a graduate course on
Requirements Engineering. The collection consists of a total of
370 NFRs and 255 functional ones, corresponding to 15 different
software development projects. Each document is composed by a
description of the requirement, written in natural language, the
ID of the project to which it belongs to and a label specifying the
type of requirement. These labels indicate either that the require-
ment is a functional one or the type of non-functional requirement
including the quality attributes availability, look-and-feel, legal,
maintainability, operational, performance, scalability, security,
usability, features and portability. NFRs are divided into the men-
tioned 11 different classes. However, the quality attribute portabil-
ity had a single example in the collection and was excluded from
3 http://promisedata.org/?p=38.

http://classifier4j.sourceforge.net/
http://promisedata.org/?p=38

Table 1
Distribution of functional and non-functional requirements in the collection.

Type Project number Total

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Functional 20 11 47 25 36 27 15 20 16 38 0 0 0 0 0 255
Availability 1 2 2 0 2 1 0 5 1 1 2 1 1 1 1 21
Legal 0 0 0 6 3 0 1 3 0 0 0 0 0 0 0 13
Look-and-feel 1 4 0 2 3 2 0 6 0 7 2 2 4 3 2 38
Maintainability 0 0 0 0 0 4 0 2 1 0 1 3 2 2 2 17
Operational 0 0 7 6 10 15 3 9 2 0 0 2 2 3 3 62
Performance 2 6 2 2 4 1 2 17 4 4 3 5 0 1 1 54
Scalability 0 3 4 0 3 4 0 4 0 0 0 1 2 0 0 21
Security 1 3 10 10 7 5 2 15 0 1 3 3 2 2 2 66
Usability 3 6 8 4 5 13 0 10 0 2 2 3 6 4 1 67
Features 0 4 0 0 0 2 0 2 0 0 0 2 0 0 0 10
Portability 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Total 28 40 80 55 73 74 23 93 24 53 13 22 19 16 12 625

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Ac
cu

ra
cy

% of labeled requirements

Supervised learning (naïve Bayes)
Semi−supervised learning (EM)

Fig. 3. Classification accuracy of semi-supervised and supervised learning
approaches.

A. Casamayor et al. / Information and Software Technology 52 (2010) 436–445 441
the experiments due to its low incidence. The distribution of NFRs
by class is depicted in Fig. 2, whereas Table 1 shows a summary of
the complete requirement collection.

4.2. Evaluation metrics

The purpose of the requirement classification approach is to
identify the type of each textual requirement in the classes de-
scribed above. The results of this classification process were evalu-
ated using the standard definitions of accuracy, precision, recall,
and F-measure metrics [44]. Given a test set of N documents
expressing system requirements, a contingency table is con-
structed for each binary classification problem containing the
count of true positives (TP) or number of correctly classified
requirements, false positives (FP) or number of requirements
incorrectly classified in the category in question, true negatives
(TN) or number of requirements correctly not classified in the cat-
egory in question and false negatives (FN) or number of require-
ments incorrectly not classified in the category in question. Using
these values, the metrics for binary-decisions are defined as
follows:

Accuracy ¼ TP þ TN
N

ð10Þ

Precision ¼ TP
TP þ FP

ð11Þ

Recall ¼ TP
TP þ FN

ð12Þ

F-measure ¼ 2� precision� recall
precisionþ recall

ð13Þ

In multi-label classification, the simplest method for computing
an aggregate score across categories is to average the scores of all
binary tasks. The resulting scores are called macro-averaged accu-
racy, recall, precision and F-measure, respectively.

For each experiment, we randomly split the collection into a
training set, which is used to learn binary classifiers for require-
ments, and a testing set, which is used to evaluate their joint per-
formance in classifying previously unseen requirements. Every
experiment was ran 10 times using stratified 10-fold cross-valida-
tion in order to obtain average scores for the metrics mentioned
above. Since the collection used for experiments has an unbalanced
distribution of examples, stratification is used to ensure that each
fold contains roughly the same proportion of examples in each
class as in the original collection. It is important to remark that
every training set needs to have at least one document of each
class; otherwise, neither supervised nor semi-supervised classifiers
can learn to distinguish examples in that class.
4.3. Experimental results

The Expectation Maximization strategy with naïve Bayesian
classifiers was implemented according to the algorithm detailed
in Algorithm 1. To evaluate the effectiveness of the classifiers
learned with this algorithm, we calculated the accuracy of catego-
rizing the collection of requirements using different sizes of the
training set and, consequently, different proportions of labeled
and unlabeled examples for learning classifiers. We split the collec-
tion into 468 requirements (approximately 75% of the collection)
for training, preserving the remaining 156 (approximately 25%)
for testing.

