
Algorithms and Representations

for Reinforcement Learning

Thesis submitted for the degree of

Doctor of Philosophy

by

Yaakov Engel

Submitted to the Senate of the Hebrew University
April 2005





This work was carried out under the supervision of Prof. Ron Meir and Prof. Naftali

Tishby.





5

“If we knew what it was we were doing, it would not be called research, would it?”

– Albert Einstein.

“I may not have gone where I intended to go, but I think I have ended up where I

intended to be.”

– Douglas Adams

To my parents.





Acknowledgments

During the past decade or so, little has remained constant in my tumultuous life.

Places of dwelling have been changed, jobs have been found and lost, life-partners

have come and gone (and come), a baby was born, but through all this, my persistent

assertion “I’m working on my Ph.D.!” remained a fixed constant. This thesis is the

product of that long period, throughout which I benefited from the assistance and

support of quite a few individuals.

I am greatly indebted to my advisor Ronny Meir, who was courageous enough

to supervise a thesis not in his main field of expertise. He allowed me to follow

my own research agenda and to slowly plow my way through this thesis work,

thankfully not despairing of me all this time. From Ronny I learned the importance

of formulating problems in exact mathematical terms, and of expressing my ideas

clearly, both verbally and in writing. His somewhat unnerving ability to accurately

pinpoint, almost every time, the appropriate references to answer my numerous

research questions testifies to his wide and deep knowledge of science.

Shie Mannor is both a friend and a collaborator in most of my published and

unpublished work. His mathematical proficiency and quick grasp of core research

issues were both inspiring and useful. At any time of day, I could barge into Shie’s

room to discuss anything from advanced probability and game theory to C-language

programming and Latex commands, usually coming out with the answer to my

query.

My formal advisor at the Hebrew university, Tali Tishby, is in fact responsible

for originally sparking my interest in reinforcement learning, by proposing it as a

topic for a graduate student seminar in the second year of my studies. Although

I did not have the opportunity to work with Tali, I did benefit greatly from his

courses in machine learning, from which I acquired a solid theoretical base, as well

as the enthusiasm for machine learning research.

Nahum Shimkin was helpful and insightful in discussing research matters on

several occasions. Nahum’s course on Kalman filters played an important role in

shaping my view on learning and estimation, and consequently in forming this the-

sis. With Ishai Menache I shared numerous cups of coffee as well as thoughts on

reinforcement learning algorithms. Ishai also helped review some of my papers.

7



8

Yair Weiss and Yishay Mansour, who are the two other members of my research

committee, have been kind enough to spare me some of their time on a few occasions

to discuss my research, providing me with some useful comments. Ina Krinsky and

Johanan Erez from the VISL laboratory in the Technion, made me feel welcome,

and did their best to accommodate my every whim, with regard to software and

hardware issues. Ruthi Suchi from the ICNC was very helpful in the last stages of

my thesis work, especially by assisting me in tackling the formalities of submitting

the thesis book.

Finally, and most importantly, I would like to thank my parents, my sister and

brother and their families, and my own little family – Mitzkin and Yoyo, for their

faith in me, their love and support, without which none of this would ever have

come to pass. Thank you!





Abstract

Machine Learning is a field of research aimed at constructing intelligent ma-

chines that gain and improve their skills by learning and adaptation. As such,

Machine Learning research addresses several classes of learning problems, including

for instance, supervised and unsupervised learning. Arguably, the most ubiquitous

and realistic class of learning problems, faced by both living creatures and artifi-

cial agents, is known as Reinforcement Learning. Reinforcement Learning problems

are characterized by a long-term interaction between the learning agent and a dy-

namic, unfamiliar, uncertain, possibly even hostile environment. Mathematically,

this interaction is modeled as a Markov Decision Process (MDP). Probably the most

significant contribution of this thesis is in the introduction of a new class of Rein-

forcement Learning algorithms, which leverage the power of a statistical set of tools

known as Gaussian Processes. This new approach to Reinforcement Learning offers

viable solutions to some of the major limitations of current Reinforcement Learn-

ing methods, such as the lack of confidence intervals for performance predictions,

and the difficulty of appropriately reconciling exploration with exploitation. Anal-

ysis of these algorithms and their relationship with existing methods also provides

us with new insights into the assumptions underlying some of the most popular

Reinforcement Learning algorithms to date.



Contents

1 Introduction and Background 1

1.1 Motivation, Rationale and Overview . . . . . . . . . . . . . . . . . . 1

1.2 Learning Theory and Kernel Methods . . . . . . . . . . . . . . . . . 3

1.2.1 Hypotheses, Loss and Risk . . . . . . . . . . . . . . . . . . . 4

1.2.2 The Bayesian View . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Function Spaces, Reproducing Kernels and Regularization . . 8

1.2.4 From Features to Kernels . . . . . . . . . . . . . . . . . . . . 10

1.2.5 Sparsity in Kernel Methods . . . . . . . . . . . . . . . . . . . 11

1.2.6 Online Learning with Kernels . . . . . . . . . . . . . . . . . . 13

1.3 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.1 Definitions and Notation . . . . . . . . . . . . . . . . . . . . . 15

1.3.2 The Linear Statistical Model . . . . . . . . . . . . . . . . . . 16

1.3.3 Gaussian Process Regression . . . . . . . . . . . . . . . . . . 19

1.3.4 Parametric Gaussian Processes . . . . . . . . . . . . . . . . . 21

1.3.5 Summary and Remarks . . . . . . . . . . . . . . . . . . . . . 25

1.4 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.1 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . 28

1.4.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 30

1.4.3 TD Methods with Function Approximation . . . . . . . . . . 34

2 On-Line Kernel Sparsification 41

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.2 The Sparsification Procedure . . . . . . . . . . . . . . . . . . . . . . 43

2.3 Properties of the Sparsification Method . . . . . . . . . . . . . . . . 47

2.3.1 A Bound on the Dictionary Size . . . . . . . . . . . . . . . . 47

2.3.2 Quality of Approximation . . . . . . . . . . . . . . . . . . . . 48

2.4 Online Sparsification as Approximate PCA . . . . . . . . . . . . . . 50

2.5 Comparison to Other Sparsification Schemes . . . . . . . . . . . . . 52

1



2

3 Kernel Recursive Least Squares 56

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 The Kernel RLS Algorithm . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 A Generalization Bound . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.1 Nonlinear Regression . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.2 Time Series Prediction . . . . . . . . . . . . . . . . . . . . . . 68

3.4.3 Channel Equalization . . . . . . . . . . . . . . . . . . . . . . 73

3.4.4 Comparison with Sparse Gaussian Processes . . . . . . . . . . 75

3.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Reinforcement Learning with Gaussian Processes 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Parametric and Nonparametric Representations . . . . . . . . . . . . 81

4.3 Deterministic Transitions . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 A Statistical Generative Model . . . . . . . . . . . . . . . . . 82

4.3.2 Episodic Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.3 Parametric GP Temporal Difference Learning . . . . . . . . . 85

4.3.4 Nonparametric GP Temporal Difference Learning . . . . . . . 88

4.3.5 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.6 GPTD with Sparse Nonparametric Representations . . . . . . 92

4.3.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.8 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Stochastic Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.1 A Statistical Generative Model . . . . . . . . . . . . . . . . . 98

4.4.2 A Correlated Noise Model . . . . . . . . . . . . . . . . . . . . 100

4.4.3 Relation to Monte-Carlo Simulation . . . . . . . . . . . . . . 101

4.4.4 Parametric Monte-Carlo GPTD Learning . . . . . . . . . . . 103

4.4.5 Nonparametric Monte-Carlo GPTD Learning . . . . . . . . . 105

4.4.6 Sparse Nonparametric Monte-Carlo GPTD Learning . . . . . 106

4.5 Connections with Other TD Methods . . . . . . . . . . . . . . . . . 109

4.5.1 A Maximum Likelihood Variant . . . . . . . . . . . . . . . . . 110

4.5.2 LSTD(λ) as a Maximum Likelihood Algorithm . . . . . . . . 111

4.5.3 GPTD(λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.6 Policy Improvement with GPSARSA . . . . . . . . . . . . . . . . . . 116

4.6.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.7 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 118



3

5 Conclusion 125

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A Derivation of Recursive GPTD Algorithms 127

A.1 Deterministic Transitions . . . . . . . . . . . . . . . . . . . . . . . . 127

A.1.1 Parametric GPTD Updates . . . . . . . . . . . . . . . . . . . 127

A.1.2 Symmetric Parametric GPTD Updates . . . . . . . . . . . . . 128

A.1.3 Exact Nonparametric GPTD Updates . . . . . . . . . . . . . 129

A.1.4 Sparse Nonparametric GPTD Updates . . . . . . . . . . . . . 131

A.2 Stochastic Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.2.1 Parametric Monte-Carlo GPTD Updates . . . . . . . . . . . 135

A.2.2 Nonparametric Monte-Carlo GPTD . . . . . . . . . . . . . . 138

A.2.3 Sparse Nonparametric Monte-Carlo GPTD . . . . . . . . . . 140

B TD(1) as a ML Gradient Algorithm 147

C Proofs 149

C.1 Proof of Lemma 1.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

D Mathematical Formulae 152

D.1 Bayes’ Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

D.2 The Multivariate Normal Distribution . . . . . . . . . . . . . . . . . 152

D.3 Conditional Expectation and Covariance Formulae . . . . . . . . . . 152

D.4 Matrix Inversion Formulae . . . . . . . . . . . . . . . . . . . . . . . . 153



List of Tables

3.1 Results on the synthetic Friedman data-sets. The columns, from left

to right, list the average R.M.S. test-set error, its standard deviation,

average percentage of support/dictionary vectors, and the average

CPU time in seconds used by the respective algorithm. . . . . . . . 68

3.2 Results on the real-world Comp-activ and Boston data-sets. . . . . . 68

3.3 1-step and 200-step iterated prediction results on the Mackey–Glass

time series with τ = 17 (MG(17)) and τ = 30 (MG(30)) . . . . . . . 70

3.4 Results of the channel equalization experiment . . . . . . . . . . . . 74

4



List of Figures

1.1 A directed graph illustrating the conditional independencies between

the latent F (xi) variables (bottom row), the noise variables N(xi)

(top row), and the observable Y (xi) variables (middle row), in GP

regression. All of the F (xi) variables should be interconnected by

arrows (forming a clique), due to the dependencies introduced by the

prior. To avoid cluttering the diagram, this was marked by the dashed

frame surrounding them. . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 GP regression applied to the sinc function corrupted with IID Gaus-

sian noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Scaling properties of KRLS and SVMTorch with respect to sample

size (top) and noise magnitude (bottom), on the Sinc-Linear function.

Error bars mark one standard deviation above and below the mean. 67

3.2 Multi-step iterated predictions for the Mackey–Glass time series with

τ = 17 (top) and τ = 30 (bottom). . . . . . . . . . . . . . . . . . . . 71

3.3 The Santa Fe competition laser training series (data set A) . . . . . 71

3.4 KRLS predicting 100 steps into the future (dashed line) on the laser

time series. The true continuation is shown as a solid line. Note that

on the first 60 steps the prediction error is hardly noticeable. . . . . 73

3.5 KRLS compared to SGPR with underestimated measurement noise

on the sinc function. At the top SGPR uses its original supervised

sparsification criterion, while at the bottom it uses the same unsu-

pervised criterion used by KRLS. . . . . . . . . . . . . . . . . . . . . 76

4.1 The results of a single 12-step trial on the simple maze shown in the

figures, sampled on a 30 by 30 grid. From top to bottom: Top - the

points visited during the trial and contour lines of the value function

estimate. Center - The variance of the value estimates. Bottom - A

greedy policy with respect to the value estimate. . . . . . . . . . . . 96

5



6

4.2 The results after 100 trials on the more difficult maze shown in the

figures. GPTD with OPI is used to find a near-optimal policy. The

two figures on the left show the results for deterministic state tran-

sitions while the two on the right depict the results for stochastic

transitions. For each pair the final value function is shown at the

top and its corresponding greedy policy at the bottom. The results

shown are samples over a 30 by 30 grid. . . . . . . . . . . . . . . . . 98

4.3 A graph illustrating the conditional independencies between the la-

tent V (xi) value variables (bottom row), the noise variables ∆V (xi)

(top row), and the observable R(xi) reward variables (middle row),

in the GPTD model. As in the case of GP regression, all of the V (xi)

variables should be connected by arrows, due to the dependencies

introduced by the prior. To avoid cluttering the diagram, this was

marked by the dashed frame surrounding them. . . . . . . . . . . . . 101

4.4 The 10 state random walk domain . . . . . . . . . . . . . . . . . . . 115

4.5 A 10 state one-dimensional random walk, with an absorbing state

10. The probability of making a step to the right is 0.8 (top) or 0.6

(bottom). A. The probability distribution of the number steps until

absorption, starting from state 1. B. The expected number of time-

steps until absorption, for each state. C. The standard deviation of

the number of time-steps until absorption, for each state. . . . . . . 122

4.6 Comparison results for the Pr(right) = 0.8 random walk (top) and

the Pr(right) = 0.6 random walk (bottom). . . . . . . . . . . . . . . 123

4.7 The posterior value mean (left) and the corresponding greedy policy

(right) for four different mazes, after 200 learning episodes. In each

maze, the goal region is the dark (red) rectangle. . . . . . . . . . . . 124



List of Algorithms

1 The Value Iteration Algorithm . . . . . . . . . . . . . . . . . . . . . 28

2 The Policy Iteration Algorithm . . . . . . . . . . . . . . . . . . . . . 29

3 The Fixed-Point Policy Evaluation Algorithm . . . . . . . . . . . . 30

4 The Tabular TD(0) Algorithm . . . . . . . . . . . . . . . . . . . . . 31

5 The Tabular SARSA(0) Algorithm . . . . . . . . . . . . . . . . . . . 32

6 The Tabular Q-Learning Algorithm . . . . . . . . . . . . . . . . . . 33

7 The TD(λ) Algorithm with Linear Function Approximation . . . . . 38

8 The Batch LSTD(λ) Algorithm . . . . . . . . . . . . . . . . . . . . 39

9 The Recursive LSTD(λ) Algorithm . . . . . . . . . . . . . . . . . . 40

10 Online Kernel Sparsification Algorithm . . . . . . . . . . . . . . . . 46

11 The Kernel RLS Algorithm. On the right we bound the number of

operations per time-step for each line of the pseudo-code. The overall

per time-step computational cost is bounded by O(m2) (we assume

that kernel evaluations require O(1) time) . . . . . . . . . . . . . . . 59

12 A parametric Batch-GPTD algorithm for deterministic MDPs . . . . 86

13 A recursive parametric GPTD algorithm for deterministic MDPs . . 87

14 Another recursive parametric GPTD algorithm for deterministic MDPs

87

15 A recursive nonparametric GPTD algorithm for deterministic MDPs 89

16 A recursive sparse GPTD algorithm for deterministic MDPs . . . . 93

17 A batch parametric Monte-Carlo GPTD algorithm . . . . . . . . . . 104

18 A recursive parametric Monte-Carlo GPTD algorithm . . . . . . . . 105

19 A recursive nonparametric Monte-Carlo GPTD algorithm . . . . . . 107

20 A sparse recursive nonparametric Monte-Carlo GPTD algorithm . . 108

7



Preface

Reinforcement Learning is arguably the most ubiquitous and realistic class of learn-

ing problems, faced by both living creatures and artificial, intelligent agents. Rein-

forcement Learning problems are characterized by a long-term interaction between

a learning agent and a dynamic, unfamiliar, uncertain, possibly even hostile envi-

ronment. Arguably, learning to behave in such environments may be considered as

actually defining intelligent behavior. In fact, it is my personal view that this defini-

tion is both more general and more useful than the notion of intelligence suggested

by Turing’s famous test (Turing, 1950), as the latter does not admit any non-human

or non-verbal forms of intelligence. If one accepts this view of Reinforcement Learn-

ing, then one is led to conclude that solving the Reinforcement Learning problem

is a necessary and possibly sufficient condition to solving the Artificial Intelligence

problem, which, simply phrased, is: How can we build intelligent machines? It can

be further argued that, the more we understand how to create machine intelligence,

the better chance we have at understanding our own1.

This thesis does not claim, nor does it attempt, to solve this difficult problem.

The goal I set myself at the very outset was to expand, if only by a small measure,

the scope of what is currently solvable using existing Reinforcement Learning ar-

chitectures and algorithms. The remainder of this thesis book is meant to convince

you, the reader, that I have.

1As Richard Feynman succinctly put it: “What I cannot create, I do not understand.” (Feynman,
1988).

8



Chapter 1

Introduction and Background

1.1 Motivation, Rationale and Overview

Machine Learning is a field of research aimed at constructing intelligent machines

that gain and improve their skills by learning and adaptation. As such, Machine

Learning research focuses on one specific approach to solving the Artificial Intel-

ligence problem – the learning approach, which is quite distinct from the conven-

tional “good-old-fashioned AI” approach, which focuses on inductive reasoning and

search algorithms. Machine Learning research addresses several classes of learning

problems, including for instance, supervised and unsupervised learning. Arguably,

the most ubiquitous and realistic class of learning problems, for which a relatively

mature theory and efficient algorithms exit, is known as Reinforcement Learning.

Reinforcement Learning problems are characterized by a long-term interaction be-

tween a learning agent and a dynamic, unfamiliar, uncertain, possibly even hostile

environment. Mathematically, this interaction is modeled as a Markov Decision

Process (MDP).

The last two decades have witnessed an explosion in RL research, resulting in a

large number of new algorithms and architectures. However, there remain several

fundamental obstacles hindering the widespread application of RL methodology to

real-world problems. Such real-world problems are characterized by most, if not all,

of the following features:

• Large or even infinite state and/or action spaces.

• Requirement for online learning. Off-line learning is adequate when the envi-

ronment is completely stationary, however, this is rarely the case.

• Training data is expensive. Unlike supervised learning, where large corpora

of data are freely available and immediately usable, in RL, learning data is

generated by the interaction of the learning agent with the dynamic system

1



Chapter 1. Introduction and Background 2

(real or simulated) it attempts to control. For complex systems, this results

in a considerable overhead for each training sample.

• Partial observability. In many problems the state of the system is not com-

pletely or directly measurable by the agent.

Even if we leave out of consideration the last item, which will not be addressed in

this thesis, it turns out that this list outrules the vast majority of RL algorithms,

as viable solution methods to such problems. This is due to the extreme scarcity

of provably convergent, online RL algorithms that are capable of dealing with large

state-action spaces. Other pressing issues that are not sufficiently well addressed by

current methods are:

• How to acquire confidence intervals for performance (i.e. value) predictions?

• How to appropriately reconcile exploration with exploitation?

• How to perform RL online, using nonparametric representations?

During the past decade, Machine Learning research at large has made significant

advances, both in the theory and the practice of a special class of nonparametric

learning methods known as kernel methods. Kernel-based architectures and algo-

rithms have become the subject of intense research and gained much popularity in

recent years (see e.g., Schölkopf & Smola, 2002; Shawe-Taylor & Cristianini, 2004),

mainly due to their success in achieving state-of-the-art performance levels in sev-

eral supervised and unsupervised learning domains (e.g., LeCun et al., 1995), and

to their solid theoretical grounding. Another attractive feature of kernel methods

is their high representational flexibility, allowing them to deal with almost any con-

ceivable object of interest, from handwritten digits (DeCoste & Schölkopf, 2002),

strings (Watkins, 1999) and text documents (Joachims, 1998) to genetic microarray

data (Brown et al., 2000), sets of vectors (Kondor & Jebara, 2003) and trees (Collins

& Duffy, 2001), to mention a few. Reinforcement Learning research, however, has

remained largely unaffected by these advances. This seems to be due to the per-

ceived incompatibility between the constraint of online operation imposed by RL

tasks, and the typical off-line nature of most kernel algorithms.

With this in mind, our first goal was to develop kernel-based algorithms for

regression, which will be capable of operating sequentially and online. The sequen-

tiality requirement means that samples are fed as a temporal stream of data to the

learning algorithm. For each sample observed, the algorithm is allowed to perform

some update based on the information conveyed by it, after which that sample is

discarded, never to be seen again. The online, or real-time constraint is defined as

the requirement that the per-sample computational cost, be independent, at least



Chapter 1. Introduction and Background 3

asymptotically, of the number of previously observed samples. In order to be able

to bound the per-sample computational cost of any kernel algorithm it is crucial to

bound the number of parameters used by it. Typically, however, kernel machines

assign at least one parameter per training sample, which is of course incompatible

with the real-time requirement. In order to overcome this difficulty, some dimen-

sionality reduction, or sparsification mechanism must be employed to prevent the

increase in the number of parameters as new samples are observed. In Chapter 2

such a kernel sparsification algorithm is proposed, along with some theoretical re-

sults that illuminate some of its properties. Chapter 3 describes a kernelized form

of the celebrated recursive least-squares (RLS) algorithm, which employs the online

sparsification method developed in the preceding chapter.

Having completed this part of our research, our plan was to apply these online

kernel algorithms to the task of value estimation (a.k.a. policy evaluation), which is

a crucial algorithmic component of many RL methods. At this point, however, we

have become aware of the existence of a special class of kernel methods, known as

Gaussian Processes (GPs), which allow Bayesian reasoning to be applied, in both

parametric and nonparametric forms, to supervised learning problems. It quickly

became apparent, that using GPs for value estimation would afford us with all the

advantages of the algorithms developed in the first part of the thesis, while also

providing valuable variance information for value estimates. The second part of the

thesis, consisting of Chapter 4, is therefore devoted to the application of GPs to

value estimation, and through this, to the solution of the complete RL problem, of

learning near-optimal policies. Chapter 5 concludes the thesis with a summary,

discussion and suggestions for future work.

1.2 Learning Theory and Kernel Methods

The introduction and implementation of the theory of Mercer kernels to machine

learning research is probably due to Aizerman et al. (1964) and Kimeldorf and

Wahba (1971). However, it wasn’t until three decades later, when the support

vector machine (SVM) was presented by Boser et al. (1992), that the influence

of the “kernel trick” (see below) was beginning to make its impact on mainstream

machine learning research. Since then, kernel methods have assumed a central role

in the advancement of both the theory and the practice of machine learning.

Motivated by several theoretical results and by the success of the SVM, machine

learning researchers have set out to produce kernelized versions of almost every type

of existing learning algorithm, as well as several completely new ones. These include

a multitude of classification and regression algorithms as well as various unsuper-

vised learning methods such as clustering, density estimation, principal component



Chapter 1. Introduction and Background 4

analysis (PCA) and independent component analysis (ICA), to mention a few. (see

Schölkopf & Smola, 2002; Shawe-Taylor & Cristianini, 2004 and references therein).

Some of these have indeed proved to be useful and competitive alternatives to con-

ventional state-of-the-art methods.

1.2.1 Hypotheses, Loss and Risk

A learning problem is invariably defined with respect to a set of objects. In order

to apply a learning algorithm to such problems we need to represent each potential

object by a pattern – a data structure summarizing the available information per-

taining to it, which we consider to be relevant to the learning task. We generically

denote the set of all possible patterns for a given problem by X , and apart from

requiring it to be a set, we do not impose on it any additional structure, for now.

For example, if we wished to learn some function defined on the real line, then we

could choose X = R.

In supervised learning problems, it is assumed that a set, Z, of t training samples

is available, each consisting of an input pattern x ∈ X and a label or target value

y ∈ Y. In the classic, supervised setting, it is also assumed that the samples are

independently and identically distributed (IID)1 according to to a fixed probability

distribution ρ(x, y) = ρ(y|x)ρx(x). We denote the random variable distributed

according to ρ(y|x), by Y (x). Furthermore, we assume that ρ(x, y) is determined

by a set of parameters θ; we will therefore use the notation2 ρ(x, y|θ) to remind us

of this fact. The dimensionality of θ may be finite, infinite, or even uncountably

infinite3. For instance, θ may be a function of x, with Y (x) = θ(x) + N(x) being

a noise-corrupted measurement of θ(x). We call θ a hypothesis. In the classic,

frequentist setting, the “true” hypothesis θ is deterministic and fixed.

By learning, we refer to the problem of constructing an estimator θ̂Z , for θ, based

on the training sample Z. The first step in solving such a learning problem is to

define a hypothesis space, Θ, in which we intend the learning algorithm to perform

its search for the optimal estimator. Obviously, we also need to specify precisely

what we mean by “optimal”. In other words, we must define a criterion, according

to which we will measure and compare the quality of candidate estimators. In order

to do so, we need to make a few definitions.

1A large majority of the theoretical results in this field depend on the IID assumption (but see
Vidyasagar, 2003 for an exception). In learning paradigms other than supervised learning the IID
assumption may have to be replaced with weaker assumptions.

2In the frequentist setting this does not denote conditioning on θ, as θ is not a random variable.
In the Bayesian setting, discussed in the next section, this will change.

3In decision theoretical terms, θ defines the true state of the world. Conventionally, θ is assumed
to consist of a finite set of parameters; however, in the subsequent discussion we wish to maintain
generality, and we therefore allow for general nonparametric hypotheses.



Chapter 1. Introduction and Background 5

Definition 1.2.1 (Loss). The function (or functional, if Θ is a function space)

ℓ : Θ × Θ → R
+, evaluated as ℓ(θ, θ̂Z), is called the loss of the estimator θ̂Z . We

require that, for all θ ∈ Θ, ℓ(θ, θ) = 0.

The loss, ℓ(θ, θ̂Z) quantifies our feelings concerning the degree of mismatch be-

tween the estimated hypothesis θ̂Z and the true hypothesis θ. A commonly used

loss is the squared loss, defined by

ℓ(θ, θ̂Z) =
∥

∥

∥
θ̂Z − θ

∥

∥

∥

2
, (1.2.1)

where ‖ · ‖ is a norm in the space Θ. Note that, in the machine learning literature

the loss is sometimes defined with respect to the observations produced by the

hypotheses, rather than on the hypotheses themselves4 (e.g., Vapnik, 1998; Cucker

& Smale, 2001). In this context is useful to define the instantaneous prediction loss.

Definition 1.2.2 (Instantneous prediction loss). Denote by ŷZ(x) the (determinis-

tic) predicted observation produced by the estimator θ̂Z, at the point x. The function

ℓins : X × Y × Y → R
+, evaluated as ℓins(x, y, ŷZ(x)) is called the instantaneous

prediction loss of ŷZ(x) with respect to y. It is again required that, for all x and y,

ℓ(x, y, y) = 0.

The instantaneous loss may be used to define a loss function between hypotheses

by defining the average prediction loss. The average prediction loss is the instanta-

neous prediction loss, averaged over all possible (x, y) pairs:

Definition 1.2.3 (Average prediction loss). ℓav : Θ × Θ → R
+, evaluated as

ℓav(θ, θ̂Z) =

∫

X ,Y
dx dy ρ(x, y|θ) ℓins(x, y, ŷZ(x)),

is called the average prediction loss of the hypothesis θ̂Z.

It should be noted that ℓav does not generally satisfy the condition ℓav(θ, θ) = 0,

since the dependence of y on θ is generally stochastic, with an inherently unpre-

dictable component. It is therefore unreasonable to expect that ŷZ(x) = y always,

unless y depends deterministically on θ. Moreover, ℓav(θ, θ
′) does not necessarily

attain its minimum when θ′ = θ; this is known as the Stein effect (Robert, 1994).

In supervised learning problems, such as regression or classification, the esti-

mated hypothesis θ̂Z and its corresponding predicted observation ŷZ may be con-

sidered as the same object, i.e. ŷZ ≡ θ̂Z . However, outside of the supervised domain,

things can get more complex, and ŷZ may have a less direct dependence on θ̂Z(x).

4This may be useful in cases where what one cares about is the prediction of observations, rather
than the estimation of hypotheses.



Chapter 1. Introduction and Background 6

For instance, in reinforcement learning problems, a value function often has to be

estimated from observed rewards. The performance of an algorithm will be mea-

sured according to its ability to predict values, not rewards. Here, θ̂Z will be the

estimated value function, whereas ŷZ will be the corresponding reward function. As

far as possible, we try to maintain the discussion as general as possible, and we

therefore regard θ̂Z and ŷZ as distinct entities.

In the frequentist setting, the training sample Z is a random variable, which

depends on the deterministic θ. In order to induce an ordering on the set of es-

timators, which is independent of the training sample, we define the (frequentist)

risk. The risk R of an estimator θ̂Z , is the expected loss accrued by θ̂Z , with the

expectation taken over training samples Z of fixed size t.

Definition 1.2.4 (Risk). Let ρZ(Z|θ) be the probability (density) of observing the

sequence of samples Z, in a model specified by θ. Then the risk of the estimator θ̂ is

R(θ, θ̂) =

∫

dZ ρZ(Z|θ) ℓ(θ, θ̂Z).

The risk tells us how well, on average, the hypothesis θ̂Z performs. It is typically

assumed that the training samples are sampled from the distribution ρ, i.e. that

ρZ(Z|θ) = ρt(X,Y ). The optimal hypothesis is the one minimizing the Risk.

A difficulty associated with the frequentist approach, is that the risk, as defined

above, depends on the true, but unknown hypothesis θ. This means that we cannot

use the frequentist risk to induce an ordering on the set of estimators θZ , which

is independent of θ. Moreover, even for a fixed θ, the estimator minimizing the

risk, is optimal in the frequentist sense. That is, if we indefinitely repeat the same

experiment, each time with a new training sample Z generated by ρZ(Z|θ), the

minimum risk estimator will incur the lowest total loss. However, typically, one is

handed a specific training sample Z, and would therefore prefer to have a decision

procedure that behaves optimally for that sample (see Robert, 1994 for a thorough

discussion of these issues).

Another, general, problem is that we usually do not know what form ρ(x, y|θ)
takes, and therefore we cannot minimize the risk directly. This remains true if we

plug-in the average prediction loss ℓav as the loss used in the risk. A simple solution

is to minimize the empirical risk.

Definition 1.2.5 (Empirical risk). The empirical risk of the estimator θ̂Z, for the

training sample Z is

Remp(Z, θ̂Z) =
1

t

t
∑

i=1

ℓins(xi, yi, ŷZ(xi)).



Chapter 1. Introduction and Background 7

For a parametric θ̂, if the number of samples is of the order of the number

of parameters, this solution is prone to overfitting. If θ̂ is nonparametric, or if

the number of samples is smaller than the number of parameters, the situation

is even worse, as the problem becomes ill-posed. A generic solution, the form of

which is in agreement with the solutions suggested by several different learning

principles, such as regularization theory (Tikhonov & Arsenin, 1977; Girosi et al.,

1995; Evgeniou et al., 2000), Bayesian inference (Gibbs & MacKay, 1997; Williams,

1999) and Vapnik’s structural risk minimization (SRM) (Vapnik, 1995; Vapnik,

1998), is the following:

Minimize the sum of the empirical loss and a complexity penalty term.

In Vapnik’s (frequentist) SRM framework, this is the result of minimizing an upper

bound on the risk, while in the Bayesian framework, this is the result of maximizing

the posterior probability of the hypothesis, conditioned on the observed data, subject

to Gaussianity assumptions.

The Bayesian approach affords some advantages not available in the classical

frequentist approaches, such as Vapnik’s SRM, as they allow for an immediate

probabilistic interpretation of the regularization (penalty) term and of the resulting

estimators. Let us now consider the Bayesian alternative.

1.2.2 The Bayesian View

In the frequentist setting it is assumed that there is one “true” hypothesis, θ, from

which samples are generated, by the distribution ρ(x, y|θ). In a sense, this corre-

sponds to the belief that nature (i.e. the source of the hypothesis generating the

data) is deterministic. In the Bayesian setting, it is assumed that nature randomly

selects the data-generating hypothesis according to some prior distribution π(θ).

This is typically used as a way to code one’s subjective uncertainty and prior knowl-

edge concerning what hypotheses are more or less likely, a priori. The existence

of this prior allows us to employ Bayes’ rule to derive a posterior distribution, over

hypotheses, conditioned on the observed data, i.e.

π(θ|Z) =
ρZ(Z|θ)π(θ)

∫

Θ dθ
′ ρZ(Z|θ′)π(θ′)

.

The Bayesian solution is aimed at minimizing the loss, averaged using the posterior

π(θ|Z). Accordingly, we define the posterior Bayesian risk as the expected loss of a

hypothesis, where the expectation is taken with respect to θ, conditioned on Z.

Definition 1.2.6 (Posterior Bayesian risk). The posterior Bayesian risk for the

estimator θ̂Z , given the training sample Z, is

Rpost(θ̂Z , Z) =

∫

Θ
dθ π(θ|Z) ℓ(θ, θ̂Z)



Chapter 1. Introduction and Background 8

The Bayes estimator is θ̂Z for which Rpost(θ̂Z , Z) is minimized. Note that,

contrary to the frequentist risk, the posterior risk does not depend on θ, since the

averaging over the posterior has removed that dependence. However, Rpost does

depend on the specific training sample observed. This implies that Rpost may be

used to derive optimal Bayesian estimators, whose optimality is independent of the

unknown hypothesis θ, but is specific to the known training sample Z.

It is a well known (and easily proved) result that, for the squared loss, the Bayes

estimator is the posterior mean of θ, conditioned on the sample Z (Scharf, 1991):

θ̂B
Z = Eπ[θ|Z] =

∫

Θ
dθ′θ′π(θ′|Z),

The choice of hypothesis space and solution quality criterion are probably the

two central problems of statistical learning theory. We have briefly discussed the

latter, in both the frequentist setting and the Bayesian setting. Let us now return

to the former.

1.2.3 Function Spaces, Reproducing Kernels and Regularization

Up to this point we allowed the space of hypotheses Θ to be general. Now we will

focus our attention on Θ, which is a function space.

One way to define a space of functions is the parametric way. As an example,

let us assume that the function θ̂ we are looking for is located in the span of a set

of n basis functions {φ1(x), . . . , φn(x)}. These functions, evaluated at a given x,

may be aggregated into a vector φ(x) = (φ1(x), . . . , φn(x))⊤. We refer to φ(x) as

a feature vector. Learning is now reduced to finding a vector of coefficients w such

that, the estimator θ̂(x) =
∑n

i=1wiφi(x) = φ(x)⊤w, minimizes one of the types of

risk defined in the preceding section. This brings us back to the parametric decision

theoretical setting.

An alternative approach is to define a space of functions nonparametrically, for

instance, as the space of all functions possessing certain smoothness properties. How

can such smoothness properties be enforced? A well established method involves

endowing some additional structure to the function space Θ, namely, making it a

reproducing kernel Hilbert space (RKHS).

Definition 1.2.7 (Hilbert space). A Hilbert space is an inner product vector space,

which is complete under the induced metric.

We will be dealing almost exclusively with Hilbert spaces of real-valued functions.

The completeness condition is of little practical interest for us, whereas the existence

of an inner product
〈

·, ·
〉

is crucial, as it induces a norm ‖θ‖ =
√

〈

θ, θ
〉

. This makes

Hilbert spaces a specialization of normed spaces (Banach spaces). An important

property of Hilbert spaces is that they are spanned by a countable basis.



Chapter 1. Introduction and Background 9

Definition 1.2.8 (Reproducing kernel Hilbert space). A RKHS is a Hilbert space

of real-valued functions in which the evaluation functional is bounded and linear.

The evaluation functional for some point x ∈ X is a functional that, when applied

to a function θ, returns its value at the point x, i.e. θ(x). By the Riesz representation

theorem the evaluation functional in a Hilbert space Θ is of the form
〈

kx, ·
〉

, with

kx being a member of Θ. By definition, the evaluation functional satisfies for any

x ∈ X ,
〈

kx, θ
〉

= θ(x). In the case of RKHS the kernel k of the evaluation functional

is a positive-definite, symmetric kernel. Namely, kx = k(x, ·) = k(·,x) ∈ Θ, and for

every θ, θ′ ∈ Θ it satisfies

∫

X 2

dxdx′θ(x)k(x,x′)θ(x′) ≥ 0.

Moreover, the set of functions k(x, ·), for all x ∈ X , span Θ. A choice of a kernel

function k uniquely defines a RKHS, and conversely (Cucker & Smale, 2001).

The reason we wanted to Θ to be a RKHS was because we needed a disciplined

way to penalize the complexity of learned solutions. It turns out that by minimizing

the empirical risk (Definition 1.2.5) while also paying a penalty depending on the

RKHS norm of candidate hypotheses, the learning problem becomes well-posed,

even in the nonparametric domain. An additional, quite useful result known as

the Representer theorem tells us that, in the supervised setting (in which ŷZ ≡
θ̂Z), we only need to search for solutions of a rather restricted form. In one of its

formulations, this theorem reads as follows (see Kimeldorf & Wahba, 1971 for the

basic result, with extensions and related results in Cox & O’Sullivan, 1990; Schölkopf

& Smola, 2002; Csató & Opper, 2002).

Theorem 1.2.1 (Representer). Denote by Ω : R
+ → R a strictly monotonically

increasing function. Then, for any instantaneous loss function ℓins and a sample

Z = {xi, yi}t
i=1, the solution of

min
θ̂Z∈Θ

{

t
∑

i=1

ℓins(xi, yi, ŷZ(xi)) + Ω
(

‖θ̂Z‖
)

}

,

is of the form

θ̂Z(x) =
t
∑

i=1

αik(xi,x), (1.2.2)

where αi ∈ R for all i = 1, . . . , t.

Recall that ŷZ(x) is the predicted observation provided by the hypothesis θ̂Z for

the point x. The Representer theorem implies that, although our search is conducted



Chapter 1. Introduction and Background 10

in an essentially infinite dimensional (function) space, we need only consider a finite

t-dimensional subspace, which is spanned by the functions {k(xi, ·)}t
i=1. Learning

is thus reduced to finding the optimal vector αt = (α1, . . . , αt)
⊤.

1.2.4 From Features to Kernels

Another key result with far reaching consequences concerning kernel algorithms is

Mercer’s theorem (Mercer, 1909). Mercer’s theorem provides the theoretical backing

for the commonly used “kernel trick” (see below), by implying that for any positive-

definite kernel k there exists a mapping x 7→ φ(x) such that k(x,x′) = φ(x)⊤φ(x′).

Theorem 1.2.2 (Mercer). Let k(·, ·) be a positive-definite, symmetrical, continuous

and bounded kernel function. Then, the (positive-definite) integral operator Tk :

Θ → Θ defined by

Tkθ(x) =

∫

X
k(x,x′)θ(x′)ρx(x′)dx′, (1.2.3)

where ρx(·) is the marginal distribution of x, has a countable set of continuous

eigenfunctions {ψi}∞i=1 with their respective positive eigenvalues {λi}∞i=1, such that

for almost all x,x′,

k(x,x′) =
∞
∑

i=1

λiψi(x)ψi(x
′)

If Θ is finite dimensional, the sum above should be replaced by
∑|Θ|

i=1. Mercer’s

theorem implies that Θ is spanned by the orthogonal set of eigenvectors5 {ψi}. Also

note that, due to the positivity of k, all of the eigenvalues {λi} are positive. In the

sequel we will assume that the eigenvalues are ordered so that λ1 ≥ λ2 ≥ . . . etc.

The Spectral theorem (e.g., Cucker & Smale, 2001 Chapter 2, Theorem 2) further

states, that the set {λi} is either finite (in which case Θ is finite dimensional), or

λi → 0, as i → ∞. An immediate consequence of Mercer’s theorem is that, by

defining φi =
√
λiψi, we obtain the result mentioned above, namely,

k(x,x′) =

∞
∑

i=1

φi(x)φi(x
′) = φ(x)⊤φ(x′).

A useful corollary of this theorem, known as the kernel trick is the following:

Corollary 1.2.3 (Kernel Trick). Any algorithm, which may be stated using only

inner products between members of the input space, can be immediately replaced

5If all eigenvalues are different, the eigenvectors of Tk serve as an orthogonal basis. This is due
to the self-adjointness of the operator, which is due to the symmetry of its kernel. Degeneracy in
the eigenvalues may be treated in the usual way, by explicitly constructing an orthogonal basis in
the degenerate subspace.



Chapter 1. Introduction and Background 11

with a new (kernel) algorithm, in which the inner products are replaced with kernel

evaluations.

An algorithm transformed by application of the kernel trick into a nonlinear

kernel-based version, may therefore be understood as a linear algorithm in the fea-

ture space. For instance, using Mercer’s theorem, the kernel expression
∑t

i=1 αik(xi,x),

resulting from the Representer theorem, may be written as w⊤φ(x), where

w =

⊤
∑

i=1

αiφ(xi). (1.2.4)

1.2.5 Sparsity in Kernel Methods

The representer theorem and the kernel trick provide us with the general forms

of kernel-based solutions. In particular, we found that the number of learnable

parameters in a kernel machine generally equals t, the size of the training data set.

While this is most definitely an improvement over the typical dimensionality of the

hypothesis space (i.e. infinity), for some applications it is nevertheless still too much,

hence the need for sparse solutions. By seeking sparsity we mean that we would like a

large fraction of the coefficients {αi}t
i=1 to vanish. This has several beneficial effects.

If a large number of vanishing coefficients may be detected early in the operation

of the learning algorithm, their removal may allow for considerable computational

savings. Even if vanishing coefficients are removed only once learning is complete,

this still results in reduced computational requirements at query time, i.e. when the

estimate θ̂Z(x) has to be computed. Finally, there are several theoretical results on

compression bounds, indicating that sparsity may be used as a tool for controlling

the capacity of a learning machine, much in the same way that the RKHS norm

is used in Tikhonov-style regularization. Thus sparsity may also be beneficial for

the generalization capability of a kernel machine (see Herbrich, 2002 and references

therein, and Meir & Zhang, 2003).

One paradigmatic approach, used by Vapnik in his support vector regression

(SVR) machine (Vapnik et al., 1997), is to encourage sparsity by employing an er-

ror tolerant loss function, together with a RKHS squared-norm regularization term.

In algorithms for solving SVR, and in related regularization-networks algorithms

(Evgeniou et al., 2000), sparsity is achieved by elimination. This means that, at

the outset, these algorithms consider all training samples as potential contributing

members of the kernel expansion, and once the optimization problem is solved they

eliminate those samples, the coefficients of which vanish. An alternative approach is

to obtain sparsity by construction. Here the algorithm starts with an empty repre-

sentation, in which all coefficients vanish, and gradually adds samples according to

some criterion. Constructive sparsification is normally used off-line (e.g., Vincent &



Chapter 1. Introduction and Background 12

Bengio, 2002), in which case the algorithm is free to choose any one of the training

samples at each step of the construction process. Due to the intractability of find-

ing the best subset of samples (Natarajan, 1995), these algorithms usually resort

to employing various greedy selection strategies, in which at each step the sample

selected is the one that maximizes the amount of increase (or decrease) its addition

induces in some empirical fitness (or error) criterion.

Another possible approach is to attain sparsity by projection. Roughly speak-

ing, this is done by projecting the full solution onto a lower dimensional manifold,

spanned by a subset of the kernel functions employed in the original solution. This

reduction in dimensionality results in an approximation of the original solution,

which may, or may not, be accompanied by some degradation in quality. It should

be noted that this approach does not preclude the use of other approaches, as it

may be employed as a post-processing stage performed on the solutions delivered

by any kernel method.

Why should sparsification be at all possible? In order to answer this question

we need to make some additional definitions.

Definition 1.2.9 (ǫ-cover). Let F be a metric space (i.e. a vector space endowed

with a metric ‖ · ‖, a Hilbert space being a special case). An ǫ-cover, Cǫ(F), is a set

of points {fi}, such that every member of F is in a ball of radius ǫ centered in one

of the members of Cǫ(F). In other words, for all f ∈ F there exists some fi ∈ Cǫ(F)

such that ‖f − fi‖ ≤ ǫ.

Definition 1.2.10 (Covering numbers). Let F be a metric space. The ǫ-covering

number N c
ǫ (F) is the size of the smallest ǫ-cover for F .

Definition 1.2.11 (Packing numbers). Let F be a metric space. The ǫ-packing

number N p
ǫ (F) is the size of the largest subset of F the members of which are

separated by a distance strictly larger than ε.

It is a well known (and easy to prove) result that, when they exist (Anthony &

Bartlett, 1999),

N p
2ǫ(F) ≤ N c

ǫ (F) ≤ N p
ǫ (F). (1.2.5)

Let us return to our original question and formulate it in slightly more precise

terms: How well can the complete (non-sparse) expression f(x) =
∑t

i=1 αik(xi,x),

be approximated by an expression f̂(x) =
∑t

i=1 α̂ik(xi,x), in which all coefficients

{α̂i}, except for a subset of size m, vanish? Unfortunately, it has been shown that

this problem is NP-hard, due to the need to check all possible subsets (Natarajan,

1995). Nevertheless, computational considerations notwithstanding, let us proceed.



