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ABSTRACT 
Requirements Engineering (RE) is concerned with the gathering, 
analyzing, specifying and validating of user requirements that are 
documented mostly in natural language. The artifact produced by 
the RE process is the software requirements specification (SRS) 
document. The success of a software project largely depends on 
the quality of SRS documentation, which serves as an input to the 
design, coding and testing phases. This paper approaches the 
problem of the automatic quality assessment of textual 
requirements from an innovative point of view, namely the use of 
the Natural Language Processing (NLP) text classification 
technique. The paper proposes a quality model for the 
requirements text and a text classification system to automate the 
quality assessment process. A large study evaluating the 
discriminatory power of the quality characteristics and the 
feasibility of an annotated tool for the automatic detection of 
ambiguities in requirements documentation is presented. The 
study also provides a benchmark for such an evaluation and an 
upper bound on what we can expect automatic requirements 
quality assessment tools to achieve. The reported research is part 
of a larger project on the applicability of NLP techniques to assess 
the quality of artifacts produced in RE.   

Categories and Subject Descriptors 
D.2.9 [Management]: Software quality assurance (SQA) 

General Terms 
Management, Reliability, Experimentation. 

Keywords 
Requirements Engineering, Quality Assessment, Natural 
Language Processing, Human Annotation, Text Classification 
Techniques. 

1. INTRODUCTION 
Software requirements specification (SRS) documents are the 
medium used to communicate user requirements to the technical 
people responsible for developing the software. Requirements 
analysis and validation constitute the key requirements 
engineering (RE) activity for understanding the user requirements 
gathered, for classifying them and for relating stakeholders’ needs 
to possible software requirements. This process often takes a 
considerable time to perform manually, as the length of a real-life 
requirements document can range from a few pages to hundreds 
of pages containing numerous words, phrases and sentences, 
where each can potentially be wrongly interpreted. Consequently, 
checking for errors manually, although the most common way of 
doing so, is also one of the costliest phases of RE. For all these 
reasons, Natural Language Processing (NLP) techniques have 
been developed to tackle this problem. 

This paper addresses a problem related to the automatic 
quality assessment of textual requirements documents.  Such 
(semi-) automatic assessment can reduce the time needed for 
requirements analysis and validation in the requirements 
specification phase, and ultimately increase the quality of the SRS 
documentation. This should help software engineers correctly 
understand the problem and develop the right solution for it.   

The work presented in the paper is part of a bigger project 
aimed at applying NLP techniques to the RE process (see Figure 
1). The objective of NLP assessment in the context of that project 
can be expressed in terms of three main goals: 

G1. Automatic NLP-driven quality assessment of the textual 
requirements in the requirements gathering and elicitation 
phase.  

G2. Automatic NLP-driven quality assessment of the textual 
requirements in the analysis and specification phase, where 
conceptual static and dynamic models are developed from the 
textual requirements. 

G3. Graphical visualization and animation of the conceptual 
models extracted from the requirements text for the user’s 
validation and feedback. 

Research hypothesis. The research described in this paper is 
concerned with the challenges inherent in understanding the 

 

 



initial textual requirements (see G1 above) using the NLP text 
classification technique. The objective is to identify the textual 
ambiguities in the requirements elicitation phase before the 
conceptual modeling of the requirements begins. Our hypothesis 
is that the root cause of errors being introduced into the 
requirements (and the consequent reduction in quality) is 
ambiguity in the text. Here, we define ambiguity as the difference 
between the depiction of an informal textual description of the 
problem (requirement) and the description of the solution for the 
informal domain where the intents lie. We affirm that lowering 
the level of ambiguity in the textual requirements document will 
lead to a better quality conceptual description (model) of the 
solution, and also reduce the amount of time required for 
requirements analysis and specification. 