Fig. 3 depicts the results of using increasing percentages of the
training set as labeled examples and the remaining requirements
also in the training set as unlabeled ones. The 100% of labeled
examples corresponds to the total of the 468 requirements in the
training set, whereas the size of the test set is maintained along
all the experiments (156 requirements). It can be observed in the
figure that the semi-supervised approach proposed in this paper
takes advantage of unlabeled examples to improve classification
accuracy in comparison with a supervised approach using naïve
Bayes, which is based exclusively on labeled examples.

Fig. 4 compares the experimental results obtained with EM
strategy and other classical algorithms for supervised text catego-
rization as naïve Bayes, k-NN and vectorial TF–IDF using the same
split of requirements. EM outperforms these algorithms in terms of

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Ac
cu

ra
cy

% of labeled requirements

TF−IDF
k−NN

naïve Bayes
EM with naïve Bayesian classification

Fig. 4. Comparison of several classification algorithms versus semi-supervised EM
strategy.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Pr
ec

is
io

n

% of labeled requirements
Availability

Legal
LookAndFeel

Maintainability

Operational
Performance

Scalability
Security

Usability
Features

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

R
ec

al
l

% of labeled requirements
Availability

Legal
LookAndFeel

Maintainability

Operational
Performance

Scalability
Security

Usability
Features

(a)

(b)

Fig. 6. Classification performance for NFRs in term of precision and recall.

442 A. Casamayor et al. / Information and Software Technology 52 (2010) 436–445
accuracy since unlabeled requirements provide some insights
about the different types of requirements that are exploited during
learning, for instance words that tend to appear together in posi-
tive examples of a certain type of requirements or belong to nega-
tive examples of such type.

In the results described before, accuracy was calculated consid-
ering both functional and non-functional requirements of different
types (availability, look-and-feel, maintainability, etc.). However,
the goal of the classification approach introduced in this paper is
to identify NFRs in their corresponding categories. Fig. 5 shows
the precision of classification for functional requirements and the
average for the different categories of NFRs. Naturally, precision
is slightly better for functional requirements as they outnumber
NFRs in the different categories (255 requirements are functional,
whereas NFRs range from 10 to 67 requirements per category).

NFRs are not only distinguished from functional requirements,
but also classified into different classes according to their type with
a high level of precision. Even using a reduced number of labeled
examples for training the classifiers, semi-supervised classification
reaches good levels of performance. Fig. 5, for instance, shows that
EM overcomes the 75% of precision for NFRs with less of 25% out of
the total number of training requirements being labeled.

Fig. 7 details the classification results for each class of NFRs in
terms of F-measure, whereas precision and recall are shown in
 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Pr
ec

is
io

n

% of labeled requirements

Functional Requirements
Non−Functional Requirements

Fig. 5. Classification performance for functional and non-functional requirements.
Fig. 6a and b respectively. Among the categories with the poorest
performance are Features and Legal requirements which are also
the ones with the smaller number of examples. F-measure scores
are affected by an initially low recall caused by the variety of NFRs
the requirements have to be classified into and the existence of
some categories with only a few examples. The effectiveness of
classifiers improves as more labeled requirements become avail-
able and classifiers are able to better distinguish requirements in
each class. In a real-world scenario, the increase in the amount of
labeled examples will be given by processing feedback from ana-
lysts as it will be explained in the following subsection. It is also
important to notice that the present collection covers require-
ments in 15 different projects, so that it may be some variability
in the vocabulary employed to describe them. An improvement
in classification performance can be expected if documents belong-
ing to a single software project are considered during learning.