Chapter 1. Introduction and Background 13

In the previous section we used Mercer’s theorem to conclude that Θ is spanned

by the basis functions {φi}. Therefore, any hypothesis θ ∈ Θ, may be written as

θ(x) =
∑

iwiφi(x) = w⊤φ(x). Moreover, the Representer theorem showed us that

w is of the form w =
∑t

i=1 αiφ(xi). Measuring the approximation quality using the

squared RKHS norm induced by k, it is easy to show that

‖f̂ − f‖2
k = ‖ŵ − w‖2 = (ŵ − w)⊤(ŵ − w).

Thus the problem is transformed into that of finding a sparse approximation to w.

From Eq. 1.2.4 we see that w lies in span{φ(xi)}t
i=1, which itself is a subspace of

the feature space, defined by (slightly abusing notation)

φ(X )
def
= span{φ(x) : x ∈ X}. (1.2.6)

Now suppose that the ǫ-packing number for φ(X ) satisfies

N p
ǫ (φ(X )) < t.

Then, from Eq. 1.2.5 it follows that there exists an ǫ-cover for φ(X ) the size of

which is N c
ǫ (φ(X )) < t. This, in turn, means that at least t−N c

ǫ (φ(X )) members

of the set {φ(xi)}t
i=1 are at a distance of ǫ or less to some other member of that set.

Hence, at least such a number of coefficients, in Eq. 1.2.4, may be made to vanish,

incurring an approximation error that is, at most, linear in ǫ.

In the worst case, the covering numbers N c
ǫ (φ(X )), display an exponential de-

pendence on the dimensionality of φ(X ) (i.e. O
(

(1/ǫ)d
)

). However, both the choice

of kernel and the density ρx according to which data is sampled, often tend to re-

sult in a low volume feature space φ(X ). This is manifest in the decay rate of the

eigenvalues of the operator Tk, which are proportional to the side lengths of a box

containing the data in φ(X ). The faster the eigenvalues decay, the slower is the rise

of the covering numbers, and consequently the better prospects we have for quickly

reaching a sample size t in which we will be able to obtain sparse solutions (see

König, 1986 for details on eigenvalue decay rates).

1.2.6 Online Learning with Kernels

Kernel methods are not a natural choice for the practitioner seeking an online al-

gorithm. In a nutshell, the major obstacles in applying kernel methods to online

learning are:

1. Many kernel methods require random/multiple access to training samples,

2. their computational cost (both in time and space) is typically super-linear in



Chapter 1. Introduction and Background 14

the size of the training set, and

3. their prediction (query) time often scales linearly with the training set size.

In the online learning scenario input samples are observed sequentially, one at a time.

Such scenarios abound in diverse fields such as data mining, time series prediction,

signal processing and reinforcement learning, to mention a few. In such cases there

is a clear advantage to algorithms that do not need to relearn from scratch when

new data arrive. In many of these applications there is an additional requirement

for real-time operation, meaning that the algorithm’s computational expenses per

time-step should be bounded by a constant independent of the number of previously

observed samples, for it is assumed that new samples arrive at a roughly constant

rate. As may be inferred from the discussion above, kernel algorithms typically need

to maintain a set of parameters the size of which equals the size of the training data

set, which immediately precludes them from meeting this real-time criterion.

Let us suppose, however, that by using some sparsification mechanism, we are

able to bound from above the number of parameters that are really required for solv-

ing the given problem. In this case, it should be possible to design kernel algorithms

that meet the real-time criterion. The first part of the thesis (Chapters 2 and 3), is

concerned with the development and application of such sparse, online algorithms

in the supervised setting of function approximation, or regression. The kernel-RLS

algorithm presented in Chapter 3 is based on a classical, well established frequentist

learning paradigm. In the next section we consider an alternative, Bayesian learning

paradigm – Gaussian processes – with which we will pursue, in the second part of

the thesis, our ultimate goal: Solving reinforcement learning problems.

1.3 Gaussian Processes

Gaussian Processes (GPs) have been used extensively in recent years in supervised

learning tasks such as classification and regression (e.g., Gibbs & MacKay, 1997;

Williams, 1999). Based on probabilistic generative models, GP methods are theo-

retically attractive since they allow a Bayesian treatment of these problems, yield-

ing full posterior distributions based both on one’s prior beliefs and on the data

observed, rather than the point-estimates usually provided by other methods. Since

GPs may be defined directly in function space, they are not as restrictive as paramet-

ric models in terms of the hypothesis space in which learning takes place. Moreover,

when both the prior distribution and the likelihood are Gaussian, the posterior dis-

tribution, conditioned on the observations, is also Gaussian and Bayes’ rule yields

closed-form expressions for the posterior moments, thus completely avoiding the

difficulties associated with iterative optimization algorithms and their convergence

behavior.



Chapter 1. Introduction and Background 15

1.3.1 Definitions and Notation

A random process F is a (finite, countably, or uncountably infinite) set of random

variables, each of which is assigned an index. F is said to be a Gaussian process

if the variables belonging to any finite subset of F are jointly Gaussian. Here we

will focus on GPs indexed by an input, or state variable x. To keep the discussion

as general as possible we only need to assume that x is a member of some set X .

We therefore allow X to be either finite, countably infinite, or even uncountably

infinite, somewhat stretching the notion of index. F may be thought of as a random

vector if X is finite, as a random series if X is countably infinite, and as a random

function if X is uncountably infinite. In the latter case, each instantiation of F is a

function f : X → R. On the other hand, for a given x, F (x) is a random variable

(RV), normally distributed jointly with the other components of F .

In order to perform Bayesian inference using GPs we need to define a statistical

generative model, typically consisting of the following ingredients:

1. A model-equation relating the observed and unobserved random processes in

our model, in which the latter is usually transformed and corrupted by some

additive measurement noise to produce the former. The unobserved process

is the subject of our Bayesian inference effort.

2. A distribution of the measurement noise terms. By noise, we refer to any

additive random process in the model equation, the statistics of which is known

(at least up to a few undetermined hyperparameters), and which is not the

subject of our inference problem.

3. A prior distribution of the unobserved process. This is a necessary ingredient

required for employing Bayes’ rule.

Since F is a priori Gaussian, its prior distribution is fully specified by its mean and

covariance,

E0 [F (x)]
def
= f0(x),

Cov0

[

F (x), F (x′)
]

= E0

[

F (x)F (x′)
]

− f0(x)f0(x
′)

def
= k(x,x′), (1.3.7)

respectively, where E0(·) denotes the expectation with respect to the prior distribu-

tion. In order for k(·, ·) to be a legitimate covariance it is required to be symmetric

and positive-definite. Symmetry means that k(x,x′) = k(x′,x), for all x,x′ ∈ X .

For a finite X , k(·, ·) is a matrix, and the second requirement translates to positive-

definiteness of this matrix. When X is continuous, positive-definiteness is defined

by the integral condition
∫

X 2 g(x)k(x,x′)g(x′)dxdx′ ≥ 0, ∀g ∈ ℓ2. Interestingly,

these are exactly the requirements made of Mercer kernels, discussed above. Recall



Chapter 1. Introduction and Background 16

that, in kernel methods, k(·, ·) is usually referred to as the kernel function, and is

viewed as an inner product in some high dimensional feature space. Under certain

conditions, these two views are in fact equivalent, which is the reason we use the

same notation for both functions (see Schölkopf & Smola, 2002 for details).

1.3.2 The Linear Statistical Model

Consider the following generative model:

Y = HF +N, (1.3.8)

where H is a general linear transformation. The case where both F and N are

Gaussian and independent of each other, is known as the linear statistical model

(Scharf, 1991). In the generative, forward view of this model, an observation Y is

obtained by the following steps:

1. sample F from its prior distribution,

2. apply the transformation H to F ,

3. sample N from the noise distribution,

4. compute Y using Eq. 1.3.8.

In the learning scenario, we are provided with a sequence of measurements

{(xi, yi)}t
i=1, sampled using this generative model by observing it only at the indices

x1, . . . ,xt. The resulting set of t equations, where t is the number of measurements

performed, may be written as

Yt = HtF +Nt, (1.3.9)

where

Yt = (Y (x1), . . . , Y (xt))
⊤ ,

Nt = (N(x1), . . . , N(xt))
⊤ .

In the case where F is finite-dimensional, both H and Ht are matrices. In the

continuous case, H is a linear integral operator, and HtF is generally a set of t

integrals, the i’th of which is of the form
∫

X dx
′ht(xi,x

′)F (x′). Sampling operators

are a special family of operators for which the i’th row of HtF satisfies (HtF )i =
∑t

j=1 hi,jF (xj). This means that, slightly abusing notation, we may write

Yt = HtFt +Nt, (1.3.10)



Chapter 1. Introduction and Background 17

where Ht is now a t× t matrix, Ft = (F (x1), . . . , F (xt))
⊤, and Nt ∼ N {0,Σt}. We

will restrict our attention to generative models in which H is a sampling operator,

and which therefore result in equations of the form (1.3.10).

Suppose now that we obtain a sequence of measurements {(xi, yi)}t
i=1, and we

wish to apply Bayes’ rule to compute the posterior distribution of F , conditioned

on Y (xi) = yi for i = 1, . . . , t. Fortunately, Gauss and later Markov have provided

us with the answer (Scharf, 1991).

Theorem 1.3.1 (Gauss-Markov). Let N denote the normal distribution, and let X

and Y be random vectors distributed as

(

X

Y

)

∼ N
{(

mx

my

)

,

[

Kxx Kxy

Kyx Kyy

]}

Then X|Y ∼ N
{

X̂,P
}

, where

X̂ = mx + KxyK
−1
yy (Y − my)

P = Kxx − KxyK
−1
yy Kyx.

P is also known as the Schur complement of Kxx in the partitioned matrix
[

Kxx Kxy

Kyx Kyy

]

(Scharf, 1991).

Let us define the vector f0 = (f0(x1), . . . , f0(xt))
⊤, and the matrix [Kt]i,j =

k(xi,xj), for i, j ∈ {1, . . . , t}. In our linear statistical model, we then have Ft ∼
N{f0,Kt}, and from Eq. 1.3.10 we deduce that (recall that Σt = Cov[Nt])

Yt ∼ N
{

Htf0, HtKtH
⊤
t + Σt

}

.

Consider a query point x; we have







F (x)

Ft

Nt






∼ N

















f0(x)

f0

0






,







k(x,x) kt(x)⊤ 0

kt(x) Kt 0

0 0 Σt

















, (1.3.11)

where kt(x) = (k(x1,x), . . . , k(xt,x))⊤. Using Eq. 1.3.10 we make the transforma-

tion







F (x)

Ft

Yt






=







1 0 0

0 I 0

0 Ht I













F (x)

Ft

Nt






(1.3.12)



Chapter 1. Introduction and Background 18

Resulting in







F (x)

Ft

Yt






∼ N

















f0(x)

f0

Htf0






,







k(x,x) kt(x)⊤ kt(x)⊤H⊤
t

kt(x) Kt KtH
⊤
t

Htkt(x) HtKt HtKtH
⊤
t + Σt

















, (1.3.13)

The Gauss-Markov Theorem (1.3.1) may now be used to obtain the expressions for

the posterior mean and covariance of F (x), conditioned on Yt:

(F (x)|Yt) ∼ N
{

F̂t(x), Pt(x,x)
}

, where

F̂t(x) = f0(x) + kt(x)⊤H⊤
t

(

HtKtH
⊤
t + Σt

)−1
(Yt − Htf0) , (1.3.14)

Pt(x,x
′) =k(x,x′) − kt(x)⊤H⊤

t

(

HtKtH
⊤
t + Σt

)−1
Htkt(x

′). (1.3.15)

Note that the posterior mean, F̂t(x), is linear in the measurements Yt, while the

posterior covariance, Pt(x,x
′), is altogether independent of Yt. Also note that it is

possible to decompose these expressions into input dependent terms (which depend

on x and x′), and terms that only depend on the training sample. Specifically,

F̂t(x) = f0(x) + kt(x)⊤αt, (1.3.16)

Pt(x,x
′) = k(x,x′) − kt(x)⊤Ctkt(x

′). (1.3.17)

where

αt = H⊤
t

(

HtKtH
⊤
t + Σt

)−1
(Yt − Htf0) ,

Ct = H⊤
t

(

HtKtH
⊤
t + Σt

)−1
Ht. (1.3.18)

Eq. 1.3.16 and 1.3.17 lead us to conclude that αt and Ct are sufficient statistics for

the posterior moments. Note, that this result may be thought of as the counterpart

of the Representer theorem (Theorem 1.2.1) for Gaussian processes6.

The posterior mean (Eq. 1.3.16) is our Bayesian estimator for F , while the pos-

terior covariance provides an estimate of the accuracy of the predictions provided by

the posterior mean. Assuming all our model assumptions are correct, the posterior

mean possesses several attractive properties (Scharf, 1991):

1. It minimizes the posterior risk (Definition 1.2.6) for the squared loss.

2. It equals the maximum a posteriori (MAP) estimate, under the same assump-

tions.

3. It is the (unique) minimum variance unbiased (MVUB) estimator for F .

6A more general result is provided by the Parameterization lemma of Csató & Opper, 2002.



Chapter 1. Introduction and Background 19

4. Even if the Gaussianity assumptions are dropped (but maintaining moment

assumptions), the resulting estimator, although no longer interpretable as a

posterior mean, is the linear minimum mean squared error (LMMSE) estima-

tor.

These properties apply to the family of linear statistical models, as well as to a

generalization thereof, known as the Kalman filter (Kalman, 1960; Scharf, 1991).

1.3.3 Gaussian Process Regression

As an illustrative example let us review the use of GPs for regression with white

Gaussian noise. In this setup, we are provided with a sample of t training examples

{(xi, yi)}t
i=1. The model-equation for some x ∈ X is

Y (x) = F (x) +N(x), (1.3.19)

where F is the GP corresponding to the unknown function from which the data are

generated, N is a white noise GP, and Y is the observable process, modeled here as

a noisy version of F . In other words, the operator H is here the identity operator,

which qualifies it as a sampling operator. Eq. 1.3.19, evaluated for the training

samples, may be written concisely as

Yt = Ft +Nt, (1.3.20)

In our example, we assume that the noise terms corrupting each sample are inde-

pendently and identically distributed (IID), we therefore have

Nt ∼ N
(

0, σ2I
)

,

where σ2 is the variance of each noise term. The last remaining item on our list to

be specified is the prior over F , which we assume to be Gaussian with zero mean

and covariance given by Eq. 1.3.7. The kernel function k(·, ·) encodes our prior

knowledge concerning the correlations between the components of F at different

points. Equivalently, k may be thought of as inducing a measure of proximity

between the members of X . It can also be shown that k defines the function space

within which the search for the solution takes place (see Schölkopf & Smola, 2002

for more details). While the choice of prior mean is relatively innocuous, in the

sense that the asymptotic solution is independent of it, the last point indicates

that the choice of covariance kernel has far reaching consequences, which cannot be

completely undone, even by an infinite amount of data7. Whichever way one wishes

7This is in contrast to priors over finite dimensional random processes, the influence of which
vanishes asymptotically.



Chapter 1. Introduction and Background 20

to view it, the choice of kernel codes one’s prior knowledge and beliefs concerning

the problem at hand, and the expected form of its solution.

Fig. 1.1 illustrates the GP regression setting as a graphical model, in which

arrows (and lack thereof) mark the conditional independency relations between the

nodes corresponding to the latent F (xi) and the observed Y (xi) variables.

1

N(x )
1

1

Y(x )

F(x )

.   .   .   .  

N(x )

2

Y(x )

N(x )

Y(x )

F(x )F(x )

2

2

t

t

t

Figure 1.1: A directed graph illustrating the conditional independencies between the
latent F (xi) variables (bottom row), the noise variables N(xi) (top row), and the
observable Y (xi) variables (middle row), in GP regression. All of the F (xi) variables
should be interconnected by arrows (forming a clique), due to the dependencies
introduced by the prior. To avoid cluttering the diagram, this was marked by the
dashed frame surrounding them.

Given the observed set of t training examples {(xi, yi)}t
i=1, the posterior dis-

tribution of F , conditioned on this sample is given by Eq. 1.3.15, with Ht = I,

Σt = σ2I, and f0 = 0:

E (F (x)|Yt = yt) = f0(x) + kt(x)⊤(Kt + σ2I)−1yt, (1.3.21)

Cov
(

F (x), F (x′)|Yt = yt

)

= k(x,x′) − kt(x)⊤(Kt + σ2I)−1kt(x
′), (1.3.22)

where yt = (y1, . . . , yt)
⊤.

Figure 1.2 depicts the result of performing GP regression on a set of 10 samples,

sampled from the sinc function, with added noise. The solid (black) line is the

target function, the diamonds mark the training samples, and the (blue) dashed

line is the posterior mean – the Bayesian estimator for F . The two (red) dotted

lines mark one posterior standard deviation above and below the posterior mean.

The posterior variance allows us to assign varying levels of confidence to predictions

at different parts of the input space. In this example, almost everywhere, the target

function is within the one standard deviation confidence interval from its estimate.



Chapter 1. Introduction and Background 21

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5
SGPR:  Test # 1,  Rep. # 1

Train set    
DVs          
Function     
Regressor    
Test err=0.14

Figure 1.2: GP regression applied to the sinc function corrupted with IID Gaussian
noise

1.3.4 Parametric Gaussian Processes

Although the nonparametric, kernel-based approach for GP regression, described

above, offers much flexibility, it may sometimes be preferable to employ a parametric

representation, under very similar assumptions. In the parametric setting, the GP F

is assumed to consist of a linear combination of a finite number, n, of basis functions.

The vector of n scalars returned by these basis functions, when they are evaluated

at a given x, is referred to as the feature vector of x. Specifically, if φi is the i’th

basis function, then

F (x) =

n
∑

i=1

φi(x)Wi = φ(x)⊤W,

where φ(x) = (φ1(x), . . . , φn(x))⊤ is the feature vector of x, andW = (W1, . . . ,Wn)⊤.

The randomness in F is now due to W being a random vector. According to our

custom, the prior over W is assumed to be Gaussian, and with little loss of generality



Chapter 1. Introduction and Background 22

we postulate it to be distributed as8

W ∼ N (0, I)

Our model-equation (Eq. 1.3.10) now becomes

Yt = HtΦ
⊤
t W +Nt, (1.3.23)

where Φt is the n× t matrix

Φt = [φ(x1), . . . ,φ(xt)] .

The Gauss-Markov Theorem may be applied here again to yield the mean and co-

variance of the posterior (Gaussian) distribution of W , conditioned on the observed

data:

E (W |Yt) = ΦtH
⊤
t

(

HtΦ
⊤
t ΦtH

⊤
t + Σt

)−1
Yt (1.3.24)

Cov (W |Yt) = I − ΦtH
⊤
t

(

HtΦ
⊤
t ΦtH

⊤
t + Σt

)−1
HtΦ

⊤
t . (1.3.25)

Since F (x) = φ(x)⊤W , the posterior mean and covariance of F can now be easily

computed:

E (F (x)|Yt) = φ(x)⊤ΦtH
⊤
t

(

HtΦ
⊤
t ΦtH

⊤
t + Σt

)−1
Yt

Cov
(

F (x), F (x′)|Yt

)

= φ(x)⊤φ(x′)−

φ(x)⊤ΦtH
⊤
t

(

HtΦ
⊤
t ΦtH

⊤
t + Σt

)−1
HtΦ

⊤
t φ(x′).

(1.3.26)

It is instructive to note that, if our chosen feature vectors satisfy the inner

product condition

φ(x)⊤φ(x′) = k(x,x′) for all x,x′ ∈ X , (1.3.27)

than the two representations – parametric and nonparametric – become equivalent.

This may be easily seen by noting that, in this case, Φ⊤
t φ(x) = kt(x), Φ⊤

t Φt = Kt,

and comparing the parametric posterior moments (1.3.26) with the nonparametric

ones (1.3.15, assume f0 = 0). In fact, Mercer’s theorem (Theorem 1.2.2) guarantees

us that a set of features, for which the condition (1.3.27) is satisfied, always exists.

However, this set may be infinite. In this sense, the nonparametric, kernel based

8The more general prior N (0,S), where S is a general covariance matrix, may be reduced to this
prior by linearly transforming the feature vector φ(x) into a new set of features, ψ(x) = S

1/2φ(x),
resulting in the exact same prior over F .



Chapter 1. Introduction and Background 23

approach may be thought of as a generalization of the parametric approach, allowing

us to incorporate an infinite number of features into our representation.

The following simple Lemma allows us to derive alternative expressions for the

posterior mean and covariance.

Lemma 1.3.2. If A is an n × m matrix, B an m × n matrix, and BA + I is

nonsingular, then AB + I is also nonsingular, and 9

A (BA + I)−1 = (AB + I)−1A.

Proof See Appendix C.

Assuming Σ−1
t exists (this would usually follow from the positivity of Σt), a

simple application of Lemma 1.3.2 to Eq. 1.3.24, 1.3.25 results in,

E (W |Yt) =
(

ΦtH
⊤
t Σ−1

t HtΦ
⊤
t + I

)−1
ΦtH

⊤
t Σ−1

t Yt (1.3.28)

Cov (W |Yt) = I −
(

ΦtH
⊤
t Σ−1

t HtΦ
⊤
t + I

)−1
ΦtH

⊤
t Σ−1

t HtΦ
⊤
t

=
(

ΦtH
⊤
t Σ−1

t HtΦ
⊤
t + I

)−1
(1.3.29)

In the case of regression with IID Gaussian noise (with variance σ2), we set Ht = I

and Σt = σ2I, resulting in

E (W |Yt = yt) =
(

ΦtΦ
⊤
t + σ2I

)−1
ΦtYt (1.3.30)

Cov (W |Yt = yt) = σ2
(

ΦtΦ
⊤
t + σ2I

)−1
(1.3.31)

These alternative expressions allow for considerable computational savings when

t ≫ n, since, instead of inverting the t× t matrix
(

HtΦ
⊤
t ΦtH

⊤
t + Σt

)

, we are now

only required to invert the n× n matrix
(

ΦtH
⊤
t Σ−1

t HtΦ
⊤
t + I

)

. It may be readily

verified that the posterior mean (1.3.28) is the solution to a regularized least-squares

problem. Namely,

ŵt = E (W |Yt = yt) = argmin
w

{

∥

∥

∥yt − HtΦ
⊤
t w
∥

∥

∥

2

Σ
−1
t

+ ‖w‖2

}

, (1.3.32)

where ‖u‖2
Σ

−1
t

def
= u⊤Σ−1

t u. The problem (1.3.32) is easily recognized as the maxi-

mization of the log-posterior density of W . In other words, the posterior mean ŵt

9Note that I on the l.h.s. is the m×m identity matrix, while on the r.h.s. it is the n×n identity
matrix.



Chapter 1. Introduction and Background 24

is also the maximum a posteriori (MAP) estimator of W , under our model assump-

tions. Taking (carefully) the limit Σt → 0, reduces (1.3.32) to a simple least-squares

problem:

min
w

∥

∥

∥yt − HtΦ
⊤
t w
∥

∥

∥

2

Σ
−1
t

, (1.3.33)

The solution of this problem is the maximum likelihood (ML) estimator of W , within

our model. To summarize,

ŵMAP
t =

(

ΦtH
⊤
t Σ−1

t HtΦ
⊤
t + I

)−1
ΦtH

⊤
t Σ−1

t yt, (1.3.34)

ŵML
t =

(

ΦtH
⊤
t Σ−1

t HtΦ
⊤
t

)−1
ΦtH

⊤
t Σ−1

t yt. (1.3.35)

The same kind of analysis applies to the nonparametric case. Here again, we may

invoke Lemma 1.3.2 to derive alternative expressions for αt and Ct:

αt =
(

H⊤
t Σ−1

t HtKt + I
)−1

H⊤
t Σ−1

t rt−1, (1.3.36)

Ct =
(

H⊤
t Σ−1

t HtKt + I
)−1

H⊤
t Σ−1

t Ht. (1.3.37)

Contrary to the parametric case, these alternative expressions do not offer us any

computational advantage over the original ones. However, this alternative represen-

tation of the Bayesian solution serves as a link to the nonparametric MAP and ML

solutions. In the nonparametric case we know from Eq. 1.3.16 that the solution is

of the form α⊤kt(x) (we assume f0 ≡ 0). The MAP problem then becomes

min
α

{

‖yt − HtKtα‖2
Σ

−1
t

+α⊤Ktα
}

. (1.3.38)

In the classical, frequentist view, the term α⊤Ktα is viewed as a regularization

term. In fact, it can be easily shown that α⊤Ktα = ‖f‖2, which is the squared

RKHS norm of f , making this an instance of Tikhonov-style regularization. By

imposing the stationarity conditions (equating the gradient w.r.t. α to 0) the MAP

solution may be shown to be

αMAP
t =

(

H⊤
t Σ−1

t HtKt + I
)−1

H⊤
t Σ−1

t yt, (1.3.39)

which is the same as the posterior mean parameter αt from Eq. 1.3.36. Again, in

the limit of Σt → 0, the influence of the regularizing term α⊤Ktα vanishes, and we

are left with the ML solution

αML
t =

(

H⊤
t Σ−1

t HtKt

)−1
H⊤

t Σ−1
t yt, (1.3.40)



Chapter 1. Introduction and Background 25

As mentioned before, in the nonparametric case the ML solution is not very useful,

as it is bound to overfit due to the lack of any capacity control mechanism. The

high capacity of the ML solution may be demonstrated by observing that it doesn’t

make any errors on the training set, regardless of its size:

(

ŷ(x1), . . . , ŷ(xt)
)⊤

ML
= HtKtα

ML
t

= HtKt

(

H⊤
t Σ−1

t HtKt

)−1
H⊤

t Σ−1
t yt

=
(

HtKtH
⊤
t Σ−1

t

)−1
HtKtH

⊤
t Σ−1

t yt

= yt

=
(

y(x1), . . . , y(xt)
)⊤

.

The third equality above is due to Lemma 1.3.2.

Finally, it is worth mentioning that the parametric linear statistical model

(1.3.23) is a special case of the celebrated Kalman filter (Kalman, 1960), for the

case where there are no state dynamics, i.e. where Wt+1 = Wt ≡W is constant.

1.3.5 Summary and Remarks

We have seen that GPs, in the framework of the linear statistical model, can be

used to perform Bayesian inference using both parametric and nonparametric rep-

resentations. In either case, GPs deliver an estimator that takes into account both

our prior knowledge and the observed data, in the form of the posterior mean. We

stated without proof several optimality properties of this estimator, the proofs of

which may be found elsewhere (e.g., Scharf, 1991). In addition to the posterior

mean, GPs provide us with the posterior covariance, which may be used to provide

confidence intervals for the predictions supplied by the mean. We also showed the

connection between the GP estimator and the MAP, ML and least-squares solutions

to the same problem.

The regression model (1.3.19) in which H is the identity operator is probably

the simplest example of such Linear-Gaussian statistical models. However, H may

represent any linear operation, such as arbitrary linear combinations of F at any

number of different points, differentiation and integration of F , etc. Moreover, in

several of these instances, the posterior moments may still be computed efficiently. It

is quite remarkable that, until recently, this fact was largely ignored in the Machine

Learning community (but see Solak et al., 2003; Graepel, 2003). In Chapter 4 of this

thesis we will apply such linear statistical models to the solution of RL problems.



Chapter 1. Introduction and Background 26

1.4 Markov Decision Processes

As mentioned above, Markov Decision Processes (MDPs), or a generalization thereof,

known as partially observable MDPs (POMDPs, Kaelbling et al., 1998), provide

the formal basis underlying RL methodology. A discrete time MDP is a tuple

(X ,U , R, p), where

• X is the state space

• U is the action space

• R : X → R is the immediate reward10, which may be a random process (see

below for a definition), in which case R(x) is distributed as R(x) ∼ q(·|x).

• p : X × U × X → [0, 1] is the transition probability distribution, which we

assume to be stationary.

In the context of RL it is useful to define several additional objects. A stationary

policy µ : X × U → [0, 1] is a time-independent mapping from states to action

selection probabilities. A given policy induces a policy-dependent state-transition

probability distribution, defined as11

pµ(x′|x) =

∫

U
duµ(u|x)p(x′|u,x). (1.4.41)

Hence, for a fixed policy and a fixed initial state x0, the probability (density) of

observing the sequence of states x0,x1, . . . ,xt is
∏t

i=1 p
µ(xi|xi−1).

Another useful quantity is the discounted return. The discounted return is a

random process, defined as

D(x) =

∞
∑

i=0

γiR(xi)|x0 = x, where xi+1 ∼ pµ(·|xi) for all i ≥ 0, (1.4.42)

and γ ∈ [0, 1] is the discount factor12. The randomness in D(x0), for any given state

x0, is due both to the stochasticity of the sequence of states that follow x0, and to

the randomness, or noise, in the rewards R(x0), R(x1), . . . etc., both of which jointly

constitute the intrinsic randomness of the MDP.

Eq. 1.4.42 together with the stationarity of the MDP yield

D(x) = R(x) + γD(x′), where x′ ∼ pµ(·|x). (1.4.43)

10The general case is R : X × U ×X → R; to simplify the exposition we assume that the reward
associated with a transition from state x to state x

′ depends only on x. However, the subsequent
analysis can be easily generalized to accommodate less restrictive reward models.

11Here and in the sequel, whenever integration is performed over a finite or discrete space, the
integral should be understood as a summation.

12When γ = 1 the policy must be proper, see Bertsekas and Tsitsiklis (1996)



Chapter 1. Introduction and Background 27

The equality here should be understood as an equality in the distributions of the two

sides of the equation. Let us define the expectation operator Eµ as the expectation

over all possible trajectories and all possible rewards collected therein. This allows us

to define the value function V (x) as the result of applying this expectation operator

to the discounted return D(x), i.e.

V (x) = EµD(x) (1.4.44)

Thus, applying Eµ to both sides of Eq. 1.4.43, and using the conditional expectation

formula (Scharf, 1991), we get

V (x)
def
= EµD(x) = Eµ

[

R(x) + γD(x′)
]

= r̄(x) + γEx′Eµ

[

D(x′)|x′]

= r̄(x) + γEx′V (x′),

where

Ex′V (x′) =

∫

X
dx′pµ(x′|x)V (x′), and

r̄(x) =

∫

R

drq(r|x)r is the expected reward at the state x.

The equality we have just proved, namely that

V (x) = r̄(x) + γEx′V (x′) ∀x ∈ X , (1.4.45)

is recognizable as the fixed-policy version of the Bellman equation13 (Bellman, 1957).

The policy that maximizes the expected discounted return from each state is called

an optimal policy, and is denoted by µ∗. In the case of stationary MDPs, there

exists a deterministic optimal policy14. With some abuse of notation, we denote the

action selected by a deterministic policy µ, at a state x, by µ(x).

The value function corresponding to an optimal policy is called the optimal

value, and is denoted by V ∗. While there may exist more than one optimal policies,

the optimal value is unique (Bertsekas, 1995), and may be computed by solving the

Bellman optimality equation

V ∗(x) = r̄(x) + γmax
u

∫

X
dx′p(x′|u,x)V ∗(x′) ∀x ∈ X . (1.4.46)

13A similar equation, satisfied by the variance of the discounted return, may be derived in an
analogous manner, this time using the conditional variance formula, see Sobel, 1982 for details.

14This is no longer the case for POMDPs and Markov Games, see Kaelbling et al. (1998); Littman
(1994).



Chapter 1. Introduction and Background 28

Even if X is finite, and assuming for now, that both p and r̄ are known, solving

the set of equations (1.4.46) remains a non-trivial endeavor if |X | is large; since

we are faced with a set of |X | nonlinear equations. Ignoring this obstacle for the

moment, let us assume that we have already solved Eq. 1.4.46 for V ∗. Can we now

compute an optimal policy µ∗ from V ∗? The answer is affirmative. Specifically, for

any x ∈ X , a deterministic optimal policy is given by

µ∗(x) = arg max
u

∫

X
dx′p(x′|u,x)V ∗(x′) (1.4.47)

1.4.1 Dynamic Programming

In the preceding section we noted the difficulty of solving Bellman’s optimality

equation. Luckily, two efficient and provably convergent dynamic programming

(DP) algorithms (over which many variations exist) are available at our disposal.

Value Iteration (VI) works by initializing a value estimate, for all x ∈ X , by V̂0(x) =

r̄(x), and using Eq. 1.4.46 as an update rule:

V̂i(x) = r̄(x) + γmax
u

∫

X
dx′p(x′|u,x)V̂i−1(x

′). (1.4.48)

Algorithm 1 describes VI in pseudocode.

Algorithm 1 The Value Iteration Algorithm

For all x ∈ X , set V̂0(x) := r̄(x)
i := 0
set done := false
while not done

For all x ∈ X , set V̂i+1(x) := r̄(x) + γmaxu

∫

X dx
′p(x′|u,x)V̂i(x

′)

if ‖V̂i+1 − V̂i‖ ≤ ε, set done := true
i := i+ 1

end while
For all x ∈ X , set µ̂∗(x) := arg maxu

∫

X dx
′p(x′|u,x)V̂i(x

′)
return µ̂∗

The termination condition used above (the if inside the loop) involves the com-

putation of some norm of the difference between two subsequent value estimates.

Several theoretical results exist, which provide bounds for the performance of µ̂∗ as

a function of ε for different norms, including the maximum norm ‖ · ‖∞ (Williams

& Baird, 1993), and weighted ℓ2 norms (Munos, 2003). In practice, however, a less

computationally cumbersome criterion is often used.

Policy Iteration (PI) works by the process of policy improvement. Specifically, it

starts with some initial random deterministic policy. At each successive iteration,

it evaluates the value function for the current policy, and then performs a policy



Chapter 1. Introduction and Background 29

improvement step, in which a new policy is generated by selecting the greedy action

at each state, with respect to the values of the current policy. Iterating the policy

evaluation – policy improvement process is known to produce a strictly monotoni-

cally improving sequence of policies. If the improved policy is the same as the policy

improved upon, then we are assured that the optimal policy has been found. The

policy evaluation step can be implemented by any algorithm that solves the set of

equations (1.4.45). The pseudocode for PI is given in Algorithm 2.

Algorithm 2 The Policy Iteration Algorithm

For all x ∈ X , set µ̂0(x) = some random action
i := 0
set done := false
while not done

call subroutine V̂i := PolicyEvaluation(µ̂i)
For all x ∈ X , set µ̂i+1(x) := arg maxu

∫

X dx
′p(x′|u,x)V̂i(x

′)
if µ̂i+1 = µ̂i, set done := true
i := i+ 1

end while
return µ∗ := µ̂i

For instance, if the number of states is finite (N), states can be enumerated

using integer indices i = 1, 2, . . . , N . If N is sufficiently small, we can store the

estimated state values in a lookup table, or a vector, v̂ of which the i’th component

is V̂ (i). Similarly, the components of the policy-dependent transition probability

can be stored in a matrix [Pµ]i,j = pµ(j|i), and the mean rewards in a vector r̄.

Then, the Bellman equation (1.4.45) may be written concisely as

v̂ = r̄ + γPµv̂, (1.4.49)

and solved for v̂ by

v̂ = (I − γPµ)−1 r̄.

Note, that if the discount factor γ = 0, this reduces to v̂ = r̄.

If the number of states renders the inversion of I − γPµ too expensive, we may

resort to solving Eq. 1.4.49 by fixed-point iterations. That is, we iterate

v̂t+1 = r̄ + γPµv̂t. (1.4.50)

The pseudocode for this fixed-point policy evaluation (FPPE) algorithm is given

in Algorithm 3 (read integrals as sums, as necessary). Note the similarity between

this algorithm and the VI algorithm (Algorithm 1). In fact, when there is only one

possible action at each state, the two algorithms coincide.



Chapter 1. Introduction and Background 30

Algorithm 3 The Fixed-Point Policy Evaluation Algorithm

For all x ∈ X , set V̂0(x) := r̄(x)
i := 0
set done := false
while not done

For all x ∈ X , set V̂i+1(x) := r̄(x) + γ
∫

X dx
′pµ(x′|x)V̂i(x

′)

if ‖V̂i+1 − V̂i‖ ≤ ε, set done := true
i := i+ 1

end while
return V̂i

In many cases, such as the one just discussed, the policy evaluation routine only

provides an approximation of the true value function. In such cases, the resulting

algorithm is referred to as Approximate Policy Iteration (API). If the approximation

error is smaller than half the smallest difference between the values of the best

and second best actions, then API can still be shown to converge to the optimal

policy. When compared with the VI iterations, each iteration of PI or API is rather

expensive computationally. However, PI algorithms typically require surprisingly

few iterations to converge (see Puterman, 1994; Bertsekas, 1995 for further details).

1.4.2 Reinforcement Learning

Most successful Reinforcement Learning algorithms are descended from one of the

two DP algorithms described above, VI and PI. However, there are two major fea-

tures distinguishing the RL setting from the traditional decision theoretic setting.

First, while in decision theory it is assumed that the environment model is fully

known, in RL no such assumption is made. Second, in RL, the learning process is

usually assumed to take place online, namely, concurrently with the accumulation

of actual or simulated data acquired by the learning agent as it explores its environ-

ment. These two features make RL a significantly more difficult challenge, and place

serious constraints on any potential RL algorithm. Probably the two best known

RL algorithms, TD(λ) (Sutton, 1988) and Q-learning (Watkins, 1989), serve well to

demonstrate how RL methods handle these constraints. For simplicity we assume

that the state and action spaces are finite, and that state values, or state-action

values are stored explicitly in a lookup table.

TD(λ) is aimed at evaluating the value function for a fixed policy µ. The input

to the algorithm is a sequence of state-reward couples, generated by the MDP con-

trolled by the policy µ. The idea in TD(λ) is to gradually improve value estimates

by moving them towards the weighted average of multi-step lookahead estimates,

which take into account the observed rewards. In the simplest case, of λ = 0, this

amounts to moving the value estimate of the current state, V̂ (xt), toward the 1-



Chapter 1. Introduction and Background 31

step lookahead estimate rt + γV̂ (xt+1). Since the next state, xt+1, is sampled from

the policy-dependent transition probability pµ(·|xt), the expected move of V̂ (xt) is

in the direction of rt + γ
∑

x p
µ(x|xt)V̂ (x). In effect, what was done here was to

replace the computation of the mean value-estimate over all possible states that

can follow xt, by the single term V̂ (xt+1), which is an unbiased estimator for this

mean15. Similarly, the sampled reward, rt, is an unbiased estimator for r̄(xt). In

the long run, under some technical conditions, this has the effect of driving V̂ to

the solution of the Bellman equation (1.4.45) (Sutton, 1988; Watkins, 1989; Dayan,

1992; Dayan & Sejnowski, 1994). Thus, TD methods avoid making direct use of the

transition model {pµ, q} by sampling from it. TD(0) may also be thought of as an

asynchronous, stochastic version of the FPPE algorithm described above. The pseu-

docode for TD(0) is given in Algorithm 4. The update term rt−1+γV̂ (xt)− V̂ (xt−1)

is referred to as the temporal difference16 at time-step t.

Algorithm 4 The Tabular TD(0) Algorithm

For all x ∈ X , set V̂ (x) := 0
for t = 1, 2, . . .

observe xt−1, rt−1, xt

V̂ (xt−1) := V̂ (xt−1) + η
(

rt−1 + γV̂ (xt) − V̂ (xt−1)
)

end for
return V̂

In many cases, RL tasks are naturally divided into learning episodes. In such

episodic learning tasks, the agent is placed at some (typically randomly chosen)

initial state, and is then allowed to follow its policy until it reaches a terminal

absorbing state. At this point the episode terminates and a new one may begin. A

terminal state is modeled as a state with zero reward and with only self transitions,

for any action. If the state at time t, xt, is terminal, then in the TD(λ) update, as

well as in algorithms presented in the sequel, we define V̂ (xt) = 0.

Recall that a value estimation algorithm is only a subcomponent of a complete

PI-type algorithm, for finding a near-optimal policy. The policy improvement step

requires that we compute the improved policy by

µ̂i+1(x) := arg max
u

∫

X
dx′p(x′|u,x)V̂i(x

′)

This, of course, requires knowledge of the transition model p(x′|u,x). As such

knowledge is typically unavailable17, we need to find a way to perform this maxi-

15Note, however, that it is not an unbiased estimator for
P

x
pµ(x|xt)V (x)!

16This is a slight departure from conventional notation, meant to ensure that the update at time-
step t uses only information available up to that time. Hence, the temporal difference at time t is
not defined as rt + γV̂t(xt+1)− V̂t(xt), as this definition requires knowledge the state at time t + 1.

17Even if the MDP model were available, computing the expectation may be too costly to perform.



Chapter 1. Introduction and Background 32

mization efficiently, without requiring us to invoke the transition model. One way

this may be done is by learning state-action values, also known as Q-values, rather

than just state values. For a given policy µ, the Q-value for the state-action pair

(x,u) is the expected discounted return over all trajectories starting from x, for

which the first action is u, and with all subsequent actions chosen according to µ.

The Q-values associated with µ may be shown to satisfy the following form of the

Bellman equation (compare to Eq. 1.4.45):

Q(x,u) = r̄(x) + γEx′|uV (x′)

= r̄(x) + γ

∫

X
dx′p(x′|u,x)V (x′), (1.4.51)

where V (x′) =
∫

U du
′µ(u′|x′)Q(x′,u′). The policy improvement step can now be

performed by a single maximization operation per state: µ̂i+1(x) := arg maxu Q̂i(x,u).

The TD(λ) algorithm may be used, essentially unchanged, to learn state-action

values. This algorithm is known as SARSA (State-Action-Reward-State-Action)

(Sutton & Barto, 1998). Algorithm 5 provides the pseudocode of SARSA(0).

Algorithm 5 The Tabular SARSA(0) Algorithm

For all x ∈ X and u ∈ U set Q̂∗(x,u) := 0
for t = 1, 2, . . .

observe xt−1, ut−1, rt−1, xt, ut

Q̂(xt−1,ut−1) := Q̂(xt−1,ut−1) + η
(

rt−1 + γQ̂(xt,ut) − Q̂(xt−1,ut−1)
)

end for
return Q̂

The Q-learning algorithm is to Value Iteration what SARSA(0) is to the FPPE

algorithm. Namely, Q-learning is an asynchronous, stochastic version of VI, which

learns Q-values. In this case, state-action values allow the maximization operation,

inherent to all VI methods, to be carried out efficiently, and without requiring

knowledge of the transition model. As usual, we denote the Q-function associated

with an optimal policy µ∗ by Q∗. Evidently, the optimal value function V ∗ is related

to Q∗ by

V ∗(x) = max
u

Q∗(x,u),

as the maximization makes sure the first action is optimal, and all subsequent actions

must also be optimal, by the definition of Q∗. Hence, the Q-values associated with

the optimal policy may be shown to satisfy an analogue of Eq. 1.4.46

Q∗(x,u) = r̄(x) + γEx′|u max
u′

Q∗(x′,u′) (1.4.52)



Chapter 1. Introduction and Background 33

In the spirit of TD and SARSA, in which expectations were replaced with actual

samples, we can, by analogy, derive the Q-learning algorithm. Algorithm 6 gives

the pseudocode.

Algorithm 6 The Tabular Q-Learning Algorithm

For all x ∈ X and u ∈ U set Q̂∗(x,u) := 0
for t = 1, 2, . . .

observe xt−1, ut−1, rt−1, xt

Q̂∗(xt−1,ut−1) := Q̂∗(xt−1,ut−1)+η
(

rt−1 + γmaxu′ Q̂∗(xt,u
′) − Q̂∗(xt−1,ut−1)

)

end for
return Q̂∗

Assuming Q̂∗ = Q∗ (i.e. Q-learning has converged to the optimum), then a

(deterministic) optimal action for each state can be easily computed by a single

maximization operation,

µ∗(x) = arg max
u

Q̂∗(x,u),

with ties broken arbitrarily. One of the attractive features of Q-learning, is that,

regardless of the exploration policy µ, as long as µ avoids neglecting parts of the

state and action spaces, the estimates Q̂∗ will converge to the optimal Q-values Q∗.