Approach. We have developed a quality model for requirements 
quality assessment derived from the existing guidelines in the 
literature for writing SRS documentation (such as 
[6,8,10,15,18,19]) and from the authors’ experience. The quality 
of the requirements text is analyzed from two different points of 
view, namely surface (literal) understanding and conceptual 
(modeling) understanding. The objective is to apply the NLP text 
classification technique to build a system for the automatic 
detection of ambiguity in requirements documents based on the 
quality indicators defined in the quality model. We believe that, 
with proper training, such a text classification system will prove 
to be of immense benefit in detecting ambiguities in a software 
requirements text.  

 

 

 

 

 

 

 

 

 

 

 

 

For this task, a body of requirements documents was built up 
and annotated for ambiguity from the point of view of both a 
surface and a conceptual understanding. We present a study in 
which the feasibility of (semi)-automatic tools is evaluated by 
assessing how difficult the task of ambiguity assessment of 
textual requirements really is, and how the use of automatic tools 
compares to human performance. Experiments have been 
performed and quality data have been statistically analyzed to 
demonstrate the feasibility of using the quality model, and to 
provide quantitative bases for interpreting the surface 
understanding data and deciding whether or not a requirements 
document is of acceptable quality. To the authors’ knowledge, 
this is the first attempt in the literature to apply the NLP text 

classification technique to software requirements quality 
assessment. 

The paper is organized as follows: Section 2 introduces the 
proposed quality model for SRS textual documentation. The 
experimental study on quality assessment and the discussion of 
the research results are outlined in section 3.  A critique of our 
research results in comparison to related work is given in section 
4. Finally, our conclusions and directions for future work are 
outlined in section 5. 

2. QUALITY MODEL 
Stakeholders involved in the use and development of a system 
should be able to understand the requirements text at both the 
surface and conceptual levels. Writing requirements that are 
unambiguous at both levels is critical in the software life cycle.  If 
not detected early, ambiguities can lead to misinterpretations at 
the time of requirements analysis and specification, or at a later 
phase of the software development life cycle, causing an 
escalation in the cost of requirements elicitation and software 
development. Detecting ambiguities at an early stage of the 
requirements elicitation process can therefore save a great deal 
aggravation, not to mention cost. 

Comprehension of the requirements text describing a problem 
and its domain can typically be divided into two broad levels: the 
literal meaning (or surface understanding) and the interpretation 
(or conceptual understanding). In the context of our work, we 
consider surface understanding and conceptual understanding to 
be the two main factors on which the quality of a text depends. 
The decomposition of the above two factors into the 
corresponding quality criteria is shown in Figure 2.  

We use the term “surface understanding” to represent how 
easy or how difficult it is to understand the facts stated in the 
document, without judging its design or implementation concerns 
in terms of any software engineering concept. Reading at this 
level means understanding the facts stated in the document. It 
allows us to answer basic questions such as who, what, when and 
where. Several surface factors can be involved at this level of 
understanding; e.g. sentence length, ambiguous adjectives and 
adverbs, passive verbs, etc., and all the features necessary for a 
surface understanding can be categorized into two major sets, 
based on their scope of effectiveness: (1) Sentence-level features; 
and (2) Discourse-level features. 

By contrast, we use the term “conceptual understanding” to 
represent how much a developer would gain in designing or 
implementing a system by carefully reading/examining its 
problem texts only. The conceptual level involves interpretation 
of the document: understanding what is meant or implied, rather 
than what is stated.  This includes making logical links between 
facts or events, drawing inferences and trying to represent the 
content more formally. This level of understanding involves 
deeper factors, such as the “seven sins of the specifier” described 
by Meyer [15]. His comprehensive study presents a thorough 
description of such mistakes by classifying them into seven 
distinct categories or “sins”, as he calls them. These sins are 
reproduced in Table 1. 
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Figure 1. NLP-Based Quality Assessment in the 
Requirements Engineering. 



Table 1. Meyer’s seven sins of the specifier [15]. 

Noise The presence in the text of an element that does 
not carry information relevant to any feature of 
the problem. 