4.4. User feedback learning

In previous sections, the learning and categorization scenario in
which classifiers were trained was based on a set of pre-labeled
examples, in this case, requirement documents with an assigned
category or type. In order to evaluate the proposed semi-super-
vised approach, a collection of documents labeled beforehand
was used to train classifiers with incremental number of labeled

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

F−
m

ea
su

re

% of labeled requirements
Availability

Legal
LookAndFeel

Maintainability

Operational
Performance

Scalability
Security

Usability
Features

Fig. 7. Classification performance for the different types of NFRs.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 10 20 30 40 50 60 70 80 90

F−
M

ea
su

re

iteration

User feedback for top−5 requirements
User feedback for top−10 requirements

Fig. 8. Semi-supervised classification of requirements considering feedback from
analysts.

A. Casamayor et al. / Information and Software Technology 52 (2010) 436–445 443
requirements. Experiments showed not only an increase in classi-
fication performance as more labeled requirements were available,
but also the capacity of semi-supervised learning for taking advan-
tage of unlabeled texts thereby reducing the number of labeled
requirements needed for achieving accurate classification results.

During a software development project in a real-world scenario,
semi-supervised classification can be used to interactively classify
a large number of requirements the system should fulfill and, at
the same time, identifying different types of NFRs in early stages
of software development. Integrated in a decision support system,
this approach aims at predicting the categories of requirements to
suggest classifications to analysts and receive feedback from them
in order to improve learning and classification in an iterative
process.

Recommender systems have become an important research
area, mainly due to the abundance of practical applications that
help users to deal with information overload by providing person-
alized recommendations [1]. These systems are characterized by
the ability of making recommendations of potentially useful infor-
mation in many application domains, such as web pages [27], news
[38], e-commerce [41] and movies [31], among others. Recom-
mender systems made significant progress over the last decade
when numerous content-based, collaborative, and hybrid methods
were proposed and subsequently developed for different software
engineering activities [18].

The evaluated approach of semi-supervised detection and clas-
sification of NFRs was integrated into a recommender system that
provides assistance to human analysts in early software develop-
ment stages [3]. Recommendations made by the system can be
used for requirement analysis in software development projects,
reducing the effort of manual identification and classification of
requirement documents. In this scenario, requirement analysts
should provide a small initial set of categorized documents, obtain-
ing recommendations about a possible classification of the remain-
ing documents. Additionally, analysts can provide feedback to
refine classification in an iterative process.

Initially, documents describing the requirements gathered by
an elicitation team are typically unlabeled. The goal of the classifi-
cation process is reducing the effort of the elicitation team in label-
ing all the requirements by interacting with the support system. A
small set of labeled requirements is required to start the learning
process and posterior classification. It is likely that the elicitation
team would be able to recognize requirements of different types
during the elicitation phase to serve this purpose. Alternatively, a
straightforward method such as using a pre-defined set of key-
words to identify a small set of better matching requirements for
the different classes can be used to bootstrap the semi-supervised
classification process.

Given the initial training set of requirement documents manu-
ally labeled by analysts, the system trains a set of binary classifiers
using the EM algorithm and classifies the remaining requirements
using these classifiers, using uncategorized requirements as an
additional knowledge source. Afterwards, documents with catego-
ries automatically assigned by the recently trained classifiers are
presented to the analysts for validation. That is, analysts can verify
the correctness of the suggested categories for requirements and
provide some feedback confirming or rejecting candidate NFRs.
A subsequent run of EM algorithm using the newly labeled
requirements, i.e. those which received feedback from analysts,
should lead to an improvement in the previously registered clas-
sification accuracy. This iterative process can be repeated several
times, until analysts are satisfied with the current classification
of requirements or all requirements have been assigned to a
category.

Fig. 8 shows a simulation of this iterative learning and classifica-
tion process aiming at supporting analysis in processing of textual
requirements. In each iteration, unlabeled requirements (belonging
to the previously described collection) are classified using the lastly
trained classifiers and ranked according to their probability of
belonging to the predicted class. We simulated a user providing
feedback over the top-5 and top-10 requirements in the list by
using the real classes of the requirements in the collection. For
the next interaction, the training set is augmented with the require-
ments which received feedback, classifiers are updated and the pro-
cess is repeated. The simulation of feedback learning was carried
out considering that due to previous experience, the human analyst
interacting with the recommender system is able to read and
understand each requirement document, making no mistakes when
validating and correcting the provided recommendations.

