
iment 2 demonstrates that in noun-phrase
production the syntactic gender of a noun is
retrieved before its abstract phonological
properties.

By comparing the go LRP with the no-go
LRP obtained in experiment 1, we can es-
timate the length of the time interval in
which syntactic but no phonological infor-
mation of the noun was available. Two time
points are of interest from this comparison
(Fig. 3). First, the go and no-go LRPs start-
ed to develop at about 370 ms after picture
onset, so at that moment, syntactic gender
was available to select the correct response
hand. Second, at about 410 ms after picture
onset the go and no-go LRPs diverged
sharply. While the go LRP continued to
develop, the no-go LRP gradually returned
to the base line. This indicates that there
was already enough phonological informa-
tion available at 40 ms after LRP onset to
make the go or no-go distinction. Thus, in
noun-phrase production it takes only about
40 ms to retrieve a noun’s initial phoneme
once its syntactic gender has been retrieved.

These data provide fine-grained tempo-
ral information about the moments at
which distinct word representations are re-
trieved from the mental lexicon during the
real-time process of speaking. The empirical
approach that we have presented opens the
way for further, temporally fine-grained
neurophysiological analyses of the uniquely
human skill of speaking.
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Targeting the Receptor-Gq Interface to Inhibit in
Vivo Pressure Overload Myocardial Hypertrophy

Shahab A. Akhter, Louis M. Luttrell, Howard A. Rockman,
Guido Iaccarino, Robert J. Lefkowitz, Walter J. Koch*

Hormones and neurotransmitters may mediate common responses through receptors
that couple to the same class of heterotrimeric guanine nucleotide–binding (G) protein.
For example, several receptors that couple to Gq class proteins can induce cardiomy-
ocyte hypertrophy. Class-specific inhibition of Gq-mediated signaling was produced in
the hearts of transgenic mice by targeted expression of a carboxyl-terminal peptide of
the a subunit Gaq. When pressure overload was surgically induced, the transgenic mice
developed significantly less ventricular hypertrophy than control animals. The data dem-
onstrate the role of myocardial Gq in the initiation of myocardial hypertrophy and indicate
a possible strategy for preventing pathophysiological signaling by simultaneously block-
ing multiple receptors coupled to Gq.

Myocardial hypertrophy is an adaptive re-
sponse to various mechanical and hormonal
stimuli and represents an initial step in the
pathogenesis of many cardiac diseases that
ultimately progress to ventricular failure.
The mechanisms by which cardiac hyper-
trophy is initiated and how this condition
eventually progresses to heart failure are
poorly understood. Several independent sig-
naling pathways have been implicated in
the activation of the hypertrophic response

in vitro (1). The G protein Gq is thought to
be important in this process because various
ligands, such as phenylephrine, angiotensin
II (AngII), and endothelin I, that activate
Gq-coupled receptors can trigger hypertro-
phic responses in cultured myocytes (2). In
vivo studies with Gq-coupled receptor an-
tagonists have also implicated Gq-mediated
signaling in pressure-overload ventricular
hypertrophy (3), and transgenic mice with
cardiac overexpression of either Gaq, a1-
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adrenergic receptors (ARs), or AngII recep-
tors present with myocardial hypertrophy
(4–6). Although these data indicate that
chronic stimulation of Gq-coupled receptors
is sufficient to induce myocardial hypertro-
phy, they do not define the contribution of
Gq to the physiological hypertrophic re-
sponse to ventricular pressure overload.

We examined the possibility of class-
specific G protein inhibition through tar-
geting the receptor-Gq interface, thereby
simultaneously eliminating responses from
multiple receptors that couple to Gq. This
therapeutic strategy would potentially elim-
inate the need for multiple receptor antag-
onists in a variety of diseases including pres-
sure overload hypertrophy. We designed a
COOH-terminal peptide of Gaq that con-
tains the region of the Ga subunit that
interacts with the intracellular domains of
agonist-occupied receptors (7) and created
transgenic mice with myocardial-targeted
overexpression of this peptide.

Cellular expression of the third intracel-
lular domain (3i) of the a1B-AR antagonizes
in vitro a1B-AR–mediated signal transduc-
tion, apparently through competition be-
tween the 3i peptide and the activated re-
ceptor for binding sites on Gaq (8). We
sought to determine whether the expression
of peptides derived from the COOH-termi-
nus of Gaq would similarly antagonize recep-
tor-mediated signaling. Two Gaq “mini-
gene” constructs were created that corre-
spond to the COOH-terminal peptide se-
quence of Gaq, residues 305 to 359, and the
NH2-terminal peptide sequence of Gaq, res-
idues 1 to 54. COS-7 cells were transiently
transfected with plasmid DNA encoding the
Gaq minigenes, and expression of these pep-
tides was demonstrated by protein immuno-
blotting (Fig. 1A). Coexpression of a1B-ARs
with the intact Gaq subunit led to enhance-
ment of epinephrine-stimulated inositol
phosphate (IP) production compared with
that in cells expressing equal numbers of
receptors alone. In contrast, coexpression of
Gaq(305-359) resulted in a marked inhibi-
tion (47.8 6 4.4%) of maximal a1B-AR–
mediated IP production (Fig. 1B). Coexpres-
sion of the Gaq NH2-terminus [Gaq(1-54)]
had no effect. Inhibition by Gaq(305-359)
was apparently specific for Gq-coupled re-