Silence The existence of a feature of the problem that is 
not covered by any element of the text. 

Over-
specification 

The presence in the text of an element that does 
not correspond to a feature of the problem, but 
to a feature of a possible solution. 

Contradiction The presence in the text of two or more elements 
that define a feature of the system in an 
incompatible way. 

Ambiguity1 The presence in the text of an element that makes 
it possible to interpret a feature of the problem 
in at least two different ways. 

Forward 
Reference 

The presence in the text of an element that uses 
features of the problem not defined until later in 
the text. 

Wishful 
Thinking 

The presence in the text of an element that 
defines a feature of the problem in such a way 
that a candidate solution cannot realistically be 
validated with respect to this feature. 

 

Ideally, the linguistic quality of a requirements document should 
be assessed automatically, or at least helped by automation.  In 
fact, a great deal of research has been conducted with that goal in 
mind (see section 4).  However, before automating the process, it 
was important to study our quality model and determine whether 
or not automation would be feasible. The details of that study are 
presented in section 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                 
1 Meyer’s use of the term ambiguity in [15] is different from the way 

ambiguity is used in our work. In our case, we use it in a broader sense.  

3. QUALITY ASSESSMENT FEASIBILITY: 
A STUDY 
To evaluate the feasibility of our quality assessment approach, we 
asked four human annotators to manually classify requirements 
documents based on the text quality indicators (see Figure 2), and 
then we measured the extent to which they agreed or disagreed 
with our approach. These indicators were selected consulting 
similar studies of [5,6,8,10,15,18,19]. Our premise was that, if 
humans agree statistically on the quality of requirements texts, 
then the quality model truly measures what it is supposed to 
measure; namely, the quality of the textual description of the 
requirements. By contrast, if the human annotators cannot 
statistically agree on a classification, then the automation would 
be difficult to achieve and it would not be possible to evaluate the 
results of the automatic classification. The details of the study are 
given below. 

3.1 Design of the experiment 
To perform the manual classification, we asked four annotators to 
read and categorize a set of requirements documents. All the 
annotators had a software engineering background, but in 
different fields of computer science. We gave them specific 
guidelines based on our quality model and clear examples of what 
was to be considered ambiguous, looking at surface understanding 
and conceptual understanding separately. The annotators were to 
score all the passages of our documentation (on a scale from 0 to 
10, the higher the score, the less ambiguous the passage). The 
annotation guidelines indicated what to look for in a passage, but 
did not give any strict instructions on the scoring, in order to give 
the annotators the freedom to score as they saw fit. The 
annotation task took about 7 hours of effort per person for both 
surface understanding and conceptual understanding. On average, 
it took 2.5 minutes to rank each passage.  Considering that each 
passage contains, on average, 189 words, the task was a time-
consuming one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Quality model for software requirements text. 



3.2 Discussion of the results 
To analyze the results, we first translated all the scores of the 
annotators into a binary decision: “U” (unambiguous) or “A” 
(ambiguous), according to the standard interpretation. The 
translated grades of “U” and “A” were then used to compute the 
gold standard as the majority vote for each passage after 
removing undecided votes. The results of the gold standard 
computation are shown in Table 1. Of the 165 passages, 153 
(92.7%) were classified as “U” (unambiguous) for surface 
understanding, 12 (7.3%) as “A” (ambiguous) and there were no 
undecided votes. For conceptual understanding, 138 (83.6%) of 
the 165 samples were unambiguous, 27 (16.4%) were ambiguous 
and there were no undecided votes. As one would expect, 
conceptual understanding seems harder to achieve than surface 
understanding. 

Table 2. The gold standard. 