Feedback about the classes assigned to the top-10 requirements
in the ranked list allows to converge to the real classification in
around 30 iterations, having asked the user for labeling roughly
half of the total number of requirements. Likewise, providing feed-
back about the top-5 requirements takes an additional number of
labeled requirements and iterations. It is important to remark that
even though the analysts have to read each requirement placed in
the top-5 or top-10 position in the list to express the agreement or
disagreement with the predicted class, the accuracy of the sug-
gested classification for such requirements in the experiments
was 90.11% considering the top-5 requirements and 93.66% con-

444 A. Casamayor et al. / Information and Software Technology 52 (2010) 436–445
sidering the top-10. Thus, the cognitive load of analysts is reduced
since they will have to change the suggested class only for a few
requirements. It is also worth highlighting that even though 30
iterations are required during user feedback learning to reach a
100% of accuracy considering manual inspection of the top-10 clas-
sified documents, good results are achieved only with 10 iterations
(about 75% of accuracy), a reasonable number for a requirement
analyst to deal with.
5. Conclusions

Identification of non-functional requirements is critical for
making correct software design decisions starting from early
stages of software development projects. Natural language descrip-
tions transformed into textual specifications is a common means
for capturing requirements in these stages. Methods of supervised
text learning have been proposed in the literature to address the
problem of identifying and classifying NFRs [8]. However, supervi-
sion implies the need of an important number of already catego-
rized requirements to induce an accurate classifier capable of
identifying the type of novel requirements.

In this paper, we have presented and evaluated a semi-super-
vised learning approach for classification of NFRs aiming at reduc-
ing the number of categorized requirements needed for learning
by taking advantage of the underlying characteristics of texts, such
as co-occurrence of words in documents belonging to the same
classes. Integrated in a support system for requirement analysis,
this approach can help to mitigate the labeling effort required
from analysts, involving the manual revision and classification of
available textual requirements. In future works we are planning
to introduce active learning in this iterative classification process
striving to reduce even more the required labeling effort while
retaining the accuracy by selecting the examples to be labeled
by analysts in an intelligent way (i.e. analysts should be asked to
label the more informative examples instead of the top ranked
ones).

Experimental results demonstrate the feasibility of using semi-
supervised learning as a method for detecting NFRs. Empirical evi-
dence showed that semi-supervision requires less human effort in
labeling requirements than fully supervised methods and can be
further improved based on feedback from analysts once integrated
within a decision support system for managing requirements [3].
In addition, the proposed approach does not rely on the existence
of previously categorized requirements (e.g. belonging to previous
projects) as this can introduce noise in texts stemming from the
variations in the vocabulary employed by elicitation teams in het-
erogeneous domains. In contrast, semi-supervised classification
needs a small amount of labeled requirements belonging to the
current software project to initiate learning.

References

[1] G. Adomavicius, E. Tuzhilin, Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions, IEEE
Transactions on Knowledge and Data Engineering 17 (2005) 734–749.

[2] T.H. Al Balushi, P.R. Falcone Sampaio, D. Dabhi, P. Loucopoulos, ElicitO: a
quality ontology-guided NFR elicitation tool, in: Requirements Engineering:
Foundation for Software Quality, LNCS, vol. 4542, Springer, 2007, pp. 306–319.

[3] A. Casamayor, D. Godoy, M. Campo, A recommender system for classification of
non-functional requirements, in: Proceedings of the 10th Argentine
Symposium on Artificial Intelligence (ASAI’2009) in the 38th Argentine
Meetings on Informatics and Operations Research (JAIIO’2009), Mar del
Plata, Argentina, SADIO, August 2009.

[4] C. Castro-Herrera, C. Duan, J. Cleland-Huang, B. Mobasher, A recommender
system for requirements elicitation in large-scale software projects, in: ACM
Symposium on Applied Computing, 2009.

[5] O. Chapelle, B. Schölkopf, A. Zien, Semi-Supervised Learning, MIT Press, 2006.
[6] J. Cleland-Huang, B. Mobasher, Using data mining and recommender systems

to scale up the requirements process, in: Proceedings of the 2nd International
Workshop on Ultra-Large-Scale Software-Intensive Systems (ULSSIS’2008),
2008, pp. 3–6.