This is referred to as off-policy learning, generally meaning that the values of one

policy are learned while another is being followed.

The TD, SARSA and Q-learning algorithms, as well as many other algorithms

relying on a lookup-table representation, are useful in providing a proof-of-concept.

However, real-world problems can rarely be solved using such representations, due

to the large, and sometimes infinite, state and action spaces, which characterize

such problems. Since a tabular representation is unfeasible, it is necessary, in such

problems, to use some form of function approximation (FA) to represent the value

function and possibly also the policy. This, however, gives rise to another difficulty,

as many otherwise popular function approximation schemes (e.g., sigmoidal mul-

tilayer neural nets), when used to represent the value function, interfere with the

contraction properties of the DP operators (Gordon, 1996). In reality, practitioners

either ignore this problem and make do without any convergence guarantees, with

mixed success (e.g., Tesauro, 1995; Schraudolph et al., 1994; Crites & Barto, 1996),

or resort to using special forms of FA, that are well behaved (Singh et al., 1995;

Boyan & Moore, 1995; Tsitsiklis & Van Roy, 1996; Gordon, 1996; Munos, 2000).

One particular form of FA, in which the approximation is linear in its parameters

has emerged as particularly useful. There is a significant body of work providing

convergence guarantees for the TD algorithm (Sutton, 1988) and several related

algorithms, when used in conjunction with such linear approximation architectures



Chapter 1. Introduction and Background 34

(Tsitsiklis & Van Roy, 1996; Konda & Tsitsiklis, 2000; Nedic & Bertsekas, 2003;

Munos, 2003). However, linear parametric FA architectures are inherently limited in

their expressive powers, since one must choose a priori a finite set of basis functions,

the span of which constitutes the hypothesis space to which the value estimate

belongs. If the true value function does not belong to this hypothesis space, the

approximation to which these algorithms converge may be quite bad, depending on

a measure of the distance between the hypothesis space and the true value function.

Nonetheless, for the RL practitioner seeking a provably convergent, online, model-

free algorithm for value estimation, the choice is limited to TD(λ) and some of

its variants, such as SARSA(λ) (Sutton & Barto, 1998) and LSTD(λ), used in

conjunction with a linear function approximation architecture (Bradtke & Barto,

1996; Boyan, 1999a). Let us briefly overview some of these methods.

1.4.3 TD Methods with Function Approximation

Temporal difference learning has been implemented with a wide range of function ap-

proximation schemes, including neural networks, tile codes (a.k.a. Cerebellar model

articulation controllers, or CMACs), radial basis functions (RBFs), discretization-

based methods, nearest-neighbors, to mention a few (see Sutton & Barto, 1998 for

an overview). While in many of these instances, TD learning was successful, there

are also quite a few examples in which TD methods have been shown to fail (e.g.,

Baird, 1995; Tsitsiklis & Van Roy, 1996). As mentioned above, for the class of

linear FA architectures, i.e. in which the approximation is linear in the learned pa-

rameters, TD methods have been shown to possess desirable convergence properties

- a rare commodity among RL algorithms (Tsitsiklis & Van Roy, 1996; Konda &

Tsitsiklis, 2000; Nedic & Bertsekas, 2003). However, before focusing on a specific

FA architecture, let us consider the general parametric setting.

In the parametric setting we postulate that the true value function is parame-

terized by a vector of unknown parameters θ, and our goal is to use observable data

to estimate θ. In this context it is useful to define the Bellman residual.

Definition 1.4.1 (Bellman residual). The Bellman residual of an estimator V
θ̂

of

the value function, at the state x, is

B(θ̂,x) = V
θ̂
(x) − r̄(x) − γ

∫

X
V

θ̂
(x′)pµ(x′|x)dx′.

The Bellman residual is simply the difference between the two sides of the

Bellman equation (1.4.45), when our value estimator is substituted for the value

function. Since the true value function Vθ uniquely solves the Bellman equation,

B(θ̂,x) ≡ 0 only for θ̂ = θ.

A standard stochastic iterative algorithm, which may be applied for minimizing



Chapter 1. Introduction and Background 35

the mean squared Bellman residual (i.e. the squared Bellman residual averaged

over states) is based on computing the gradient of the squared Bellman residual
(

B(θ̂,xi)
)2

with respect to θ̂, and making small adjustments to θ̂ in the direction

of the negative gradient. Provided that the Bellman residual is a sufficiently smooth

function of θ̂, and that the step-size decreases appropriately with time, asymptotic

convergence to a local minimum is assured (Bertsekas & Tsitsiklis, 1996, Chapter

4). In our case, the gradient at xt−1 is

∇
θ̂

(

B(θ̂,xt−1)
)2

= B(θ̂,xt−1)

(

∇
θ̂
V

θ̂
(xt−1) − γ∇

θ̂

∫

X
V

θ̂
(x′)pµ(x′|xt−1)dx

′
)

.

(1.4.53)

Since the distributions pµ and q are unknown, explicitly computing the r.h.s. of

Eq. 1.4.53 is impossible18. However, assuming that we are nevertheless capable of

generating samples from pµ and q, we may use a stochastic approximation algorithm

known as the Robbins-Monro algorithm (Bertsekas & Tsitsiklis, 1996, Chapter 4) to

solve our problem. In this algorithm, each expectation is replaced by a single ran-

dom sample generated from the corresponding distribution, yielding the stochastic

update,

θ̂ := θ̂ − ηt

(

V
θ̂
(xt−1) − rt−1 − γV

θ̂
(x′)

) (

∇
θ̂
V

θ̂
(xt−1) − γ∇

θ̂
V

θ̂
(x′′)

)

, (1.4.54)

where ηt is the time-dependent step-size, rt−1 is a reward sampled from q(·|xt−1),

and x′ and x′′ are independent random samples from pµ(·|xt−1). In the online setting

we are only provided with a single such sample, namely xt. In the RL literature this

seems to be perceived as a fundamental barrier prohibiting the online minimization

of the mean squared Bellman residual (Werbos, 1990; Baird, 1995; Lagoudakis et al.,

2002; Bertsekas & Tsitsiklis, 1996 Chapter 6.10.1). Note that this double-sample

requirement may be safely ignored in, and only in, two degenerate special cases:

1. The state transitions of the MDP under the policy evaluated are deterministic

- in which case both samples would yield the same result, and

2. the discount factor γ = 0, in which case the identity of successor states is

irrelevant, since value function estimation degenerates to the estimation of

the mean immediate reward (we assume that rewards depend only on the

originating state and the action, but not on the successor state).

Otherwise, using xt in both expectation terms results in (sometimes severely) biased

value estimates (see Werbos, 1990, for a more detailed discussion).

18Even if pµ is known, computing the integral may be computationally prohibitive.



Chapter 1. Introduction and Background 36

TD(λ)

The version of TD(λ) employing function approximation is closely related to the

Robbins-Monro type algorithm discussed above. Curiously, The parametric TD(0)

algorithm is the result of using the update (1.4.54) with x′ = xt and altogether

ignoring the term ∇
θ̂
V

θ̂
(x′′), i.e.

θ̂ := θ̂ + ηt

(

rt−1 + γV
θ̂
(xt) − V

θ̂
(xt−1)

)

∇
θ̂
V

θ̂
(xt−1). (1.4.55)

This is usually explained as a stochastic gradient update in which the estimator

V
θ̂
(xt−1) is pushed toward its target value rt−1 +γV

θ̂
(xt), whereby V

θ̂
(xt) is treated

as if were fixed (i.e. independent of θ̂). The use of target values that themselves

depend on the estimated parameter, referred to as “bootstrapping”, is at the same

time the hallmark of TD methods and the source of their rather restricted conver-

gence properties. Note, that for γ = 0, the update rule above is a simple gradient

descent rule for regression, with the targets being the observed rewards.

Suppose now that V
θ̂

is linear in θ̂. In such linear FA schemes one has to

define a number of features {φi(x) : X → R, i ∈ {1, . . . , n}} that map the raw state

vector x into a more refined form of representation, ideally reflecting the available

prior knowledge regarding the domain at hand. These features should allow us to

approximate, as closely as required, the value functions we are likely to encounter on

our search for the optimal policy. In the linear-parametric case, the span of {φi}n
i=1

is our hypothesis space (denoted by Θ), as it specifies the complete repertoire of

hypothetical value functions we are willing to consider. Having designed n such

features, these may be aggregated into a feature vector φ(x) = (φ1(x), . . . , φn(x))⊤,

which is then used to represent the state x. Therefore, using a linear FA, the

estimate V̂ for the value function is of the form

Vŵ(x) = φ(x)⊤ŵ, and ∇ŵVŵ(x) = φ(x) (1.4.56)

where ŵ is the vector of estimated parameters [ŵ1, . . . , ŵn]⊤. In order to streamline

notation, from now on, we will denote the value estimate simply as V̂ , with its

(linear) dependence on the estimated parameters remaining implicit. The subscript

will be used to maintain a time index for the estimates. The TD(0) update (1.4.55)

now becomes

ŵt = ŵt−1 + ηtφ(xt−1)
(

rt−1 + γV̂t−1(xt) − V̂t−1(xt−1)
)

, (1.4.57)

where V̂t−1(x) = φ(x)⊤ŵt−1 and ηt is a time dependent learning-rate parameter.

Note that the parenthesized expression in this update is the temporal difference at

time-step t.



Chapter 1. Introduction and Background 37

TD(λ), as its name suggests, is a generalization of TD(0). In TD(0) the target

toward which V̂ (xt) is pushed is the one-step lookahead, bootstrapped estimate

rt + γV̂ (xt+1). However, just as easily, one could define a τ -step update by defining

the target as

τ−1
∑

i=0

γirt+i + γτ V̂ (xt+τ )

and using the τ -step temporal difference in the TD update rule. For γ < 1, any

bootstrapping errors, due to the fact that V̂ (xt+τ ) 6= V (xt+τ ), will be diminished by

a factor of γτ . However, the τ -step targets will tend to be noisier than their 1-step

counterparts, since the first term, which is a sum of τ random variables collected

along a random trajectory, becomes more dominant. This provides the rationale for

averaging all the different τ -step targets, for τ = 1, 2, . . . ,∞. TD(λ) averages them

exponentially, λ being the exponential decay rate (i.e. the τ -step target is weighted

by the factor (1 − λ)λτ−1). Setting λ = 1 is equivalent to taking the limit τ = ∞.

The resulting TD(1) algorithm may be shown to be an incremental, gradient-based

method for solving the least-squares regression problem, in which the target values

are Monte-Carlo samples of the discounted return (i.e. no bootstrapping is used,

see Bertsekas & Tsitsiklis, 1996, Chapter 6.3.1).

Exponential averaging was chosen for TD(λ) for reasons of computational con-

venience19, as it turns out that the resulting updates may be performed efficiently

online. This is achieved by making use of an additional vector of eligibility traces.

In the online setting each temporal difference is used only once, when it is observed,

and is then discarded. The online updates for TD(λ) are (see Sutton & Barto, 1998;

Bertsekas & Tsitsiklis, 1996 for details):

ŵt = ŵt−1 + ηtzt−1

(

rt−1 + γV̂t−1(xt) − V̂t−1(xt−1)
)

, and (1.4.58)

zt = γλzt−1 + φ(xt), with z0 = φ(x0),

where zt is the eligibility vector at time-step t. Note that, for λ = 0, the TD(λ)

update reduces to the update of Eq. 1.4.57. The pseudocode for TD(λ) with linear

FA is given in Algorithm 7.

Various alternative update schemes for updating the eligibility traces have been

proposed, some of which have been shown in experiments to outperform the basic

19Or, as Sutton and Barto put it (Sutton & Barto, 1998): “The λ-return and TD(λ) methods use
the λ parameter to shift from 1-step TD methods to Monte Carlo methods. The specific way this
shift is done is interesting, but not obviously better or worse than the way it is done with simple n-
step methods by varying n. Ultimately, the most compelling motivation for the way of mixing n-step
backups is simply that there is a simple algorithm –TD(λ) – for achieving it. This is a mechanism
issue rather than a theoretical one.”



Chapter 1. Introduction and Background 38

Algorithm 7 The TD(λ) Algorithm with Linear Function Approximation

Initialize ŵ0 := 0, z0 := φ(x0)
for t = 1, 2, . . .

observe xt−1, rt−1, xt

ŵt := ŵt−1 + ηzt−1

(

rt−1 − (φ(xt−1) − γφ(xt))
⊤ ŵt−1

)

zt := γλzt−1 + φ(xt)
end for
return ŵt

scheme, described above (Singh & Sutton, 1996, see also Bertsekas & Tsitsiklis, 1996

Chapter 5.3.3). Heuristic protocols for varying λ as learning progresses have also

been suggested (Sutton & Barto, 1998, Bertsekas & Tsitsiklis, 1996 Chapter 5.3.2).

For lookup-table representations it was proposed to start learning with a high value

of λ and decrease λ to 0 as learning progresses and bootstrap estimates improve.

In fact, it has been demonstrated that, in general, the limiting solutions obtained

by TD(λ) depend on λ, and that their quality can get worse as λ becomes smaller

than 1 (Bertsekas & Tsitsiklis, 1996, Chapter 6.3.2). TD(1), on the other hand, is

the only member of the TD(λ) family that is guaranteed to converge to the point in

Θ that is closest (under some metric) to the parameters determining the true value

function20.

LSTD(λ)

Under some technical conditions, in the limit t → ∞, the TD(λ) algorithm may be

shown to converge to the solution of the following set of linear equations (Bertsekas

& Tsitsiklis, 1996):

Btŵt = bt, where Bt =

t−1
∑

i=0

zi (φ(xi) − γφ(xi+1))
⊤ and bt =

t−1
∑

i=0

ziri. (1.4.59)

For t ≥ n, Bt is a square positive-definite matrix and is therefore invertible (Bert-

sekas & Tsitsiklis, 1996 Lemma 6.6). The LSTD(λ) algorithm (Bradtke & Barto,

1996; Boyan, 1999a) was proposed as a more data-efficient method than TD(λ),

which, instead of making small updates, solves Eq. 1.4.59 directly. This may be

done simply by maintaining and updating the matrix Bt and the vector bt, and

solving for ŵt using ŵt = B−1
t bt whenever value estimates are required. This batch

form of LSTD(λ) is described in Algorithm 8. It can be shown (e.g., Boyan, 1999b)

that for a learning episode ending with a terminal state xt+1 (i.e. xt is the last

20It is interesting to note that the convergence theory regarding TD(λ) with linear approximation
architectures suggests a diametric protocol to the one proposed for the tabular case, namely, an
increasing schedule for λ. This is due to the fact that the bound on the quality of the asymptotic
solution improves as λ approaches 1.



Chapter 1. Introduction and Background 39

Algorithm 8 The Batch LSTD(λ) Algorithm

Parameters: λ
Initialize B0 = 0, b0 = 0, z0 := φ(x0),
for t = 1, 2, . . .

observe xt−1, rt−1, xt

Bt = Bt−1 + zt−1 (φ(xt−1) − γφ(xt))
⊤

bt = bt−1 + zt−1rt−1

zt = γλzt−1 + φ(xt)
end for
return ŵt = B−1

t bt

non-terminal state in the episode), for λ = 1, Bt+1 and bt+1 satisfy

Bt+1 =
t
∑

i=0

φ(xi)φ(xi)
⊤, and bt+1 =

t
∑

i=0

φ(xi)
t−1
∑

j=i

γj−irj .

This makes

ŵt+1 = B−1
t+1bt+1 =

(

ΦtΦ
⊤
t

)−1
Φtyt, (1.4.60)

where the i’th component of yt, yi =
∑t

j=i γ
j−irj, the least squares estimate for w,

when regressed on the components of yt. More specifically, ŵt+1 is the solution of

the least squares problem

min
w

∥

∥

∥
yt − Φ⊤

t w
∥

∥

∥

2
,

where now

Φt = [φ(x0), . . . ,φ(xt)] .

As an alternative to the batch Algorithm 8, Eq. 1.4.59 may be solved recursively

by application of the matrix inversion lemma (Scharf, 1991), resulting in the online

updates:

ŵt = ŵt−1 − qt

(

rt−1 + γV̂t−1(xt) − V̂t−1(xt−1)
)

, and

Mt = Mt−1 − qt (φ(xt−1) − γφ(xt))
⊤ Mt−1,

where qt =
Mt−1zt

1 + (φ(xt−1) − γφ(xt))
⊤ Mt−1zt

. (1.4.61)

For initialization, set ŵ0 = 0 and M0 ∝ I. The pseudocode is provided in Algorithm

9. Note that, the term rt−1−(φ(xt−1) − γφ(xt))
⊤ ŵ = rt−1+γV̂t−1(xt)−V̂t−1(xt−1)

is the temporal difference at time t.



Chapter 1. Introduction and Background 40

Algorithm 9 The Recursive LSTD(λ) Algorithm

Parameters: λ, σ
Initialize ŵ0 = 0, z0 = φ(x0), M0 = σ2I
for t = 1, 2, . . .

observe xt−1, rt−1, xt

qt =
(

1 + (φ(xt−1) − γφ(xt))
⊤ Mt−1zt−1

)−1
Mt−1zt−1

ŵt = ŵt−1 + qt

(

rt−1 − (φ(xt−1) − γφ(xt))
⊤ ŵt−1

)

Mt = Mt−1 − qt (φ(xt−1) − γφ(xt))
⊤ Mt−1

zt = γλzt−1 + φ(xt)
end for
return ŵt

The convergence results of Tsitsiklis and Van Roy (1996), pertaining to both

TD(λ) and LSTD(λ), deal only with the behavior of the approximation V̂t in the

asymptotic regime, and do not allow for an interpretation of V̂t for finite t. Moreover,

for λ < 1, the limit of convergence is in general different from the projection of the

true value function on the hypothesis space Θ. This means that both TD(λ) and

LSTD(λ) with λ < 1 may produce asymptotically inconsistent value estimates (see

Bertsekas & Tsitsiklis, 1996 Chapter 6.3.2 for an example).



Chapter 2

On-Line Kernel Sparsification

Summary: This chapter lays some of the groundwork for subsequent chapters

by introducing a simple kernel sparsification method. This method may be used to

construct online a dictionary of representative states, in terms of which all kernel

expansions may be expressed to a given accuracy. The proposed method leverages

the fact that, although the dimensionality of the feature space induced by the

kernel transformation may be infinite, the image of the input space under this

transformation has a finite volume. The sparsification method is first described as

resulting from an approximate linear dependence condition in feature space. Then,

theoretical results pertaining to the size of the dictionary and the quality of the

resulting approximation are presented. Next, a relation between our method and

kernel principal component analysis is revealed. Finally, we discuss our method in

the context of existing sparsification techniques. An earlier account of this method

was published in Engel et al. (2002).

2.1 Introduction

Sparse solutions for kernel algorithms are desirable for two main reasons. First,

instead of storing information pertaining to the entire history of training instances,

sparsity allows the solution to be stored in memory in a compact form and to be

easily used later. The sparser is the solution of a kernel algorithm, the less time

and memory are consumed in both the learning and the operation (query) phases

of the kernel machine. Second, sparsity is related to generalization ability, and is

considered a desirable property in learning algorithms (see, e.g., Schölkopf & Smola,

2002; Herbrich, 2002) as well as in signal processing (e.g., Mallat, 1998). The ability

of a kernel machine to correctly generalize from its learned experience to new data

can be shown to improve as the number of its free variables decreases (as long as

the training error does not increase), which means that sparsification may be used

as a regularization instrument.

In the classic SVM framework sparsity is achieved by making use of error-tolerant

cost functions in conjunction with an additional regularization term encouraging

41



Chapter 2. On-Line Kernel Sparsification 42

“flat” solutions by penalizing the squared norm of the weight vector (Schölkopf

& Smola, 2002). For SV classification, it has been shown in Vapnik (1995) that

the expected number of of SVs is bounded below by (t − 1)E(perr) where t is the

number of training samples and E(perr) is the expectation of the error probability

on a test sample. In spite of claims to the contrary (Syed et al., 1999), it has been

shown, both theoretically and empirically (Burges, 1996; Downs et al., 2001), that

the solutions provided by SVMs are often not maximally sparse. It also stands to

reason that once a sufficiently large training set has been learned, any additional

training samples would not contain much new information and therefore should not

cause a linear increase in the size of the solution.

We take a somewhat different approach toward sparsification, which is based

on the following observation: Although the dimension of the feature space φ(X )

is usually very high, or even infinite; the effective dimensionality of the manifold

spanned by the training feature vectors may be significantly lower. Consequently,

the solution to any optimization problem conforming to the conditions required by

the Representer Theorem (1.2.1) may be expressed, to arbitrary accuracy, by a set

of linearly independent feature vectors that approximately span this manifold.

The output of a learning algorithm is a hypothesis, or predictor, which is a

function of the training set. In the online setting the samples in the training set are

temporally ordered and are indexed by the (discrete) time index in which they were

observed. By the time t the training sample is therefore ((xi, yi))
t
i=1. In the case

of kernel methods, the predictor at time t is typically of the form specified by the

Representer Theorem, given by Eq. 1.2.2. Mercer’s Theorem (1.2.2) shows that a

predictor of this form is in fact a linear predictor in the feature space φ(X ) induced

by the kernel:

f̂(x) =
t
∑

i=1

αi〈φ(xi),φ(x)〉 =
t
∑

i=1

αik(xi,x) = α⊤
t kt(x), (2.1.1)

where we used the definitions

kt = (k(x1,x), . . . , k(xt,x))⊤ , and αt = (α1, . . . , αt)
⊤ . (2.1.2)

Suppose that the point xt satisfies φ(xt) =
∑t−1

i=1 aiφ(xi), then in the predictor f̂ at

time t (and any subsequent time) there is no need to have a non-zero coefficient for

φ(xt) as it can be absorbed in the other terms. This idea would work when φ(X )

is low dimensional, or if the data happens to belong to a low dimensional subspace

of the feature space. However, for many kernels φ(X ) is high dimensional, or even

infinite dimensional. For example, if k is a Gaussian kernel then dim(φ(X )) = ∞
(e.g., Schölkopf & Smola, 2002). In this case, unless xt = xi for some i < t, the



Chapter 2. On-Line Kernel Sparsification 43

feature vector φ(xt) will be linearly independent of {φ(xi)}t−1
i=1. The solution we

propose is to relax the requirement that φ(xt) can be exactly written as a sum of

{φ(xi)}t−1
i=1 and to consider instead approximate linear dependency. Given a new

sample xt, we will distinguish between two cases. In the first case, the sample

is approximately dependent on past samples. Such a sample will be considered

only through its effect on the predictor f̂ , but will not entail adding a term to the

kernel expansion (2.1.1). A sample, the feature vector of which is not approximately

dependent on past samples, will add an extra term to this expansion, and will

therefore be admitted into a “dictionary” of representative samples. This essentially

amounts an online projection of the feature vectors encountered during training to

a low dimensional subspace spanned by a subset of the training samples, namely,

those found in the dictionary.

In the next section we describe the online sparsification algorithm in detail.

Section 2.3 states, proves and discusses some desirable theoretical properties of the

algorithm, while Section 2.4 illuminates its connection to kernel PCA. In Section

2.5 we overview current sparsification methods and compare our method to them.

2.2 The Sparsification Procedure

The online prediction setup assumes we sequentially sample a stream of input/output

pairs ((x1, y1), (x2, y2), . . .), xi ∈ X , yi ∈ R. Assume that at time step t, after having

observed t−1 training samples {xi}t−1
i=1, we have collected a dictionary consisting of a

subset of the training samples Dt−1 = {x̃j}mt−1

j=1 , where by construction {φ(x̃j)}mt−1

j=1

are linearly independent feature vectors, and mt = |Dt|. Now we are presented with

a new sample xt. We test whether φ(xt) is approximately linearly dependent on the

dictionary vectors. If not, we add it to the dictionary. Consequently, all training

samples up to and including time t can be approximated as linear combinations of

the vectors in Dt.

To avoid adding the training sample xt to the dictionary, we need to find coef-

ficients a = (a1, . . . , amt−1
)⊤ satisfying the approximate linear dependence (ALD)

condition

∥

∥

∥

∥

∥

∥

mt−1
∑

j=1

ajφ(x̃j) − φ(xt)

∥

∥

∥

∥

∥

∥

2

≤ ν,

where ν is a positive threshold parameter determining the level of accuracy of the ap-

proximation (indirectly, ν also controls the level of sparsity intended to be achieved).

Finding the optimal coefficient vector at may be done by solving the least-squares



Chapter 2. On-Line Kernel Sparsification 44

problem,

δt
def
= min

a

∥

∥

∥

∥

∥

∥

mt−1
∑

j=1

ajφ(x̃j) − φ(xt)

∥

∥

∥

∥

∥

∥

2

. (2.2.3)

If the ALD condition in (2.2.3) holds, φ(xt) can be approximated within a squared

error ν by some linear combination of current dictionary members. Performing the

minimization in (2.2.3) we can simultaneously check whether this condition may

be satisfied and obtain the optimal coefficient vector at satisfying it with minimal

squared error. Expanding (2.2.3) we note that it may be written entirely in terms

of inner products (in φ(X )) between feature vectors φ(·),

δt = min
a

{

mt−1
∑

i,j=1

aiaj

〈

φ(x̃i),φ(x̃j)
〉

− 2

mt−1
∑

j=1

aj

〈

φ(x̃j),φ(xt)
〉

+
〈

φ(xt),φ(xt)
〉

}

.

We employ the kernel trick (1.2.3) by replacing inner products between feature space

vectors with the kernel function. We therefore make the substitution
〈

φ(x),φ(x′)
〉

=

k(x,x′), obtaining

δt = min
a

{

mt−1
∑

i,j=1

aiajk(x̃i, x̃j) − 2

mt−1
∑

j=1

ajk(x̃j ,xt) + k(xt,xt)
}

= min
a

{

a⊤K̃t−1a− 2a⊤k̃t−1(xt) + ktt

}

, (2.2.4)

where

[

K̃t−1

]

i,j
= k(x̃i, x̃j),

(

k̃t−1(x)
)

i
= k(x̃i,x), ktt = k(xt,xt), (2.2.5)

with i, j = 1, . . . ,mt−1. The optimization problem in (2.2.4) is a simple quadratic

problem, which may be solved analytically, yielding the optimal vector of approxi-

mation coefficients at, and allowing the evaluation of the ALD condition:

at = K̃−1
t−1k̃t−1(xt) , δt = ktt − k̃t−1(xt)

⊤at ≤ ν. (2.2.6)

If δt > ν then we must expand the current dictionary by augmenting it with xt:

Dt = Dt−1∪{xt}. Using the expanded dictionary, φ(xt) may be exactly represented

(by itself) and δt is therefore set to zero.

Consequently, for every time-step i up to t we have

φ(xi) =

mi
∑

j=1

ai,jφ(x̃j) + φres
i , (‖φres

i ‖2 ≤ ν), (2.2.7)



Chapter 2. On-Line Kernel Sparsification 45

with φres
i denoting the i’th approximation residual vector. Let us define the matrix

of approximation coefficients At by

[At]i,j = ai,j, where i ∈ {1, . . . , t} and j ∈ {1, . . . ,mi}.

Due to the sequential nature of the algorithm, for j > mi, [At]i,j = 0, as φ(xi) is

approximated using only dictionary terms that were admitted up to time-step i.

Choosing ν to be sufficiently small we can make the approximation error in

φ(xi) ≈
∑mi

j=1 ai,jφ(x̃j) arbitrarily small, and by setting ν = 0 this, and subsequent

approximations become exact. The full kernel (or Gram) matrix, Kt, is defined by

[Kt]i,j = k(xi,xj) with i, j = 1, . . . , t.

In order to establish a sparse (or rather, low rank) approximation of the kernel

matrix Kt, let us define the matrix

Φt =
[

φ(x1), . . . ,φ(xt)
]

.

Then, since φ(xi) ≈
∑mt

j=1 ai,jφ(x̃j), we have

Kt = Φ⊤
t Φt ≈ AtK̃tA

⊤
t . (2.2.8)

Similarly, since kt(x) = Φ⊤φ(x) (see Eq. 2.1.1 and 2.1.2), we obtain

kt(x) ≈ Atk̃t(x). (2.2.9)

In practice, we will freely make the substitutions (2.2.8) and (2.2.9), with the un-

derstanding that the resulting expressions are approximate whenever ν > 0.

Using the well known partitioned matrix inversion formula it is possible to derive

a recursive formula for K̃−1
t (see Appendix D.4):

K̃t =

[

K̃t−1 k̃t−1(xt)

k̃t−1(xt)
⊤ ktt

]

⇒ K̃−1
t =

1

δt

[

δtK̃
−1
t−1 + ata

⊤
t −at

−a⊤t 1

]

, (2.2.10)

where at = K̃−1
t−1k̃t−1(xt), and δt given by Eq. 2.2.4. After performing this update

at is set to (0, 0, . . . , 1)t, as the new dictionary Dt now contains xt as its most recent

member, and φ(xt) may therefore be perfectly reproduced. Table 10 provides a

pseudocode sketch of our sparsification algorithm. The output of the algorithm, as

it is described here, is the dictionary Dt. At little extra cost, this algorithm may also

output any of the following: The dictionary kernel matrix K̃t, its inverse K̃−1
t or the

matrix of approximation coefficients At = [a1, . . . ,at]
⊤. In the sequel, when this

algorithm is used, its updates will usually be interleaved with the update equations



Chapter 2. On-Line Kernel Sparsification 46

of a master algorithm. It is therefore instructive to view it first in isolation, as shown

in Table 10. Note that the computational cost for the t’th sample is bounded by

Algorithm 10 Online Kernel Sparsification Algorithm

Cost
Parameter: ν

Initialize: D1 = {x1}, m = 1, K̃−1
1 = [1/k11] O(1)

for t = 2, 3 . . .
Get new sample: xt

Compute k̃t−1(xt) (2.1.2) O(m)
ALD test:

at = K̃−1
t−1k̃t−1(xt) O(m2)

δt = ktt − k̃t−1(xt)
⊤at O(m)

if δt > ν % add xt to dictionary O(1)
Dt = Dt−1 ∪ {xt} O(1)

Compute K̃−1
t (2.2.10) O(m2)

at = (0, . . . , 1)⊤ O(m)
m := m+ 1 O(1)

else % dictionary unchanged
Dt = Dt−1

end if
end for

Output: Dt

O(m2
t ). Assuming we are able to bound the size of the final dictionary, this property

allows the algorithm described here to meet the on-line and real-time requirements.

It is illuminating to consider a Gaussian process view of this sparsification

method. Assume that we have a random process, F , indexed by x ∈ X , sam-

pled at a sequence of points x1, . . . ,xt. Define Ft = (F (x1), . . . , F (xt))
⊤, and let F

be distributed according to a Gaussian prior distribution with a zero-mean and a

covariance function k(·, ·), making it a Gaussian process. Hence the prior over Ft is

N (0,Kt). Suppose we knew the values of the variables in Ft−1. What would then

be the conditional mean and variance of F (xt), given Ft−1? A priori we have

(

Ft−1

F (xt)

)

∼ N
{(

0

0

)

,

[

Kt−1 kt−1(xt)

kt−1(xt)
⊤ k(xt,xt)

]}

.

The Gauss-Markov Theorem (1.3.1) may now be invoked to obtain the moments of

the conditional (Gaussian) distribution:

E [F (xt)|Ft−1] = kt−1(xt)
⊤K−1

t−1Ft−1,

Var [F (xt)|Ft−1] = ktt − kt−1(xt)
⊤K−1

t−1kt−1(xt).

These expressions provide us with an alternative probabilistic view of our sparsifi-



Chapter 2. On-Line Kernel Sparsification 47

cation algorithm. The δt criterion, to which we previously assigned a geometrical

interpretation (Eq. 2.2.6), is now the posterior variance of F (xt), conditioned on the

values of F at the dictionary points. If knowing F (x̃1), . . . , F (x̃|D|) confers enough

information on the value of F (xt), this conditional variance, δt, will be low (lower

than ν), and we will not add xt to the dictionary, and vice versa. The vector of

approximation coefficient at = K̃−1
t−1k̃t−1(xt), which was derived above (2.2.6) as

the solution of a least-squares problem, is now the vector of coefficients multiplying

the components of F (x̃1), . . . , F (x̃|D|) for computing the conditional mean at xt.

2.3 Properties of the Sparsification Method

Let us now study some of the properties of the sparsification method. We first show

that under mild conditions on the data and the kernel function, the dictionary is

finite. We then discuss the question of how good the approximation really is, by

showing that the sensitivity parameter ν controls how well the true kernel matrix is

approximated.

2.3.1 A Bound on the Dictionary Size

Recall that the data points x1,x2, . . . are assumed to belong to some input set

X . Let φ(X ) = {φ(x) : x ∈ X}. The following theorem holds regardless of the

dimensionality of φ(X ), and essentially says that as long as X is compact, the set

of dictionary vectors is finite.

Theorem 2.3.1. Assume that φ(X ) is a compact set. Then for any training se-

quence {xi}∞i=1 with xi ∈ X for all i, and for any ν > 0, the size of the dictionary

|Dt| is finite, and is bounded from above by the
√
ν-packing number of φ(X ), for the

ℓ2 norm, N p√
ν
(φ(X )).

Proof The compactness of φ(X ) implies that for any ε > 0 a finite ε-cover exists.

Recall that the covering number is finite if, and only if, the packing number is

finite (e.g., Anthony & Bartlett, 1999), implying that the maximal number of ε-

separated points in φ(X ) is finite, and given by N p
ε (φ(X )). Next, observe that by

construction of the algorithm, any two points φ(x̃i) and φ(x̃j) in the dictionary Dt

obey ‖φ(x̃i) − φ(x̃j)‖2 >
√
ν, i.e. are

√
ν-separated. Therefore, there can be at

most N p√
ν
(φ(X )) members in the dictionary.

Theorem 2.3.1 implies that after an initial period, the computational cost per time-

step of the algorithm becomes independent of time and depends only on the dictio-

nary size. It is this property that makes our framework practical for online real-time

learning. Precise values for the size of the cover, and thus for the maximal size of



Chapter 2. On-Line Kernel Sparsification 48

the dictionary, can be obtained by making further assumptions on the domain X
and the kernel k. In particular, well known bounds on the covering numbers, which

depend on the behavior of the eigenvalues of the integral operator (1.2.3) may be

applied (König, 1986).

A particular case, which is often of practical interest, is when X is a compact

subset of a normed vector space (i.e. a Banach space; for instance, a compact

subset of R
n with the ℓ2 norm). In this case we may use the following proposition

to conclude that φ(X ) is compact and therefore, according to Theorem 2.3.1, that

the size of the dictionary is finite.

Proposition 2.3.2. Assume that (i) k is a continuous Mercer kernel and (ii) X is

a compact subset of a Banach space. Then φ(X ) is compact.

Proof First, we claim that φ is continuous. Given a sequence z1, z2, . . . of points in

X such that zi → z∗ we have that ‖φ(zi)−φ(z∗)‖2
2 = 〈φ(zi),φ(zi)〉+〈φ(z∗),φ(z∗)〉−

〈φ(zi),φ(z∗)〉 − 〈φ(z∗),φ(zi)〉. Writing this in terms of kernels we have ‖φ(zi) −
φ(z∗)‖2

2 = k(zi, zi) + k(z∗, z∗) − k(zi, z
∗) − k(z∗, zi). Since k itself is continuous we

have that ‖φ(zi) − φ(z∗)‖2
2 → 0, so φ is continuous.

Since X is compact and φ is continuous, we conclude that φ(X ) is compact.

2.3.2 Quality of Approximation

After establishing that the dictionary is finite we turn to study the effect of the

approximation level ν on the approximation of the kernel matrix K. Since the

vector of predictions at the training data points may be written as









f̂(x1)
...

f̂(xt)









= Ktαt,

a bound on the error in approximating Kt may be used to derive a bound on the

error in f̂ at those points. It could be argued that a more direct strategy for

sparsification, aimed at directly minimizing the error in f̂ , would be a better choice.

Such strategies were indeed explored elsewhere, and we discuss some of them in

detail in section 2.5. Our choice of an unsupervised sparsification criterion, which

does not take into account the measured observations {yi}t
i=1, is due to the non-

stationary nature of the learning problems that we intend to apply our methods to,

namely, reinforcement learning problems. In such problems, as policies change, so

do the distributions of the measured variables (in RL these are the rewards). Since

we want to maintain a single dictionary, rather than a constructing a different one

for each policy, we opt for an unsupervised criterion.



Chapter 2. On-Line Kernel Sparsification 49

In order to simplify the analysis we first consider an off-line version of the algo-

rithm on a finite data set of size t. In this case, the dictionary is first constructed in

the usual manner, and then the optimal expansion coefficient matrix A is computed

for the entire data set at once. We use essentially the same notation as before ex-

cept that now every quantity depending on an incomplete dictionary is redefined to

depend on the entire dictionary. In order to remind us of this change we omit the

time index in each such quantity. For instance, D, m, and K denote the dictionary,

its size, and the full kernel matrix, respectively.

Defining the matrices Φ = [φ(x1), . . . ,φ(xt)], Φ̃ = [φ(x̃1), . . . ,φ(x̃m)], and

Φres = [φres
1 , . . . ,φres

t ], we may write (2.2.7) for all samples concisely as

Φ = Φ̃A⊤ + Φres. (2.3.11)

As before, the optimal expansion coefficients for the sample xi are found by ai =

K̃−1k̃(xi), and [A]i,j = ai,j. Premultiplying (2.3.11) by its transpose we get

K = AK̃A⊤ + Φres⊤Φres. (2.3.12)

The cross term AΦ̃
⊤
Φres and its transpose vanish due to the ℓ2-orthogonality of the

residuals to the subspace spanned by the dictionary vectors. Defining the residual

kernel matrix by R = K − AK̃A⊤ it can be easily seen that, in both the online

and the off-line cases, (diagR)i = δi. Further, in the off-line case R = Φres⊤Φres

and is therefore positive semi-definite. As a consequence, in the off-line case we may

bound the norm of R, thus justifying our approximation. Recall that for a matrix

R the matrix 2-norm is defined as ‖R‖2 = maxu:‖u‖2=1 ‖Ru‖2.

Proposition 2.3.3. In the off-line case ‖R‖2 ≤ tν.

Proof Let λR
i be the i-th eigenvalue of R. We recall from linear algebra that

‖R‖2 = maxi |λR
i |. Since (diagR)i = δi, we have that

∑t
i=1 λ

R
i = trR =

∑t
i=1 δi.

Moreover, since R is positive semi-definite λR
i ≥ 0 for all i. Therefore ‖R‖2 =

maxi λ
R
i ≤∑t

i=1 δi ≤ tν.

As a corollary, a similar bound can be placed on the covariance of the residuals

‖Cres‖ = 1
t ‖ΦresΦres⊤‖ = maxi λ

R
i /t ≤

∑t
i=1 δi/t ≤ ν.

Considering the online case, it is clear that once the dictionary stops growing,

for the remaining samples the algorithm behaves exactly like its off-line counterpart.

Using Theorem 2.3.1 we know that if φ(X ) is compact, for any ν > 0 the dictionary

is finite, and therefore a bound similar to that of Proposition 2.3.3 holds beyond

some finite time. More specifically, in the online case we have ‖R‖2 ≤ tν+B, where

B is a random positive constant accounting for the size of the residuals up to the



Chapter 2. On-Line Kernel Sparsification 50

point when the dictionary reaches its final size. The corresponding bound for the

residual covariance is therefore ‖Cres‖ ≤ ν + B
t .

2.4 Online Sparsification as Approximate PCA

The online sparsification method described above has close connections to kernel

principal components analysis (PCA) (Schölkopf et al., 1998). PCA is the optimal

unsupervised dimensionality reduction method, minimizing the mean squared error.

PCA is widely used in signal processing, machine learning, psychology, data analysis

and visualization, and other fields involving high dimensional data. PCA is often

used to remove noise from data. In such applications the noisy data is projected onto

the first principal directions (i.e. on the subspace spanned by the first eigenvectors of

the data’s covariance matrix, where the eigenvectors are ordered by non-increasing

eigenvalues). This is done due to the, sometimes implicit, assumption that the

variance in the remaining directions is due to uninformative noise. In Schölkopf

et al. (1998) it was shown that solving the eigenvalue problem of the kernel (Gram)

matrix Kt = Φ⊤
t Φt, is essentially equivalent to performing PCA on the data in the

feature space φ(X ), referred to as kernel-PCA. In this section we show that our

sparsification method is essentially an approximate form of kernel-PCA.

Let us first describe the optimal dimensionality reduction procedure. Let the

covariance matrix at time t, be Ct
def
= 1

t ΦtΦ
⊤
t . Ct has (at most) t positive eigenval-

ues {λ1, . . . , λt} and a corresponding orthonormal set of eigenvectors {ψ1, . . . ,ψt},
forming an orthogonal basis for the subspace of φ(X ) that contains φ(x1), . . . ,φ(xt).

Let us define a projection operator PS onto the span of a subset of these eigenvec-

tors. For an arbitrary subset ΨS = {ψi : i ∈ S ⊆ {1, . . . , t}}, it is well known that

projecting the training data onto the subspace spanned by the eigenvectors in ΨS ,

entails a mean squared error of 1
t

∑t
i=1 ‖(I −PS)φ(xi)‖2 =

∑

i/∈S λi. An immediate

consequence of this is that an optimal m dimensional projection, with respect to the

mean squared error criterion, is one in which ΨS consists of the first m eigenvectors

(i.e. S = {1, . . . ,m}).
Similarly, we can also define a projection operator onto the span of the dictionary

vectors found by our sparsification method. Let

PD = Φ̃
(

Φ̃
⊤
Φ̃
)−1

Φ̃
⊤

(2.4.13)

denote this projection operator. Using the ALD condition (2.2.6) we can place a



Chapter 2. On-Line Kernel Sparsification 51

bound on the mean squared error due to the projection PD:

1

t

t
∑

i=1

‖φ(xi) − PD(φ(xi))‖2 =
1

t

t
∑

i=1

‖(I − PD)φ(xi)‖2

=
1

t

t
∑

i=1

δi

≤ ((t−mt)/t)ν

≤ ν,

where the first inequality is due to the fact that for the mt dictionary vectors the

error is zero. However, since the size of the dictionary is not known a priori, the

second inequality provides a more useful bound.

In the preceding paragraph we showed that the mean squared error of the pro-

jection performed by the online sparsification procedure is bounded by ν. We now

show that, for a sufficiently small ν, the projection performed by the sparsification

method, essentially preserves all the “important” eigenvectors, which are used in

the optimal PCA projection.

Theorem 2.4.1. Let PD be the projection operator defined in Eq. 2.4.13, for a

dictionary D constructed using a threshold ν. The i’th normalized eigenvector ψi

of the empirical covariance matrix C = 1
t ΦΦ⊤, with eigenvalue λi > 0, satisfies

‖PDψi‖2 ≥ 1 − ν/λi.

Proof Any ψi for which λi > 0 may be expanded in terms of the feature vectors

corresponding to the data points. It is well known (e.g., Schölkopf et al., 1998) that

every respective expansion coefficient vector is itself an eigenvector of the kernel

matrix K with eigenvalue tλi. We may therefore write ψi = 1√
tλi

Φui where Kui =

tλiui and ‖ui‖ = 1. Substituting into ‖PDψi‖2 we have ‖PDψi‖2 = ψ⊤
i PDψi =

1
tλi

u⊤
i Φ⊤PDΦui. Recalling that PD is the projection operator onto the span of

the dictionary we have PDφ(xi) = Φ̃ai and PDΦ = Φ̃A⊤. Therefore, Φ⊤PDΦ =

AK̃A⊤ and

‖PDψi‖2 =
1

tλi
u⊤

i AK̃A⊤ui

=
1

tλi
u⊤

i (K − R)ui

= 1 − 1

tλi
u⊤

i Rui

≥ 1 − ‖R‖2

tλi

≥ 1 − ν

λi
,



Chapter 2. On-Line Kernel Sparsification 52

where the last inequality is due to Proposition 2.3.3.

Theorem 2.4.1 establishes the connection between our sparsification algorithm and

kernel PCA, since it implies that eigenvectors whose eigenvalues are significantly

larger than ν are projected almost in their entirety onto the span of the dictionary

vectors, and the quality of the approximation improves linearly with the ratio λi/ν.