 Unambiguous 
(U) 

Ambiguous 
(A) Undecided 

Surface 
Understanding 92.7% 7.3% 0% 

Conceptual 
Understanding 83.6% 16.4% 0% 

 

The purpose of the annotation was to find out whether or not 
humans are able to agree on a classification scheme to determine 
if the task is amenable to automation.  To compute inter-annotator 
agreement, we used the Kappa index, introduced by Cohen [3].  
Figure 3 shows the results of this analysis, revealing how strongly 
each annotator agrees with the majority decision, i.e. the gold 
standard. Here, the average Kappa simply reflects the strength of 
the gold standard itself. 

 

 

 

 

 

 

 

 

 

 

 

According to the interpretation of Kappa values given by Landis 
et al. [11], on average, the annotators tend to agree with the gold 
standard to a “Substantial” degree on both the surface and 
conceptual levels.  For annotators 2 and 4, however, the Kappa 
values indicate a “Moderate” level of agreement. Overall, the 
Kappa statistic shows that annotators tend to agree with one 
another, which proves the feasibility of the quality assessment of 
requirements text proposed in this paper.  

The results are sufficient for us to believe that an automatic 
system can be built to emulate the decision-making process of the 
human annotators and to automatically classify requirements 
documents. However, a high level of precision should not be 
expected in this task. The average inter-annotator agreement 
indicated by the kappa values of 0.66 for surface understanding 
and 0.64 for conceptual understanding should be seen as upper 
bounds on the accuracy of any classifier.  

In addition, the analysis indicates a positive correlation 
between the surface and conceptual understanding of the text, and 
a negative correlation between the understanding and the time 
required to analyze a text. The above confirms our hypothesis that 
lowering the level of surface ambiguity would lead to a better 
conceptual understanding of the requirements and reduce the time 
needed for requirements analysis.  This emphasizes the 
importance of our research results in the RE field. 

3.3 Toward a text classification system 
Our current research objective, as a “proof of concept” and thus 
part of our feasibility study, was to build a text classification 
system that could classify sentences as “ambiguous” or 
“unambiguous”, in terms of surface understanding. Although our 
ultimate target was to build a classifier that can classify a 
discourse in terms of its ambiguity, we focused on building a 
similar classifier at sentence level to assess the achievability of 
automating the task of ambiguity detection at the more limited 
scope of the sentence.  

We have succeeded in extracting the values of almost all 
possible quality indicators from all our samples. We developed a 
sentence-level Feature Extractor tool written in Java which 
extracts the values of features (indicators) likely to make a 
sentence “ambiguous” or “unambiguous”, in terms of surface 
understanding (see “Indicators of Difficulty in Surface 
Understanding”). The Feature Extractor tool then feeds the 
sentences one-by-one to the Stanford Parser [9] for POS tagging 
and syntax parsing. The values of the indicators mentioned above 
are then counted for each sentence. We chose the C4.5 decision 
tree learning algorithm for the classification task. The two main 
reasons for this choice were: (1) Decision trees can allow 
backtracking from a leaf to derive the cause of a particular 
classification, and C4.5 (revision 8), with its post-pruning feature, 
was the best open-source decision tree learning algorithm 
available to us; (2) The size of the documentation was not large 
enough for training neural network algorithms, which would have 
yielded better results.  

We have determined the discriminating power of the surface 
understanding indicators, and have developed a classifier to 
actually flag ambiguous and unambiguous texts at the surface 
level (see Figures 4, 5). 

It should be noted that the tree in Figure 4 was dynamically 
generated, which means that, with the introduction of new 
training data, the classifier is able to generate new decision trees. 
The accuracy of our sentence classifier establishes its 
applicability in practical fields, where ambiguity is detected at 
sentence level. 