[7] J. Cleland-Huang, R. Settimi, X. Zou, P. Solc, The detection and classification of
non-functional requirements with application to early aspects, in: Proceedings
of the 14th IEEE International Requirements Engineering Conference (RE’06),
2006, pp. 36–45.

[8] J. Cleland-Huang, R. Settimi, X. Zou, P. Solc, Automated classification of non-
functional requirements, Requirements Engineering 12 (2) (2007) 103–120.

[9] J.L. Cybulski, K. Reed, Computer-assisted analysis and refinement of informal
software requirements documents, in: Proceedings of the 5th Asia Pacific
Software Engineering Conference (APSEC’98), 1998, p. 128.

[10] L.M. Cysneiros, J.C.S. do Prado Leite, Nonfunctional requirements: from
elicitation to conceptual models, IEEE Transactions on Software Engineering
30 (5) (2004) 328–350.

[11] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete
data via the EM algorithm, Journal of the Royal Statistical Society, Series B 39
(1) (1977) 1–38.

[12] J. Dörr, D. Kerkow, A. Von Knethen, B. Paech, Eliciting efficiency requirements
with use cases, in: Proceedings of the International Workshop on
Requirements Engineering: Foundations of Software Quality (REFSQ’2003),
2003, pp. 23–32.

[13] S. Eyheramendy, D.D. Lewis, D. Madigan, On the naive bayes model for text
categorization, in: Proceedings of the 9th International Workshop on Artificial
Intelligence and Statistics, 2002.

[14] A. Fantechi, S. Gnesi, G. Lami, A. Maccari, Application of linguistic techniques
for use case analysis, in: Proceedings of the 10th Anniversary IEEE Joint
International Conference on Requirements Engineering (RE’02), 2002, pp. 157–
164.

[15] R. Fernandes, A. Cowie, Capturing informal requirements as formal models, in:
Proceedings of the 9th Australian Workshop on Requirements Engineering
(AWRE’04), 2004, pp. 1–8.

[16] V. Gervasi, B. Nuseibeh, Lightweight validation of natural language
requirements, Software – Practice & Experience 32 (2) (2002) 113–133.

[17] V. Gervasi, D. Zowghi, Reasoning about inconsistencies in natural language
requirements, ACM Transactions on Software Engineering and Methodology
(TOSEM) 14 (3) (2005) 277–330.

[18] H. Happel, W. Maalej, Potentials and challenges of recommendation systems
for software development, in: RSSE ’08: Proceedings of the 2008 International
Workshop on Recommendation Systems for Software Engineering, ACM, New
York, NY, USA, 2008, pp. 11–15.

[19] A. Jalaji, R. Goff, M. Jackson, N. Jones, T. Menzies, Making sense of text:
identifying nonfunctional requirements early. Technical Report, West Virginia
University CSEE, 2006.

[20] T. Jingbai, H. Keqing, W. Chong, L. Wei, A context awareness non-functional
requirements metamodel based on domain ontology, in: Proceedings of the
IEEE International Workshop on Semantic Computing and Systems (WSCS’08),
2008, pp. 1–7.

[21] T. Joachims, A probabilistic analysis of the rocchio algorithm with tfidf for text
categorization, in: 12th International Conference on String Processing and
Information Retrieval (SPIRE), 1997, pp. 143–151.

[22] H. Kaiya, A. Osada, K. Kaijiri, Identifying stakeholders and their preferences
about NFR by comparing use case diagrams of several existing systems, in:
Proceedings of the 12th IEEE International Requirements Engineering
Conference (RE’04), Washington, DC, USA, 2004, pp. 112–121.

[23] H. Kitapci, B.W. Boehm, Using a hybrid method for formalizing informal
stakeholder requirements inputs, in: Proceedings of the 4th International
Workshop on Comparative Evaluation in Requirements Engineering (CERE’06),
2006, pp. 48–59.

[24] Y. Ko, S. Park, J. Seo, Web-based requirements elicitation supporting system
using requirements categorization, in: Proceedings of 12th International
Conference on Software Engineering and Knowledge Engineering
(SEKE’2000), 2000, pp. 334–451.