In comparison, kernel PCA projects the data solely onto the span of the first few

eigenvectors of C. We are therefore led to regard our sparsification method as an

approximate form of kernel PCA, with the caveat that our method does not diago-

nalize C, and so cannot extract individual orthogonal features, as kernel PCA does.

Computationally however, our method is significantly cheaper (O(m2) memory and

O(tm2) time) than exact kernel PCA (O(t2) memory and O(t2p) time where p is

the number of extracted components).

2.5 Comparison to Other Sparsification Schemes

Several approaches to sparsification of kernel-based solutions have been proposed in

the literature. As already mentioned above, SVMs for classification and regression

attempt to achieve sparsity by utilizing error insensitive cost functions. The solution

produced by an SVM consists of a linear combination of kernel evaluations, one per

training sample, where in some cases a (sometimes large) fraction of the combination

coefficients vanish.

In SVR, and more generally in regularization networks (Evgeniou et al., 2000),

sparsity is achieved by elimination. This means that, at the outset, these algorithms

consider all training samples as potential contributing members of the expansion

(3.1.1); and upon solving the optimization problem they eliminate those samples

whose coefficients vanish. This approach has several major disadvantages. First,

with a training set of t samples, during learning the SVM algorithm must maintain

a matrix of size t × t and update a full set of t coefficients. This means that, even

if the end result turns out to be very sparse, the training algorithm will not be able

to take full advantage of this sparsity in terms of efficiency. As a consequence, even

the current state-of-the art SVM algorithm scales super-linearly in t (Collobert &

Bengio, 2001). Second, in SVMs the solution’s sparsity depends on the level of noise

in the training data; this effect is especially pronounced in the case of regression.

Finally, SVM solutions are known to be non-maximally sparse. This is due to the

special form of the SVM quadratic optimization problem, in which the constraints

limit the level of sparsity attainable (Osuna & Girosi, 1998).

Shortly after the introduction of SVMs to the machine learning community it

was realized by Burges (1996) that the solutions provided by SVMs, both for classifi-

cation and regression, may often be made significantly sparser, without altering the



Chapter 2. On-Line Kernel Sparsification 53

resulting predictor/classifier. It was also shown in this paper, as well as in Burges

and Schölkopf (1997), that additional sparsity may be attained by allowing small

changes to be made in the SVM solution, with little or no degradation in gener-

alization ability. Burges’ idea is based on using a “reduced-set” of feature space

vectors to approximate the original solution. In Burges’ method the reduced-set

of feature vectors, apart from its size, is virtually unconstrained and therefore the

algorithmic complexity of finding reduced-set solutions is rather high, posing a ma-

jor obstacle to the widespread use of this method. In Schölkopf et al. (1999) and

Downs et al. (2001) it was suggested that restricting the reduced set to be a subset

of the training samples would help alleviate the computational cost associated with

the original reduced-set method. This was backed by empirical results on several

problems including handwritten digit recognition. All of these reduced-set methods

achieve sparsity by elimination, meaning that they are designed to be used as a

post-processing stage, after a kernel solution is obtained from some main algorithm

(e.g., SVM) whose level of sparsity is deemed unsatisfactory by the user. Ultimately,

reduced-set methods are based on the identification of (approximate) linear depen-

dencies between feature space vectors and their subsequent elimination. For a more

thorough account of reduced-set methods see Chapter 18 of Schölkopf and Smola

(2002).

An alternative approach is to obtain sparsity by construction. Here the algo-

rithm starts with an empty representation, in which all coefficients vanish, and

gradually adds samples. Constructive sparsification is normally used off-line (e.g.,

Vincent & Bengio, 2002), in which case the algorithm is free to choose any one of

the training samples at each step of the construction process. The sample selected

at each step is typically the one that maximizes the amount of increase (or decrease)

its addition induces in some fitness (or error) criterion. Such greedy strategies are

resorted to because of a general hardness result for the problem of finding the best

subset of samples in a sparse approximation framework (Natarajan, 1995), along

with some positive results concerning the convergence rates for sparse greedy algo-

rithms (Natarajan, 1995; Zhang, 2003). Examples of such methods are Smola and

Schölkopf (2000); Smola and Bartlett (2001); Zhang (2003); see also Chapter 10 of

Schölkopf and Smola (2002). These methods are also closely related to the kernel

Matching Pursuit algorithm (Vincent & Bengio, 2002).

Greedy methods represent the opposite extreme to reduced-set methods along

the elimination-construction axis of sparsification methods. Another (orthogonal)

dimension along which sparsification methods may be measured is the one differenti-

ating between supervised and unsupervised sparsification. Supervised sparsification

is geared toward optimizing a supervised error criterion (e.g., the mean-squared

error in regression tasks), while unsupervised sparsification attempts to faithfully



Chapter 2. On-Line Kernel Sparsification 54

reproduce the the images of input samples in feature space. Examples for super-

vised sparsification are Burges (1996); Tipping (2001a); Smola and Bartlett (2001);

Vincent and Bengio (2002), of which Tipping (2001a) is unique in that it aims at

achieving sparsity by taking a Bayesian approach in which a prior favoring sparse

solutions is employed 1. In Smola and Bartlett (2001) a greedy sparsification method

is suggested that is specific to Gaussian Process regression and is similar to kernel

Matching Pursuit (Vincent & Bengio, 2002).

Examples of unsupervised sparsification are Smola and Schölkopf (2000); Williams

and Seeger (2001); Fine and Scheinberg (2001); Tipping (2001b). In Smola and

Schölkopf (2000) a randomized-greedy selection strategy is used to reduce the rank

of the kernel matrix K while Williams and Seeger (2001) uses a purely random strat-

egy based on the Nyström method to achieve the same goal. In Fine and Scheinberg

(2001) the incomplete Cholesky factorization algorithm is used to yield yet another

reduced-rank approximation to K. Employing low-rank approximations to K is es-

sentially equivalent to using low-dimensional approximations of the feature vectors

corresponding to the training samples. As principal component analysis (PCA) is

known to deliver the optimal unsupervised dimensionality reduction for the mean-

squared reconstruction error criterion, it is therefore natural to turn to kernel PCA

(Schölkopf et al., 1998) as a sparsification device. Indeed, many of the unsupervised

methods mentioned above are closely related to kernel PCA. In Tipping (2001b) a

sparse variant of kernel PCA is proposed, based on a Gaussian generative model.

The general idea in both cases is to project the entire feature space onto the low

dimensional manifold spanned by the first eigenvectors of the sample covariance in

feature space, corresponding to the leading/non-zero eigenvalues.

While many of the sparsification methods discussed above are constructive in

nature, progressively building increasingly richer representations with time, they are

not applicable to the online setting. In this setting input samples are not randomly

accessible, instead they are given as a temporal stream of data in which only one

sample is observed at any given time. This imposes an additional constraint on any

sparsification method that attempts to represent the entire training history using

some representative sample. Namely, at any point in time the algorithm must decide

whether to add the current sample to its representation, or discard it. Clearly, none

of the methods described above is suitable for on-line applications. This problem of

online sparsification is not as well studied in the kernel community, and is the one

we address with our sparsification algorithm.

Our method is most closely related to a sparsification method used By Csató

and Opper (2001); Csató and Opper (2002) in the context of learning with Gaussian

1It should be noted that support vector machines may also be cast within a probabilistic Bayesian
framework, see Sollich (2002).



Chapter 2. On-Line Kernel Sparsification 55

Processes (Gibbs & MacKay, 1997; Williams, 1999). Csató and Opper’s method also

incrementally constructs a dictionary of input samples on which all other data are

projected (with the projection performed in the feature space φ(X )). However,

while in our method the criterion used to decide whether a sample should be added

to the dictionary is based only on the distance (in φ(X )) between the new sample

and the span of previously stored dictionary samples, their method also takes into

account the estimate of the regressor (or classifier) on the new point and its difference

from the target value. Consequently, the dictionary constructed by their method

depends on the function being estimated and on the sample noise, while our method

disregards these completely. We defer further discussion of the differences between

these two methods to Section 3.4.4 in the next chapter.



Chapter 3

Kernel Recursive Least Squares

Summary: Before approaching the daunting challenge of applying kernel meth-

ods to reinforcement learning problems, an intermediate goal is set – to derive

kernel-based algorithms for regression, which may be used in the online setting.

In this chapter we describe such an online kernel algorithm for nonlinear regres-

sion, which is based on the recursive least squares algorithm. We refer to this

algorithm as kernel-RLS. The online sparsification method of the previous chapter

plays a crucial role in this algorithm. After a short introduction we present our

algorithm. We then prove a generalization bound, followed by an extensive suit of

experiments, testing the algorithm on several estimation problems from machine

learning and signal processing. We compare kernel-RLS with a related method for

sparse Gaussian Process regression, and conclude with a discussion. This work was

first published in Engel et al. (2004).

3.1 Introduction

The celebrated recursive least-squares (RLS) algorithm (e.g. Kailath et al., 2000;

Haykin, 1996; Scharf, 1991) is a popular and practical algorithm used extensively

in signal processing, communications and control. The algorithm is an efficient

online method for finding linear predictors minimizing the mean squared error over

the training data. We consider the classic system identification setup (e.g. Ljung,

1999), where we assume access to a recorded sequence of input and output samples

Zt = ((x1, y1), . . . , (xt, yt))

arising from some unknown source. In the classic regression (or function approxi-

mation) framework the input-output pairs (xi, yi) are assumed to be independently

and identically distributed (IID) samples from some distribution p(Y,X). In sig-

nal processing applications the inputs more typically consist of lagged values of the

outputs yi, as would be the case for autoregressive (AR) sources, and/or samples of

some other signal (ARMA and MA models, respectively). In the prediction prob-

56



Chapter 3. Kernel Recursive Least Squares 57

lem, one attempts to find the best predictor ŷt = f̂(xt) for yt given Zt−1 ∪ {xt}.
In this context, one is often interested in online applications, where the predictor is

updated following the arrival of each new sample. Online algorithms are useful in

learning scenarios where input samples are observed sequentially, one at a time (e.g.,

data mining, time series prediction, reinforcement learning). In such cases there is

a clear advantage to algorithms that do not need to relearn from scratch when new

data arrive. In many of these applications there is an additional requirement for

real-time operation, meaning that the algorithm’s computational cost per time-step

should be bounded by a constant independent of time, for it is assumed that new

samples arrive at a roughly constant rate.

Standard approaches to the prediction problem usually assume a simple paramet-

ric form, e.g., f̂(x) =
〈

w,φ(x)
〉

, where w is a vector of parameters and φ is a fixed,

finite dimensional mapping. In the classic least-squares approach, one then attempts

to find the value of w that minimizes the squared error
∑t

i=1

(

yi −
〈

w,φ(xi)
〉)2

.

The RLS algorithm is used to recursively solve this least-squares problem for w.

Given a new sample (xt, yt), the number of computations performed by RLS to

compute a new minimum least-squares estimate of w is independent of t, making it

suitable for real-time applications.

Kernel methods present an alternative to the parametric approach. Solutions

attained by these methods are non-parametric in nature and are typically of the

form

f̂(x) =

t
∑

i=1

αik(xi,x) , (3.1.1)

where {xi}t
i=1 are the training data points. The Representer Theorem (1.2.1) assures

us that in most practical cases, we need not look any further than an expression of

the form (3.1.1).

Since the number of of tunable parameters in kernel solutions equals the size of

the training data-set, one must introduce some form of regularization, in order to

control the capacity of the resulting predictors. For instance, in SVR regulariza-

tion is attained by using the so-called “ε-insensitive” error tolerant cost function,

in conjunction with an additional regularization (penalty) term encouraging “flat”

solutions. The end effect of this form of regularization is that SVR solutions are

typically sparse – meaning that many of the αi variables vanish in the SVR solution

(3.1.1). However, as discussed in Section 2.5 methods that achieve sparsity by elim-

ination, like SVR, are not amenable to online implementations. In a nutshell, the

major obstacles in applying kernel methods to online prediction problems are: (i)

Many kernel methods require random/multiple access to training samples, (ii) their

computational cost (both in time and space) is typically super-linear in the size of



Chapter 3. Kernel Recursive Least Squares 58

the training set, and (iii) their prediction (query) time often scales linearly with the

training set size.

In Chapter 2 (and earlier, in Engel et al., 2002) we proposed a solution to this

problem by an online constructive sparsification method based on sequentially ad-

mitting into the kernel representation only samples that cannot be approximately

represented using linear combinations (in feature space) of previously admitted sam-

ples. In Engel et al. (2002) our sparsification method was used to construct an online

SVR-like algorithm, whereas here we will use it to derive a nonparametric kernel-

based version of the RLS algorithm. The kernel-RLS (KRLS) algorithm proposed

here is capable of efficiently and recursively solving nonlinear least-squares predic-

tion problems, and is therefore particularly useful in applications requiring online

or real-time operation.

In the next section we derive the KRLS algorithm. We then derive a data-

dependent generalization bound for KRLS. We proceed to test KRLS on several

supervised learning and signal processing tasks. Next, we compare KRLS with a

related method known as sparse Gaussian process regression. We close this chapter

with a discussion.

3.2 The Kernel RLS Algorithm

The RLS algorithm is used to incrementally train a linear regression model, pa-

rameterized by a weight vector w, of the form f̂(x) =
〈

w,φ(x)
〉

, where, as before,

φ(x) is the feature vector associated with the input x. We assume that a standard

preprocessing step has been performed in order to absorb the bias term into the

weight vector w (i.e. by redefining w as (w⊤, b)⊤ and φ as (φ⊤, 1)⊤); see Engel

et al. (2002) for details. In the simplest form of the RLS algorithm we minimize at

each time step t the sum of the squared errors:

L(w) =

t
∑

i=1

(

f̂(xi) − yi

)2
= ‖Φ⊤

t w − yt‖2, (3.2.2)

where we have defined the vector yt = (y1, . . . , yt)
⊤. Ordinarily, we would minimize

(3.2.2) with respect to w and obtain wt = argminw ‖Φ⊤
t w−yt‖2 =

(

Φ⊤
t

)†
yt, where

(

Φ⊤
t

)†
is the pseudo-inverse of Φ⊤

t . The classic RLS algorithm (Ljung, 1999), based

on the matrix inversion lemma allows one to minimize the loss L(w) recursively

and online without recomputing the matrix
(

Φ⊤
t

)†
at each step.

As mentioned above, the feature space may be of very high dimensionality, ren-

dering the handling and manipulation of matrices such as Φt and ΦtΦ
⊤
t prohibitive.



Chapter 3. Kernel Recursive Least Squares 59

Algorithm 11 The Kernel RLS Algorithm. On the right we bound the number of
operations per time-step for each line of the pseudo-code. The overall per time-step
computational cost is bounded by O(m2) (we assume that kernel evaluations require
O(1) time)

Cost
Parameter: ν

Initialize: K̃1 = [k11], K̃−1
1 = [1/k11],

α1 = (y1/k11), P1 = [1], m = 1
for t = 2, 3 . . .

1. Get new sample: (xt, yt)

2. Compute k̃t−1(xt) O(m)
3. ALD test:

at = K̃−1
t−1k̃t−1(xt) O(m2)

δt = ktt − k̃t−1(xt)
⊤at O(m)

if δt > ν % add xt to dictionary O(1)
Dt = {Dt−1 ∪ {xt}} O(1)

Compute K̃−1
t (2.2.10) with ãt = at O(m2)

at = (0, . . . , 1)⊤ O(m)
Compute Pt (3.2.9) O(m)
Compute αt (3.2.10) O(m)
m := m+ 1 O(1)

else % dictionary unchanged
Dt = Dt−1

qt = Pt−1at

1+a⊤
t Pt−1at

O(m2)

Compute Pt (3.2.7) O(m2)
Compute αt (3.2.8) O(m2)

Output: Dt, αt



Chapter 3. Kernel Recursive Least Squares 60

Fortunately, as can be easily verified1, we may express the optimal weight vector as

wt =
t
∑

i=1

αiφ(xi) = Φtα , (3.2.3)

where α = (α1, . . . , αt)
⊤. Substituting into (3.2.2), slightly abusing notation, we

have

L(α) = ‖Ktα− yt‖2 . (3.2.4)

Theoretically, the minimizer of (3.2.4) is given by αt = K†
tyt, which can be computed

recursively using the classic RLS algorithm. The problem with this approach is

threefold. First, for large datasets simply maintaining K in memory, estimating the

coefficient vector α and evaluating new points could prove prohibitive both in terms

of space and time. Second, the order of the model produced (i.e. the size of the

vector α, which will be dense in general), would be equal to the number of training

samples, causing severe overfitting. Third, in many cases the eigenvalues of the

matrix Kt decay rapidly to 0, which means that inverting it would be numerically

unstable.

By making use of the sparsification method of Chapter 2 we can overcome these

shortcomings. The basic idea is to use the smaller (sometimes much smaller) set of

dictionary samples Dt in the expansion of the weight vector wt, instead of the entire

training set.

Using the approximation (see Eq. 2.3.11) Φt ≈ Φ̃tA
⊤ in (3.2.3), we obtain

wt = Φtαt ≈ Φ̃tA
⊤
t αt = Φ̃tα̃t =

|Dt|
∑

j=1

α̃jφ(x̃j), (3.2.5)

where α̃t
def
= A⊤

t αt is a vector of m reduced coefficients. The loss becomes

L(α̃) = ‖Φ⊤
t Φ̃tα̃− yt‖2 = ‖AtK̃tα̃− yt‖2 , (3.2.6)

and its minimizer is α̃t = (AtK̃t)
†yt = K̃−1

t A†
tyt.

In the online scenario, at each time step t we are faced with either one of the

following two cases:

1. φ(xt) is ALD on Dt−1, i.e. δt ≤ ν and at are given by (2.2.4). In this case

Dt = Dt−1, and consequently K̃t = K̃t−1.

2. δt > ν, therefore φ(xt) is not ALD on Dt−1. xt is added to the dictionary, i.e.

1Simply add to wt some vector w̄ orthogonal to {φ(xi)}
t
i=1 and substitute into (3.2.2).



Chapter 3. Kernel Recursive Least Squares 61

Dt = Dt−1 ∪ {xt}, and the dimension of K̃t increases by 1.

We now derive the KRLS update equations for each of these cases.

Case 1 Here, only A changes between time steps: At = [A⊤
t−1,at]

⊤. There-

fore A⊤
t At = A⊤

t−1At−1 + ata
⊤
t , and A⊤

t yt = A⊤
t−1yt−1 + atyt. Note that K̃t is

unchanged. Defining Pt = (A⊤
t At)

−1 we apply the matrix inversion Lemma (e.g.,

Scharf, 1991) to obtain a recursive formula for Pt:

Pt = Pt−1 −
Pt−1ata

⊤
t Pt−1

1 + a⊤t Pt−1at
. (3.2.7)

Defining qt = Pt−1at

1+a⊤
t Pt−1at

we derive the KRLS update rule for α̃:

α̃t = K̃−1
t PtA

⊤
t yt

= K̃−1
t

(

Pt−1 − qta
⊤
t Pt−1

)(

A⊤
t−1yt−1 + atyt

)

= α̃t−1 + K̃−1
t

(

Ptatyt − qta
⊤
t K̃tα̃t−1

)

= α̃t−1 + K̃−1
t qt

(

yt − k̃t−1(xt)
⊤α̃t−1

)

, (3.2.8)

where the last equality is based on qt = Ptat, and k̃t−1(xt) = K̃tat.

Case 2 Here, Kt 6= Kt−1, but the partitioned matrix inverse formula is used to

obtain (see Eq. 2.2.10 and Appendix D.4)

K̃t =

[

K̃t−1 k̃t−1(xt)

k̃t−1(xt)
⊤ ktt

]

⇒ K̃−1
t =

1

δt

[

δtK̃
−1
t−1 + ata

⊤
t −at

−a⊤t 1

]

,

where ãt = K̃−1
t−1k̃t−1(xt). Note that ãt equals the at computed for the ALD

test (2.2.4), so there is no need to recompute K̃−1
t−1k̃t−1(xt). Furthermore, at =

(0, . . . , 1)⊤ since φ(xt) is exactly representable by itself. Therefore

At =

[

At−1 0

0⊤ 1

]

, A⊤
t At =

[

A⊤
t−1At−1 0

0⊤ 1

]

,

Pt =

[

Pt−1 0

0⊤ 1

]

, (3.2.9)

where 0 is a vector of zeros of appropriate length. The KRLS update rule for α̃ is:

α̃t = K̃−1
t (A⊤

t At)
−1A⊤

t yt

= K̃−1
t

[

(A⊤
t−1At−1)

−1A⊤
t−1yt−1

yt

]

=

[

α̃t−1 − ãt
δt

(yt − k̃t−1(xt)
⊤α̃t−1)

1
δt

(yt − k̃t−1(xt)
⊤α̃t−1)

]

, (3.2.10)



Chapter 3. Kernel Recursive Least Squares 62

where for the final equality we used ã⊤t K̃t−1 = k̃t−1(xt)
⊤. The algorithm in pseudo-

code is described in Algorithm 11. On the right-hand side of the table we bound the

number of operations per time-step for each line of the pseudo-code. The overall

per time-step computational cost is bounded by O(m2) (we assume that kernel

evaluations require O(1) time). 2

3.3 A Generalization Bound

In this section we present a data-dependent generalization bound whose generality

makes it applicable to the KRLS algorithm. Most of the currently available bounds

for classification and regression assume a bounded loss function. While this assump-

tion is often acceptable for classification, this is clearly not the case for regression.

Recently a generalization error bound for unbounded loss functions was established

in Meir and Zhang (2003), where the boundedness assumption is replaced by a mo-

ment condition. Theorem 3.3.1 below is a slightly revised version of Theorem 8 in

Meir and Zhang (2003).

We quote the general theorem, and then apply it to the specific case of the

squared loss studied in this work. For each function f , consider the loss function

ℓins(x, y, f(x)) = ℓins(y, f(x)) = (y − f(x))2

viewed as a function from X × Y to R. In our context the function f is given by

f(x) =
〈

w,φ(x)
〉

. Let Zt = {(x1, y1), . . . , (xt, yt)} be a set of t IID samples drawn

from some distribution ρ(X,Y ). Set

ℓav(f) = EX,Y ℓins(Y, f(X)) and ℓ̂av(f) =
1

t

t
∑

i=1

ℓins(yi, f(xi)).

Furthermore, let

LF = {ℓins(y, f(x)) : f ∈ F}

be a class of functions (defined on X × Y).

In order to establish useful generalization bounds we introduce a classic com-

plexity measure for a class of functions F . Let ξ = (ξ1, . . . , ξt) be a sequence of

independent and identically distributed {±1}-valued random variables, such that

Prob(ξi = 1) = 1/2. The empirical Rademacher complexity of F (e.g., van der

2The C source code for the KRLS algorithm may be downloaded from
http://visl.technion.ac.il/∼yaki/



Chapter 3. Kernel Recursive Least Squares 63

Vaart & Wellner, 1996) is defined as

R̂t(F) = Eξ sup
f∈F

{

1

t

t
∑

i=1

ξif(xi)

}

.

The Rademacher complexity Rt(F) is given by Rt(F) = ER̂t(F), where the expecta-

tion is taken with respect to the marginal product distribution ρt over {x1, . . . ,xt}.

Theorem 3.3.1 (Meir & Zhang, 2003). Let F be a class of functions mapping from

a domain X to R, and let {(xi, yi)}t
i=1, xi ∈ X , yi ∈ R, be independently selected

according to a probability measure ρ. Assume there exists a positive real number M

such that for all positive ζ

log EX,Y sup
f∈F

cosh(2ζℓins(Y, f(X))) ≤ ζ2M2/2. (3.3.11)

Then with probability of at least 1− δ over samples of length t, every f ∈ F satisfies

ℓav(f) ≤ ℓ̂av(f) + 2Rt(LF ) +M

√

2 log(1/δ)

t
.

(References to δ here and in the rest of this section are unrelated to the δt used

in the context of the sparsification). Note that the condition (3.3.11) replaces the

standard uniform boundedness used in many approaches. In order for this result

to be useful we need to present an upper bound on the Rademacher complexity

Rt(LF ). Assume initially that (1/2)‖w‖2 ≤ A (where ‖w‖2 =
〈

w,w
〉

). We quote

the following result from Meir and Zhang (2003) (see Eq. (13)).

Lemma 3.3.2. Consider the class of functions FA = {f(x) =
〈

w,φ(x)
〉

: (1/2)‖w‖2 ≤
A}. Then

R̂t(FA) ≤

√

√

√

√

2A

t

(

1

t

t
∑

i=1

‖φ(xi)‖2

)

. (3.3.12)

We assume for simplicity that k(x,x′) ≤ B for all x and x′. In the following

sequence of inequalities we use the notation w ∈ ΩA to indicate that (1/2)‖w‖2 ≤ A.

Denoting the expectation with respect to the product distribution ρt over the sample



Chapter 3. Kernel Recursive Least Squares 64

Zt by EZ , and keeping in mind that Eξi = 0 for any i we have that

Rt(LFA
) = EZEξ sup

w∈ΩA

1

t

t
∑

i=1

ξi
(

yi −
〈

w,φ(xi)
〉)2

= EZEξ sup
w∈ΩA

1

t

t
∑

i=1

ξi

(

〈

w,φ(xi)
〉2 − 2

〈

w, yiφ(xi)
〉

)

≤ EZEξ sup
w∈ΩA

1

t

t
∑

i=1

ξi

(√
2AB + 2|yi|

)

〈

w,φ(xi)
〉

(a)

≤
√

2AB

t
EZ

√

√

√

√

t
∑

i=1

(√
2AB + 2|yi|

)2

(b)

≤
√

2AB

t
EZ

√

√

√

√

t
∑

i=1

(4AB + 8y2
i )

(c)

≤
√

2AB

t

√

4tAB + 8tE[Y 2]

(d)

≤ 2
√

2AB + 4
√

ABE[Y 2]√
t

.

where (a) used (3.3.12) with φ(xi) replaced by (
√

2AB + 2|yi|)φ(xi) and the fact

that k(x,x) = ‖φ(xi)‖2 ≤ B, (b) used (a+ b)2 ≤ 2a2 +2b2, (c) made use of Jensen’s

inequality, and (d) is based on
√
x+ y ≤ √

x+
√
y.

The derived bound on Rt(LFA
) is formulated in terms of the parameter A.

In order to remove this dependence we use a (by now) standard trick based on

the union bound. Let {Ai}∞i=1 and {pi}∞i=1 be sets of positive numbers such that

lim supAi = ∞ and
∑

i pi = 1 (for example, pi = 1/i(i + 1)). We apply Theorem

3.3.1 for each value of Ai replacing δ by piδ. A simple utilization of the union bound,

and some algebraic manipulations (described in the proof of Theorem 10 in Meir

and Zhang (2003)) allow one to establish the following bound, where all reference

to the parameter A has been eliminated.

Theorem 3.3.3. Let F be a class of functions of the form f(x) =
〈

w, φ(x)
〉

,

and let {(xi, yi)}t
i=1, xi ∈ X , yi ∈ Y, be independently selected according to a

probability measure ρ. Assume further that (3.3.11) holds. Fix any number g0 and

set g̃(w) = 2max((1/2)‖w‖2 , g0) Then with probability at least 1 − δ over samples

of length t, every f ∈ F satisfies

E (Y − f(X))2 ≤ 1

t

t
∑

i=1

(yi − f(xi))
2 +

4
√

2Bg̃(w) + 8
√

Bg̃(w)E[Y 2]√
t

+M

√

4 log log2(2g̃(w)/g0) + 2 log(1/δ)

t
.



Chapter 3. Kernel Recursive Least Squares 65

The essential feature of the bound in Theorem 3.3.3 is that it holds uniformly

for any w, and thus in particular to the weight vector w obtained using the KRLS

algorithm. Observe that the price paid for eliminating the parameter A is an extra

term of order log log g̃(w). Note also that using the sparse dual representation (3.2.5)

w =
∑|Dt|

j=1 α̃jφ(x̃j) the bound can be phrased in terms of the coefficients α̃j using

‖w‖2 = α̃⊤
t K̃tα̃t.

3.4 Experiments

In this section we experimentally demonstrate the potential utility and practical

efficacy of the KRLS algorithm in a range of machine learning and signal processing

applications. We begin by exploring the scaling behavior of KRLS on a simple,

static nonlinear regression problem. We then move on to test KRLS on several

well-known benchmark regression problems, both synthetic and real. As a point of

reference we use the highly efficient SVM package SVMTorch (Collobert & Bengio,

2001), with which we compare our algorithm. Next, we move to the domain of time

series prediction (TSP). The most common approach to the TSP problem is based on

identifying a generally nonlinear auto-regressive model of the series. This approach

essentially reduces the TSP problem to a regression problem with the caveat that

samples can no longer be assumed to be IID. Numerous learning architectures and

algorithms have been thrown at this problem with mixed results (see e.g., Weigend

& Gershenfeld, 1994). One of the more successful general purpose algorithms tested

on TSP is again the SVM (Müller et al., 1997); however SVMs are inherently limited

by their off-line mode of training, and their poor scaling properties. We argue that

KRLS is a more appropriate tool in this domain, and to support this claim we test

KRLS on two well known and difficult time series prediction problems. Finally,

we apply KRLS to a nonlinear channel equalization problem, on which SVMs were

reported to perform well (Sebald & Bucklew, 2000). All tests were run on a 256Mb,

667MHz Pentium 3 Linux workstation.

3.4.1 Nonlinear Regression

We report the results of experiments comparing the KRLS algorithm (coded in C)

to the state-of-the-art SVR implementation SVMTorch (Collobert & Bengio, 2001).

Throughout, the best parameter values3 (for C, ε, ν) were found by using a 10-fold

cross-validation procedure in which we looked for the minimum average root-mean-

squared error (RMSE) over a range of parameter values, spaced logarithmically. The

3ε is the parameter defining the width of the error-insensitive zone used in the SVR loss function,
while C determines the trade-off between the empirical loss term and the regularization term. See
Schölkopf and Smola (2002), Chapter 9 for precise definitions.



Chapter 3. Kernel Recursive Least Squares 66

best values for each parameter were found for a single learning scenario in which the

training set consisted of 1000 training samples corrupted by Gaussian noise with

a standard deviation of 0.1. This set of parameters was then used throughout the

experiments. No attempt was made to optimize parameters for each tested scenario

separately, as this would be prohibitively time-consuming. The kernel we used was

Gaussian,

k(x,x′) = exp
(

−‖x − x′‖2/(2σ2)
)

, (3.4.13)

and a similar procedure was used to find the value of the kernel width parameter σ

for which each algorithm performed best. All the results reported below are averaged

over 50 independent randomly generated training sets.

We first used KRLS for learning the 2-dimensional Sinc-Linear function

sin(x1)/x1 + x2/10 defined on the domain [−10, 10]2. The kernel is Gaussian with

a standard deviation σ = 4.4 for both algorithms. The other SVR parameters are

C = 50, 000 and ε = 0.05, while the KRLS parameter is ν = 0.001. Learning

was performed on a random set of samples corrupted by additive IID zero-mean

Gaussian noise. Testing was performed on an independent random sample of 1000

noise-free points.

Figure 3.1 depicts the results of two tests. In the first we fixed the noise level

(noise STD 0.1) and varied the number of training samples from 5 to 50,000, with

each training set drawn independently. We then plotted the test-set error (top left),

the number of support/dictionary vectors as a percentage of the training set (top-

center), and the CPU time (top-right) for each algorithm. As can be seen, the

solution produced by KRLS significantly improves upon the SVR solution, both in

terms of generalization performance and sparsity (with a maximum of 72 dictionary

samples) for training set sizes of 200 samples or more. In terms of speed, KRLS

outperforms SVMTorch over the entire range of training set sizes, by one to three

orders of magnitude. In fact, looking at the asymptotic slopes of the two CPU-time

graphs we observe that, while SVMTorch exhibits a super-linear dependence on the

sample size (slope 1.8), KRLS scales linearly (slope 1.0) as required of a real-time

algorithm.

In the second test we fixed the training sample size at 1000 and varied the level

of noise in the range 10−6 to 10. We note that SVMTorch suffers from an incorrect

estimation of the noise level by its ε parameter, in all respects. Most notably,

in the presence of high noise, the sparsity of its solution deteriorates drastically.

In contrast, due to its unsupervised method of sparsification, KRLS produces a

sparse solution with complete disregard of the level of noise. Moreover, in terms of

generalization, the KRLS solution is at least as good as the SVR solution.

We tested our algorithm on three additional synthetic data-sets, Friedman 1,2



Chapter 3. Kernel Recursive Least Squares 67

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

# samples

r.m
.s

.e
.

Test Error

10
0

10
1

10
2

10
3

10
4

10
5

0

20

40

60

80

100

120

# samples

%

Percent of SV/DVs

     
KRLS 
     
TORCH

10
0

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

# samples

se
c

CPU Time

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

noise st.d.

r.m
.s

.e
.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

10

20

30

40

50

60

70

80

90

100

noise st.d.

%

     
KRLS 
     
TORCH

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

noise st.d.

se
c

Figure 3.1: Scaling properties of KRLS and SVMTorch with respect to sample size
(top) and noise magnitude (bottom), on the Sinc-Linear function. Error bars mark
one standard deviation above and below the mean.

and 3, due to Friedman (1991). Both training and test sets were 1000 samples long,

and introduced noise was zero-mean Gaussian with a standard deviation of 0.1. For

these data-sets a simple preprocessing step was performed which consisted of scaling



Chapter 3. Kernel Recursive Least Squares 68

Parameters: t = 1000, Friedman-1 RMSE STD % SV CPU
d = 10, C = 104, ε = 0.01, SVMTorch 0.61 0.03 91.9 24.63
σ = 0.8, ν = 10−3 KRLS 0.55 0.02 100.0 26.97

Parameters: t = 1000, Friedman-2 RMSE STD % SV CPU
d = 4, C = 106, ε = 10−4, SVMTorch 0.20 0.01 97.3 725.22
σ = 0.5, ν = 10−4 KRLS 0.18 0.02 36.1 10.24

Parameters: t = 1000, Friedman-3 RMSE STD % SV CPU
d = 4, C = 105, ε = 0.1, SVMTorch 0.09 0.01 37.6 2.32
σ = 0.5, ν = 10−3 KRLS 0.09 0.01 23.3 4.74

Table 3.1: Results on the synthetic Friedman data-sets. The columns, from left to
right, list the average R.M.S. test-set error, its standard deviation, average percent-
age of support/dictionary vectors, and the average CPU time in seconds used by
the respective algorithm.

the input variables to the unit hyper-cube, based on their minimum and maximum

values. The results are summarized in Table 3.1.

We also tested KRLS on two real-world data-sets - Boston housing and Comp-

activ, both from Delve4. The task in the Boston data-set (506 samples, 13 dimen-

sions) is to predict median value of owner-occupied homes in $1000’s for various

Boston neighborhoods, based on census data. In the Comp-activ (cpuSmall) data-

set (8192 samples, 12 dimensions) the task is to predict the users’ CPU utilization

percentage in a multi-processor, multi-user computer system, based on measures

of system activity. A preprocessing step, like the one used on the Friedman data-

sets, was performed here as well. Generalization performance was checked using 106

(Boston) and 2192 (Comp-activ) left-out test samples. The results are summarized

in Table 3.2.

Parameters: t = 6000, Comp-activ RMSE STD % SV CPU
d = 12, C = 106, ε = 0.5, SVMTorch 3.13 0.07 81.9 130.4
σ = 0.9, ν = 0.001 KRLS 3.09 0.08 3.4 19.52

Parameters: t = 400, Boston RMSE STD % SV CPU
d = 13, C = 106, ε = 1, SVMTorch 3.16 0.49 58.0 5.57
σ = 1.3, ν = 0.001 KRLS 3.52 0.48 38.6 0.53

Table 3.2: Results on the real-world Comp-activ and Boston data-sets.

3.4.2 Time Series Prediction

Digital signal processing is a rich application domain in which the classic RLS al-

gorithm has been applied extensively. Online and real-time constraints are often

4http://www.cs.toronto.edu/˜delve/data/datasets.html



Chapter 3. Kernel Recursive Least Squares 69

imposed upon signal processing algorithms, making many of the recently developed

kernel-based machine learning algorithms irrelevant for such tasks. The development

of KRLS may help to fill this gap, indeed, it is in such tasks that the recursive, online

operation of KRLS becomes particularly useful, if not essential.

An important and well studied problem in both the machine learning and the

signal processing communities is the prediction of time series. We tested KRLS on

both synthetically generated and real-world time series – The well studied Mackey–

Glass time series, and the Laser (A) time series from the Santa Fe time series

prediction competition (Weigend & Gershenfeld, 1994). The Mackey–Glass series is

synthetically generated by numerical integration of a time-delay differential equa-

tion. The Laser time series is taken from real measurements of the intensity of a

far-infrared NH3 laser. Both of these series exhibit chaotic behavior, making the

task of multi-step prediction exponentially difficult as a function of the prediction

horizon. Nevertheless, short-term multi-step prediction is feasible, depending on the

intrinsic predictability of the dynamics. In the Mackey–Glass series it is possible to

make accurate predictions 100’s of time steps into the future, while for the Laser

series the useful limit seems to be about 100. Throughout the time-series experi-

ments we used the Gaussian kernel (3.4.13), the width of which is specified by the

parameter σ.

Mackey–Glass Time Series

Our first experiment is with the Mackey–Glass chaotic time series. This time series

may be generated by numerical integration of a time-delay differential equation that

was proposed as a model of white blood cell production (Mackey & Glass, 1977):

dy

dt
=

ay(t− τ)

1 + y(t− τ)10
− by(t), (3.4.14)

where a = 0.2, b = 0.1. For τ > 16.8 the dynamics become chaotic; we therefore

conducted our tests using two value for τ , corresponding to weakly chaotic behavior

at τ = 17 and a more difficult case at τ = 30. Eq. 3.4.14 was numerically integrated

using the Euler method. Initial conditions were generated by drawing x0 from a

uniform distribution over the interval [0.1, 2], with xt = 0 for t < 0.

Training sets 1000 samples long were generated by sampling the series at 1 time-

unit intervals, with the respective test sets consisting of the subsequent 200 samples.

The embedding dimension was fixed at 10 with an embedding delay of 4 samples,

i.e. xt = (y(t− 4), y(t− 8), . . . , y(t− 40)). The parameters for each algorithm were

selected by searching for the minimum 200-step RMS iterated prediction error, aver-

aged over 10 independent training and validation sets. The parameters found for the

Mackey–Glass(17) series are, for SVMTorch σ = 0.7, C = 103, ε = 10−5, while for



Chapter 3. Kernel Recursive Least Squares 70

KRLS they are σ = 0.5, ν = 10−4. For the Mackey–Glass(30) series the SVMTorch

parameters were unchanged, while for KRLS ν remained the same and σ = 0.6. The

test results for SVMTorch and KRLS on both series, averaged over 50 independent

trials, are given in Table 3.3.

MG(17) RMSE(1) STD(1) RMSE(200) STD(200) % SV CPU

SVMTorch 0.0023 0.0003 0.0187 0.0080 30.48 4.18

KRLS 0.0004 0.0002 0.0027 0.0016 27.05 6.85

MG(30) RMSE(1) STD(1) RMSE(200) STD(200) % SV CPU

SVMTorch 0.006 0.003 0.034 0.036 50.2 7.23

KRLS 0.006 0.004 0.033 0.028 51.9 12.00

Table 3.3: 1-step and 200-step iterated prediction results on the Mackey–Glass time
series with τ = 17 (MG(17)) and τ = 30 (MG(30))

On the Mackey–Glass(30) series KRLS and SVM perform comparably, both in

terms of prediction accuracy and in terms of sparsity. However, on the Mackey–

Glass(17) series KRLS significantly outperforms SVM in its prediction accuracy.

Fig. 3.2 shows examples of two test sets, one for each series, and the iterated pre-

dictions produced by the two algorithms.

Santa Fe Laser Time Series

Our next experiment is with the chaotic laser time series (data set A) from the Santa

Fe time series competition (Weigend & Gershenfeld, 1994) 5 This is a particularly

difficult time series to predict, due both to its chaotic dynamics and to the fact

that only three “intensity collapse” events occur in the training set. The accurate

prediction of these events is crucial to achieving a low prediction error on the test set.

The training data consists of 1000 samples, with the test data being the subsequent

100 samples (see Fig. 3.3). The task is to predict the test series with minimum

mean squared error. Looking at the competition results the difficulty of this task

becomes apparent: Only two of the 14 contestants achieved prediction accuracies

that are significantly better than simply predicting the mean of the training series.

The winning entry achieved a normalized mean squared error (NMSE - the mean

squared error divided by the series’ variance) of 0.028, by utilizing a complex and

highly specialized neural network architecture adapted by a temporal version of the

backpropagation algorithm. Moreover, the final 25 steps of the predicted sequence

were hand-picked by adjoining to the initial 75–step prediction a similar sequence

taken from the training set. The second place entry used an approach based on local

linear models and achieved a NMSE of 0.080 on the test set.

5http://www-psych.stanford.edu/ãndreas/Time-Series/SantaFe.html



Chapter 3. Kernel Recursive Least Squares 71

1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
mackey−glass17
KRLS          
TORCH         

1000 1020 1040 1060 1080 1100 1120 1140 1160 1180 1200
0.2

0.4

0.6

0.8

1

1.2

1.4

mackey−glass30
KRLS          
TORCH         

Figure 3.2: Multi-step iterated predictions for the Mackey–Glass time series with
τ = 17 (top) and τ = 30 (bottom).

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.3: The Santa Fe competition laser training series (data set A)

We attempted to learn this series with the KRLS algorithm. The naive ap-

proach, as used above for the Mackey–Glass series, would be to minimize the 1-



Chapter 3. Kernel Recursive Least Squares 72

step prediction error by defining the training samples as {(xi, yi)}t
i=1 with xi =

(yi−1, yi−2, . . . , yi−d), where d is the model order and t the number of training sam-

ples 6. Predicting the test series is performed by iterated prediction in which suc-

cessive 1-step predictions are fed back into the predictor as inputs for the predic-

tion of subsequent series values. Unfortunately this naive approach works well for

this series only if we are really interested in performing well on 1-step predictions.

Since our goal is to provide multi-step predictions, a more sophisticated method

is called for. The method we used is as follows: Run KRLS to minimize the 1-

step prediction MSE, as in the naive approach. After this pass over the training

set is complete, we compute the optimal 1-step estimates (ŷ1
1 , . . . , ŷ

1
t ). Next, we

continue running KRLS on a new data set, which is of the same length as the orig-

inal data, and in which xt = (ŷ1
t−1, yt−2, . . . , yt−d). We now have 2-step estimates

(ŷ2
1 , . . . , ŷ

2
t ), based on the real data and the 1-step estimates obtained in the previous

step. On the i’th step of this iterative process the appended training set consists

of samples of the form xt = (ŷi−1
t−1, ŷ

i−2
t−2, ŷ

i−3
t−3, . . . , ŷ

1
t−i+1, yt−i, . . . , yt−d) if i ≤ d; or

xt = (ŷi−1
t−1, ŷ

i−2
t−2, ŷ

i−3
t−3, . . . , ŷ

i−d
t−d) if i > d.

We may iterate this process until some prespecified prediction horizon n is

reached. Assuming that the dictionary ceases to grow at an early stage, The end

result is a good approximation to the minimizer of the mean squared error over the

entire n × t - long dataset, in which equal weight is given to 1-step through n-step

prediction accuracy. The idea behind this somewhat complex scheme is to improve

the stability of the iterative multi-step predictor with respect to small errors in its

predicted values, since these are fed back into the predictor as inputs for predictions

at subsequent time steps. Note that this scheme relies heavily on the recursiveness

of KRLS; the implementation of such a scheme using a batch algorithm such as

SVM would be considerably more difficult and costly.

The free parameters of the algorithm were tuned as follows. First we normalized

the series, so that its values lie in the range [0, 1]. We then performed hold-out tests

to determine the values of σ, ν, d and n, where ν is the ALD threshold parameter,

d is the model order and n is the prediction horizon for the iterations described

above. The training sets we used were a. samples 1-700, b. samples 1-800, and

c. samples 1-900. Their respective held-out sets were a. 701-800, b. 801-900 and

c. 901-1000. The parameters were optimized with respect to the mean squared

error of the multi-step iterated prediction on the held out sets. When insignificant

differences in prediction accuracy were observed, the parameter value incurring a

lower computational cost was preferred (i.e. preference to high values of ν and σ

and low values of d and n). The values found are: σ = 0.9, ν = 0.01, d = 40 and

n = 6. The NMSE prediction error on the competition test set (samples 1001-1100)

6y0, . . . , y1−d are assumed to be equal to zero.