 

 

Figure 3. Pairwise inter-annotator agreement with the 
gold standard. 
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Again, we chose the C4.5 (revision 8) decision-tree learning 
algorithm for building the discourse-level classifier. The classifier 
requires that three feature values be extracted from a passage of 
unknown status, so that it can predict its classification as the 
nominal values: “ambiguous” or “unambiguous”. The decision 
tree generated by the aforementioned C4.5 algorithm after 
training is shown in the following figure: 

 

 

 

 

 

 

The tree contains the single feature, 
“ambiguous_sent_per_sentence” (i.e. the density of ambiguous 
sentences, or the number of ambiguous sentences, divided by the 
total number of sentences in a section) at its root. No other feature 
is included in the tree by the C4.5 algorithm, affirming that this 
feature alone is sufficient for the classification task. We 
embedded the C4.5 decision-tree learner with our discourse 
classifier to keep the learning process dynamic, and to check the 
applicability of the other, comparatively weaker, classification 
features every time, when learning from new training data. 

On this initial experiment, the discourse classifier resulted in 
an accuracy of 86.67% agreeing with the human annotations 
(when trained and tested with 10-fold-cross-validation method). 
These results affirm that it is indeed possible to detect ambiguity 
in terms of surface understanding by means of currently available 
NLP tools and text classification techniques. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

4. RELATED WORK 
Many studies have previously addressed the issue of detecting 
ambiguities in requirements documents, and several approaches 
have been proposed.  Although they are often similar in the types 
of tools they use, these approaches are sometimes radically 
different in the way they attempt to detect ambiguities.  

The use of manual inspection still seems to be the most 
popular way to detect and resolve ambiguities. A leading study, 
and one of the earliest, in this field was conducted by Bertrand 
Meyer [15], who stressed that natural language requirements 
specifications are inherently ambiguous, and that the use of 
formal specifications is absolutely necessary to resolve these 
ambiguities. Meyer’s approach to detecting such ambiguities was 
to inspect each word, phrase and sentence manually.  For their 
part, Kamsties et al. [8] proposed a specific methodology of 
human inspection to resolve ambiguity. While they argue in favor 
of manual inspections, their work demonstrates a dependence on 
formal specifications, e.g. UML models, especially for detecting 
ambiguities related to the problem domain. Their study concludes 
that “one cannot expect to find all ambiguities in a requirements 
document with realistic resources” – even with such complete 
human involvement.  Manual detection is typically the most 
accurate approach; however, it is also the most expensive. We 
also note that Letier et al. [12] propose the use of formal 
specifications to validate requirements. 

The work of Ambriola et al. [1] attempts to validate NL 
Specification with the help of the user after deriving a conceptual 
model automatically from the requirements specifications using 
their tool, which they call Circe. This tool is funded by IBM and 
is now available as a plug-in for Eclipse. Although Circe is in 
general use, it still does not consider the existence of ambiguities 
at the level of surface understanding. This could corrupt their 

 Figure 4. Decision Tree generated by the C4.5 algorithm for Sentence Classification 

Figure 5. Decision tree generated by the C4.5 learning 
algorithm after training with discourse-level feature 
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conceptual model, making the errors extremely difficult for a user 
to detect from the model later on. 

Many other studies attempt to reduce the problems associated 
with unrestricted NL by limiting the scope of the language. Some 
use a new NL-like sublanguage, as in [4,11,14], but this is not 
truly NL. Others propose restricting the grammar to consider only 
a subset of NL when writing a requirements specification 
[4,5,7,17].  However, although using a restricted language does 
simplify the task of detecting ambiguities, it imposes severe 
constraints on the software engineer’s freedom of expression. 

Recently, researchers have attempted to deal with unrestricted 
language by using techniques developed in NL processing (NLP). 
Tools such as part-of-speech taggers, syntactic parsers and 
named-entity taggers have achieved very respectable accuracies, 
which means that they can be used for real-world texts. Osborne 
et al. [16], for example, try to detect ambiguities in SRS 
documents through syntax. They use a syntactic parser to derive 
all possible sentence parsing trees. If a sentence generates more 
than one parsing tree, then it is considered ambiguous. The 
problem with this approach is that what is possible at the 
syntactical level may not be plausible at the interpretation level. 
Discourse or world-knowledge constraints may eliminate a 
possible syntactical interpretation, leaving a sentence with 
multiple syntactical parses which are unambiguous to the human 
reader. 