[25] Y. Ko, S. Park, J. Seo, S. Choi, Using classification techniques for informal
requirements in the requirements analysis-supporting system, Information
and Software Technology 49 (11–12) (2007) 1128–1140.

[26] G. Kowalski, M.T. Maybury, Information Storage and Retrieval Systems:
Theory and Implementation, Kluwer Academic Publishers, Norwell, MA, USA,
2000.

[27] H. Lieberman, C. Fry, L. Weitzman, Exploring the web with reconnaissance
agents, Communication of the ACM Journal 44 (8) (2001) 69–75.

[28] B. Liu, Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data
(Data-Centric Systems and Applications), Springer-Verlag, 2006.

[29] A. Mccallum, K. Nigam, A comparison of event models for Na Bayes text
classification, in: AAAI-98 Workshop on Learning for Text Categorization, vol.
752, 1998, pp. 41–48.

[30] L. Mich, M. Franch, P. Inverardi, Market research for requirements analysis
using linguistic tools, Requirements Engineering 9 (1) (2004) 40–56.

[31] B.N. Miller, I. Albert, S.K. Lam, J.A. Konstan, J. Riedl, Movielens unplugged:
experiences with an occasionally connected recommender system, in: IUI ’03:
Proceedings of the 8th International Conference on Intelligent User Interfaces,
ACM, New York, NY, USA, 2003, pp. 263–266.

[32] K. Nigam, A.K. McCallum, S. Thrun, T. Mitchell, Text classification from labeled
and unlabeled documents using EM, Machine Learning 39 (2000) 103–134.

[33] J. Natt och Dag, V. Gervasi, S. Brinkkemper, B. Regnell, A linguistic-engineering
approach to large-scale requirements management, IEEE Software 22 (1)
(2005) 32–39.

A. Casamayor et al. / Information and Software Technology 52 (2010) 436–445 445
[34] O. Ormandjieva, I. Hussain, L. Kosseim, Toward a text classification system for
the quality assessment of software requirements written in natural language,
in: Proceedings of the 4th International Workshop on Software Quality
Assurance (SOQUA’07), 2007, pp. 39–45.

[35] J. Palmer, Y. Liang, Indexing and clustering of software requirements
specifications, Information and Decision Technologies 18 (4) (1992) 283–299.

[36] S. Park, H. Kim, Y. Ko, J. Seo, Implementation of an efficient requirements-
analysis supporting system using similarity measure techniques, Information
and Software Technology 42 (6) (2000) 429–438.

[37] M. Porter, An algorithm for suffix stripping, Program 14 (3) (1980) 130–137.
[38] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl, Grouplens: an open

architecture for collaborative filtering of netnews, in: CSCW ’94: Proceedings
of the 1994 ACM Conference on Computer Supported Cooperative Work, ACM,
New York, NY, USA, 1994, pp. 175–186.
[39] G. Salton, C. Buckley, Term weighting approaches in automatic text
retrieval, Information Processing and Management 24 (5) (1988)
513–523.

[40] G. Salton, A. Wong, C.S. Yang, A vector space model for automatic indexing,
Communications of the ACM 18 (11) (1975) 613–620.

[41] J.B. Schafer, J.A. Konstan, J. Riedl, E-commerce recommendation applications,
Data Mining and Knowledge Discovery 5 (1–2) (2001) 115–153.

[42] F. Sebastiani, Machine learning in automated text categorization, ACM
Computing Surveys 34 (1) (2002) 1–47.

[43] A. Steele, J. Arnold, J. Cleland-Huang, Speech detection of stakeholders’ non-
functional requirements, in: Proceedings of the 1st International Workshop on
Multimedia Requirements Engineering (MERE’06), 2006, p. 3.

[44] Y. Yang, An evaluation of statistical approaches to text categorization,
Information Retrieval 1 (1–2) (1999) 69–90.

	Identification of non-functional requirements in textual specifications: A semi-supervised learning approach
	Introduction
	Related works
	Semi-supervised classification of NFRs
	Pre-processing
	Bayesian classification
	Semi-supervised classification with EM

	Empirical evaluation
	Experimental setting
	Evaluation metrics
	Experimental results
	User feedback learning

	Conclusions
	References