Chapter 3. Kernel Recursive Least Squares 73

achieved by KRLS is 0.026, which is slightly better than the winning entry in the

competition. The KRLS prediction and the true continuation are shown in Fig. 3.4.
7

1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
True Continuation
KRLS prediction  

Figure 3.4: KRLS predicting 100 steps into the future (dashed line) on the laser
time series. The true continuation is shown as a solid line. Note that on the first 60
steps the prediction error is hardly noticeable.

3.4.3 Channel Equalization

In Sebald and Bucklew (2000) SVMs were applied to nonlinear channel equalization

problems with considerable success. One of the reservations made by the authors

concerning the use of SVMs in this application domain was due to the inability of

SVMs to be trained online. We suggest KRLS as a viable alternative that performs

similarly in terms of error rates, but may be trained online, and often produces

solutions that are much sparser than SVM solutions in less time, especially for large

amounts of data.

Let us briefly state the channel equalization problem. A binary signal is fed

into a generally nonlinear channel. At the receiver end of the channel the signal

is further corrupted by additive IID (usually Gaussian) noise, and is then observed

as (y1, . . . , yt). The aim of channel equalization is to construct an “inverse” fil-

ter that reproduces (possibly with some delay) the original signal with as low an

error rate as possible. In order to attain this goal a known random binary sig-

nal (u1, . . . , ut) is sent through the channel and the corresponding noisy observa-

7In this experiment we used a Matlab version of KRLS, for which the entire training session
took less than 5 minutes. The C implementation typically runs 5–10 times faster.



Chapter 3. Kernel Recursive Least Squares 74

Table 3.4: Results of the channel equalization experiment
SVM KRLS

D=0 BER 0.174 ± 0.008 0.173 ± 0.010
Sparsity (%) 41.9 ± 4.3 9.7 ± 0.6
CPU Time (sec) 5.44 ± 1.06 0.15 ± 0.03
D=1 BER 0.067 ± 0.020 0.065 ± 0.006
Sparsity (%) 14.4 ± 2.5 9.7 ± 0.6
CPU Time (sec) 0.65 ± 0.19 0.15 ± 0.03
D=2 BER 0.048 ± 0.015 0.046 ± 0.004
Sparsity (%) 10.1 ± 2.1 9.6 ± 0.7
CPU Time (sec) 0.74 ± 0.24 0.15 ± 0.03

tions (y1, . . . , yt) are used to adapt the equalizer. Just as the time-series predic-

tion problem can be cast as a regression problem, it is easy to see that channel

equalization may be reduced to a classification problem, with samples {(xi, ui)}t
i=1,

xi = (yi+D, yi+D−1, . . . , yi+D−d+1), where d is the model order and D is the equal-

ization time lag. As KRLS minimizes the MSE, its choice as a learning algorithm

for equalization seems questionable, since equalization aims at reducing the bit error

rate (BER), which is the number of misclassifications. Nevertheless we show that

the performance of KRLS solutions, as measured by the BER criterion, is at least

as good as SVM classification solutions.

In this experiment we replicate the setup used in the first simulation in Sebald

and Bucklew (2000). The nonlinear channel model is defined by xt = ut + 0.5ut−1,

yt = xt − 0.9x3
t + nσ, where nσ is white Gaussian noise with a variance of 0.2.

As in Sebald and Bucklew (2000) a SVM with a third degree polynomial kernel

k(x,x′) =
(

x⊤x′ + 1
)3

was used, with the other parameters being t = 500 and

C/t = 5. KRLS was found to perform best with an eighth degree polynomial kernel8

and ν = 0.1. Testing was performed on a 5000 sample random test sequence. The

results are presented in Table 3.4; each entry is the result of averaging over 100

repeated independent tests.

Our results for SVMTorch are in agreement with the results reported in Sebald

and Bucklew (2000) (i.e. within the error bars). The results in Table 3.4 show that,

in this task, SVM and KRLS perform comparably in terms of the generalization bit

error rate. Sparsity-wise, KRLS delivers uniformly sparser solutions than SVM. The

advantage in sparsity is quite marked for D = 0 and diminishes for higher values of

D. Note the robustness of the KRLS solutions in terms of sparsity and computation

time with respect to variations in the equalizer delay D.

8We did not try any other type of kernel other than the polynomial one.



Chapter 3. Kernel Recursive Least Squares 75

3.4.4 Comparison with Sparse Gaussian Processes

A method bearing close similarities to ours is that of Csató and Opper (2002), who

suggested an online algorithm for sparse Gaussian process regression (SGPR) in

a Bayesian setting. Our least squares approach may be interpreted as a form of

maximum likelihood estimation based on similar assumptions. Since in Gaussian

process regression the posterior moments are evaluated, SGPR must assume some

probabilistic model for the measurement process. Conventionally it is assumed that

measurements are corrupted by additive IID Gaussian noise, and in consequence

SGPR requires an additional parameter estimating the measurement noise variance

that is not required when using KRLS.

The distinction between SGPR and our method becomes apparent if this pa-

rameter is given a lower value than the true noise variance. In this case, given

some fixed dictionary, SGPR would favor fitting the dictionary points at the price

of committing larger errors on other points. In the limit, SGPR would fit only the

dictionary points and would ignore completely all other points. This means that to

compensate for an erroneous noise model, SGPR would have to resort to increasing

the size of its dictionary, sacrificing the sparseness of its solution. In comparison,

our sparsification method weighs all points equally and maintains the same level of

sparsity irrespective of the intensity of the measurement noise. This last property

is due to the unsupervised form of sparsification employed by KRLS. While the

sparsification algorithm used in SGPR considers the error performed in estimating

each new sample’s target value (yt) if that sample is not added to the dictionary, our

method considers the error incurred in representing the sample points (φ(xt)) them-

selves. In consequence, no property of the target values, the level of measurement

noise included, has any effect on the KRLS dictionary. While in some cases this may

seem to be a drawback, unsupervised sparsification helps ensure the robustness of

KRLS in the face of an unknown noise model. Not withstanding, it is possible (and

straightforward) to incorporate any sparsification procedure into KRLS, supervised

or not, as long as it may be implemented online.

In Fig. 3.5 we demonstrate these differences using the sinc function in a simple

one-dimensional regression problem. The sample consists of 10 points corrupted

by IID Gaussian noise with a standard deviation of 0.1. We let the SGPR noise

model underestimate the noise by a factor of 5 (i.e. it assumes a noise st.d. of

0.02). At the top of Fig. 3.5 we show the predictions of KRLS and SGPR based

on this data. Due to its misestimate of the noise SGPR severely overfits the data

while requiring more dictionary vectors (DVs) (nine) than KRLS does (seven). The

bottom of Fig. 3.5 shows what happens if, for the same data, we employ in SGPR

the same unsupervised sparsification criterion used by KRLS (note the change of

scale). Indeed, SGPR no longer overfits, unfortunately, as mentioned above, in this



Chapter 3. Kernel Recursive Least Squares 76

−10 −8 −6 −4 −2 0 2 4 6 8 10
−3

−2

−1

0

1

2

3

4

Training Set
SINC        
KRLS        
KRLS DVs    
SGPR        
SGPR DVs    

−10 −8 −6 −4 −2 0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Training Set
SINC        
KRLS        
KRLS DVs    
SGPR        
SGPR DVs    

Figure 3.5: KRLS compared to SGPR with underestimated measurement noise
on the sinc function. At the top SGPR uses its original supervised sparsification
criterion, while at the bottom it uses the same unsupervised criterion used by KRLS.

case its estimate is heavily biased toward fitting the dictionary points at the expense

of non-dictionary points. This effect is most pronounced in the vicinity of the two

rightmost points. While the KRLS estimate lies roughly midway between the two,

SGPR’s estimate is much closer to the upper point, which belongs to its dictionary,

almost ignoring the lower, non-dictionary point. This dictionary-bias effect may

also be arrived at analytically. However, such a derivation is beyond the scope of

this chapter.



Chapter 3. Kernel Recursive Least Squares 77

3.5 Discussion and Conclusion

We have presented a nonlinear kernel-based version of the popular RLS algorithm.

The algorithm requires two key ingredients: expressing all RLS related operations

in terms of inner products in the feature space (which can be calculated using the

kernel function in the input space), and sparsifying the data so that the dimension

of the samples in the feature space remains bounded.

Our choice of unsupervised sparsification was motivated by the kind of online

non-stationary learning problems that we aimed at solving at the outset (i.e. rein-

forcement learning problems). Choosing a supervised criterion invariably requires

the user to make some extra assumptions on the measurement process that are not

needed when using an unsupervised criterion. When the relevant domain knowledge

is available it may be possible to capitalize on it. However, if these prior assumptions

are incorrect or simply cease to apply at some stage, the results may be difficult to

predict, as we demonstrated both for support vector regression in Section 3.4.1 and

for sparse Gaussian process regression in Section 3.4.4.

Let us summarize the main contributions of this chapter. We presented a com-

putationally efficient online algorithm possessing performance guarantees similar to

those of the RLS algorithm (e.g. Scharf, 1991). Essentially, this means that the in-

formation content of each sample is fully extracted before that sample is discarded,

since a second iteration over a previously learned training set would cause no change,

whereas online gradient-based algorithms usually benefit from data recycling. Due

to the unsupervised nature of our sparsification mechanism the sparsity of the solu-

tion is immune both to increase in noise and in training set size. We have also been

able to present data-dependent generalization bounds that may be expressed in

terms of the dictionary obtained. Finally, experiments indicate that the algorithm

compares favorably with the state-of-the-art SVR algorithm SVMTorch in both gen-

eralization performance and computation time. In some cases the KRLS algorithm

produces much sparser solutions with higher robustness to noise. The usefulness

of KRLS was also demonstrated in the RLS algorithm’s traditional application do-

main – signal processing. Here too, our algorithm compares favorably with current

state-of-the-art algorithms.

An important future research direction would be to employ our online sparsifi-

cation method, in conjunction with the kernel trick, to “kernelize” other algorithms

that are recursive in nature, such as the Kalman filter (e.g., Haykin, 1996). A

nonlinear kernelized version of the Kalman filter may be able to circumvent the in-

herent problem of handling nonlinearities, which was only partially resolved by the

extended Kalman filter.

As far as the KRLS algorithm is concerned, many directions for modification

and improvement are open. Further exploration into the connection of KRLS with



Chapter 3. Kernel Recursive Least Squares 78

maximum likelihood estimation is in order. Other directions include the utilization

of specialized kernels tailored to specific problems, such as time series prediction;

optimization of the kernel function by tuning its hyper-parameters; noise estimation

(in the spirit of adaptive RLS); an exponentially weighted version of KRLS; and

adaptive model order identification, as in Sayed and Kailath (1994).



Chapter 4

Reinforcement Learning with

Gaussian Processes

Summary: This chapter represents the major contribution of this thesis. We

start by tackling the policy evaluation problem of RL, using a GP based approach.

The approach we suggest, termed Gaussian Process Temporal Difference (GPTD)

learning, employs Bayesian methodology to infer a posterior distribution over value

functions, conditioned on the state-reward trajectory observed while running a

MDP. The GPTD framework may be used with both parametric and nonparametric

representations of the value function, and applied to general MDPs with infinite

state and action spaces. Various flavors of the basic model yield several different

online algorithms, including a SARSA-like algorithm designed for learning state-

action values, providing the basis for model-free policy improvement. Connections

between the GPTD framework and existing algorithms are explored, providing

a new view on familiar methods such as TD(λ) and LSTD(λ). Parts of the work

presented in this chapter were published in Engel et al. (2003); Engel et al. (2005).

4.1 Introduction

The main goal of this thesis is to solve RL problems, and in this chapter this challenge

is finally met. The first hurdle we clear is the basic RL problem of policy evaluation,

or value estimation. Algorithms for solving this problem, such as the celebrated

TD(λ), serve as a necessary algorithmic component of RL algorithms that are based

on the policy iteration method (see Section 1.4.1).

Although the KRLS algorithm presented in Chapter 3 may be modified to pro-

duce a kernel-based policy evaluation algorithm, a different path is taken here. In

this chapter we suggest a Gaussian process (GP) based framework, which uses lin-

ear statistical models to connect, in a probabilistic way, the underlying hidden value

function with the observed rewards, for a MDP controlled by some fixed policy (see

Section 1.3.2). We generically refer to this framework (as well as to some of the

resulting algorithms) as Gaussian Process Temporal Difference (GPTD) learning.

79



Chapter 4. Reinforcement Learning with Gaussian Processes 80

The Bayesian paradigm, upon which GP inference is based, allows us to “invert”

such statistical models by employing Bayes’ rule, resulting in a posterior distribution

over value functions, conditioned on the observations performed. Since the Normal

distribution is self-conjugate, the application of Bayes’ rule results in a closed form

expression for the posterior (normal) distribution, given explicitly by the Gauss-

Markov theorem (1.3.1). Moreover, the computation of the posterior moments is

typically amenable to a sequential implementation, in which simple updates are

performed for each new sample observed. We take advantage of this fact to obtain

online algorithms, which maintain an exact, or almost exact, representation of the

posterior distribution, at all times.

GPs are by default nonparametric (although they may also be defined paramet-

rically, as shown in Section 1.3). This means that the search for the value function is

conducted directly in a generally infinite dimensional function space. This naturally

alleviates some of the limitations associated with linear architectures (discussed in

Section 1.4.3), albeit at the cost of introducing some computational complications.

Furthermore, by using a Mercer kernel as our basic representational object, rather

than a set of basis functions, we are better equipped to solve RL problems in do-

mains for which constructing such a basis is problematic (e.g., Kaelbling et al., 1998;

M. Littman & Singh, 2002; Dzeroski et al., 1998).

On the other hand, by employing parametrically defined GPs within the GPTD

framework, we are able to derive parametric variants of the same algorithms. Since

these parametric algorithms conduct their search within a predefined finite-dimensional

function space (spanned by a finite set of basis functions), their per-sample com-

putational cost can be bounded in advance, resulting in efficient implementations

that are comparable to the recursive implementation of the LSTD(λ) algorithm (see

Section 1.4.3).

In RL, what we are really after is an optimal, or at least a good suboptimal action

selection policy. Value estimates of states do not contain sufficient information for

choosing actions without resorting to the MDP’s model. A possible alternative is to

learn state-action values, also known as Q-values. Once the Q-values of the current

policy are known, model-free policy improvement may be performed (see Section

1.4.2). We therefore present an additional GPTD algorithm, called GPSARSA,

which may be used to compute, online, posterior distributions over state-action

value functions.

The rest of this chapter is organized as follows. In the following section we

present the two forms of representations – parametric and nonparametric – that

will be used in the sequel. Next, we describe a GPTD statistical model, as well as

several corresponding algorithms, for handling MDPs with deterministic dynamics.

Section 4.4 handles the general case of MDPs with stochastic transitions. Section



Chapter 4. Reinforcement Learning with Gaussian Processes 81

4.5 explores the relationship between our GPTD models and conventional temporal

difference methods. Section 4.6 extends the GPTD model to the estimation of state

action values, resulting in the GPSARSA algorithm. We conclude with a summary

and discussion.

4.2 Parametric and Nonparametric Representations

As mentioned above, we model our subjective, extrinsic uncertainty1 concerning the

value function by modeling it as a Gaussian process V . As we have seen in Section

1.3, V may be represented using two distinct forms of representation – parametric

and nonparametric. The former is based on parameterizing the value function by a

finite set of random variables {w1, . . . , wn}, arranged in a vector W , in such a way

as to preserve the linearity of the generative model. This inevitably leads to the

following parameterization

V (x) =

n
∑

j=1

φj(x)wj = φ(x)⊤W, (4.2.1)

where φ(x) = (φ1(x), . . . , φn(x))⊤ is a vector of n features, which do not depend on

any of the parameters wj . The prior over W is assumed to be Gaussian, and with

little loss of generality we postulate it to be distributed as

W ∼ N (0, I) .

This induces a prior distribution over the value random process, which is also Gaus-

sian, with easily computed moments:

E[V (x)] = φ(x)⊤E(W ) = 0

Cov[V (x), V (x′)] = φ(x)⊤E[WW⊤]φ(x′) = φ(x)⊤φ(x′).

The parametric approach is most suitable in cases where domain knowledge may be

used to construct a set of basis functions whose span includes good approximations

of the true value function. Note that E denotes the expectation with respect to the

extrinsic Bayesian uncertainty discussed above, and should not be confused with

Eµ.

The alternative to the parametric approach is to define the value prior directly

in function space, as explained in Section 1.3. In this case we impose a Gaussian

prior over value functions, V ∼ N (0, k(·, ·)), meaning that V is a GP for which, a

1This is in contrast to the intrinsic randomness of the MDP, which is due to the stochasticity
of the state transitions and the rewards.



Chapter 4. Reinforcement Learning with Gaussian Processes 82

priori,

E [V (x)] = 0, and Cov
[

V (x), V (x′)
]

= k(x,x′), for all x,x′ ∈ X ,

where k is a positive-definite kernel function. In the nonparametric framework,

domain knowledge is expressible in the choice of the kernel function k. k should

be chosen to code one’s prior beliefs concerning the correlations between the values

of states in the domain at hand, or, equivalently, the smoothness properties of the

function space to which instances of V belong. This nonparametric approach has

the advantage that, in general, it is no longer restricted to value approximations that

lie in the span of any finite number of basis functions. In a sense, the basis functions

are determined by the data, rather than being fixed a priori, as in the parametric

approach. This benefit, however, comes at a cost: The number of parameters that

need to be estimated is no longer fixed, but rather increases as the the number of data

samples grows. This would seem to preclude the application of the nonparametric

approach to any but the smallest of problems. However, as we shall see, this difficulty

may be resolved by employing the kernel sparsification procedure, introduced in

Chapter 2.

4.3 Deterministic Transitions

The general framework of Markov Decision Processes can be specialized in several

ways. For instance, if the state space is restricted to a single state, Reinforcement

Learning degenerates into a class of problems known as Bandit problems, studied

thoroughly in the literature (e.g., Berry & Fristedt, 1985). Another, somewhat more

complex special case, is the one in which, although the rewards may be noisy, the

transitions between states are deterministic. Here, the RL problem reduces to find-

ing optimal paths in weighted directed graphs with stochastic weights, the statistics

of which are unknown (the weights correspond to the rewards, see Puterman (1994)).

In this section we present a GP-based statistical generative model for value estima-

tion in such deterministic MDPs, as well as recursive online algorithms for updating

the posterior value moments.

4.3.1 A Statistical Generative Model

In the deterministic case, the Bellman equation (1.4.45), which relates values and

rewards degenerates into

R̄(x) = V (x) − γV (x′) (4.3.2)



Chapter 4. Reinforcement Learning with Gaussian Processes 83

where x′ is the (deterministic) state succeeding x, under the policy µ. We also as-

sume that the noise in the rewards is independently distributed (ID) Gaussian with,

possibly state dependent, variance σ2(x). Formally, this means that the reward

R(x), at some state x, satisfies R(x) = R̄(x) + N(x) where R̄(x) is the expected

reward for that state. The assumption on the Gaussianity of the noise process is re-

quired to preserve the analytic tractability of the resulting model. The independence

assumption is due to the determinicity of the state transitions. When we treat the

general case, of stochastic transitions, this assumption will have to be abandoned.

Assume we are given a sequence of rewards sampled along some trajectory

x0, . . . ,xt, generated by the MDP from p0(x0)Π
t
i=1p

µ(xi|xi−1) (p0 is an arbitrary

probability distribution for the first state). Then, at the i’th time step we have

R(xi) = R̄(xi) +N(xi). Let us aggregate the sequence of rewards corresponding to

the sample path, and their respective noise terms into the vectors

Rt = (R(x0), . . . , R(xt))
⊤ , and Nt = (N(x0), . . . , N(xt))

⊤ , (4.3.3)

respectively. Due to our ID noise assumption, the noise vector Nt−1 is normally

distributed as

Nt−1 ∼ N (0,Σt) , with Σt =













σ2
0 0 . . . 0

0 σ2
1 . . . 0

...
. . .

...

0 0 . . . σ2
t−1













, (4.3.4)

where we used the abbreviation σi = σ(xi). Writing the Bellman equations (4.3.2)

for the points belonging to the sample path, and substituting R(xi) = R̄(xi)+N(xi),

we obtain the following set of t equations

R(xi) = V (xi) − γV (xi+1) +N(xi), i = 0, 1, . . . , t− 1

This set of linear equations may be concisely written as

Rt−1 = HtVt +Nt−1 (4.3.5)

where the value random vector Vt is defined by

Vt = (V (x0), . . . , V (xt))
⊤ , (4.3.6)



Chapter 4. Reinforcement Learning with Gaussian Processes 84

and the t× (t+ 1) matrix Ht defined by

Ht =













1 −γ 0 . . . 0

0 1 −γ . . . 0
...

...

0 0 . . . 1 −γ













. (4.3.7)

Eq. 4.3.5, along with a prior distribution for V (defined either parametrically or non-

parametrically, in Section 4.2), and a measurement noise distribution, completely

specify a statistical generative model connecting the value and reward random pro-

cesses. In order to infer value estimates from a sequence of actually observed re-

wards, the same generative model may be “inverted”, so to speak, using Bayes’ rule,

to derive a posterior value distribution conditioned on the observed rewards.

Since both Vt and Nt are normally distributed, the generative model (4.3.5)

belongs to the family of linear statistical models, discussed in Section 1.3.2. Conse-

quently, our treatment of this model in Sections 1.3.2, and of its parametric form

in Section 1.3.4, may be applied in full to our generative model, with Ht given

by Eq. 4.3.7. Before proceeding with the derivation of the posterior distribution

and algorithms for computing it, let us first consider what happens to our model

equations (4.3.5) in episodic learning scenarios.

4.3.2 Episodic Tasks

Many RL tasks are episodic in nature. Whereas in continual learning tasks, in which

the RL agent is placed in some (possibly random) starting state, and is then allowed

to wander off indefinitely, in episodic tasks the state space is assumed to contain

an absorbing, terminal state, into which the agent is assured to transition after a

finite, but possibly random, duration of time. A terminal state may be thought of

as a state from which there are only zero-reward self-transitions, for all actions. In

episodic RL tasks, when such a state is reached, the episode terminates and the

agent is placed in a new, usually random state to begin a new episode. For instance,

in shortest-path type of problems, in which the task is to find a least-cost (maximum

expected return) path to a member of a goal set, a terminal state is defined as a

formal fictitious state to which all goal states transition deterministically2.

As far as value estimation is concerned, the key property of terminal states is

that, once a terminal state is reached, all subsequent rewards are zero. Therefore,

both the discounted return and the value of a terminal state vanish, implying that

the discounted return and the value of a goal state (or more generally, the state

2In shortest-path problems the discount factor γ is usually assumed to equal 1. With some
possible abuse of terminology, we allow γ ≤ 1.



Chapter 4. Reinforcement Learning with Gaussian Processes 85

immediately preceding the terminal state) are equal to that state’s reward and

expected reward, respectively. Specifically, if at time-step t a goal state is reached,

the final equation in the system of equations (4.3.5) becomes

R(xt) = V (xt) +N(xt). (4.3.8)

Hence, Ht+1 becomes the following (t + 1) × (t + 1) square invertible matrix (its

determinant equals 1),

Ht+1 =



















1 −γ 0 . . . 0

0 1 −γ . . . 0
...

...

0 0 . . . 1 −γ
0 0 . . . 0 1



















. (4.3.9)

Correspondingly, Eq. (4.3.5) becomes

Rt = Ht+1Vt +Nt. (4.3.10)

After a sequence of such learning episodes, each ending in a terminal state, Ht+1 is a

square block-diagonal matrix with each block, corresponding to one of the episodes,

being of the form of Eq. (4.3.9).

4.3.3 Parametric GP Temporal Difference Learning

We are now in a position to write the closed form expression for the posterior

moments, conditioned on an observed sequence of rewards rt−1 = (r0, . . . , rt−1)
⊤.

In the parametric case, the posterior moments are given by Eq. 1.3.24 and 1.3.25,

with Yt replaced by Rt−1, Σt given by Eq. 4.3.4, and Ht given by Eq. 4.3.7:

ŵt
def
= E [W |Rt−1 = rt−1] = ΦtH

⊤
t Qtrt−1, (4.3.11)

Pt
def
= Cov [W |Rt−1 = rt−1] = I − ΦtH

⊤
t QtHtΦ

⊤
t , (4.3.12)

where Qt =
(

HtΦ
⊤
t ΦtH

⊤
t + Σt

)−1
.

Here, Φt is the n× (t+ 1) matrix

Φt = [φ(x0), . . . ,φ(xt)] . (4.3.13)

For convenience, let us define the d× 1 vector ∆φt and the d× t matrix ∆Φt, by

∆φt
def
= φ(xt−1)−γφ(xt), and ∆Φt

def
= ΦtH

⊤
t =

[

∆φ1, . . . ,∆φt

]

, (4.3.14)



Chapter 4. Reinforcement Learning with Gaussian Processes 86

respectively3. As we have seen in Section 1.3.4, alternative, more computationally

efficient expressions (if t > n, where n is the number of basis functions) may be

obtained:

Pt =
(

∆ΦtΣ
−1
t ∆Φ⊤

t + I
)−1

, (4.3.15)

ŵt = Pt∆ΦtΣ
−1
t rt−1. (4.3.16)

Algorithm 12 A parametric Batch-GPTD algorithm for deterministic MDPs

Initialize B0 = 0, b0 = 0
for t = 1, 2, . . .

observe xt−1, rt−1, xt

∆φt = φ(xt−1) − γφ(xt)
Bt = Bt−1 + 1

σ2
t−1

∆φt∆φ
⊤
t

bt = bt−1 + 1
σ2

t−1

∆φtrt−1

end for
return Pt = (Bt + I)−1, ŵt = Ptb̂t

Both the matrix Bt
def
= ∆ΦtΣ

−1
t ∆Φ⊤

t and the vector bt
def
= ∆ΦtΣ

−1
t rt−1 may

be computed sequentially:

Bt = ∆ΦtΣ
−1
t ∆Φ⊤

t =

t
∑

i=1

1

σ2
i−1

∆φi∆φ
⊤
i = Bt−1 +

1

σ2
t−1

∆φt∆φ
⊤
t ,

bt = ∆ΦtΣ
−1
t rt−1 =

t
∑

i=1

1

σ2
i−1

∆φiri−1 = bt−1 +
1

σ2
t−1

∆φtrt−1

This results in our first (batch) GPTD algorithm, described in Algorithm 12.

Note that, by its construction, the posterior covariance matrix Pt is positive

definite. Further, if the columns of ∆Φt span R
n, Pt will tend to vanish as t→ ∞.

Similarly to LSTD(λ), it is possible to obtain a recursive implementation of this

algorithm, using the Matrix Inversion lemma (see Appendix D.4). A pseudocode

description is given in Algorithm 13. The derivation of this algorithm may be found

in Appendix A.1.1. As in the recursive implementation of LSTD(λ) (Algorithm 9),

the term

dt = rt−1 − ∆φ⊤
t ŵt−1

= rt−1 − (φ(xt−1) − γφ(xt))
⊤ ŵt−1

= rt−1 + γV̂t−1(xt) − V̂t−1(xt−1)

3If xt is the last state of an episode, then ∆φt = φ(xt).



Chapter 4. Reinforcement Learning with Gaussian Processes 87

is the temporal difference at time t.

Algorithm 13 A recursive parametric GPTD algorithm for deterministic MDPs

Initialize ŵ0 = 0, P0 = I
for t = 1, 2, . . .

observe xt−1, rt−1, xt

∆φt = φ(xt−1) − γφ(xt)

qt =
(

σ2
t−1 + ∆φ⊤

t Pt−1∆φt

)−1
Pt−1∆φt

ŵt = ŵt−1 + qt

(

rt−1 − ∆φ⊤
t ŵt−1

)

Pt = Pt−1 − qt∆φ
⊤
t Pt−1

end for
return ŵt, Pt

A thorough comparison with the LSTD(λ) algorithm is obviously called for.

Let us, however, postpone this comparison until we gain more insight on GPTD

methods.

It is also possible to derive a recursive algorithm from the original, symmetric

expressions for the posterior moments (4.3.11, 4.3.12). The resulting updates are:

ŵt = ŵt−1 +
1

st
ptdt, and Pt = Pt−1 −

1

st
ptp

⊤
t ,

where we defined pt = Pt−1∆φt, st = σ2
t−1 + ∆φ⊤

t Pt−1∆φt, and dt = rt−1 −
∆φ⊤

t ŵt−1. The derivation may be found in Appendix A.1.2. This algorithm is

essentially the same as Algorithm 13, with pt/st substituting for qt, and pt substi-

tuting for Pt−1∆φt. Its pseudocode is given in Algorithm 14.

Algorithm 14 Another recursive parametric GPTD algorithm for deterministic
MDPs
Initialize ŵ0 = 0, P0 = I
for t = 1, 2, . . .

observe xt−1, rt−1, xt

∆φt = φ(xt−1) − γφ(xt)
pt = Pt−1∆φt

st = σ2
t−1 + ∆φ⊤

t pt

ŵt = ŵt−1 + pt

st

(

rt−1 −∆φ⊤
t ŵt−1

)

Pt = Pt−1 − 1
st

ptp
⊤
t

end for
return ŵt, Pt



Chapter 4. Reinforcement Learning with Gaussian Processes 88

4.3.4 Nonparametric GP Temporal Difference Learning

In the nonparametric case we define a prior distribution directly in the space of

value functions. Our nonparametric generative model is therefore (see Eq. 4.3.5):

Rt−1 = HtVt +Nt−1,

with a priori value and noise distributions (see Eq. 1.3.11)







V (x)

Vt

Nt−1






∼ N

















0

0

0






,







k(x,x) kt(x)⊤ 0⊤

kt(x) Kt 0

0 0 Σt

















,

Following the prescription given in Section 1.3.2, we make the transformation to the

variables V (x) and Rt−1, resulting in

(

V (x)

Rt−1

)

∼ N
{(

0

0

)

,

[

k(x,x) kt(x)⊤H⊤
t

Htkt(x) HtKtH
⊤
t + Σt

]}

.

Application of the Gauss-Markov theorem yields the (marginal) posterior distribu-

tion of the value at a query point x, conditioned on the observed sequence of rewards

rt−1 = (r0, . . . , rt−1)
⊤:

(V (x)|Rt−1 = rt−1) ∼ N
{

V̂t(x), Pt(x,x)
}

, (4.3.17)

where

V̂t(x) = kt(x)⊤H⊤
t Qtrt−1,

Pt(x,x
′) = k(x,x′) − kt(x)⊤H⊤

t QtHtkt(x
′),

with Qt = (HtKtH
⊤
t + Σt)

−1. (4.3.18)

The expressions above can be cast in a somewhat more concise form, by separating

the input dependent terms from the learned terms:

V̂t(x) = α⊤
t kt(x), Pt(x,x

′) = k(x,x′) − kt(x)⊤Ctkt(x
′), (4.3.19)

where αt = H⊤
t Qtrt−1 and Ct = H⊤

t QtHt are independent of x and x′.

Whereas in the parametric model the sufficient statistics required to compute

the posterior moments of the value are the n×1 vector ŵt and the n×n matrix Pt;

here we are required to maintain a (t+1)×1 vector αt and a (t+1)× (t+1) matrix

Ct. However, before tackling the computational issues caused by the nonparametric

nature of the representation, let us consider the problem of exactly updating the



Chapter 4. Reinforcement Learning with Gaussian Processes 89

posterior parameters αt and Ct sequentially. The derivation of these updates may

be found in Appendix A.1.3. Here we quote the results. Let us define the (t+1)×1

vector ht, the t× 1 vector ∆kt and the scalar ∆ktt by

ht = (0, . . . , 1,−γ)⊤ ,
∆kt = kt−1(xt−1) − γkt−1(xt),

∆ktt = k(xt−1,xt−1) − 2γk(xt−1,xt) + γ2k(xt,xt),

respectively. Then,

αt =

(

αt−1

0

)

+
ct

st
dt , Ct =

[

Ct−1 ,0

0⊤ , 0

]

+
1

st
ctc

⊤
t . (4.3.20)

where

ct = ht −
(

Ct−1∆kt

0

)

,

dt = rt−1 − ∆k⊤
t αt−1,

st = σ2
t−1 + ∆ktt − ∆k⊤

t Ct−1∆kt. (4.3.21)

Pseudocode for this algorithm is provided in Algorithm 15.

Algorithm 15 A recursive nonparametric GPTD algorithm for deterministic MDPs

Initialize α0 = 0, C0 = 0
for t = 1, 2, . . .

observe xt−1, rt−1, xt

ht = (0, . . . , 1,−γ)⊤
∆kt = kt−1(xt−1) − γkt−1(xt)
∆ktt = k(xt−1,xt−1) − 2γk(xt−1,xt) + γ2k(xt,xt)

ct = ht −
(

Ct−1∆kt

0

)

dt = rt−1 − ∆k⊤
t αt−1

st = σ2
t−1 + ∆ktt − ∆k⊤

t Ct−1∆kt

αt =

(

αt−1

0

)

+ ct
st
dt

Ct =

[

Ct−1 0
0⊤ 0

]

+ 1
st

ctc
⊤
t

end for
return αt, Ct



Chapter 4. Reinforcement Learning with Gaussian Processes 90

4.3.5 Interpretation

The parametric value model described in Section 4.3.3 is clearly a special case of

the celebrated Kalman filter (KF) (Kalman, 1960). The KF model-equations in our

case are:

Wt = Wt−1, with W0 ∼ N{0, I}, (4.3.22)

R(xt−1) = h⊤
t Φ⊤

t Wt +N(xt−1), with N(xt−1) ∼ N{0, σ2
t−1}. (4.3.23)

In KF terminology, Wt is the (random) state variable, the time evolution of which

is controlled by Eq. 4.3.22, while Eq. 4.3.23 defines the dependence of the measured

variables (the rewards) on the state. The temporal differences dt = rt−1+ V̂t−1(xt)−
V̂t−1(xt−1), appearing in both the parametric and nonparametric updates, are known

as measurement innovations. The vector qt = pt

st
is referred to as the Kalman gain,

and its nonparametric counterpart ct
st

plays a similar role in the nonparametric

updates. Our model is a degenerate KF model, since the “state variable”4 W has

no dynamics. This suggests several ways in which our model may be extended, the

discussion of which is deferred for the time being. The nonparametric case is a

generalization of this KF model to an infinite dimensional state variable, namely,

the value random process. We are not aware of any work extending the KF to the

nonparametric case in this way; in fact, such an extension would probably be rather

difficult to deal with, unless the state dynamics are of a special form, as they are in

our case.

The update rules derived in Sections 4.3.3 and 4.3.4 have several interesting

properties. In both the parametric and the nonparametric case, the matrix Q−1
t is

the self-covariance matrix of Rt−1. In the nonparametric case

Cov[Rt−1] = E[(HtVt +Nt)(HtVt +Nt)
⊤]

= E[(HtVt)(HtVt)
⊤] + E[NtN

⊤
t ]

= HtKtH
⊤
t + Σt

= Q−1
t ,

while in the parametric case E[VtV
⊤
t ] = Φ⊤

t Φt and Cov[Rt−1] = HtΦ
⊤
t ΦtH

⊤
t +Σt =

Q−1
t . Therefore, in either case, st is the Schur complement of the last element on

the diagonal of the matrix Q−1
t (see Appendix D). Invoking the Gauss-Markov

theorem (Theorem 1.3.1) provides us with an alternative interpretation for st: st is

the posterior variance of R(xt−1), conditioned on the previously observed values of

4Not to be confused with the MDP’s state variable x.



Chapter 4. Reinforcement Learning with Gaussian Processes 91

R(x0), . . . , R(xt−2), namely,

st = Var [R(xt−1)|Rt−2] .

This means that st is positive; in fact, it is easy to show that st ≥ σ2
t−1. Finally, in

the parametric case we have

pt = Pt−1∆φt

= Pt−1 (φ(xt−1) − γφ(xt))

= Cov
[

W,W⊤ (φ(xt−1) − γφ(xt)) |Rt−2

]

= Cov [W,V (xt−1) − γV (xt)|Rt−2] .

Similarly, in the nonparametric case, for any query point x ∈ X ,

c⊤t kt(x) = h⊤
t kt(x) − ∆k⊤

t Ct−1kt−1(x)

= k(xt−1,x) − γk(xt,x) − kt−1(xt−1)
⊤Ct−1kt−1(x) + γkt−1(xt)

⊤Ct−1kt−1(x)

= Pt−1 (x,xt−1) − γPt−1 (x,xt)

= Cov [V (x), V (xt−1) − γV (xt)|Rt−2] .

Moreover, we can show that in the parametric case (see Appendix C.2)

σ2
t−1

st
pt = σ2

t−1

Cov [W,V (xt−1) − γV (xt)|Rt−2]

Var [R(xt−1)|Rt−2]

= Cov [W,V (xt−1) − γV (xt)|Rt−1]

= Cov [W,V (xt−1) − γV (xt) −R(xt−1)|Rt−1] . (4.3.24)

Whereas in the nonparametric case, for any x ∈ X (see Appendix C.3),

σ2
t−1

st
c⊤t kt(x) = σ2

t−1

Cov [V (x), V (xt−1) − γV (xt)|Rt−2]

Var [R(xt−1)|Rt−2]

= Cov [V (x), V (xt−1) − γV (xt)|Rt−1]

= Cov [V (x), V (xt−1) − γV (xt) −R(xt−1)|Rt−1] . (4.3.25)

Considered together, the above observations provide a rather intuitive picture of the

updates of our value estimator (the posterior mean): The change in every component

of either ŵt or αt is proportional to an error signal, given in both cases by the current

temporal difference dt. For each component, this change is modulated by a measure

of the correlation between that component and the error signal, given by pt/st or

ct/st, respectively5.

5The R(xt−1) terms in Eq. 4.3.24 and 4.3.25, have no effect on the covariance, as R(xt−1) is



Chapter 4. Reinforcement Learning with Gaussian Processes 92

Finally, σ2
t−1/st may be thought of as an adaptive step-size, which is propor-

tional to the reliability6 attributed to the current reward measurement R(xt−1),

given all previously observed rewards. Thus, all other things being equal, observa-

tions deemed unreliable will cause smaller changes to the value estimate than those

considered to be more reliable.

As we progress through this chapter, we will encounter increasingly more com-

plex algorithms (conceptually, rather than computationally). However, the tempo-

ral difference term dt, the correlation vectors pt and ct, and the reward posterior-

variance term st, will continue to reappear under different guises in all of these al-

gorithms, playing the same roles they assume in the recursive algorithms described

above.

We have seen in Section 4.3.3 that, in the parametric case, the computation of the

exact posterior may be performed efficiently online, in O(n2) time per sample and

O(n2) memory. In the nonparametric case we have, in effect, a new feature vector

component for each new sample observed, making the cost of adding the t’th sample

O(t2) in both time and memory. This would seem to make the nonparametric form

of GPTD computationally infeasible in all but the smallest and simplest domains.

In Chapter 2 we described an efficient online kernel sparsification method. We will

now invoke this method again, in order to reduce the computational costs associated

with the nonparametric GPTD updates (4.3.20), to a level that would allow us to

compute good approximations of the GP posterior online.

4.3.6 GPTD with Sparse Nonparametric Representations

We are now ready to merge the sparsification method developed in Chapter 2 into

both the representation and the recursive updates of the GPTD posterior moments,

derived in Section 4.3.4. Recall the sparse approximations (2.2.8, 2.2.9), which we

repeat here for clarity:

Kt ≈ AtK̃tA
⊤
t , kt(x) ≈ Atk̃t(x).

Substituting these approximations into the exact GP solution (4.3.19) we obtain

V̂t(x) = k̃t(x)⊤α̃t, Pt(x,x
′) = k(x,x′) − k̃t(x)⊤C̃tk̃t(x

′), (4.3.26)

being conditioned upon.
6Reliability being defined here as the inverse variance.



Chapter 4. Reinforcement Learning with Gaussian Processes 93

where we define

H̃t = HtAt, Q̃t =
(

H̃tK̃tH̃
⊤
t + Σt

)−1
,

α̃t = H̃⊤
t Q̃trt−1, C̃t = H̃⊤

t Q̃tH̃t. (4.3.27)

Note that the parameters we are required to store and update in order to evaluate

the posterior mean and covariance are now α̃t and C̃t, the dimensions of which

are |Dt| × 1 and |Dt| × |Dt|, respectively. Recall from Chapter 2 that Dt is the

dictionary at time t, K̃t is the |Dt| × |Dt| kernel matrix of the dictionary members,

and at is a |Dt|×1 vector of least-squares coefficients for approximating φ(xt) using

the dictionary vectors (see Algorithm 10).

Algorithm 16 A recursive sparse GPTD algorithm for deterministic MDPs

Parameters: ν
Initialize D0 = {x0}, K̃−1

0 = 1/k(x0,x0), a0 = (1), α̃0 = 0, C̃0 = 0
for t = 1, 2, . . .

observe xt−1, rt−1, xt

at = K̃−1
t−1k̃t−1(xt)

δt = k(xt,xt) − k̃t−1(xt)
⊤at

∆k̃t = k̃t−1(xt−1) − γk̃t−1(xt)
dt = rt−1 − α̃⊤

t−1∆k̃t

if δt > ν
compute K̃−1

t (2.2.10)
at = (0, . . . , 1)⊤

h̃t = (at−1,−γ)⊤

∆ktt = a⊤t−1

(

k̃t−1(xt−1) − 2γk̃t−1(xt)
)

+ γ2ktt

c̃t = h̃t −
(

C̃t−1∆k̃t

0

)

st = σ2
t−1 + ∆ktt − ∆k̃⊤

t C̃t−1∆k̃t

α̃t−1 =

(

α̃t−1

0

)

C̃t−1 =

[

C̃t−1 0
0⊤ 0

]

else
h̃t = at−1 − γat

∆ktt = h̃⊤
t ∆k̃t

c̃t = h̃t − C̃t−1∆k̃t

st = σ2
t−1 + ∆ktt − ∆k̃⊤

t C̃t−1∆k̃t

end if
α̃t = α̃t−1 + c̃t

st
dt

C̃t = C̃t−1 + 1
st

c̃tc̃
⊤
t

end for
return Dt, α̃t, C̃t



Chapter 4. Reinforcement Learning with Gaussian Processes 94

We will now state the recursive update formulas for α̃t and C̃t. The complete

derivation may be found in Appendix A.1.4. At each time step t we may be faced

with either one of the following two cases. Either Dt = Dt−1 or Dt = Dt−1 ∪ {xt}.
In both cases we use the definitions

∆k̃t = k̃t−1(xt−1) − γk̃t−1(xt), and dt = rt−1 − α̃⊤
t−1∆k̃t.

Case 1. Dt = Dt−1:

α̃t = α̃t−1 +
c̃t

st
dt , C̃t = C̃t−1 +

1

st
c̃tc̃

⊤
t , (4.3.28)

where

c̃t = h̃t − C̃t−1∆k̃t

st = σ2
t−1 + ∆ktt − ∆k̃⊤

t C̃t−1∆k̃t, (4.3.29)

with the definitions

h̃t = at−1 − γat,

∆ktt = h̃⊤
t ∆k̃t.

Case 2. Dt = Dt−1 ∪ {xt}:

α̃t =

(

α̃t−1

0

)

+
c̃t

st
dt , C̃t =

[

C̃t−1 0

0⊤ 0

]

+
1

st
c̃tc̃

⊤
t , (4.3.30)

where

c̃t = h̃t −
(

C̃t−1∆k̃t

0

)

,

st = σ2
t−1 + ∆ktt − ∆k̃⊤

t C̃t−1∆k̃t, (4.3.31)

with the definitions

h̃t =

(

at−1

0

)

− γat =

(

at−1

−γ

)

,

∆ktt = a⊤t−1

(

k̃t−1(xt−1) − 2γk̃t−1(xt)
)

+ γ2ktt.

Pseudocode for this algorithm is provided in Algorithm 16.