Another interesting tool is that of Wilson et al. [18,19], which 
uses nine quality indicators for requirements specification: 
Imperatives, Continuances, Directives, Options, Weak Phrases, 
Size, Specification Depth, Readability and Text Structure. 
However, results derived from using their tool show only the 
frequency counts of those indicators in different samples, without 
taking the crucial decision of whether or not a sample is 
ambiguous. 

Fabbrini et al. [6,10] address the issue by proposing a tool 
called “QuARS: Quality Analyzer for Requirements 
Specification”.  QuARS syntactically parses the sentences using 
the MINIPAR parser [13], then it combines both lexical (part-of-
speech tags) and syntactical information to detect specific 
ambiguity indicators of poor-quality requirements specification. 
In their paper, however, the quality indicators seem to be mostly 
based on specific keywords, rather than on more general classes 
of words. At every stage of processing, QuARS requires the use 
of a different “modifiable” dictionary, which seems to be 
manually created and modified for a particular stage of processing 
and for a specific problem domain by the requirements engineer. 
Their idea seems to be dependent on using these special 
dictionaries, the relevance and practical usefulness of which are 
uncertain. Again, their quality measurement metrics are not well 
enough defined to characterize a text as ambiguous. 

As discussed, researchers have previously attempted to flag 
ambiguous texts using various (semi-) automatic methods.  
However, these methods have typically been evaluated 
anecdotally or on a small scale. To our knowledge, no one has 
attempted a formal evaluation of their results and a comparison to 
human evaluations. Our study (see section 3) evaluates the 
feasibility of such a task by analyzing how difficult it really is to 
perform and how the automatic tools developed can compare to 
human performance.  Our work provides a benchmark for such an 

evaluation and an upper bound on what we can expect automatic 
tools to achieve. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we introduced a hierarchical quality model for the 
decomposition of software requirements text quality into 
measurable features that would be collected directly from the text. 
The quality model targets the automatic assessment of textual 
requirements in terms of their ambiguity. A study investigating 
the feasibility of the quality characteristics and of an annotated 
tool for automatic detection of ambiguity in requirements 
documents is also presented.  The results show that the quality 
assessment task is difficult for humans, but there is substantial 
agreement on the chosen quality indicators, both at the level of 
surface understanding and at the level of conceptual 
understanding. We have developed a classifier to actually flag 
ambiguous and unambiguous texts at the surface level of 
understanding. The above demonstrates the feasibility of our 
quality assessment approach.  

A thorough analysis of the annotators’ data led to the 
following conclusions: 

1) Most of the indicators in our quality model are very good at 
detecting ambiguity at the level of surface understanding, which 
proves that they are objective indicators of surface understanding. 
All these indicators can be extracted automatically from the text 
using a POS tagger and a parser.  

2) We found virtually no conceptual characteristic that would 
be extractable by currently available NLP tools for discriminating 
ambiguities of conceptual understanding. This may be due to the 
subjective nature of the conceptual understanding process, which 
requires expertise in RE. Therefore, more studies will be required 
to identify objective indicators for SRS conceptual understanding 
criteria. This will be addressed in our future work in this 
direction. 

Our future work includes the development of a system for the 
conceptual understanding of requirements text. We believe that 
such a classifier would be very beneficial to software RE. The 
ability to detect serious ambiguities in the requirements text at a 
very early stage of requirements elicitation could significantly 
reduce both expense and aggravation, and could help avoid very 
costly misinterpretations. The tool should not only work in a 
standalone mode, but should be incorporated into a formal model-
building system for NLP-based quality assessment in the RE 
phase. A thorough evaluation of the accuracy of the text 
classification system needs to be performed with a large set of 
requirement documents, and the results compared to human 
performance. We plan to tackle this in our future work. 
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