Chapter 4. Reinforcement Learning with Gaussian Processes 95

4.3.7 Experiments

In this section we present several experiments meant to demonstrate the strengths

and weaknesses of the deterministic GPTD algorithm. We start with a simple maze

in order to demonstrate GPTD’s ability to provide an uncertainty measure for the

value estimate, as well as its data efficiency, i.e. its ability to extract reasonable

value maps from very little data. We then move beyond value estimation to the more

challenging task of learning the optimal policy (or a good approximation thereof).

We use a more difficult maze and experiment with both deterministic and stochastic

state transitions.

Our experimental test-bed is a continuous 2-dimensional square world with unit-

length sides. An agent roaming this world may be located at any point, but can

perform only a finite number of actions. The actions are 0.1-long steps in one of the

8 major compass winds, with an added Gaussian noise with a standard deviation of

0.05. Time is also discrete t = 0, 1, 2, . . .. In this world there may be one or more

rectangular goal regions and possibly also obstacles - piecewise linear curves, which

the agent cannot cross. As long as the agent is not in a goal region it receives a

reward of -1 per time-step. Upon reaching a goal state the agent is given a zero

reward and is then placed at some random state to begin a new episode.

We begin with a simple experiment. The maze, shown in Fig. 4.1, has a single

goal region stretching the entire length of the south wall of the maze (from y=0 to

y=0.1). We chose the non-homogeneous polynomial kernel k(x,x′) = (x⊤x′ + 1)5,

which corresponds to features that are monomials of up to degree 5 in the coordi-

nates (Schölkopf & Smola, 2002), and subtracted 0.5 from each coordinate to avoid

any asymmetric bias. The exploration policy is a stochastic one in which a south-

ward move is taken with probability 0.8, otherwise a random move is performed.

In Fig. 4.1 we show the results after a single trial in which 12 states were visited

including a final goal state. This example demonstrates the efficiency of the algo-

rithm when the kernel function is chosen judiciously. As can be seen at the bottom

of Fig. 4.1 a single policy iteration sweep (i.e. choosing the greedy action with

respect to the value function estimate) extracts a near-optimal policy for a large

section of the maze surrounding the states visited. Looking at the variance map, it

can be seen that in the proximity of the visited states the uncertainty in the value

prediction is significantly lower than in other regions.

As already mentioned, a value estimation algorithm is usually a component in a

larger RL system whose aim is to learn the optimal policy, namely, the one max-

imizing the total payoff per trial, or in our case, the one minimizing the time it

takes the agent to reach a goal region. One such RL algorithm that has worked



Chapter 4. Reinforcement Learning with Gaussian Processes 96

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
−14

−12

−10

−10

−8

−8

−8

−6

−6

−6

−4
−4

−4

−2
−2 −2

0 0 0

Value

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1

1

1

1

2

2

2

3 3

3

4

4
5

Value Variance

Policy

Figure 4.1: The results of a single 12-step trial on the simple maze shown in the
figures, sampled on a 30 by 30 grid. From top to bottom: Top - the points visited
during the trial and contour lines of the value function estimate. Center - The
variance of the value estimates. Bottom - A greedy policy with respect to the value
estimate.



Chapter 4. Reinforcement Learning with Gaussian Processes 97

surprisingly well in certain domains (e.g. Tesauro, 1995), although it possess no

theoretical guarantees for convergence when used with function approximation, is

Optimistic Policy Iteration (OPI) (Bertsekas & Tsitsiklis, 1996). In OPI the agent

does not follow a fixed stationary policy; instead, at each time step it utilizes a

model of its environment and its current value estimate to guess the expected payoff

for each of the actions available to it. It then greedily chooses the highest ranking

action, breaking ties randomly. We ran an agent utilizing OPI on the maze shown

in Fig. 4.2 for 100 trials, once with deterministic transitions, and a second time

with the noisy transitions described above. The kernel we used here was Gaussian

k(x,x′) = c exp
(

−‖x − x′‖2/(2σ2
k)
)

, where σk = 0.1. The feature space induced

by this choice is infinite-dimensional (Schölkopf & Smola, 2002). The value maps

learned and their corresponding greedy policies, are shown in Fig. 4.2. Note that

while the policies learned are both similar and quite close to optimal, the value

estimates are different. More specifically, the value estimates in the stochastic case

seem to be dampened. The variance maps are omitted, since over the entire maze

the variance estimate is close to zero.

4.3.8 Remarks

This concludes our treatment of GPTD-learning in MDPs with deterministic tran-

sitions. As we saw in the previous section, when this model is used for learning

the values of a stochastic MDP, the resulting value estimates are biased. Our next

goal is therefore to perform GP-based value estimation in MDPs with stochastic

transitions. As hinted above, we will do this by constructing an appropriate genera-

tive model that accounts for the randomness in both rewards and trajectories, thus

enabling us to handle general MDPs.

4.4 Stochastic Transitions

In the first part of this chapter we derived a linear statistical model specifically

geared for modeling the values of a MDP with deterministic trajectories. This

model is strictly correct if the state transitions of the underlying MDP are deter-

ministic, if the policy controlling the MDP is deterministic as well, and if the rewards

are corrupted by white Gaussian noise7. While the latter assumption is relatively

innocuous, the former two constitute a serious handicap to the applicability of the

GPTD model described above to general RL problems. In the following sections we

derive a (perhaps surprisingly) similar GPTD model, which allows for stochasticity

in both transitions and rewards.

7Alternatively, if the discount factor is zero the first two assumptions are unnecessary, since the
GPTD model degenerates into a simple GP regression model, with the caveat that samples are not
drawn IID.



Chapter 4. Reinforcement Learning with Gaussian Processes 98

−25

−20

−15

−10

−5

0
Value

Policy

−10

−8

−6

−4

−2

0

Value

Policy

Figure 4.2: The results after 100 trials on the more difficult maze shown in the
figures. GPTD with OPI is used to find a near-optimal policy. The two figures on
the left show the results for deterministic state transitions while the two on the right
depict the results for stochastic transitions. For each pair the final value function
is shown at the top and its corresponding greedy policy at the bottom. The results
shown are samples over a 30 by 30 grid.

4.4.1 A Statistical Generative Model

In Section 1.4 we showed that the value V is the result of taking the expectation

of the discounted return D with respect to the randomness in the trajectory and in

the rewards collected therein (Eq. 1.4.44). In the classic frequentist approach V (·)
is no longer random, since it is the true, albeit unknown, value function induced by

the policy µ. Adopting the Bayesian view, we may still view the value V (·) as a

random entity by assigning it additional randomness that is due to our subjective

uncertainty regarding the MDP’s model {p, q}. We do not know what the true



Chapter 4. Reinforcement Learning with Gaussian Processes 99

functions p and q are, which means that we are also uncertain about the true value

function. We choose to model this additional extrinsic uncertainty by defining V

as a random process indexed by the state variable x. In this context it is useful to

consider a decomposition of the discounted return into its mean (the value) and a

zero-mean residual ∆V :

D(x) = EµD(x) +D(x) − EµD(x) = V (x) + ∆V (x)

where ∆V (x)
def
= D(x) − V (x) (4.4.32)

This decomposition is useful, since it separates the two sources of uncertainty in-

herent in the discounted return process D: For a known MDP model, V becomes

deterministic and the randomness in D is fully attributed to the intrinsic random-

ness in the state-reward trajectory, modeled by ∆V . On the other hand, in a MDP

in which both transitions and rewards are deterministic but otherwise unknown,

∆V becomes deterministic (i.e. identically zero), and the randomness in D is due

solely to the extrinsic uncertainty, modeled by V .

Substituting Eq. 4.4.32 into Eq. 1.4.43 and rearranging we get

R(x) = V (x) − γV (x′) +N(x,x′), where x′ ∼ pµ(·|x), and

N(x,x′)
def
= ∆V (x) − γ∆V (x′). (4.4.33)

As before, we are provided with a sample trajectory x0,x1, . . . ,xt, and we may

write the model equations (4.4.33) for these samples, resulting in the following set

of t equations

R(xi) = V (xi) − γV (xi+1) +N(xi,xi+1) for i = 0, . . . , t− 1.

Using our standard definitions for Rt, Vt, Ht (Eq. 4.3.3, 4.3.6, 4.3.7), and with

Nt = (N(x0,x1), . . . , N(xt−1,xt))
⊤, we again have

Rt−1 = HtVt +Nt. (4.4.34)

Eq. 4.4.34 is of the same structural form as Eq. 4.3.10 derived for the deterministic

case. However, in order to fully define a complete probabilistic generative model,

we need also to specify the distribution of the noise process Nt. It is here that the

difference between the deterministic and the stochastic models is manifest.



Chapter 4. Reinforcement Learning with Gaussian Processes 100

4.4.2 A Correlated Noise Model

According to our custom, we model the residuals ∆V t = (∆V (x0), . . . ,∆V (xt))
⊤

as a Gaussian process8. Particularly, this means that the distribution of the vector

∆V t is completely specified by its mean and covariance. Another assumption we

make is that each of the residuals ∆V (xi) is generated independently of all the

others. We will discuss the implications of this assumption in Section 4.4.3. We are

now ready to proceed with the derivation of the distribution of the noise process Nt.

By definition (Eq. 4.4.32), Eµ [∆V (x)] = 0 for all x, so we have Eµ [N(xi,xi+1)] =

0. Turning to the covariance, we have

Eµ [N(xi,xi+1)N(xj ,xj+1)] = Eµ [(∆V (xi) − γ∆V (xi+1))(∆V (xj) − γ∆V (xj+1))] .

According to our assumption regarding the independence of the residuals, for i 6= j,

Eµ

[

∆V (xi)∆V (xj)
]

= 0. In contrast, Eµ

[

∆V (xi)
2
]

= Varµ

[

D(xi)
]

is generally

larger than zero, unless both transitions and rewards are deterministic. Denoting

σ2
i = Var

[

D(xi)
]

, these observations may be summarized into the distribution of

∆V t: ∆V t ∼ N
(

0,diag(σt)
)

where σt =
(

σ2
0, σ2

1, . . . , σ2
t

)⊤
, and diag(·) de-

notes a diagonal matrix whose diagonal entries are the components of the argument

vector. Since Nt−1 = Ht∆V t, we have Nt−1 ∼ N (0,Σt) with,

Σt = Ht diag(σt)H
⊤
t (4.4.35)

=



















σ2
0 + γ2σ2

1 −γσ2
1 0 . . . 0

−γσ2
1 σ2

1 + γ2σ2
2 −γσ2

2 . . . 0
...

...
...

0 0 . . . −γσ2
t−1

0 0 . . . −γσ2
t−1 σ2

t−1 + γ2σ2
t



















.

Let us briefly compare our new model with the deterministic GPTD model pro-

posed in Section 4.3. Both models result in the same form of Eq. 4.4.34. However,

in the deterministic GPTD model, the Gaussian noise term Nt had a diagonal co-

variance matrix (white noise), while in the stochastic model Nt is colored with

a tri-diagonal covariance matrix. Note, also, that as the discount factor γ is re-

duced to zero, the two models tend to coincide. This is reasonable, since, the more

strongly the future is discounted, the less it should matter whether the transitions

are deterministic or stochastic. Fig. 4.3 illustrates the conditional independency

8This may not be a correct assumption in general; however, in the absence of any prior infor-
mation concerning the distribution of the residuals, it is the simplest assumption we can make,
since the Gaussian distribution possesses the highest entropy among all distributions with the same
covariance. It is also possible to relax the Gaussianity requirement on both the prior and the noise.
The resulting estimator may then be shown to be the linear minimum mean-squared error estimator
for the value.



Chapter 4. Reinforcement Learning with Gaussian Processes 101

relations between the latent value variables V (xi), the noise variables ∆V (xi), and

the observable rewards R(xi). Unlike GP regression, there are vertices connecting

variables from different time steps, making the ordering of samples important. Also

note that, for the last state in each episode (xt, in the figure), R(xt) depends only

on V (xt) and ∆V (xt) (as in Eq. 4.3.8).

V(x )∆ V(x )∆V(x )∆ V(x )∆V(x   )∆

R(x )

V(x ) V(x )

1

1

R(x )

V(x )

1

R(x )

V(x )
0

0

0

2

2

t

t

t

R(x   )

V(x   )
t−1

t−1

t−1

.   .   .   .  

Figure 4.3: A graph illustrating the conditional independencies between the latent
V (xi) value variables (bottom row), the noise variables ∆V (xi) (top row), and the
observable R(xi) reward variables (middle row), in the GPTD model. As in the
case of GP regression, all of the V (xi) variables should be connected by arrows, due
to the dependencies introduced by the prior. To avoid cluttering the diagram, this
was marked by the dashed frame surrounding them.

4.4.3 Relation to Monte-Carlo Simulation

The assumption on the independence of the residuals made in Section 4.4.2 can be

related to the well known Monte-Carlo method for value estimation (see Bertsekas &

Tsitsiklis, 1996 Chapters 5, 6, and Sutton & Barto, 1998). Using Monte-Carlo policy

evaluation reduces the problem of estimating the value function into a supervised

regression problem, in which the target values for the regression are samples of the

discounted return. Suppose that the last non-terminal state in the current episode

is xt, then the Monte-Carlo training set is (xi, yi)
t
i=0 with

yi =

t
∑

j=i

γj−irj , (4.4.36)

where rj is the reward observed at the j’th time step. The results of Section 4.3.2

concerning episodic learning tasks remain essentially unchanged in the stochastic

case. The last equation in our generative model is R(xt) = V (xt) + N(xt), since

V (xt+1) = 0, and we therefore have

Rt = Ht+1Vt +Nt,

with Ht+1 a square (t+ 1) × (t+ 1) matrix, as given by Eq. 4.3.9.



Chapter 4. Reinforcement Learning with Gaussian Processes 102

The validity of our model may be substantiated by performing a whitening trans-

formation on Eq. (4.3.10). Since the noise covariance matrix Σt is positive definite,

there exists a square matrix Σ
−1/2
t satisfying Σ

−1/2
t

⊤
Σ

−1/2
t = Σ−1

t . Multiplying

Eq. (4.3.10) by Σ
−1/2
t we then get Σ

−1/2
t Rt = Σ

−1/2
t HtVt + Σ

−1/2
t Nt. The trans-

formed noise term Σ
−1/2
t Nt has a covariance matrix given by Σ

−1/2
t ΣtΣ

−1/2
t

⊤
=

Σ
−1/2
t (Σ

−1/2
t

⊤
Σ

−1/2
t )−1Σ

−1/2
t

⊤
= I. Thus the transformation Σ

−1/2
t whitens the

noise. In our case, a whitening matrix is given by

H−1
t+1 =













1 γ γ2 . . . γt

0 1 γ . . . γt−1

...
...

0 0 0 . . . 1













(4.4.37)

(showing that H−1
t+1 is indeed given by the matrix above is an easy exercise). The

transformed model is H−1
t+1Rt = Vt + N ′

t with white Gaussian noise, since N ′
t =

H−1
t+1Nt ∼ N{0,diag(σt)}. Let us look at the i’th equation (i.e. row) of this

transformed model:

R(xi) + γR(xi+1) + . . . + γt−iR(xt) = V (xi) +N ′(xi),

where N ′(xi) ∼ N{0, σi}. This is exactly the generative model we would use if we

wanted to learn the value function by performing GP regression using Monte-Carlo

samples of the discounted-return as our targets (see Section 1.3.3).

Let us denote yt = (y0, . . . , yt)
⊤, where yi =

∑t
j=i γ

j−irj . In the parametric

case, assuming a constant noise variance σ2, the posterior moments are given by

(see Eq. 1.3.30, 1.3.31)

ŵt+1 = E (W |Yt = yt) =
(

ΦtΦ
⊤
t + σ2I

)−1
Φtyt

Pt+1 = Cov (W |Yt = yt) = σ2
(

ΦtΦ
⊤
t + σ2I

)−1
. (4.4.38)

In the nonparametric case the parameters αt+1 and Ct+1 defining the posterior

moments are given by (see Eq. 1.3.18)

αt+1 =
(

Kt + σ2I
)−1

yt, and Ct+1 =
(

Kt + σ2I
)−1

.

This equivalence uncovers the implicit assumption underlying MC value estimation;

namely, that the samples of the discounted return used for regression are statistically

independent. In a typical online RL scenario, this assumption is clearly incorrect, as

the samples of the discounted return are based on trajectories that partially overlap

(e.g., for two consecutive states, xi and xi+1, the respective trajectories only differ



Chapter 4. Reinforcement Learning with Gaussian Processes 103

by a single state – xi). This may help explain the frequently observed advantage of

TD methods using λ < 1 over the corresponding Monte-Carlo (i.e. λ = 1) methods.

The major benefit in using the GPTD formulation is that it immediately allows us

to derive exact updates of the parameters of the posterior value mean and covariance

online, rather than waiting until the end of the episode.

As we have done for the case of deterministic transitions, in the following sections

we will derive a family of algorithms. The first is a batch algorithm for computing the

parametric solution, while the second recursively computes the same solution. The

third exactly solves the nonparametric case, and the fourth combines sparsification

with the nonparametric solution. We refer to this family of algorithms as Monte-

Carlo (MC) GPTD algorithms.

4.4.4 Parametric Monte-Carlo GPTD Learning

As already mentioned, in the parametric framework the value process is parameter-

ized by V (x) = φ(x)⊤W , and therefore

Vt = Φ⊤
t W, where Φt =

[

φ(x0), . . . , φ(xt)
]

. (4.4.39)

As in Section 4.3.3, the posterior moments are given by

ŵt
def
= E [W |Rt−1 = rt−1] = ∆Φt

(

∆Φ⊤
t ∆Φt + Σt

)−1
rt−1

Pt
def
= Cov [W |Rt−1 = rt−1] = I − ∆Φt

(

∆Φ⊤
t ∆Φt + Σt

)−1
∆Φ⊤

t , (4.4.40)

where ∆Φt = ΦtH
⊤
t (see Eq. 4.3.14). The alternative expressions for the posterior

moments,

ŵt =
(

∆ΦtΣ
−1
t ∆Φ⊤

t + I
)−1

∆ΦtΣ
−1
t rt−1, and Pt =

(

∆ΦtΣ
−1
t ∆Φ⊤

t + I
)−1

,

(4.4.41)

offer the advantage of a smaller matrix inversion problem.

In the preceding section we showed that, at the end of an episode, xt being

the last non-terminal state in the episode, Ht+1 is a square invertible matrix. This

means that

Σ−1
t+1 = H⊤

t+1
−1

diag(σt)
−1Ht+1

−1

Substituting this into Eq. 4.4.41, we get

Pt+1 =
(

Φt diag(σt)
−1Φ⊤

t + I
)−1

, ŵt = Pt+1Φt diag(σt)
−1H−1

t+1rt.



Chapter 4. Reinforcement Learning with Gaussian Processes 104

For a constant noise variance, i.e. when diag(σt) = σ2I, this becomes

Pt+1 = σ2
(

ΦtΦ
⊤
t + σ2I

)−1
, ŵt+1 =

1

σ2
Pt+1ΦtH

−1
t+1rt.

Let us denote Bt+1 = Φt diag(σt)
−1Φ⊤

t and bt+1 = Φt diag(σt)
−1H−1

t+1rt. It is

easy to verify that Bt, and bt may be obtained using the following recursions

Bt = Bt−1 +
1

σ2
t−1

φ(xt−1)φ(xt−1)
⊤, and bt = bt−1 +

1

σ2
t−1

zt−1rt−1,

with zt defined as in Eq. 1.4.58, for λ = 1, i.e.

zt = γzt−1 + φ(xt), with z0 = φ(x0).

These sequential updates may be used to give rise to a batch algorithm, similar to

the batch version of the LSTD(1) algorithm (Algorithm 8). The pseudocode is given

in Algorithm 17.

Algorithm 17 A batch parametric Monte-Carlo GPTD algorithm

Initialize B0 = 0, b0 = 0, z0 = φ(x0),
for t = 1, 2, . . .

observe xt−1, rt−1, xt

Bt = Bt−1 + 1
σ2

t−1

φ(xt−1)φ(xt−1)
⊤

bt = bt−1 + 1
σ2

t−1

zt−1rt−1

zt = γzt−1 + φ(xt)
end for
return Pt = (Bt + I)−1, ŵt = Ptbt

Although the noise covariance in the MC-GPTD model is no longer diagonal, it

is nevertheless still possible to derive a recursive, online algorithm to compute the

posterior moments. Rather than starting from the alternative expressions (4.3.15,

4.3.16), we base the derivation of the updates on the original, symmetric expressions

of Eq. 4.4.40. The derivation is given in full in Appendix A.2.1. The resulting

recursive updates are9:

ŵt = ŵt−1 +
1

st
ptdt, Pt = Pt−1 −

1

st
ptp

⊤
t , (4.4.42)

9Since our model is essentially the Kalman Filter (KF) model, less the state dynamics, we could
have used the measurement updates of the KF (Scharf, 1991, Chapters 7, 8) to derive the GPTD
updates. This, however, is complicated by our correlated noise model, which would require us to
introduce auxiliary state variables. Instead, we take the possibly longer, but more enlightening
route, and derive the updates directly.



Chapter 4. Reinforcement Learning with Gaussian Processes 105

where

pt =
γσ2

t−1

st−1
pt−1 + Pt−1 (φ(xt−1) − γφ(xt))

dt =
γσ2

t−1

st−1
dt−1 + rt−1 − (φ(xt−1) − γφ(xt))

⊤ ŵt−1

st = σ2
t−1 + γ2σ2

t −
γ2σ4

t−1

st−1
+

(

pt +
γσ2

t−1

st−1
pt−1

)⊤
(φ(xt−1) − γφ(xt))

(4.4.43)

It can be easily verified that these recursions should be initialized as follows:

ŵ0 = 0, P0 = I, p0 = 0, d0 = 0, 1/s0 = 0.

Algorithm 18 provides the pseudocode for this algorithm.

Algorithm 18 A recursive parametric Monte-Carlo GPTD algorithm

Initialize ŵ0 = 0, P0 = I, p0 = 0, d0 = 0, 1/s0 = 0
for t = 1, 2, . . .

observe xt−1, rt−1, xt

∆φt = φ(xt−1) − γφ(xt)

pt =
γσ2

t−1

st−1
pt−1 + Pt−1∆φt

dt =
γσ2

t−1

st−1
dt−1 + rt−1 − ∆φ⊤

t ŵt−1

st = σ2
t−1 + γ2σ2

t − γ2σ4
t−1

st−1
+
(

pt +
γσ2

t−1

st−1
pt−1

)⊤
∆φt

ŵt = ŵt−1 + 1
st

ptdt

Pt = Pt−1 − 1
st

ptp
⊤
t

end for
return ŵt, Pt

4.4.5 Nonparametric Monte-Carlo GPTD Learning

Recall that in the nonparametric framework we bypass the parameterization of the

value process by placing a prior directly in the space of value functions. From

Section 4.3.4, we know already that the posterior mean and covariance are given,

respectively, by

V̂t(x) = α⊤
t kt(x), Pt(x,x

′) = k(x,x′) − kt(x)⊤Ctkt(x
′),

where αt = H⊤
t Qtrt−1, Ct = H⊤

t QtHt, and Qt = (HtKtH
⊤
t + Σt)

−1. As in

the parametric case, it is possible to derive recursive updates for αt and Ct. The



Chapter 4. Reinforcement Learning with Gaussian Processes 106

complete derivation may be found in Appendix A.2.2. The updates are:

αt =

(

αt−1

0

)

+
ct

st
dt, Ct =

[

Ct−1 0

0⊤ 0

]

+
1

st
ctc

⊤
t

with

dt =
γσ2

t−1

st−1
dt−1 + rt−1 − ∆k⊤

t αt−1,

ct =
γσ2

t−1

st−1

(

ct−1

0

)

+ ht −
(

Ct−1∆kt

0

)

,

st = σ2
t−1 + γ2σ2

t − γ2σ4
t−1

st−1
+ ∆ktt − ∆k⊤

t Ct−1∆kt +
2γσ2

t−1

st−1
c⊤t−1∆kt.

Above we made use of some definitions made in Section 4.3.4, which we repeat here

for clarity:

ht = (0, . . . , 1,−γ)⊤ ,
∆kt = kt−1(xt−1) − γkt−1(xt),

∆ktt = k(xt−1,xt−1) − 2γk(xt−1,xt) + γ2k(xt,xt).

It may be readily verified that these recursions should be initialized as follows:

α0 = 0, C0 = 0, c0 = 0, d0 = 0, 1/s0 = 0.

The pseudocode for this algorithm is given in Algorithm 19.

4.4.6 Sparse Nonparametric Monte-Carlo GPTD Learning

The fourth member of the family of MC-GPTD algorithms combines the sparsifica-

tion method of Chapter 2 with the nonparametric method of Section 4.4.5. Recall

from Section 4.3.6 the expressions for the posterior moments (4.3.26):

V̂t(x) = k̃t(x)⊤α̃t, and Pt(x,x
′) = k(x,x′) − k̃t(x)⊤C̃tk̃t(x

′),

where

α̃t = H̃⊤
t Q̃trt−1, C̃t = H̃⊤

t Q̃tH̃t,

H̃t = HtAt, Q̃t =
(

H̃tK̃tH̃
⊤
t + Σt

)−1
.

When compared with the discussion of Section 4.3.6, the only difference lies in the

form of the noise covariance Σt, which now is given by the tridiagonal matrix of



Chapter 4. Reinforcement Learning with Gaussian Processes 107

Algorithm 19 A recursive nonparametric Monte-Carlo GPTD algorithm

Initialize α0 = 0, C0 = 0, p0 = 0, d0 = 0, 1/s0 = 0
for t = 1, 2, . . .

observe xt−1, rt−1, xt

ht = (0, . . . , 1,−γ)⊤
∆kt = kt−1(xt−1) − γkt−1(xt)
∆ktt = k(xt−1,xt−1) − 2γk(xt−1,xt) + γ2k(xt,xt)

dt =
γσ2

t−1

st−1
dt−1 + rt−1 − ∆k⊤

t αt−1

ct =
γσ2

t−1

st−1

(

ct−1

0

)

+ ht −
(

Ct−1∆kt

0

)

st = σ2
t−1 + γ2σ2

t − γ2σ4
t−1

st−1
+ ∆ktt − ∆k⊤

t Ct−1∆kt +
2γσ2

t−1

st−1
c⊤t−1∆kt

αt =

(

αt−1

0

)

+ ct
st
dt

Ct =

[

Ct−1 0
0⊤ 0

]

+ 1
st

ctc
⊤
t

end for
return αt, Ct

Eq. 4.4.35.

Recall from Chapter 2 that Dt is the dictionary at time t, K̃t is the |Dt| × |Dt|
kernel matrix of the dictionary members, and at is a |Dt| × 1 vector of least-squares

coefficients for approximating φ(xt) with the dictionary vectors (see Algorithm 10).

Let us state the recursive update formulas for α̃t and C̃t. The complete deriva-

tion may be found in Section A.2.3. As usual, at each time step t we may be faced

with either one of the following two cases. Either Dt = Dt−1 or Dt = Dt−1 ∪ {xt}.
In either case we use the definition

∆k̃t = k̃t−1(xt−1) − γk̃t−1(xt).

Case 1. Dt = Dt−1:

α̃t = α̃t−1 +
c̃t

st
dt , C̃t = C̃t−1 +

1

st
c̃tc̃

⊤
t , (4.4.44)

where

c̃t =
γσ2

t−1

st−1
c̃t−1 + h̃t − C̃t−1∆k̃t

dt =
γσ2

t−1

st−1
dt−1 + rt−1 − ∆k̃⊤

t α̃t−1

st = σ2
t−1 + γ2σ2

t + ∆k̃⊤
t

(

c̃t +
γσ2

st−1
c̃t−1

)

− γ2σ4
t−1

st−1
, (4.4.45)



Chapter 4. Reinforcement Learning with Gaussian Processes 108

Algorithm 20 A sparse recursive nonparametric Monte-Carlo GPTD algorithm

Parameters: ν
Initialize D0 = {x0}, K̃−1

0 = 1/k(x0,x0), a0 = (1), α̃0 = 0, C̃0 = 0, c̃0 = 0,
d0 = 0, 1/s0 = 0
for t = 1, 2, . . .

observe xt−1, rt−1, xt

at = K̃−1
t−1k̃t−1(xt)

δt = k(xt,xt) − k̃t−1(xt)
⊤at

∆k̃t = k̃t−1(xt−1) − γk̃t−1(xt)

dt =
γσ2

t−1

st−1
dt−1 + rt−1 − ∆k̃⊤

t α̃t−1

if δt > ν
compute K̃−1

t (2.2.10)
at = (0, . . . , 1)⊤

h̃t = (at−1,−γ)⊤

∆ktt = a⊤t−1

(

k̃t−1(xt−1) − 2γk̃t−1(xt)
)

+ γ2ktt

c̃t =
γσ2

t−1

st−1

(

c̃t−1

0

)

+ h̃t −
(

C̃t−1∆k̃t

0

)

st = σ2
t−1 + γ2σ2

t + ∆ktt − ∆k̃⊤
t C̃t−1∆k̃t +

2γσ2
t−1

st−1
c̃⊤t−1∆k̃t − γ2σ4

t−1

st−1

α̃t−1 =

(

α̃t−1

0

)

C̃t−1 =

[

C̃t−1 0
0⊤ 0

]

else
h̃t = at−1 − γat

∆ktt = h̃⊤
t ∆k̃t

c̃t =
γσ2

t−1

st−1
c̃t−1 + h̃t − C̃t−1∆k̃t

st = σ2
t−1 + γ2σ2

t + ∆k̃⊤
t

(

c̃t + γσ2

st−1
c̃t−1

)

− γ2σ4
t−1

st−1

end if
α̃t = α̃t−1 + c̃t

st
dt

C̃t = C̃t−1 + 1
st

c̃tc̃
⊤
t

end for
return Dt, α̃t, C̃t



Chapter 4. Reinforcement Learning with Gaussian Processes 109

with the definitions

h̃t = at−1 − γat,

∆ktt = h̃⊤
t ∆k̃t.

Case 2. Dt = Dt−1 ∪ {xt}:

α̃t =

(

α̃t−1

0

)

+
c̃t

st
dt , C̃t =

[

C̃t−1 ,0

0⊤ , 0

]

+
1

st
c̃tc̃

⊤
t , (4.4.46)

where

c̃t =
γσ2

t−1

st−1

(

c̃t−1

0

)

+ h̃t −
(

C̃t−1∆k̃t

0

)

,

dt =
γσ2

t−1

st−1
dt−1 + rt−1 − ∆k̃⊤

t α̃t−1,

st = σ2
t−1 + γ2σ2

t + ∆ktt − ∆k̃⊤
t C̃t−1∆k̃t +

2γσ2
t−1

st−1
c̃⊤t−1∆k̃t −

γ2σ4
t−1

st−1
,

(4.4.47)

with the definitions

h̃t =

(

at−1

0

)

− γat =

(

at−1

−γ

)

,

∆ktt = a⊤t−1

(

k̃t−1(xt−1) − 2γk̃t−1(xt)
)

+ γ2ktt.

The pseudocode for this algorithm is provided in Algorithm 20.

4.5 Connections with Other TD Methods

In Section 4.3, we derived several GP-based algorithms for learning a posterior dis-

tribution over value functions, for MDPs with stochastic rewards, but deterministic

transitions. This was done by using a generative model of the form of (4.3.5), in

which the covariance of the noise term was diagonal: Σt = diag(σt−1). In Section

4.4 we derived a second GPTD model that overcomes the limitation of the first

algorithm to deterministic transitions. We did this by invoking a useful decom-

position of the discounted return random process into the value process, modeling

our uncertainty concerning the MDP’s model, and a zero-mean residual (4.4.32),

modeling the MDP’s intrinsic stochasticity; and by additionally assuming indepen-

dence of the residuals. Surprisingly, all that this amounts to is the replacement

of the diagonal noise covariance with a tridiagonal, correlated noise covariance:



Chapter 4. Reinforcement Learning with Gaussian Processes 110

Σt = Ht diag(σt)H
⊤
t . This change induces a model, which we have shown to be

effectively equivalent to GP regression on Monte-Carlo samples of the discounted

return.

We are therefore inclined to adopt a broader view of GPTD as a general GP-

based framework for Bayesian modeling of value functions, encompassing all gener-

ative models of the form Rt−1 = HtVt +Nt−1, with Ht given by (4.3.7) (or (4.3.9) at

the end of an episode), a Gaussian prior placed on V , and an arbitrary zero-mean

Gaussian noise process N . No doubt, most such models will be meaningless from a

value estimation point of view, while others will not admit efficient recursive algo-

rithms for computing the posterior value moments. However, if the noise covariance

Σt is suitably chosen, and if it is additionally simple in some way, then we may

be able to derive such a recursive algorithm to compute complete posterior value

distributions, on-line. In this section we show that by employing alternative forms

of noise covariance, we are able to obtain GP-based variants of LSTD(λ) (Bradtke

& Barto, 1996; Boyan, 1999a).

4.5.1 A Maximum Likelihood Variant

In certain cases, one may prefer to forgo specifying a prior over the weight vector W .

In such cases, one can no longer perform Bayesian analysis, but it is nevertheless

still possible to perform classical maximum-likelihood (ML) inference to find the

value of W , ŵML, for which the observed data is most likely, according to the

generative model of Eq. (4.4.34). Due to the Gaussianity assumption, ignoring

terms independent of W , the log-likelihood of the sequence of measured rewards is

log Pr(Rt−1 = rt−1|W ) ∝ −
(

rt−1 − ∆Φ⊤
t W

)⊤
Σ−1

t

(

rt−1 − ∆Φ⊤
t W

)

. (4.5.48)

The maximum-likelihood (ML) problem therefore reduces to the minimization of a

simple quadratic form:

min
w

{

(

rt−1 − ∆Φ⊤
t w
)⊤

Σ−1
t

(

rt−1 − ∆Φ⊤
t w
)

}

, (4.5.49)

the solution of which is given by (recall that ∆Φt = ΦtH
⊤
t )

ŵML
t =

(

ΦtH
⊤
t Σ−1

t HtΦ
⊤
t

)−1
ΦtH

⊤
t Σ−1

t rt−1. (4.5.50)

As we have seen in Section 4.4.3, at the end of an episode Ht is invertible and is

given by Eq. 4.4.37. The inverse noise covariance, assuming for simplicity a constant



Chapter 4. Reinforcement Learning with Gaussian Processes 111

noise variance σ2, is given by

Σ−1
t =

1

σ2
H⊤

t+1
−1

Ht+1
−1.

Therefore, Eq. 4.5.50 becomes

ŵML
t+1 =

(

ΦtΦ
⊤
t

)−1
ΦtH

−1
t+1rt (4.5.51)

From the formula for H−1
t+1 we infer that H−1

t+1rt = yt, where the i’th component of

yt is yi =
∑t

j=i γ
j−irj (see Eq. 4.4.36). Comparing this with the LSTD(1) estimate

of Eq. 1.4.60, we conclude that our parametric ML solution is precisely the LSTD(1)

solution.

It is equally straightforward to show that TD(1) may be derived as a gradient as-

cent method for maximizing the log-likelihood of the parametric MC-GPTD model,

with a fixed noise variance σ2. The derivation may be found in Appendix B.

As with any other ML estimator, it should be cautioned that the ML variant

will tend to overfit the data, until the number of samples considerably exceeds the

dimensionality of the feature space φ(X ) (i.e. the number of independent adjustable

parameters). GPTD solutions avoid overfitting by virtue of the regularizing influence

of the prior. For this reason, for all practical purposes, we consider MC-GPTD, in

its original form, to be preferable to its ML variant, namely, LSTD(1).

A natural question to ask at this point is whether LSTD(λ) for λ < 1 may also

be derived as a ML solution arising from some GPTD generative model, with a

different noise covariance. We address this issue next.

4.5.2 LSTD(λ) as a Maximum Likelihood Algorithm

LSTD(λ) with linear function approximation solves the equation set 1.4.59, repeated

here for clarity:

Btŵt = bt, where Bt =

t−1
∑

i=0

zi (φ(xi) − γφ(xi+1))
⊤ and bt =

t−1
∑

i=0

ziri. (4.5.52)

In both TD(λ) and LSTD(λ) a vector zt of eligibilities is maintained, using the

recursion

zt = γλzt−1 + φ(xt), with z0 = φ(x0).

These eligibility vectors may be arranged in an n× t eligibility matrix Z
(λ)
t , defined

by

Z
(λ)
t =

[

z0, . . . , zt−1

]

.



Chapter 4. Reinforcement Learning with Gaussian Processes 112

Using Z
(λ)
t and the definition of ∆Φt (4.3.14), we may write Bt and bt from

Eq. 1.4.59, as

Bt = Z
(λ)
t ∆Φ⊤

t , and bt = Z
(λ)
t rt−1.

Bt is an n×n square matrix, and for t ≥ n, assuming no state is visited twice, it is of

full rank (i.e. its null-space is {0} and B−1
t exists). We may therefore premultiply

Eq. 1.4.59 by B⊤
t Gt, where Gt is an arbitrary d × d symmetric positive-definite

matrix, with no change in the solution whatsoever. This results in

∆ΦtZ
(λ)
t

⊤
GtZ

(λ)
t ∆Φ⊤

t ŵt = ∆ΦtZ
(λ)
t

⊤
GtZ

(λ)
t rt−1. (4.5.53)

Eq. 4.5.53 is the set of normal equations resulting from the least squares problem

min
w

{

(

rt−1 − ∆Φ⊤
t w
)⊤

Z
(λ)
t

⊤
GtZ

(λ)
t

(

rt−1 − ∆Φ⊤
t w
)

}

, (4.5.54)

which, in turn, may be interpreted as arising from a maximum likelihood problem

over jointly Gaussian random variables:

max
w

{log Pr(rt−1|w)} , where

Pr(rt−1|w) ∝ exp

(

−1

2
(rt−1 − ∆Φ⊤

t w)⊤Z
(λ)
t

⊤
GtZ

(λ)
t (rt−1 − ∆Φ⊤

t w)

)

.

Note that, regardless of the choice of Gt, the minimum in (4.5.54) is zero, since

Z
(λ)
t

(

rt−1 − ∆Φ⊤
t w
)

= 0 is a set of n equations in n variables, and therefore

Z
(λ)
t

(

rt−1 − ∆Φ⊤
t w
)

can be made to vanish.

Comparing Eq. 4.5.54 with Eq. 4.5.49, we conclude that LSTD(λ) implicitly

assumes that rewards and values are connected by a Gaussian process model of the

by now familiar (parametric) GPTD form, namely:

Rt−1 = HtVt +Nt−1 = HtΦ
⊤
t W +Nt−1,

in which the inverse covariance matrix of the the noise process Nt−1 satisfies

Σ−1
t ∝ Z

(λ)
t

⊤
GtZ

(λ)
t .

The noise covariance matrix Σt itself does not generally exist, since, for t > n,

Z
(λ)
t

⊤
GtZ

(λ)
t is rank deficient (with rank n). This means that there are t − n

orthogonal directions in R
t (defined by an orthogonal basis for the null space of

Z
(λ)
t

⊤
GtZ

(λ)
t ) in which the variance is infinite, which means that deviations in these

directions have no effect on the likelihood. The nonexistence of Σt is less of a prob-



Chapter 4. Reinforcement Learning with Gaussian Processes 113

lem than it might seem, since the ML, MAP and Bayesian solutions may all be

written entirely in terms of Σ−1
t (see Eq. 4.5.49, 4.3.15, 4.3.16), and it is therefore

only important that Σ−1
t exists. In any event, the inverse of Σ−1

t + εI for any ε > 0

exists and may be used as a substitute for Σt.

It now becomes a simple exercise to derive a new set of GPTD algorithms,

referred to as GPTD(λ), which are based on the LSTD(λ) noise model, i.e. using

Σ−1
t = 1

σ2 Z
(λ)
t

⊤
GtZ

(λ)
t . For the parametric GPTD(λ) model, the posterior moments,

given by (Eq. 4.3.15, 4.3.16), are

P
(λ)
t = σ2

(

∆ΦtZ
(λ)
t

⊤
GtZ

(λ)
t ∆Φ⊤

t + σ2I

)−1

, (4.5.55)

ŵ
(λ)
t =

1

σ2
P

(λ)
t ∆ΦtZ

(λ)
t

⊤
GtZ

(λ)
t rt−1.

Whereas for the nonparametric GPTD(λ), we have (see Eq. 1.3.36, 1.3.37)

α
(λ)
t =

(

H⊤
t Z

(λ)
t

⊤
GtZ

(λ)
t HtKt + σ2I

)−1

H⊤
t Z

(λ)
t

⊤
GtZ

(λ)
t rt−1, (4.5.56)

C
(λ)
t =

(

H⊤
t Z

(λ)
t

⊤
GtZ

(λ)
t HtKt + σ2I

)−1

H⊤
t Z

(λ)
t

⊤
GtZ

(λ)
t Ht.

In the parametric case, for an arbitrary Gt, taking the limit σ → 0 brings us back

to the familiar LSTD(λ). Moreover, for any σ > 0, and for λ = 1 there exists

a particular choice of Gt for which we are returned to the MC-GPTD model of

Sections 4.4.4 and 4.4.5, as we show next for the parametric model.

4.5.3 GPTD(λ)

In this section we consider a possible choice for the matrix Gt in Eq. 4.5.54. First,

however, let us recall that the eligibility vectors satisfy zt =
∑t

i=0(γλ)t−iφ(xi). We

may therefore write Z
(λ)
t+1 as

Z
(λ)
t+1 = Φt













1 γλ (γλ)2 . . . (γλ)t

0 1 γλ . . . (γλ)t−1

...
...

0 0 0 . . . 1













. (4.5.57)

Suppose that xt is the final state in an episode. Recalling H−1
t+1 from Eq. 4.4.37, for

λ = 1 we can write

Z
(1)
t+1 = ΦtH

−1
t+1



Chapter 4. Reinforcement Learning with Gaussian Processes 114

P
(1)
t+1 of Eq. 4.5.55 then becomes

P
(1)
t+1 = σ2

(

ΦtΦ
⊤
t GtΦtΦ

⊤
t + σ2I

)−1
,

while ŵ
(1)
t+1 becomes

ŵ
(1)
t+1 =

(

ΦtΦ
⊤
t GtΦtΦ

⊤
t + σ2I

)−1
ΦtΦ

⊤
t GtΦtH

−1
t+1rt.

These expressions for the posterior moments suggest that a reasonable choice for Gt

would be Gt = (ΦtΦ
⊤
t )−1, since then, for λ = 1, we are returned to the MC-GPTD

solution,

P
(1)
t+1 = σ2

(

ΦtΦ
⊤
t + σ2I

)−1
and ŵ

(1)
t+1 =

(

ΦtΦ
⊤
t + σ2I

)−1
ΦtH

−1
t+1rt.

These solutions are recognized as the parametric MC-GPTD posterior moments (see

Eq. 4.4.38).

Our argument in favor of this particular choice of the inverse noise covariance

(through the choice of Gt) is based on the limiting behavior of the resulting solutions

when λ approaches 1 (in which case it coincides with the MC-GPTD solution),

and when σ approaches 0 (in which case it coincides with LSTD(λ)). Apart from

these continuity arguments, the question of how a noise model such as the one

suggested above may be theoretically justified, remains unanswered. In particular,

this means that, even with complete knowledge of the underlying MDP, the optimal

choice of the parameter λ is currently an issue that has to be resolved empirically.

However, the same could be said about LSTD(λ). As far as we are aware, the

only way LSTD(λ) with linear function approximation may be justified, or indeed

derived (apart from the post hoc asymptotic bounds of Tsitsiklis & Van Roy, 1996),

is either by analogy to the case of a lookup-table based representation, or by a

continuity argument based on the fact that as λ approaches 1, the resulting algorithm

approaches LSTD(1), which is known to perform least-squares regression on Monte-

Carlo samples of the discounted return (Bertsekas & Tsitsiklis, 1996; Sutton &

Barto, 1998; Boyan, 1999a).

In the following section we perform an empirical comparison of the LSTD(λ)

and GPTD(λ) algorithm, on a simple MDP, in order to get some idea concerning

the accuracy of their respective value estimates.

4.5.4 Experiments

In this section we perform an experimental comparison between the parametric form

of GPTD(λ) and LSTD(λ). Our experimental testbed is a simple 10 state random-



Chapter 4. Reinforcement Learning with Gaussian Processes 115

walk MDP. The 10 states are arranged linearly from state 1 on the left to state 10

on the right. The left-hand wall is a retaining barrier, meaning that if a left step

is made from state 1, the state transitioned to is again state 1. State 10 is a zero

reward absorbing state. The agent may either make a step to the left or to the right

1 2 . . . . 1093

Figure 4.4: The 10 state random walk domain

with probabilities Pr(left) and Pr(right), respectively. (Pr(left) + Pr(right) = 1).

The reward is -1 for states 1–9 and 0 for state 10. This domain is illustrated in

Figure 4.4.

In order to perform the comparison on equal footing, we restrict our attention

to LSTD(λ) and GPTD(λ) with a linear parametric function approximation archi-

tecture, using a set of 10 radial basis functions (RBFs), centered in each one of the

states, each with a width of 1. I.e. for the state j, φi(j) = exp
(

−(j − i)2/2
)

, with

i, j ∈ {1, . . . , 10}. This way, both methods use the same parametric representation,

and learn within the same hypothesis space.

In a simple MDP such as this one, it is quite easy to compute (even analyti-

cally, in certain cases) the state values. These may then be used to compute the

error between the true values and the estimates provided by each algorithm. Here

we compare LSTD(λ) with GPTD(λ) for 5 equally spaced value of λ: 1, 0.75, 0.5,

0.25, 0. Two experiments were made, one for Pr(right) = 0.8 and the other for

Pr(right) = 0.6. The probability distribution of the number of steps until absorp-

tion, along with its mean and standard deviation, for each starting state, are shown

in Fig. 4.5.

It can be seen from Fig. 4.5 that in such random walks the distribution of the

discounted return is asymmetric, heavy-tailed and quite far from being Gaussian.

This becomes increasingly so as Pr(right) is reduced. Consequently, very few of the

assumptions upon which GPTD is based hold.

In the experiments, each algorithm was run on an identical series of 1000 episodes.

At the end of each episode, the squared error between the estimated value and the

true value for each state was computed. Each such experiment was repeated 10

times allowing us to average together the squared errors for each state, resulting

in an estimate for the root mean squared (RMS) error, for each state and each

algorithm.

In Fig. 4.6 we show the results of this comparison. The graphs show the RMS

errors, for each algorithm, averaged over the 10 states, for several “snapshot” points



Chapter 4. Reinforcement Learning with Gaussian Processes 116

along the series of 1000 learning episodes. At the top the results for Pr(right) = 0.8

are shown, and at the bottom are the results for the more difficult problem (from

the GPTD standpoint) of Pr(right) = 0.6.

As can be seen in both instances, except after the first trial, the GPTD(λ)

solution almost always either equals or dominates the LSTD(λ) solution.

4.6 Policy Improvement with GPSARSA

In Chapter 1, SARSA was described as a fairly straightforward extension of the TD

algorithm (Sutton & Barto, 1998), in which state-action values are estimated. This

allows policy improvement steps to be performed without requiring any additional

knowledge on the MDP model. The idea is to use the stationary policy µ being

followed in order to define a new, augmented process, the state space of which is

X ′ = X × U , (i.e. the original state space augmented by the action space), while

maintaining the same reward model. This augmented process is Markovian with

transition probabilities p′(x′,u′|x,u) = pµ(x′|x)µ(u′|x′). SARSA is simply the TD

algorithm applied to this new process. The same reasoning may be applied to derive

a GPSARSA algorithm from the GPTD algorithm.

In the nonparametric case, all we need is to define a covariance kernel function

over state-action pairs, i.e. k : (X × U) × (X × U) → R. Since states and actions

are different entities it makes sense to decompose k into a state-kernel kx and an

action-kernel ku:

k(x,u,x′,u′) = kx(x,x′)ku(u,u′).

If both kx and ku are kernels we know that k is also a legitimate kernel (Schölkopf

& Smola, 2002), and just as the state-kernel codes our prior beliefs concerning

correlations between the values of different states, so should the action-kernel code

our prior beliefs on value correlations between different actions. In the parametric

case we would similarly define a set of basis functions over X ×U . Here we will treat

the more interesting nonparametric case.

All that remains now is to run the sparse nonparametric GPTD algorithm (20)

on the augmented state-reward sequence, using the new state-action kernel function.

Action selection may be performed by ε-greedily choosing the highest ranking action,

and slowly decreasing ε toward zero. However, we may run into difficulties trying

to find the highest ranking action from a large or even infinite number of possible

actions. This may be solved by sampling the value estimates for a few randomly

chosen actions and maximize only among these, or alternatively using a fast iterative

maximization method, such as the quasi-Newton method or conjugate gradients.

Ideally, we should design the action kernel in such a way as to provide a closed-form



Chapter 4. Reinforcement Learning with Gaussian Processes 117

expression for the greedy action.

4.6.1 Experiments

As an example let us consider again the two-dimensional continuous world described

in Section 4.3.7. Rather than restricting the action space to 8 actions, as we did

before, now we allow the agent to take a 0.1-long step in any direction. For each

time step until it reaches a goal state the agent is penalized with a negative reward

of -1; if it hits an obstacle it is returned to its original position. Let us represent an

action as the unit vector pointing in the direction of the corresponding move, thus

making U the unit circle. We leave the space kernel kx unspecified and focus on the

action kernel. Let us define ku as follows,

ku(u,u′) = 1 +
(1 − b)

2
(u⊤u′ − 1),

where b is a constant in [0, 1]. Since u⊤u′ is the cosine of the angle between u and

u′, ku(u,u′) attains its maximal value of 1 when the two actions are the same, and

its minimal value of b when the actions are 180 degrees apart. Setting b to a positive

value is reasonable, since even opposite actions from the same state are expected, a

priori, to have positively correlated values. However, the most valuable feature of

this kernel is its linearity, which makes it possible to maximize the value estimate

over the actions analytically.

Assume that the agent runs GPSARSA, so that it maintains a dictionary of

state-action pairs Dt = {(x̃i, ũi)}m
i=1. The agent’s value estimate for its current

state x and an arbitrary action u is

V̂ (x,u) =
m
∑

i=1

α̃ikx(x̃i,x)ku(ũi,u)

=

m
∑

i=1

α̃ikx(x̃i,x)

(

1 +
(1 − b)

2
(ũ⊤

i u− 1)

)

.

Maximizing this expression with respect to u amounts to maximizing
∑m

i=1 βi(x)ũ⊤
i u

subject to the constraint ‖u‖ = 1, where βi(x)
def
= α̃ikx(x̃i,x). Solving this problem

using a single Lagrange multiplier results in the greedy action u∗ = 1
λ

∑m
i=1 βi(x)ũi

where λ is a normalizing constant. It is also possible to maximize the variance

estimate. This may be used to select non-greedy exploratory moves, by choosing

the action the value of which the agent is least certain about. Performing this

maximization amounts to solving a 2 × 2 Eigenvalue problem.

Our experimental test-bed is the continuous state-action maze described above.

In order to introduce stochasticity into the transitions, beyond the randomness



Chapter 4. Reinforcement Learning with Gaussian Processes 118

inherent in the ε-greedy policy, we corrupt the moves chosen by the agent with

a zero-mean uniformly distributed angular noise in the range of ±30 degrees. A

GPSARSA-learning agent was put through 200 episodes, each of which consisted of

placing it in a random position in the maze, and letting it roam the maze until it

reaches a goal position (success) or until 100 time-steps elapse, whichever happens

first. At each episode, ε was set to 10/(10 + T ), T being the number of successful

episodes completed up to that point. The σ parameter of the intrinsic variance

was fixed at 1 for all states. The state kernel was Gaussian k(x,x′) = k(x,x′) =

c exp
(

−‖x − x′‖2/(2σ2
k)
)

, with σk = 0.2 and a c = 10 (c is the prior variance of V ,

since k(x,x) = c). The action kernel was the linear kernel described above. The

parameter ν controlling the sparsity of the solution (see Chapter 2) was ν = 0.1,

resulting in a dictionary that saturates at 150-160 state-action pairs.

The results of such a run on four different mazes, the first of which is identical to

the one used in Section 4.3.7, are shown in Fig. 4.7. Note that the “dampening” of

the value estimates, which was observed in the experiments of Section 4.3.7 when the

GPTD algorithm for deterministic transitions was used with stochastic transitions,

is now absent as expected.

By choosing the Gaussian kernel we impose a smoothness property on candi-

date value functions. This smoothness assumption naturally breaks down near the

obstacles, which is the reason for the appearance of some artifacts across or near ob-

stacles, such as “whirlpools” and suboptimal paths. Notice however, that since the

actual move performed in each step is corrupted by a significant angular noise, the

learned policies correctly exhibit a preference for paths going through wide rather

than narrow openings, when such a choice exists.

4.7 Summary and Discussion

In this chapter we presented a Bayesian formulation of the fundamental RL problem

of policy evaluation. This was done by casting the probabilistic relation between the

value function and the observed rewards as a linear statistical generative model over

normally distributed random processes (Eq. 4.3.5). The Bayesian solution for the

policy evaluation problem is embodied in the posterior value distribution conditioned

on the observed state-reward trajectory. This posterior is computed by employing

Bayes’ rule to “invert” the set of equations provided by the generative model. Apart

from the value estimates given by the posterior mean, the Bayesian solution also

provides the variance of values around this mean, supplying the practitioner with a

measure of the accuracy of value estimates.

In Rasmussen and Kuss (2004) an alternative approach to employing GPs in

RL is proposed. The approach in that paper is fundamentally different from the



Chapter 4. Reinforcement Learning with Gaussian Processes 119

generative approach of the GPTD framework. In Rasmussen and Kuss (2004) one

GP is used to learn the MDP’s transition model, while another is used to estimate

the value. This leads to an inherently off-line algorithm, which is not capable of

interacting with the controlled system directly and updating its estimates as addi-

tional data arrive. There are several other shortcomings that limit the usefulness of

that framework. First, the state dynamics is assumed to be factored, in the sense

that each state coordinate is assumed to evolve in time independently of all oth-

ers. This is a rather strong assumption that is not likely to be satisfied in most

real problems. Moreover, it is also assumed that the reward function is completely

known in advance, and is of a very special form – either polynomial or Gaussian.

Finally, the covariance kernels used are also restricted to be either polynomial or

Gaussian or a mixture of the two, due to the need to integrate over products of

GPs. This considerably diminishes the appeal of employing GPs, since one of the

main reasons for using them, and kernel methods in general, is the richness of ex-

pression inherent in the ability to construct arbitrary kernels, reflecting domain and

problem-specific knowledge, and defined over sets of diverse objects, such as text

documents and DNA sequences (to name only two), and not just points in metric

space. Finally, the value function is only modeled at a predefined set of support

states, and is solved only for them. No method is proposed to ensure that this set

of states is representative in any way.

Bayesian methods, such as ours, typically require the user to impart more do-

main specific knowledge to the learning system, than do classical methods. Such

domain knowledge may be encoded in the prior and in the measurement model

(e.g., in the measurement noise covariance). In many cases such domain knowledge

is available, at least in a rough form. For instance, in the RL context, the user

will usually know whether the MDP under investigation follows deterministic or

stochastic dynamics. She will usually also have a good idea on the range of values

of the rewards, and what makes states and actions similar or different from each

other. All of this information may be incorporated into a GPTD generative model,

and capitalized upon in the subsequent Bayesian posterior analysis. We made use

of these inherent qualities of the Bayesian approach by defining different generative

models, one which is suitable only for MDPs with deterministic transitions and a

second one for MDPs with stochastic transitions. In the nonparametric case, the

kernel function k is used to encode notions of similarity and dissimilarity between

states, or more correctly, how the values of different states are correlated10. Hav-

ing said that, there are well known methods in the Bayesian and GP literature for

learning the hyperparameters of a Bayesian model (a.k.a. model selection). These

10For instance, using the Gaussian kernel c exp
`

−‖x′ − x‖2/(2σ2)
´

, apart from encoding the
belief that nearby states are more similar than states that are far apart, also states that, a priori,
we believe that the variance of the values at any point in X is c.



Chapter 4. Reinforcement Learning with Gaussian Processes 120

include maximizing the likelihood of the observations with respect to these hyper-

parameters, or alternatively, treating them as random variables (parameterized by

hyper-hyperparameters) and performing Bayesian inference on them as well (this is

known as a hierarchical Bayesian model). As these techniques are adequately cov-

ered elsewhere (e.g., Mackay, 1997; Gibbs & MacKay, 1997; Williams, 1999; Seeger,

2003) we chose not to elaborate on this subject here.

As discussed in Section 1.2.1, in classical frequentist approaches11, the risk be-

ing minimized depends on the true but unknown hypothesis θ – in our case the

true value function. This means that for a fixed θ, the estimator minimizing the

risk, is optimal in the frequentist sense. That is, if we indefinitely repeat the same

experiment, each time with a new sequence of state-action-reward triplets, the min-

imum risk estimator will incur the lowest total loss. However, in the RL setting, one

typically observes only a single sampled trajectory12 and would therefore prefer to

have a decision procedure that behaves optimally for that trajectory. The Bayesian

approach provides just that, by minimizing a risk that is conditioned on the specific

observed history – the posterior Bayesian risk.

We showed in Sections 4.5.2 and 4.5.3 that the familiar family of LSTD(λ) al-

gorithms are in fact classical parametric maximum-likelihood algorithms based on

statistical generative models having the same structure as our GPTD model, and em-

ploying a specific form of λ-dependent noise covariance. As such, LSTD(λ) solutions

are limit points of GPTD solutions. In this sense, our GPTD framework subsumes

all other TD methods employing linear function approximation architectures. This,

we hope, should alleviate concerns regarding the applicability of the assumptions

underlying the GPTD model, as the same assumptions are also implicitly made by

LSTD(λ) and TD(λ).

By employing a nonparametric, kernel-based extension of the conventional para-

metric linear statistical model we were able to derive kernel-based variants of our

algorithms. These kernel algorithms offer a degree of representational flexibility that

is impossible to attain using standard linear FA architectures, in which a set of basis

functions must be defined in advance. By using the sparsification method described

in Chapter 2 we were able to obtain, for the first time to the best of our knowledge,

practical nonparametric online algorithms for solving the policy evaluation problem.

The constructive process through which these algorithms sparsify the full nonpara-

metric solution may be thought of as a process of basis construction, in which new

basis functions are added if and when they are needed for maintaining a sufficiently

accurate approximation of the complete non-sparse solution (the basis functions are

the kernel functions evaluated at the dictionary states, namely {k(x̃j , ·)}|D|
j=1). As

11LSTD(1) is one such approach, as it delivers a least-squares estimate.
12This is true regardless of whether that trajectory is divided into episodes or not.



Chapter 4. Reinforcement Learning with Gaussian Processes 121

such they enjoy both the representational flexibility of the complete nonparametric

solution while also taking advantage of redundancies in the Hilbert space induced

by the kernel. When the dictionary constructed by these algorithms ceases to grow

(and we are assured by Theorem 2.3.1 that this will eventually happen), then from

that point on the algorithm may be considered as a (linear) parametric algorithm.

Taking the frequentist perspective, the posterior mean provided by the Bayesian

analysis may be viewed as the solution of a Tikhonov-regularized least-squares prob-

lem (see Section 1.3.4). Although in the frequentist view, such solutions are con-

sidered biased, they are known to be consistent (i.e. asymptotically unbiased).

Specifically, this implies that in the parametric case, in the limit of an infinite tra-

jectory, both GPTD(λ) (including MC-GPTD = GPTD(1)) and LSTD(λ) converge

to the same solution (provided the same λ is used). This should remove any concerns

regarding the convergence of GPTD(λ), as the asymptotic convergence properties

of LSTD(λ) are well understood (Tsitsiklis & Van Roy, 1996). When a sparse non-

parametric representation is used, we already know that, after a finite number of

transitions are observed, our sparse algorithms are effectively computing parametric

solutions, using a basis consisting of the kernel functions evaluated at the dictionary

states. Therefore, the same conclusions regarding the convergence of our parametric

methods also apply to our sparse nonparametric methods. More intricate conver-

gence properties of GPs, such as generalization bounds and learning curves (but

only in the context of supervised learning), are presently the subject of intense re-

search (e.g., Opper & Vivarelli, 1999; Malzahn & Opper, 2001; Seeger, 2003; Sollich

& Williams, 2005). However, the GPTD model is generally more complex than the

conventional GP models used in the supervised setting. Deriving results analogous

to those mentioned above, in the RL setting, is left as an open direction for future

research.

Another contribution is the extension of GPTD to the estimation of state-action

values, or Q-values, leading to the GPSARSA algorithm. Learning Q-values makes

the task of policy improvement in the absence of a transition model tenable, even

when the action space is continuous, as demonstrated by the example in Section

4.6.1. The availability of confidence intervals for Q-values significantly expands the

repertoire of possible exploration strategies. In finite MDPs, strategies employing

such confidence intervals have been experimentally shown to perform more efficiently

then conventional ε-greedy or Boltzmann sampling strategies, e.g., Kaelbling (1993);

Dearden et al. (1998); Even-Dar et al. (2003). GPSARSA allows such methods to be

applied to infinite MDPs, and it remains to be seen whether significant improvements

can be so achieved for realistic problems with continuous space and action spaces.



Chapter 4. Reinforcement Learning with Gaussian Processes 122

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2
A.

number of steps

pr
ob

ab
ili

ty

1 2 3 4 5 6 7 8 9 10
0

5

10

15
B.

state

ex
pe

ct
ed

 n
um

be
r 

of
 s

te
ps

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5
C.

state
st

.d
. o

f n
um

be
r 

of
 s

te
ps

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04
A.

number of steps

pr
ob

ab
ili

ty

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35
B.

state

ex
pe

ct
ed

 n
um

be
r 

of
 s

te
ps

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20
C.

state

st
.d

. o
f n

um
be

r 
of

 s
te

ps

Figure 4.5: A 10 state one-dimensional random walk, with an absorbing state 10.
The probability of making a step to the right is 0.8 (top) or 0.6 (bottom). A. The
probability distribution of the number steps until absorption, starting from state
1. B. The expected number of time-steps until absorption, for each state. C. The
standard deviation of the number of time-steps until absorption, for each state.



Chapter 4. Reinforcement Learning with Gaussian Processes 123

    1     5    10    50   100   500  1000
0

0.5

1

1.5

2

2.5

3

Episode

R
M

S
E

LSTD(1)   
GPTD(1)   
LSTD(0.75)
GPTD(0.75)
LSTD(0.5) 
GPTD(0.5) 
LSTD(0.25)
GPTD(0.25)
LSTD(0)   
GPTD(0)   

    1     5    10    50   100   500  1000
0

1

2

3

4

5

6

7

8

9

10

Episode

R
M

S
E

LSTD(1)   
GPTD(1)   
LSTD(0.75)
GPTD(0.75)
LSTD(0.5) 
GPTD(0.5) 
LSTD(0.25)
GPTD(0.25)
LSTD(0)   
GPTD(0)   

Figure 4.6: Comparison results for the Pr(right) = 0.8 random walk (top) and the
Pr(right) = 0.6 random walk (bottom).



Chapter 4. Reinforcement Learning with Gaussian Processes 124

−60

−60

−60

−60

−50

−50

−50

−50

−50

−50

−50

−50

−40

−40

−40

−40

−40

−30

−30

−30

−30
−30

−30

−30

−20

−20

−20

−20

−20

−20

−20

−10

−10−10

0

GPSARSA: Value GPSARSA: Policy

−50

−50

−40

−40 −40

−40

−40

−40

−30 −30

−30

−30

−30

−30

−30

−30

−30
−30

−20 −20

−20

−20

−20

−20

−20

−20

−20

−10

−10

−10

−10

GPSARSA: Value GPSARSA: Policy

−60

−60

−60

−50

−50

−50

−50

−50

−50

−50

−50

−50

−50

−50

−50

−50

−40

−40

−40

−40

−40

−40

−40

−40

−40

−40

−40

−40

−30

−30

−30
−30

−30

−20

−20

−20

−10

−10

0

GPSARSA: Value GPSARSA: Policy

−50

−40
−40

−40

−40

−40

−40

−40
−40

−40 −40

−40

−40

−40

−30

−30

−30

−30

−30

−30

−30

−30

−20

−20

−20

−20

−10

−10

0

GPSARSA: Value GPSARSA: Policy

Figure 4.7: The posterior value mean (left) and the corresponding greedy policy
(right) for four different mazes, after 200 learning episodes. In each maze, the goal
region is the dark (red) rectangle.



Chapter 5

Conclusion

The most significant contribution of this thesis is in presenting a new Bayesian frame-

work for reasoning about value functions in reinforcement learning problems. The

strengths of this GP-based Bayesian approach lie in its ability to provide probabilis-

tic predictions amounting to a complete posterior distribution over value functions,

conditioned on the observed history of state-action-reward transitions. The ability

of the GPTD framework to provide a confidence measure on value predictions in

large MDPs is quite unique, and has many potential uses. By employing different

forms of noise statistics we were able to obtain a generative model specifically tai-

lored to MDPs with deterministic transitions, as well as a family of models capable

of handling general MDPs.

The GPTD framework presented here may be used either parametrically or

nonparametrically. In the former case, interesting connections between GPTD algo-

rithms and classical parametric RL algorithms are revealed, providing insight into

the implicit assumptions underlying the latter class of algorithms. A set of efficient

recursive algorithms for computing the posterior moments were derived, correspond-

ing to the two generative models mentioned above. When phrased nonparametri-

cally, the GPTD framework results in a family of kernel algorithms that search for

a solution to the value estimation problem in an generally infinite dimensional func-

tion space. The use of general Mercer kernels as the basic representational element

is another unique feature of our method, which would allow practitioners to solve

RL problems in domains for which the parametric, feature-vector based approach is

unsuitable. A sequential sparsification method, presented in Chapter 2, is essential

for overcoming the computational difficulties associated with this search. Using this

method allowed us to derive recursive, efficient, online algorithms for computing the

posterior value moments in the nonparametric case.

The kernel-RLS algorithm described in Chapter 3, which also employs our spar-

sification method, is another important contribution. Online kernel algorithms, such

as KRLS should be considered as viable alternatives to traditional parametric algo-

125



Chapter 5. Conclusion 126

rithms in application domains requiring sequential, online mode of operation, such

as signal processing and data mining. Kernel methods have been slow in penetrating

these domains due to the off-line, non-sequential nature of most kernel algorithms,

and their difficulty in handling large amounts of data. Algorithms such as KRLS

should help rectify this situation.

For want of space, some of the other contributions accomplished during the thesis

work had to be left out from this thesis. These include

• An online algorithm, which may be used to learn in an unsupervised manner,

maps of Markov processes and MDPs embedded in Euclidean space. Distances

in the resulting maps reflect the strength of interaction among the states of

the MDP (Engel & Mannor, 2001).

• A sparse online SVR-like regression algorithm (Engel et al., 2002). As in the

kernel-RLS algorithm, the sparsification method of Chapter 2 is employed to

reduce the number of variables used in the maximization of the dual SVR

Lagrangian. This results in a highly efficient regression algorithm, performing

on a par with state-of-the-art kernel regression algorithms.

• An additional GPTD algorithm for collaborative/parallelized policy evalua-

tion. This algorithm may be used to accurately merge posterior value GPs

learned by multiple GPTD-learning agents into a single unified value GP (En-

gel & Mannor, 2005).

5.1 Future Work

The emphasis in this thesis has been on developing the theory of Gaussian processes

for RL. Empirical work was therefore largely restricted to verifying that our technical

results bear out in reality. Future work (underway) is aimed at solving large scale RL

problems using the GPTD framework, taking leverage on the particular advantages

specific to this framework, such as the nonparametric form of representation and

the confidence intervals it provides.

Standing challenges for future work include balancing exploration and exploita-

tion in RL using the value confidence intervals provided by GPTD methods; fur-

ther exploring the space of GPTD models by considering additional noise covariance

structures; application of the GPTD methodology to POMDPs; creating a GP-based

Actor-Critic architecture; GPQ-Learning for off-policy learning of the optimal pol-

icy; parallelizing and distributing GPTD and GPSARSA among multiple agents;

analyzing the convergence properties of GPTD; and searching for the optimal noise

covariance.



Appendix A

Derivation of Recursive GPTD

Algorithms

A.1 Deterministic Transitions

A.1.1 Parametric GPTD Updates

Recall the alternative expressions for the parametric posterior moments (4.3.15,

4.3.16):

Pt =
(

∆ΦtΣ
−1
t ∆Φ⊤

t + I
)−1

ŵt = PtΣ
−1
t ∆Φtrt−1,

where

∆φt
def
= φ(xt−1) − γφ(xt), ∆Φt

def
= ΦtH

⊤
t = [∆φ1, . . . ,∆φt],

and Σt = diag(σ2
0 , . . . , σ

2
t−1). We therefore have

Σt =

[

Σt−1 0

0⊤ σ2
t−1

]

.

Consequently,

P−1
t = P−1

t−1 +
1

σ2
t−1

∆φt∆φ
⊤
t ,

and by the Matrix Inversion lemma,

Pt = Pt−1 −
Pt−1∆φt∆φ

⊤
t Pt−1

σ2
t−1 + ∆φ⊤

t Pt−1∆φt

.

127



Appendix A. Derivation of Recursive GPTD Algorithms 128

Let us define

q̂t =
Pt−1∆φt

σ2
t−1 + ∆φ⊤

t Pt−1∆φt

,

then

Pt = Pt−1 − q̂t∆φ
⊤
t Pt−1.

We are now ready to derive the recursive update rule for the posterior mean ŵt.

ŵt = Pt∆ΦtΣ
−1
t rt−1

= Pt

[

∆Φt−1, ∆φt

]

[

Σ−1
t−1 0

0⊤ σ−2
t−1

](

rt−2

rt−1

)

= Pt

(

∆Φt−1Σ
−1
t−1rt−2 +

1

σ2
t−1

∆φtrt−1

)

=
(

Pt−1 − q̂t∆φ
⊤
t Pt−1

)

∆Φt−1Σ
−1
t−1rt−2 + q̂trt−1

= ŵt−1 + q̂t

(

rt−1 − ∆φ⊤
t ŵt−1

)

.

In the equality before the last we used the (easily obtained) identity q̂t = 1
σ2

t−1

Pt∆φt.

A.1.2 Symmetric Parametric GPTD Updates

Let us define

Qt =
(

∆Φ⊤
t ∆Φt + Σt

)−1
.

Then, the posterior moments (4.3.11, 4.3.12) are given by

ŵt = ∆ΦtQtrt−1, and Pt = I − ∆ΦtQt∆Φ⊤
t .

Q−1
t satisfies the following recursion

Q−1
t =

[

Q−1
t−1 ∆Φ⊤

t−1∆φt

∆φ⊤
t ∆Φt−1 σ2

t−1 + ∆φ⊤
t ∆φt

]

.

Application of the partitioned matrix inversion formula (see Appendix D.4) results

in

Qt =

[

Qt−1 0

0⊤ 0

]

+
1

st

(

gt

−1

)

(

g⊤t , −1
)

,



Appendix A. Derivation of Recursive GPTD Algorithms 129

where

gt = Qt−1∆Φ⊤
t−1∆φt,

st = σ2
t−1 + ∆φ⊤

t ∆φt − g⊤t ∆Φ⊤
t−1∆φt = σ2

t−1 + ∆φ⊤
t Pt−1∆φt.

Let us derive the recursions for ŵt and Pt:

ŵt = ∆ΦtQtrt−1

=
[

∆Φt−1, ∆φt

]

([

Qt−1 0

0⊤ 0

]

+

(

gt

−1

)

(

g⊤t , −1
)

)(

rt−2

rt−1

)

= ŵt−1 −
1

st
pt

(

g⊤t rt−2 − rt−1

)

= ŵt−1 +
1

st
ptdt,

where we defined dt = rt−1 − ∆φ⊤
t ŵt−1. Similarly,

Pt = I− ∆ΦtQt∆Φ⊤
t

= I− ∆Φt−1Qt−1∆Φ⊤
t−1 −

1

st
(∆Φt−1gt −∆φt) (∆Φt−1gt − ∆φt)

⊤

= Pt−1 −
1

st
ptp

⊤
t ,

where we defined pt = ∆φt −∆Φt−1gt = Pt−1∆φt.

A.1.3 Exact Nonparametric GPTD Updates

In the nonparametric case the parameters of the posterior moments are (see Eq. 4.3.18,

4.3.19)

αt = H⊤
t Qtrt−1, and Ct = H⊤

t QtHt,

where Qt =
(

HtKtH
⊤
t + Σt

)−1
. The matrices Ht, Kt and Σt satisfy simple recur-

sions:

Ht =

[

Ht−1 0

h⊤
t

]

, where ht = (0, . . . , 1,−γ)⊤,

Kt =

[

Kt−1 kt−1(xt)

kt−1(xt)
⊤ k(xt,xt)

]

, and Σt =

[

Σt−1 0

0⊤ σ2
t−1

]

.



Appendix A. Derivation of Recursive GPTD Algorithms 130

These recursions result in a corresponding recursion for Q−1
t :

Q−1
t = HtKtH

⊤
t + Σt

=

[

Ht−1 0

h⊤
t

][

Kt−1 kt−1(xt)

kt−1(xt)
⊤ k(xt,xt)

][

H⊤
t−1 ht

0⊤

]

+

[

Σt−1 0

0⊤ σ2
t−1

]

=

[

Q−1
t−1 Ht−1∆kt

(Ht−1∆kt)
⊤ ∆ktt + σ2

t−1

]

,

where we defined

∆kt
def
= Kt−1ht = kt−1(xt−1) − γkt−1(xt),

∆ktt
def
= h⊤

t ∆kt = k(xt−1,xt−1) − 2γk(xt−1,xt) + γ2k(xt,xt).

Using the partitioned matrix inversion formula (see Appendix D.4), we obtain the

following expression for Qt:

Qt =
1

st

[

stQt−1 + gtg
⊤
t −gt

−g⊤t 1

]

,

where gt = QtHt−1∆kt, and st = σ2
t−1 + ∆ktt − ∆k⊤

t Ct−1∆kt. Let us define

ct = ht −
(

H⊤
t−1gt

0

)

= ht −
(

Ct−1∆kt

0

)

.

We are now ready to derive the recursions for Ct and αt:

Ct = H⊤
t QtHt

=
1

st

[

H⊤
t−1 ht

0⊤

][

stQt−1 + gtg
⊤
t −gt

−g⊤t 1

][

Ht−1 0

h⊤
t

]

=

[

Ht−1Qt−1H
⊤
t−1 0

0⊤ 0

]

+
1

st

((

H⊤
t−1gt

0

)

− ht

)((

H⊤
t−1gt

0

)

− ht

)⊤

=

[

Ct−1 0

0⊤ 0

]

+
1

st
ctc

⊤
t .



Appendix A. Derivation of Recursive GPTD Algorithms 131

αt = H⊤
t Qtrt−1

=
1

st

[

H⊤
t−1 ht

0⊤

][

stQt−1 + gtg
⊤
t −gt

−g⊤t 1

][

rt−2

rt−1

]

=

(

αt−1

0

)

+
1

st

((

H⊤
t−1gt

0

)

− ht

)

(

g⊤t rt−2 − rt−1

)

=

(

αt−1

0

)

+
ct

st

(

rt−1 − ∆k̃⊤
t αt−1

)

.

A.1.4 Sparse Nonparametric GPTD Updates

Here we derive the updates for the reduced posterior mean and covariance parame-

ters

α̃t = H̃⊤
t Q̃trt−1, C̃t = H̃⊤

t Q̃tH̃t.

where

H̃t = HtAt, Q̃t = (H̃tK̃tH̃
⊤
t + Σt)

−1.

At each time-step we will have to consider two possible contingencies: Either Dt =

Dt−1, or Dt = Dt−1 ∪ {xt}. Let us handle these in turn.

Case 1: Dt = Dt−1

Hence K̃t = K̃t−1,

At =

[

At−1

a⊤t

]

, H̃t =

[

H̃t−1

a⊤t−1 − γa⊤t

]

.

Defining h̃t = at−1 − γat, we have

Q̃−1
t =

[

H̃t−1

h̃⊤
t

]

K̃t−1

[

H̃t−1, h̃t

]

+

[

Σt−1 0

0⊤ σ2
t−1

]

=

[

Q̃−1
t−1 H̃t−1K̃t−1h̃t

(H̃t−1K̃t−1h̃t)
⊤ h̃⊤

t K̃t−1h̃t + σ2
t−1

]

.

Defining

∆k̃t
def
= K̃t−1h̃t = k̃t−1(xt−1) − γk̃t−1(xt),

∆ktt
def
= h̃⊤

t K̃t−1h̃t = h̃⊤
t ∆k̃t



Appendix A. Derivation of Recursive GPTD Algorithms 132

we get

Q̃−1
t =

[

Q̃−1
t−1 H̃t−1∆k̃t

(H̃t−1∆k̃t)
⊤ ∆ktt + σ2

t−1

]

.

We obtain Q̃t using the partitioned matrix inversion formula (Appendix D.4).

Q̃t =
1

st

[

stQ̃t−1 + g̃tg̃
⊤
t −g̃t

−g̃⊤t 1

]

,

where g̃t = Q̃t−1H̃t−1∆k̃t, st = σ2
t−1 + ∆ktt − ∆k̃⊤

t C̃t−1∆k̃t. Let us also define

c̃t = h̃t − H̃⊤
t−1g̃t = h̃t − C̃t−1∆k̃t.

Then, st = σ2
t−1 − c̃⊤t ∆k̃t.

We are now ready to compute C̃t:

C̃t = H̃⊤
t Q̃tH̃t

=
1

st

[

H̃⊤
t−1, h̃t

]

[

stQ̃t−1 + g̃tg̃
⊤
t −g̃t

−g̃⊤t 1

][

H̃t−1

h̃⊤
t

]

= H̃⊤
t−1Q̃t−1H̃t−1 +

1

st

[

H̃⊤
t−1 h̃t

]

(

g̃t

−1

)

(

g̃⊤t −1
)

[

H̃t−1

h̃⊤
t

]

= C̃t−1 +
1

st

(

H̃t−1g̃t − h̃t

)(

H̃t−1g̃t − h̃t

)⊤

= C̃t−1 +
1

st
c̃tc̃

⊤
t

The derivation of α̃t proceeds similarly:

α̃t = H̃⊤
t Q̃trt−1

=
1

st

[

H̃⊤
t−1, h̃t

]

[

stQ̃t−1 + g̃tg
⊤
t −gt

−g⊤t 1

][

rt−2

rt−1

]

= H̃⊤
t−1Q̃t−1rt−2 +

1

st

[

H̃⊤
t−1, h̃t

]

(

g̃t

−1

)

(

g̃⊤t −1
)

(

rt−2

rt−1

)

= α̃t−1 +
1

st

(

H̃t−1g̃t − h̃t

)(

g̃⊤t rt−2 − rt−1

)⊤

= α̃t−1 +
c̃t

st

(

rt−1 − ∆k̃⊤
t α̃t−1

)

.



Appendix A. Derivation of Recursive GPTD Algorithms 133

Case 2: Dt = Dt−1 ∪ {xt}

Here, K̃t is given by Eq. 2.2.10, which we repeat here for clarity:

K̃t =

[

K̃t−1 k̃t−1(xt)

k̃t−1(xt)
⊤ k(xt,xt)

]

Furthermore, at = (0, . . . , 1)⊤ since the last member added to the dictionary is xt

itself (and φ(xt) is exactly representable by itself). Therefore

At =

[

At−1 0

0⊤ 1

]

, H̃t =

[

H̃t−1 0

a⊤t−1 −γ

]

=

[

H̃t−1 0

h̃⊤
t

]

,

where we defined

h̃t =

(

at−1

0

)

− γat =

(

at−1

−γ

)

.

The recursion for Q̃−1
t is slightly different here:

Q̃−1
t =

[

H̃t−1 0

h̃⊤
t

][

K̃t−1 k̃t−1(xt)

k̃t−1(xt)
⊤ k(xt,xt)

][

H̃⊤
t−1 h̃t

0⊤

]

+

[

Σt−1 0

0⊤ σ2
t−1

]

=

[

Q̃−1
t−1 H̃t−1∆k̃t

(H̃t−1∆k̃t)
⊤ ∆ktt + σ2

t−1

]

,

where we defined

∆k̃t
def
= K̃t−1at−1 − γk̃t−1(xt) = k̃t−1(xt−1) − γk̃t−1(xt),

∆ktt
def
= a⊤t−1K̃t−1at−1 − 2γa⊤t−1k̃t−1(xt) + γk(xt,xt)

= a⊤t−1

(

k̃t−1(xt−1) − 2γk̃t−1(xt)
)

+ γ2k(xt,xt).

Denoting st = σ2
t−1 + ∆ktt −∆k̃⊤

t C̃t−1∆k̃t and using again the partitioned matrix

inversion formula we get

Q̃t =
1

st

[

stQ̃t−1 + g̃tg̃
⊤
t −g̃t

−g̃⊤t 1

]

,

with g̃t = Q̃tH̃t−1∆k̃t, as before. Let us define

c̃t = h̃t −
(

H̃⊤
t−1g̃t

0

)

= h̃t −
(

C̃t−1∆k̃t

0

)

.



Appendix A. Derivation of Recursive GPTD Algorithms 134

We are now ready to compute C̃t and α̃t:

C̃t = H̃⊤
t Q̃tH̃t

=
1

st

[

H̃⊤
t−1 h̃t

0⊤

][

stQ̃t−1 + g̃tg̃
⊤
t −g̃t

−g̃⊤t 1

][

H̃t−1 0

h̃⊤
t

]

=

[

H̃t−1Q̃t−1H̃
⊤
t−1 0

0⊤ 0

]

+
1

st

((

H̃⊤
t−1g̃t

0

)

− h̃t

)((

H̃⊤
t−1g̃t

0

)

− h̃t

)⊤

=

[

C̃t−1 0

0⊤ 0

]

+
1

st
c̃tc̃

⊤
t .

α̃t = H̃⊤
t Q̃trt−1

=
1

st

[

H̃⊤
t−1 h̃t

0⊤

][

stQ̃t−1 + g̃tg̃
⊤
t −g̃t

−g̃⊤t 1

][

rt−2

rt−1

]

=

(

α̃t−1

0

)

+
1

st

((

H̃⊤
t−1g̃t

0

)

− h̃t

)

(

g⊤t rt−2 − rt−1

)

=

(

α̃t−1

0

)

+
c̃t

st

(

rt−1 − ∆k̃⊤
t α̃t−1

)

.



Appendix A. Derivation of Recursive GPTD Algorithms 135

A.2 Stochastic Transitions

A.2.1 Parametric Monte-Carlo GPTD Updates

Recall the expressions for the parametric posterior moments (Eq. 4.4.40):

ŵt = ∆ΦtQtrt−1, Pt = I−∆ΦtQt∆Φ⊤
t , where Qt =

(

∆Φ⊤
t ∆Φt + Σt

)−1
,

where we used the definition ∆Φt = ΦtH
⊤
t . In the sequel we will also use the

following definitions:

ht = [0, . . . , 1,−γ]⊤, and ∆φt = Φtht = φ(xt−1) − γφ(xt).

The matrices ∆Φt, Σt and Q−1
t may be written recursively as follows:

∆Φt =
[

∆Φt−1, ∆φt

]

, (A.2.1)

Σt =

[

Σt−1 ,−γσ2
t−1u

−γσ2
t−1u

⊤ , σ2
t−1 + γ2σ2

t

]

, and

Q−1
t =

[

Q−1
t−1 ,∆Φ⊤

t−1∆φt − γσ2
t−1u

(∆Φ⊤
t−1∆φt − γσ2

t−1u)⊤ ,∆φ⊤
t ∆φt + σ2

t−1 + γ2σ2
t

]

, (A.2.2)

where u = [0, . . . , 1]⊤. Using the partitioned matrix inversion formula (Appendix

D.4) we may invert Q−1
t to obtain

Qt =
1

st

[

stQt−1 + gtg
⊤
t −gt

−g⊤t 1

]

,

where

gt = Qt−1

(

∆Φ⊤
t−1∆φt − γσ2

t−1u
)

st = σ2
t−1 + γ2σ2

t + ∆φ⊤
t ∆φt −

(

∆Φ⊤
t−1∆φt − γσ2

t−1u
)⊤
gt.



Appendix A. Derivation of Recursive GPTD Algorithms 136

Let us write the expression for ŵt from Eq. (4.4.40):

ŵt = ∆ΦtQtrt−1

=
1

st

[

∆Φt−1,∆φt

]

[

stQt−1 + gtg
⊤
t −gt

−g⊤t 1

](

rt−2

rt−1

)

= ∆Φt−1Qt−1rt−2 +
1

st

[

∆Φt−1, ∆φt

]

(

gt

−1

)

(

g⊤t , −1
)

(

rt−2

rt−1

)

= ŵt−1 +
1

st
(∆Φt−1gt − ∆φt)

(

g⊤t rt−2 − rt−1

)

= ŵt−1 +
pt

st
dt,

where we have defined dt = rt−1 − g⊤t rt−2 and pt = ∆φt − ∆Φt−1gt.

We treat Pt similarly:

Pt = I − ∆ΦtQt∆Φ⊤
t

= I − 1

st

[

∆Φt−1,∆φt

]

[

stQt−1 + gtg
⊤
t −gt

−g⊤t 1

] [

∆Φ⊤
t−1

∆φ⊤
t

]

= I − ∆Φt−1Qt−1∆Φ⊤
t−1 −

1

st

[

∆Φt−1, ∆φt

]

(

gt

−1

)

(

g⊤t , −1
)

[

∆Φ⊤
t−1

∆φ⊤
t

]

= Pt−1 −
1

st
(∆Φt−1gt − ∆φt) (∆Φt−1gt − ∆φt)

⊤

= Pt−1 −
1

st
ptp

⊤
t .

We are not done quite yet, since dt, pt and st are expressed in terms of several t

(or t − 1) dimensional vectors and matrices, making their computation inefficient.

Next, we derive efficient recursive update rules for dt, pt and st, that involve, at

most, n-dimensional entities. Let us begin with dt:

dt = rt−1 − g⊤t rt−2

= rt−1 −
(

∆Φ⊤
t−1∆φt − γσ2

t−1u
)⊤

Qt−1rt−2

= rt−1 − ∆φ⊤
t ŵt−1 +

γσ2
t−1

st−1

[

−g⊤t−1, 1
]

(

rt−3

rt−2

)

=
γσ2

t−1

st−1
dt−1 + rt−1 − (φ(xt−1) − γφ(xt))

⊤ ŵt−1.



Appendix A. Derivation of Recursive GPTD Algorithms 137

Next, we treat pt:

pt = ∆φt − ∆Φt−1gt

= ∆φt − ∆Φt−1Qt−1

(

∆Φ⊤
t−1∆φt − γσ2

t−1u
)

= Pt−1∆φt +
γσ2

t−1

st−1

[

∆Φt−2, ∆φt−1

]

[

−gt−1

1

]

=
γσ2

t−1

st−1
pt−1 + Pt−1 (φ(xt−1) − γφ(xt)) .

Finally, st:

st = σ2
t−1 + γ2σ2

t + ∆φ⊤
t ∆φt −

(

∆Φ⊤
t−1∆φt − γσ2

t−1u
)⊤
gt

The last term on the r.h.s. is

(

∆Φ⊤
t−1∆φt − γσ2

t−1u
)⊤
gt =

(

∆Φ⊤
t−1∆φt − γσ2

t−1u
)⊤

Qt−1

(

∆Φ⊤
t−1∆φt − γσ2

t−1u
)

=

∆φ⊤
t (I −Pt−1)∆φt − 2γσ2

t−1u
⊤Qt−1∆Φ⊤

t−1∆φt + γ2σ4
t−1u

⊤Qt−1u =

∆φ⊤
t (I −Pt−1)∆φt −

2γσ2
t−1

st−1

[

−g⊤t−1, 1
]

∆Φ⊤
t−1∆φt + γ2σ4

t−1u
⊤Qt−1u =

∆φ⊤
t (I −Pt−1)∆φt −

2γσ2
t−1

st−1

(

∆φt−1 − ∆Φt−2gt−1

)⊤
∆φt + γ2σ4

t−1u
⊤Qt−1u =

∆φ⊤
t (I −Pt−1)∆φt −

2γσ2
t−1

st−1
p⊤

t−1∆φt +
γ2σ4

t−1

st−1

Assuming that we already computed pt, we may substitute

Pt−1∆φt = pt −
γσ2

t−1

st−1
p⊤

t−1,

Resulting in our final expression for st:

st = σ2
t−1 + γ2σ2

t + ∆φ⊤
t Pt−1∆φt +

2γσ2
t−1

st−1
p⊤

t−1∆φt −
γ2σ4

t−1

st−1

= σ2
t−1 + γ2σ2

t +

(

pt +
γσ2

t−1

st−1
pt−1

)⊤
(φ(xt−1) − γφ(xt)) −

γ2σ4
t−1

st−1
.

Throughout the derivations above we repeatedly made use of I−Pt−1 = Φt−1H
⊤
t−1Qt−1Ht−1Φ

⊤
t−1,

Qt−1u = [−g⊤t−1, 1]
⊤, and the recursive expressions for Ht−1, Qt−1, Φt−1 and rt−1.



Appendix A. Derivation of Recursive GPTD Algorithms 138

A.2.2 Nonparametric Monte-Carlo GPTD

Recall the expressions for the nonparametric posterior mean and variance (Eq. 4.3.19):

V̂t(x) = kt(x)⊤αt, and Pt(x,x
′) = k(x,x′) − kt(x)⊤Ctkt(x

′),

respectively, with αt = H⊤
t Qtrt−1, Ct = H⊤

t QtHt and Qt =
(

HtKtH
⊤
t + Σt

)−1
.

Let us write recursive expressions for Ht, Σt and Q−1
t . Define u = (0, . . . , 0, 1)⊤

and ht = (u⊤,−γ)⊤ = (0, . . . , 1,−γ)⊤, then,

Ht =

[

Ht−1, 0

h⊤
t

]

, Kt =

[

Kt−1 kt−1(xt)

kt−1(xt)
⊤ k(xt,xt)

]

,

Σt =

[

Σt−1 −γσ2
t−1u

−γσ2
t−1u

⊤ σ2
t−1 + γ2σ2

t

]

.

Substituting these into the expression for Q−1
t we get,

Q−1
t = HtKtH

⊤
t + Σt =

[

Q−1
t−1 Ht−1∆kt − γσ2

t−1u

(Ht−1∆kt − γσ2
t−1u)⊤ ∆ktt + σ2

t−1 + γ2σ2
t

]

,

where we made use of the definitions

∆kt
def
= kt−1(xt−1) − γkt−1(xt),

∆ktt
def
= k(xt−1,xt−1) − 2γk(xt−1,xt) + γ2k(xt,xt).

Qt may now be obtained using the partitioned matrix inversion formula (see

Appendix D.4):

Qt =
1

st

[

stQt−1 + gtg
⊤
t −gt

−g⊤t 1

]

,

where gt = Qt−1

(

Ht−1∆kt − γσ2
t−1u

)

, and st = σ2
t−1+γ

2σ2
t +∆ktt−g⊤t

(

Ht−1∆kt − γσ2
t−1u

)

.

Let us define

ct = ht −
(

H⊤
t−1gt

0

)

, and dt = rt−1 − g⊤t rt−2.



Appendix A. Derivation of Recursive GPTD Algorithms 139

We are now ready to derive the recursions for Ct and αt:

Ct = H⊤
t QtHt

=
1

st

[

H⊤
t−1 ht

0⊤

][

stQt−1 + gtg
⊤
t −gt

−g⊤t 1

][

Ht−1 0

h⊤
t

]

=

[

Ht−1Qt−1H
⊤
t−1 0

0⊤ 0

]

+
1

st

((

H⊤
t−1gt

0

)

− ht

)((

H⊤
t−1gt

0

)

− ht

)⊤

=

[

Ct−1 0

0⊤ 0

]

+
1

st
ctc

⊤
t .

αt = H⊤
t Qtrt−1

=
1

st

[

H⊤
t−1 ht

0⊤

][

stQt−1 + gtg
⊤
t −gt

−g⊤t 1

][

rt−2

rt−1

]

=

(

αt−1

0

)

+
1

st

((

H⊤
t−1gt

0

)

− ht

)

(

g⊤t rt−2 − rt−1

)

=

(

αt−1

0

)

+
ct

st
dt.

We are not done quite yet, since dt, ct and st are not explicitly given in terms of

current-time-step quantities, as in the case of deterministic transitions. We show

next that, similarly to the parametric updates derived above, dt, ct and st may be

recursively updated without requiring any additional bookkeeping, apart of main-

taining the sequence of states seen so far. Let us begin with dt:

dt = rt−1 − g⊤t rt−2

= rt−1 −
(

Ht−1∆kt − γσ2
t−1u

)⊤
Qt−1rt−2

= rt−1 − ∆k⊤
t αt−1 −

γσ2
t−1

st−1

(

g⊤t−1rt−3 − rt−2

)

=
γσ2

t−1

st−1
dt−1 + rt−1 − ∆k⊤

t αt−1.



Appendix A. Derivation of Recursive GPTD Algorithms 140

Turning to ct, first notice that

H⊤
t Qtu =

1

st

[

H⊤
t−1 ht

0⊤

][

stQt−1 + gtg
⊤
t −gt

−g⊤t 1

]

u

=
1

st

[

H⊤
t−1 ht

0⊤

](

−gt

1

)

=
1

st

(

ht −
(

H⊤
t−1gt

0

))

=
ct

st
.

Therefore,

ct = ht −
(

H⊤
t−1gt

0

)

= ht −
(

H⊤
t−1Qt−1

(

Ht−1∆kt − γσ2
t−1u

)

0

)

= ht −
(

Ct−1∆kt − γσ2
t−1H

⊤
t−1Qt−1u

0

)

= ht −
(

Ct−1∆kt − γσ2
t−1

st−1
ct−1

0

)

=
γσ2

t−1

st−1

(

ct−1

0

)

+ ht −
(

Ct−1∆kt

0

)

.

Finally, st:

st = σ2
t−1 + γ2σ2

t + ∆ktt − g⊤t
(

Ht−1∆kt − γσ2
t−1u

)

= σ2
t−1 + γ2σ2

t + ∆ktt −
(

Ht−1∆kt − γσ2
t−1u

)⊤
Qt−1

(

Ht−1∆kt − γσ2
t−1u

)

= σ2
t−1 + γ2σ2

t + ∆ktt − ∆k⊤
t Ct−1∆kt + 2γσ2

t−1u
⊤Qt−1Ht−1∆kt −

γ2σ4
t−1

st−1

= σ2
t−1 + γ2σ2

t + ∆ktt − ∆k⊤
t Ct−1∆kt +

2γσ2
t−1

st−1
c⊤t−1∆kt −

γ2σ4
t−1

st−1
.

A.2.3 Sparse Nonparametric Monte-Carlo GPTD

At each time step the current sampled state xt may either be left out of the dic-

tionary, in which case Dt = Dt−1, or added to it, in which case Dt = Dt−1 ∪ {xt},
as determined by the sparsification criterion. Let us begin with the updates for the

first case.



Appendix A. Derivation of Recursive GPTD Algorithms 141

Case 1: Dt = Dt−1

Since the dictionary remains unchanged, K̃t = K̃t−1. Defining h̃t = at−1 − γat and

u = [0, . . . , 0, 1]⊤, we have

At =

[

At−1

a⊤t

]

, H̃t =

[

H̃t−1

h̃⊤
t

]

, Σt =

[

Σt−1 −γσ2
t−1u

−γσ2
t−1u

⊤ σ2
t−1 + γ2σ2

t

]

.

Consequently, we may obtain a recursive formula for Q̃−1
t (see Eq. 4.3.27):

Q̃−1
t =

[

H̃t−1

h̃⊤
t

]

K̃t−1

[

H̃t−1, h̃t

]

+

[

Σt−1 −γσ2
t−1u

−γσ2
t−1u

⊤ σ2
t−1 + γ2σ2

t

]

=

[

Q̃−1
t−1 H̃t−1∆k̃t − γσ2

t−1u

(H̃t−1∆k̃t − γσ2
t−1u)⊤ ,∆ktt + σ2

t−1 + γ2σ2
t

]

,

where in the last equality we used the definition ∆k̃t
def
= K̃t−1h̃t = k̃t−1(xt−1) −

γk̃t−1(xt), and ∆ktt = h̃⊤
t ∆k̃t. We may now invert Q̃−1

t using the partitioned

matrix inversion formula:

Q̃t =
1

st

[

stQ̃t−1 + g̃tg̃
⊤
t −g̃t

−g̃⊤t 1

]

,

where g̃t = Q̃t−1

(

H̃t−1∆k̃t − γσ2u
)

, and st = (1+γ2)σ2+∆ktt−g̃⊤t
(

H̃t−1∆k̃t − γσ2u
)

.

Let us define c̃t =
(

h̃t − H̃t−1g̃t

)

. The update of the covariance parameter matrix

C̃t is:

C̃t = H̃⊤
t Q̃H̃t

=
1

st

[

H̃⊤
t−1, h̃t

]

[

stQ̃t−1 + g̃tg̃
⊤
t −g̃t

−g̃⊤t 1

][

H̃t−1

h̃⊤
t

]

= H̃⊤
t−1Q̃t−1H̃t−1 +

1

st

[

H̃⊤
t−1 h̃t

]

(

g̃t

−1

)

(

g̃⊤t −1
)

[

H̃t−1

h̃⊤
t

]

= C̃t−1 +
1

st

(

H̃t−1g̃t − h̃t

)(

H̃t−1g̃t − h̃t

)⊤

= C̃t−1 +
1

st
c̃tc̃

⊤
t .



Appendix A. Derivation of Recursive GPTD Algorithms 142

Next, we compute α̃t:

α̃t = H̃⊤
t Q̃trt−1

=
1

st

[

H̃⊤
t−1, h̃t

]

[

stQ̃t−1 + g̃tg̃
⊤
t ,−g̃t

−g̃⊤t , 1

](

rt−2

rt−1

)

= α̃t−1 +
1

st
(H̃⊤

t−1g̃t − h̃t)(g̃
⊤
t rt−2 − rt−1)

= α̃t−1 +
c̃t

st
dt,

where we have defined

dt = rt−1 − g̃⊤t rt−2.

Note that g̃t is a (t− 1)× 1 vector; we would therefore like to eliminate it from our

updates, since we aim at keeping the memory and time requirements of each update

independent of t. Due to the special form of the matrix Σt we can derive simple

recursive formulas for c̃t, dt and st, thus eliminating g̃t from the updates. Let us

begin with c̃t:

c̃t = h̃t − H̃⊤
t−1g̃t

= h̃t − H̃⊤
t−1Q̃t−1

(

H̃t−1∆k̃t − γσ2
t−1u

)

= h̃t − C̃t−1∆k̃t + γσ2
t−1H̃t−1Q̃t−1u

= h̃t − C̃t−1∆k̃t +
γσ2

t−1

st−1

(

h̃t−1 − H̃t−2g̃t−1

)

=
γσ2

t−1

st−1
c̃t−1 + h̃t − C̃t−1∆k̃t.

Turning to dt:

dt = rt−1 − g̃⊤t rt−2

= rt−1 −
(

H̃t−1∆k̃t − γσ2
t−1u

)⊤
Q̃t−1rt−2

= rt−1 − ∆k̃⊤
t α̃t−1 −

γσ2
t−1

st−1

(

g̃⊤t−1rt−3 − rt−2

)

=
γσ2

t−1

st−1
dt−1 + rt−1 − ∆k̃⊤

t α̃t−1



Appendix A. Derivation of Recursive GPTD Algorithms 143

Finally, st:

st = σ2
t−1 + γ2σ2

t + ∆ktt − g̃⊤t
(

H̃t−1∆k̃t − γσ2
t−1u

)

= σ2
t−1 + γ2σ2

t + ∆ktt −
(

H̃t−1∆k̃t − γσ2
t−1u

)⊤
Q̃t−1

(

H̃t−1∆k̃t − γσ2
t−1u

)

= σ2
t−1 + γ2σ2

t + ∆ktt − ∆k̃⊤
t C̃t−1∆k̃t + 2γσ2

t−1u
⊤Q̃t−1H̃t−1∆k̃t −

γ2σ4
t−1

st−1

= σ2
t−1 + γ2σ2

t + h̃⊤
t ∆k̃t − ∆k̃⊤

t C̃t−1∆k̃t +
2γσ2

t−1

st−1
c̃⊤t−1∆k̃t −

γ2σ4
t−1

st−1

Recall that C̃t−1∆k̃t was computed for the c̃t update. Given c̃t we may substitute

C̃t−1∆k̃t = γσ2

st−1
c̃t−1 − c̃t + h̃t, resulting in

st = σ2
t−1 + γ2σ2

t + h̃⊤
t ∆k̃t

− ∆k̃⊤
t

(

γσ2

st−1
c̃t−1 − c̃t + h̃t

)

+
2γσ2

st−1
c̃⊤t−1∆k̃t −

γ2σ4
t−1

st−1

= σ2
t−1 + γ2σ2

t + ∆k̃⊤
t

(

c̃t +
γσ2

st−1
c̃t−1

)

− γ2σ4
t−1

st−1
.

Case 2: Dt = Dt−1 ∪ {xt}

Here, K̃t is given by Eq. 2.2.10, which we repeat here for clarity:

K̃t =

[

K̃t−1 k̃t−1(xt)

k̃t−1(xt)
⊤ k(xt,xt)

]

Furthermore, at = (0, . . . , 1)⊤ since the last member added to the dictionary is xt

itself (and φ(xt) is exactly representable by itself). Therefore

At =

[

At−1 0

0⊤ 1

]

, H̃t =

[

H̃t−1 0

a⊤t−1 −γ

]

=

[

H̃t−1 0

h̃⊤
t

]

,

where we defined

h̃t =

(

at−1

0

)

− γat =

(

at−1

−γ

)

.

The recursion for Q̃−1
t is given by:

Q̃−1
t =

[

H̃t−1 0

h̃⊤
t

][

K̃t−1 k̃t−1(xt)

k̃t−1(xt)
⊤ k(xt,xt)

][

H̃⊤
t−1 h̃t

0⊤

]

+

[

Σt−1 −γσ2
t−1u

−γσ2
t−1u

⊤ σ2
t−1 + γ2σ2

t

]

=

[

Q̃−1
t−1 H̃t−1∆k̃t

(H̃t−1∆k̃t)
⊤ ∆ktt + σ2

t−1 + γ2σ2
t

]

,



Appendix A. Derivation of Recursive GPTD Algorithms 144

where we defined

∆k̃t
def
= K̃t−1at−1 − γk̃t−1(xt) = k̃t−1(xt−1) − γk̃t−1(xt),

∆ktt
def
= a⊤t−1K̃t−1at−1 − 2γa⊤t−1k̃t−1(xt) + γ2k(xt,xt)

= a⊤t−1

(

k̃t−1(xt−1) − 2γk̃t−1(xt)
)

+ γ2k(xt,xt).

Defining, as before, g̃t = Q̃t−1

(

H̃t−1∆k̃t − γσ2u
)

and st = σ2
t−1 + γ2σ2

t + ∆ktt −
g̃⊤t
(

H̃t−1∆k̃t − γσ2u
)

, and using again the partitioned matrix inversion formula

we get

Q̃t =
1

st

[

stQ̃t−1 + g̃tg̃
⊤
t −g̃t

−g̃⊤t 1

]

.

Let us define

c̃t = h̃t −
(

H̃⊤
t−1g̃t

0

)

, and dt = rt−1 − g̃⊤t rt−2.

We are now ready to compute C̃t and α̃t:

C̃t = H̃⊤
t Q̃tH̃t

=
1

st

[

H̃⊤
t−1 h̃t

0⊤

][

stQ̃t−1 + g̃tg̃
⊤
t −g̃t

−g̃⊤t 1

][

H̃t−1 0

h̃⊤
t

]

=

[

H̃t−1Q̃t−1H̃
⊤
t−1 0

0⊤ 0

]

+
1

st

((

H̃⊤
t−1g̃t

0

)

− h̃t

)((

H̃⊤
t−1g̃t

0

)

− h̃t

)⊤

=

[

C̃t−1 0

0⊤ 0

]

+
1

st
c̃tc̃

⊤
t .

α̃t = H̃⊤
t Q̃trt−1

=
1

st

[

H̃⊤
t−1 h̃t

0⊤

][

stQ̃t−1 + g̃tg̃
⊤
t −g̃t

−g̃⊤t 1

][

rt−2

rt−1

]

=

(

α̃t−1

0

)

+
1

st

((

H̃⊤
t−1g̃t

0

)

− h̃t

)

(

g̃⊤t rt−2 − rt−1

)

=

(

α̃t−1

0

)

+
c̃t

st
dt.



Appendix A. Derivation of Recursive GPTD Algorithms 145

As above, we still need to derive recursions for dt, c̃t and st. Let us begin with dt:

dt = rt−1 − g̃⊤t rt−2

= rt−1 −
(

H̃t−1∆k̃t − γσ2
t−1u

)⊤
Qt−1rt−2

= rt−1 − ∆k̃⊤
t α̃t−1 −

γσ2
t−1

st−1

(

g̃⊤t−1rt−3 − rt−2

)

=
γσ2

t−1

st−1
dt−1 + rt−1 − ∆k̃⊤

t α̃t−1.

Turning to c̃t, first notice that

H̃⊤
t Qtu =

1

st

[

H̃⊤
t−1 h̃t

0⊤

][

stQt−1 + g̃tg̃
⊤
t −g̃t

−g̃⊤t 1

]

u

=
1

st

[

H̃⊤
t−1 h̃t

0⊤

](

−g̃t

1

)

=
1

st

(

h̃t −
(

H̃⊤
t−1g̃t

0

))

=
c̃t

st
.

Therefore,

c̃t = h̃t −
(

H̃⊤
t−1g̃t

0

)

= h̃t −
(

H̃⊤
t−1Qt−1

(

H̃t−1∆k̃t − γσ2
t−1u

)

0

)

= h̃t −
(

C̃t−1∆k̃t − γσ2
t−1H̃

⊤
t−1Qt−1u

0

)

= h̃t −
(

C̃t−1∆k̃t − γσ2
t−1

st−1
c̃t−1

0

)

=
γσ2

t−1

st−1

(

c̃t−1

0

)

+ h̃t −
(

C̃t−1∆k̃t

0

)

.



Appendix A. Derivation of Recursive GPTD Algorithms 146

Finally, st:

st = σ2
t−1 + γ2σ2

t + ∆ktt − g̃⊤t
(

H̃t−1∆k̃t − γσ2
t−1u

)

= σ2
t−1 + γ2σ2

t + ∆ktt −
(

H̃t−1∆k̃t − γσ2
t−1u

)⊤
Qt−1

(

H̃t−1∆k̃t − γσ2
t−1u

)

= σ2
t−1 + γ2σ2

t + ∆ktt − ∆k̃⊤
t C̃t−1∆k̃t + 2γσ2

t−1u
⊤Qt−1H̃t−1∆k̃t −

γ2σ4
t−1

st−1

= σ2
t−1 + γ2σ2

t + ∆ktt − ∆k̃⊤
t C̃t−1∆k̃t +

2γσ2
t−1

st−1
c̃⊤t−1∆k̃t −

γ2σ4
t−1

st−1
.



Appendix B

TD(1) as a ML Gradient

Algorithm

In what follows, we show that TD(1) may be derived as a gradient ascent method

for maximizing the log-likelihood of the parametric MC-GPTD model, with a fixed

noise variance σ2. This should not come as a surprise, as we have already shown

that LSTD(1) is a ML variant of the MC-GPTD algorithm. We assume that we

are in the episodic setting and that xt is the last state in the current episode. Ht+1

is therefore an invertible (t + 1) × (t + 1) matrix, given by Eq. 4.3.9. Recall the

expression for the log-likelihood:

log Pr(Rt = rt|W ) ∝ −
(

Ht+1Φ
⊤
t W − rt

)⊤
Σ−1

t+1

(

Ht+1Φ
⊤
t W − rt

)

.

Fixing an initial guess for W by setting W = ŵ0 (In the ML framework we no

longer consider the weight vector to be random) and taking the gradient of this

expression w.r.t. ŵ0, we can write down the gradient-based update rule, using

Σt+1 ∝ Ht+1H
⊤
t+1, as follows.

∆ŵ = −ηΦtH
⊤
t+1

(

Ht+1H
⊤
t+1

)−1 (

Ht+1Φ
⊤
t ŵ0 − rt

)

ŵt+1 = ŵ0 + ∆ŵ (B.0.1)

This rule makes all of its updates based on the initial value estimates induced by

ŵ0, waiting until the end of the learning episode before replacing ŵ0 with ŵt+1.

147



Appendix B. TD(1) as a ML Gradient Algorithm 148

The first part of the expression for ∆ŵ is

ΦtH
⊤
t+1

(

Ht+1H
⊤
t+1

)−1
= ΦtH

−1
t+1

=









...
...

φ(x0) , . . . ,φ(xt)
...

...





















1 γ γ2 . . . γt

0 1 γ . . . γt−1

...
...

0 0 0 . . . 1













=









...
...

...

φ(x0) , γφ(x0) + φ(x1) , . . . ,
∑t

i=0 γ
t−iφ(xi)

...
...

...









= Z
(1)
t+1, (B.0.2)

where Z
(1)
t+1 is the eligibility matrix for λ = 1, defined in Eq. (4.5.57). The rightmost

parenthesized term in the update is simply a vector of temporal differences:

Ht+1Φ
⊤
t ŵ0 − rt =



















V̂0(x0) − γV̂0(x1) − r0

V̂0(x1) − γV̂0(x2) − r1
...

V̂0(xt−1) − γV̂0(xt) − rt−1

V̂0(xt) − rt



















.

Overall, the update of Eq. (B.0.1) may be written as

ŵt = ŵ0 − η

t
∑

i=0

zi

(

V̂0(xi) − γV̂0(xi+1) − ri

)

, with V̂0(xt) = 0, (B.0.3)

zi being the i’th column of Z
(1)
t , which is also the TD(1) eligibility vector at time-

step i. V̂0(xt+1) = 0 as xt+1 is a zero-reward absorbing terminal state. The update

equation (B.0.3) is precisely the batch (off-line) form of the TD(1) algorithm for

linear architectures (see Bertsekas & Tsitsiklis, 1996, 6.3.2, 6.3.3, and Sutton &

Barto, 1998).



Appendix C

Proofs

C.1 Proof of Lemma 1.3.2

Lemma. If A is an n×m matrix, B an m×n matrix, and BA+ I non-singular,

then AB + I is also non-singular, and 1

A (BA + I)−1 = (AB + I)−1A.

Proof Assume to the contrary that AB + I is singular, then there exists a vector

y 6= 0 such that

(AB + I)y = 0. (C.1.1)

Left-multiply this by B to obtain

B(AB + I)y = (BA + I)By = 0.

Now, By 6= 0, for otherwise we would have from Eq. (C.1.1) that y = 0. Therefore,

for x
def
= By 6= 0 we have

(BA + I)x = 0,

which means that (BA + I) is singular, resulting in a contradiction.

The second part is proved as follows:

A (BA + I)−1 = (AB + I)−1(AB + I)A (BA + I)−1

= (AB + I)−1A(BA + I)(BA + I)−1

= (AB + I)−1A

1Note that I on the l.h.s. is the m×m identity matrix, while on the r.h.s. it is the n×n identity
matrix.

149



Appendix C. Proofs 150

C.2

Proposition C.2.1. In the parametric model with deterministic transitions

σ2
t−1

st
pt = Cov [W,V (xt−1) − γV (xt) −R(xt−1)|Rt−1] .

Proof First, note that the R(xt−1) term contributes nothing, as it is being condi-

tioned upon. Therefore, we need only compute

Cov [W,V (xt−1) − γV (xt)|Rt−1] = Cov
[

W,h⊤
t Φ⊤

t W |Rt−1

]

= Cov [W,W |Rt−1]Φtht

= Pt∆φt

=

(

Pt−1 −
1

st
ptp

⊤
t

)

∆φt

=
1

st

(

stpt − pt(st − σ2
t−1)

)

=
σ2

t−1

st
pt.

In the third equality we used the definition of Pt, in the fourth the recursive update

for Pt, and in the fifth the definitions of pt and st.

C.3

Proposition C.3.1. In the nonparametric model with deterministic transitions

σ2
t−1

st
c⊤t kt(x) = Cov [V (x), V (xt−1) − γV (xt) −R(xt−1)|Rt−1] .

Proof First, note that the R(xt−1) term contributes nothing, as it is being condi-



Appendix C. Proofs 151

tioned upon. Therefore, we need only compute

Cov [V (x), V (xt−1) − γV (xt)|Rt−1] = Cov [V (x), Vt|Rt−1]ht

= h⊤
t (kt(x) − KtCtkt(x))

= h⊤
t

(

I − Kt

([

Ct−1 0

0⊤ 0

]

+
1

st
ctc

⊤
t

))

kt(x)

=

(

c⊤t − 1

st
(kt(xt−1) − γkt(xt))

⊤ctc
⊤
t

)

kt(x)

=
1

st

(

st − (kt(xt−1) − γkt(xt))
⊤ct

)

c⊤t kt(x)

=
σ2

t−1

st
c⊤t kt(x).

In the third equality we used the recursive formula for Ct, in the fourth the defini-

tions of ct, and in the sixth we used the definition of st and the identity (kt(xt−1)−
γkt(xt))

⊤ct = ∆ktt −∆k̃⊤
t Ct−1∆k̃t.



Appendix D

Mathematical Formulae

In the sequel read Pr as the probability density function of its argument, unless that

argument is countable, in which case Pr denotes probability and
∫

denotes a sum.

D.1 Bayes’ Rule

Let X and Y be random variables or vectors, then

Pr(X|Y ) =
Pr(Y |X) Pr(X)

Pr(Y )
=

Pr(Y |X) Pr(X)
∫

dX ′ Pr(Y |X ′) Pr(X ′)
.

D.2 The Multivariate Normal Distribution

Let X be an n dimensional random vector. It is said that X is normally distributed

(or alternatively, that its components are jointly normally distributed) as N{m,Σ}
if its probability density function satisfies

Pr(X) = (2π)−n/2|Σ|−1/2 exp
(

−1
2(X − m)⊤Σ−1(X − m)

)

.

D.3 Conditional Expectation and Covariance Formulae

Let X, Y , Z be random variables or vectors, then

E[X] = EY [E[X|Y ]] ,

Cov[X,Z] = EY [Cov[X,Z|Y ]] + CovY [E[X|Y ],E[Z|Y ]] .

Specializing the last equation to X=Z scalars, we get the conditional variance for-

mula:

Var[X] = EY [Var[X|Y ]] + VarY [E[X|Y ]] .

152



Appendix D. Mathematical Formulae 153

D.4 Matrix Inversion Formulae

Matrix Inversion Lemma (Sherman-Morrison-Woodbury)

Let U be a square invertible matrix, then

(U + βXY)−1 = U−1 − U−1X
(

βI + YU−1X
)−1

YU−1.

Partitioned Covariance Matrix Inverse Formula

Let Kt be a t × t (symmetric and positive-definite) covariance matrix, partitioned

as

Kt =

[

Kt−1 kt

k⊤
t ktt

]

.

Then

K−1
t =

[

K−1
t−1 0

0⊤ 0

]

+
1

st

[

K−1
t−1kt

−1

]

[

k⊤
t K−1

t−1 −1
]

,

where st = ktt − k⊤
t K−1

t−1kt. st is called the Schur complement of ktt in Kt. If

X = (X1, . . . ,Xt)
⊤ is a jointly Gaussian random vector, the self-covariance of which

satisfies Cov[X] = Kt, then by the Gauss-Markov theorem (Theorem 1.3.1), st

satisfies

st = Var[Xt|X1, . . . ,Xt−1].

(Scharf, 1991, Chapter 2).



Bibliography

Aizerman, M., Braverman, E., & Rozonoer, L. (1964). Theoretical foundations of the po-

tential function method in pattern recognition learning. Automation and Remote Control,

25, 821–837.

Anthony, M., & Bartlett, P. (1999). Neural network learning; theoretical foundations. Cam-

bridge University Press.

Baird, L. C. (1995). Residual algorithms: Reinforcement learning with function approxima-

tion. International Conference on Machine Learning (pp. 30–37).

Bellman, R. (1957). Dynamic programming. Princeton University Press.

Berry, D., & Fristedt, B. (1985). Bandit problems: Sequential allocation of experiments.

Chapman and Hall.

Bertsekas, D. (1995). Dynamic programming and optimal control. Athena Scientific.

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic programming. Athena Scientific.

Boser, B. E., Guyon, I., & Vapnik, V. (1992). A training algorithm for optimal margin

classifiers. Computational Learning Theory (pp. 144–152).

Boyan, J. (1999a). Least-squares temporal difference learning. Proc. 16th International

Conference on Machine Learning (pp. 49–56). Morgan Kaufmann, San Francisco, CA.

Boyan, J. (1999b). Technical update: Least-squares temporal difference learning.

Boyan, J., & Moore, A. (1995). Generalization in reinforcement learning: Safely approx-

imating the value function. Advances in Neural Information Processing Systems 7 (pp.

369–376). Cambridge, MA: MIT Press.

Bradtke, S., & Barto, A. (1996). Linear least-squares algorithms for temporal difference

learning. Machine Learning, 22, 33–57.

Brown, M., Grundy, W., Lin, D., Cristianini, N., Sugnet, C., Furey, T., Ares, M., & Haussler,

D. (2000). Knowledge-based analysis of microarray gene expression data by using suport

vector machines. Proceedings of the National Academy of Sciences (pp. 262–267).

Burges, C. (1996). Simplified support vector decision rules. International Conference on

Machine Learning (pp. 71–77).

Burges, C., & Schölkopf, B. (1997). Improving the accuracy and speed of support vector

machines. Advances in Neural Information Processing Systems. MIT Press.

154



Bibliography 155

Collins, M., & Duffy, N. (2001). Convolution kernels for natural language. Advances in

Neural Information Processing Systems 14 (pp. 625–632).

Collobert, R., & Bengio, S. (2001). SVMTorch: Support vector machines for large-scale

regression problems. Journal of Machine Learning Research, 1, 143–160.

Cox, D., & O’Sullivan, F. (1990). Asymptotic analysis of penalized likelihood and related

estimators. The Annals of Statistics, 18, 1676–1695.

Crites, R., & Barto, A. (1996). Improving elevator performance using reinforcement learning.

Advances in Neural Information Processing Systems (pp. 1017–1023). MIT Press.

Csató, L., & Opper, M. (2001). Sparse representation for Gaussian process models. Advances

in Neural Information Processing Systems 13.

Csató, L., & Opper, M. (2002). Sparse on-line Gaussian processes. Neural Computation,

14, 641–668.

Cucker, F., & Smale, S. (2001). On the mathematical foundations of learning. Bulletin of

the American Mathematical Society, 39:1, 1–49.

Dayan, P. (1992). The convergence of TD(λ) for general λ. Machine Learning, 8, 341–362.

Dayan, P., & Sejnowski, T. (1994). TD(λ) converges with probability 1. Machine Learning,

14 (3), 295–301.

Dearden, R., Friedman, N., & Russell, S. (1998). Bayesian Q-learning. Proc. of the Fifteenth

National Conference on Artificial Intelligence.

DeCoste, D., & Schölkopf, B. (2002). Training invariant support vector machines. Machine

Learning, 46, 161–190.

Downs, T., Gates, K., & Masters, A. (2001). Exact simplification of support vector solutions.

Journal of Machine Learning Research, 2, 293–297.

Dzeroski, S., Raedt, L. D., & Blockeel, H. (1998). Relational reinforcement learning. Pro-

ceedings of the Fifteenth International Conference on Machine Learning (pp. 136–143).

Engel, Y., & Mannor, S. (2001). Learning embedded maps of Markov processes. Proc. of

the Eighteenth International Conference on Machine Learning.

Engel, Y., & Mannor, S. (2005). Collaborative temporal difference learning with Gaus-

sian processes. Submitted to the Twenty-Second International Conference on Machine

Learning.

Engel, Y., Mannor, S., & Meir, R. (2002). Sparse online greedy support vector regression.

13th European Conference on Machine Learning.

Engel, Y., Mannor, S., & Meir, R. (2003). Bayes meets Bellman: The Gaussian process

approach to temporal difference learning. Proc. of the 20th International Conference on

Machine Learning.

Engel, Y., Mannor, S., & Meir, R. (2004). The kernel recursive least squares algorithm.

IEEE Transactions on Signal Processing, 52, 2275–2285.



Bibliography 156

Engel, Y., Mannor, S., & Meir, R. (2005). Reinforcement learning with Gaussian processes.

Submitted to the Twenty-Second International Conference on Machine Learning.

Even-Dar, E., Mannor, S., & Mansour, Y. (2003). Action elimination and stopping condi-

tions for reinforcement learning. Proc. of the 20th International Conference on Machine

Learning.

Evgeniou, T., Pontil, M., & Poggio, T. (2000). Regularization networks and support vector

machines. Advances in Computational Mathematics, 13(1), 1–50.

Feynman, R. (1988). http://www.enc.org/features/calendar/unit/0,1819,243,00.shtm.

Fine, S., & Scheinberg, K. (2001). Efficient SVM training using low-rank kernel representa-

tion. JMLR (Special Issue on Kernel Methods), 243–264.

Friedman, J. (1991). Multivariate adaptive regression splines. Annals of Statistics, 19(1),

1–141.

Gibbs, M., & MacKay, D. (1997). Efficient implementation of Gaussian processes (Technical

Report). Department of Physics, Cavendish Laboratory, Cambridge University.

Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and neural networks

architectures. Neural Computation, 7, 219–269.

Gordon, G. (1996). Stable fitted reinforcement learning. Advances in Neural Information

Processing Systems (pp. 1052–1058). MIT Press.

Graepel, T. (2003). Solving noisy linear operator equations by gaussian processes: Applica-

tion to ordinary and partial differential equations. Proceedings of the 20th International

Conference on Machine Learning (pp. 234–241). AAAI Press.

Haykin, S. (1996). Adaptive filter theory. Prentice Hall. 3rd edition.

Herbrich, R. (2002). Learning Kernel Classifiers. Cambridge, MA: MIT Press.

Joachims, T. (1998). Text categorization with support vector machines: Learning with many

relevant features. Proceedings of the Tenth European Conference on Machine Learning

(pp. 137–142).

Kaelbling, L., Littman, M., , & Cassandra, A. (1998). Planning and acting in partially

observable stochastic domains. Artificial Intelligence, 101, 99–134.

Kaelbling, L. P. (1993). Learning in embedded systems. MIT Press.

Kailath, T., Sayed, A., & Hassibi, B. (2000). Linear estimation. Prentice Hall.

Kalman, R. (1960). A new approach to linear filtering and prediction problems. Transactions

of the ASME – Journal of Basic Engineering, 35–45.

Kimeldorf, G., & Wahba, G. (1971). A correspondence between Bayesian estimation on

stochastic processes and smoothing by splines. Ann. Math. Statist., 41(2), 495–502.

Konda, V., & Tsitsiklis, J. (2000). Actor-critic algorithms.

Kondor, R. I., & Jebara, T. (2003). A kernel between sets of vectors. Machine Learning,

Proceedings of the Twentieth International Conference (pp. 361–368).



Bibliography 157

König, H. (1986). Eigenvalue distribution of compact operators. Basel: Birkhauser Verlag.

Lagoudakis, M., Parr, R., & Littman, M. (2002). Least-squares methods in reinforcement

learning for control. SETN (pp. 249–260).

LeCun, Y., Jackel, L. D., Bottou, L., Brunot, A., Cortes, C., Denker, J. S., Drucker, H.,

Guyon, I., Muller, U. A., Sackinger, E., Simard, P., & Vapnik, V. (1995). Comparison

of learning algorithms for handwritten digit recognition. International Conference on

Artificial Neural Networks (pp. 53–60). Paris: EC2 & Cie.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement learning.

Proceedings of the 11th International Conference on Machine Learning (ICML-94) (pp.

157–163). New Brunswick, NJ: Morgan Kaufmann.

Ljung, L. (1999). System identification: Theory for the user. New Jersey: Prentice Hall.

Second edition.

M. Littman, R. S., & Singh, S. (2002). Predictive representations of state. Advances in

Neural Information Processing Systems 14 (NIPS) (pp. 1555–1561).

Mackay, D. (1997). Gaussian processes: A replacement for supervised neural networks?

(Technical Report). Cavendish Laboratory, Cambridge University.

Mackey, M., & Glass, L. (1977). Oscillation and chaos in physiological control systems.

Science, 197, 287–289.

Mallat, S. (1998). A wavelet tour of signal processing. New York: Academic Press.

Malzahn, D., & Opper, M. (2001). Learning curves for gaussian processes regression: A

framework for good approximations. Advances in Neural Information Processing Systems

13 (pp. 273–279). MIT Press.

Meir, R., & Zhang, T. (2003). Generalization error bounds for Bayesian mixture algorithms.

Journal of Machine Learning Research, 4, 839–860.

Mercer, J. (1909). Functions of positive and negative type and their connection with the

theory of integral equations. Philosophical Transactions of the Royal Society, A, 209,

415–446.

Müller, K.-R., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., & Vapnik, V. (1997).

Using support vector machines for time series prediction. Proceedings ICANN’97, Inter-

national Conference on Artificial Neural Networks (pp. 999–1004). Berlin: Springer.

Munos, R. (2000). A study of reinforcement learning in the continuous case by the means

of viscosity solutions. Machine Learning, 40(3), 265–299.

Munos, R. (2003). Error bounds for approximate policy iteration. Machine Learning,

Proceedings of the Twentieth International Conference (ICML 2003), August 21-24, 2003,

Washington, DC, USA (pp. 560–567). AAAI Press.

Natarajan, B. (1995). Sparse approximate solutions to linear systems. SIAM Journal on

Computing, 24(2), 227–234.

Nedic, A., & Bertsekas, D. P. (2003). Least squares policy evaluation algorithms with linear

function approximation. J. of Discrete Event Systems, 13, 79–110.



Bibliography 158

Opper, M., & Vivarelli, F. (1999). General bounds on bayes errors for regression with

gaussian processes. Advances in Neural Information Processing Systems 11 (pp. 302–

308).

Osuna, E., & Girosi, F. (1998). Reducing the run-time complexity of support vector ma-

chines. International Conference on Pattern Recognition.

Puterman, M. (1994). Markov decision processes: Discrete stochastic dynamic programming.

John Wiley & Sons.

Rasmussen, C., & Kuss, M. (2004). Gaussian processes in reinforcement learning. Advances

in Neural Information Processing Systems 16. Cambridge, MA: MIT Press.

Robert, C. (1994). The Bayesian choice. New York: Springer.

Sayed, A., & Kailath, T. (1994). A state-space approach to adaptive RLS filtering. IEEE

Signal Processing Magazine, 11, 18–60.

Scharf, L. (1991). Statistical signal processing. Addison-Wesley.

Schölkopf, B., Mika, S., Burges, C., Knirsch, P., Mller, K.-R., Rtsch, G., & Smola, A.

(1999). Input space vs. feature space in kernel-based methods. IEEE Transactions on

Neural Networks, 10, 1000–1017.

Schölkopf, B., & Smola, A. (2002). Learning with Kernels. Cambridge, MA: MIT Press.

Schölkopf, B., Smola, A., & Müller, K.-R. (1998). Nonlinear component analysis as a kernel

eigenvalue problem. Neural Computation, 10, 1299–1319.

Schraudolph, N., Dayan, P., & Sejnowski, T. (1994). Temporal difference learning of position

evaluation in the game of Go. Advances in Neural Information Processing Systems (pp.

817–824). Morgan Kaufmann Publishers, Inc.

Sebald, D., & Bucklew, J. (2000). Support vector machine techniques for nonlinear equal-

ization. IEEE Transactions on Signal Processing, 48, 3217–3226.

Seeger, M. (2003). Bayesian Gaussian process models: PAC-Bayesian generalisation error

bounds and sparse approximations. Doctoral dissertation, University of Edinburgh.

Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. Cambridge,

England: Cambridge University Press.

Singh, S., Jaakkola, T., & Jordan, M. (1995). Reinforcement learning with soft state ag-

gregation. Advances in Neural Information Processing Systems 7 (pp. 361–368). MIT

Press.

Singh, S. P., & Sutton, R. S. (1996). Reinforcement learning with replacing eligibility traces.

Machine Learning, 22(1).

Smola, A., & Bartlett, P. (2001). Sparse greedy Gaussian process regression. Advances in

Neural Information Processing Systems 13 (pp. 619–625). MIT Press.

Smola, A., & Schölkopf, B. (2000). Sparse greedy matrix approximation for machine learn-

ing. Proc. 17th International Conference on Machine Learning (pp. 911–918). Morgan

Kaufmann, San Francisco, CA.



Bibliography 159

Sobel, M. (1982). The variance of discounted Markov decision processes. Journal of Applied

Probability, 19, 794–802.

Solak, E., Murray-Smith, R., Leithead, W., Leith, D., & Rasmussen, C. (2003). Deriva-

tive observations in Gaussian process models of dynamic systems. Advances in Neural

Information Processing Systems 15 (pp. 1033–1040). Cambridge, MA: MIT Press.

Sollich, P. (2002). Bayesian methods for support vector machines: Evidence and predictive

class probabilities. Machine Learning, 46, 21–52.

Sollich, P., & Williams, C. K. I. (2005). Using the equivalent kernel to understand gaussian

process regression. Advances in Neural Information Processing Systems 17 (pp. 1313–

1320). Cambridge, MA: MIT Press.

Sutton, R. (1988). Learning to predict by the method of temporal differences. Machine

Learning, 3, 9–44.

Sutton, R., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.

Syed, N., Liu, H., & Sung, K. (1999). Incremental learning with support vector machines.

Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-99).

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Comm. ACM, 38,

58–68.

Tikhonov, A. N., & Arsenin, V. Y. (1977). Solutions of ill-posed problems. Washington,

D.C.: W. H. Winston.

Tipping, M. (2001a). Sparse Bayesian learning and the relevance vector machine. Journal

of Machine Learning Research, 1, 211–244.

Tipping, M. (2001b). Sparse kernel principal component analysis. Advances in Neural

Information Processing Systems 135 (pp. 633–639). MIT Press.

Tsitsiklis, J., & Van Roy, B. (1996). An analysis of temporal-difference learning with function

approximation (Technical Report LIDS-P-2322). MIT.

Turing, A. (1950). Computing machinery and intelligence. Mind, 59 (N.S. 236), 433–460.

van der Vaart, A., & Wellner, J. (1996). Weak Convergence and Empirical Processes. New

York: Springer Verlag.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. New York: Springer Verlag.

Vapnik, V. (1998). Statistical Learning Theory. New York: Wiley Interscience.

Vapnik, V., Golowich, S., & Smola, A. (1997). Support vector method for function approx-

imation, regression estimation, and signal processing. Advances in Neural Information

Processing Systems (pp. 281–287).

Vidyasagar, M. (2003). Recent advances in statistical learning theory. In J. Suykens,

G. Horvath, S. Basu, C. Micchelli and J. Vandewalle (Eds.), Advances in learning theory:

Methods, models and applications, NATO science series III: Computer & systems sciences,

vol. 190, 357–374. Amsterdam: IOS Press.

Vincent, P., & Bengio, Y. (2002). Kernel matching pursuit. Machine Learning, 48, 165–187.



Bibliography 160

Watkins, C. (1989). Learning from delayed rewards. Doctoral dissertation, King’s College,

Cambridge.

Watkins, C. (1999). Dynamic alignment kernels (Technical Report CSD-TR-98-11). UL

Royal Holloway.

Weigend, A. S., & Gershenfeld, N. A. (Eds.). (1994). Time series prediction: Forecasting

the future and understanding the past. Reading, MA: Addison-Wesley.

Werbos, P. (1990). Consistency of HDP applied to simple reinforcement learning problems.

Neural Networks, 3, 179–189.

Williams, C. (1999). Prediction with Gaussian processes: From linear regression to linear

prediction and beyond. In M. I. Jordan (Ed.), Learning and inference in graphical models.

Kluwer.

Williams, C., & Seeger, M. (2001). Using the Nyström method to speed up kernel machines.

Advances in Neural Information Processing Systems 13 (pp. 682–688).

Williams, R. J., & Baird, L. C. (1993). Tight performance bounds on greedy policies based

on imperfect value functions (Technical Report NU-CCS-93-14). Northeastern University,

College of Computer Science.

Zhang, T. (2003). Sequential greedy approximation for certain convex optimization prob-

lems. IEEE Transactions on Information Theory, 49, 682–691.