ceptors because neither a2A-AR–mediated
IP production (Gi-coupled) nor dopamine
D1A receptor–mediated cAMP production
(Gs-coupled) were inhibited, whereas signal-
ing through both the Gq-coupled a1B-AR
and M1 muscarinic acetylcholine receptor
(AChR) were attenuated (Fig. 1C). Thus,
the expression of Gaq(305-359) specifically
uncouples Gq-coupled receptors.

To study the effects of this peptide on
Gq-mediated signaling pathways in vivo, we
created transgenic mice with cardiac-specific
expression of Gaq(305-359). This Gq inhib-
itor transgene (GqI) was targeted to the myo-

cardium by linking it with the murine a-my-
osin heavy chain (aMyHC) promoter (9,
10). Five founder lines that transmitted the
transgene were established (TG GqI-8, -10,
-11, -26, and -38). The TG GqI-10 line had
the greatest transgene expression as shown
by Northern (RNA) analysis (11), so we
used heterozygous (1/2) animals of this line
in all further studies. At 10 weeks of age, GqI
peptide expression was documented by pro-
tein immunoblot analysis of myocardial ex-
tracts from the TG GqI-10 line (Fig. 2A).
These transgenic mice were normal in size,
appearance, and behavior compared with
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Fig. 1. Selective in vitro inhibition of Gq-receptor
coupling by expression of the Gaq(305-359) pep-
tide. (A) COS-7 cells were transiently transfected
with plasmid DNA encoding either empty vector
(nontransfected), intact Gaq(1-359), GaqI(305-
359) (left panel), or Gaq(1-54) (right panel) (22, 23).
Expression of the Gaq minigene products was
determined by protein immunoblot analysis (24).
(B) COS-7 cells were transiently transfected with
plasmid DNA encoding the a1B-AR (0.01 to 1.0
mg of DNA per well) and either intact Gaq,
Gaq(305-359), or Gaq(1-54) (2.0 mg of DNA per
well) (23). Basal (circles) and epinephrine-stimulat-
ed (Epi, squares) IP production was determined
as described (8) (solid lines). Responses from con-
trol cells transfected with the receptor plasmid
plus empty vector are shown in each panel
(dashed lines). Data are presented in arbitrary
units such that one unit equals the basal amount of IPs measured in cells transfected with empty vector
alone. Data shown represent mean 6 SEM values for triplicate determinations in one of four separate
experiments. (C) COS-7 cells were transiently transfected with plasmid DNA encoding the Gq/11-
coupled a1B-AR, the M1 AChR, the Gi-coupled a2A-AR, or the Gs-coupled D1A dopamine receptor (0.1
mg of DNA per well), and either the Gaq(305-359) minigene (black bars) or empty vector (2.0 mg per well)
(open bars). Basal and agonist-stimulated IP or adenosine 39,59-monophosphate (cAMP) production
was determined (8). Data are presented in arbitrary units such that one unit equals the basal amount of
IP or cAMP measured in unstimulated cells transfected with empty vector alone. Each panel represents
mean 6 SEM values for three separate experiments performed in triplicate. *P , 0.05 versus control
stimulation [analysis of variance (ANOVA)].
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Table 1. Myocardial sarcolemmal membrane adenylyl cyclase activity. ISO, isoproterenol. Activity is
presented as picomoles of cAMP per minute per milligram of protein and is the mean 6 SEM of n 5 6
for each group.

Hearts Basal ISO (1026 M) ISO (1024 M) NaF (1022 M)

Control (NLC) 43.3 6 6.5 61.3 6 5.5* 63.4 6 5.3* 343 6 16
TG GqI 40.9 6 3.3 61.8 6 5.6* 61.1 6 4.6* 333 6 21

*P , 0.005 ISO-stimulated values versus basal (ANOVA with post-hoc Scheffe test). P, not significant for TG GqI
values versus NLC (two-way repeated measures ANOVA).
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nontransgenic littermate control (NLC)
animals.

Stimulation of Gq-coupled receptors
leads to the activation of phospholipase C
and the generation of the second messen-
gers inositol trisphosphate and diacylglycer-
ol. As a direct measurement of the state of
endogenous Gq signaling in these mice, we
measured basal left ventricular diacylglycer-
ol content (12). The diacylglycerol content
in the TG GqI mice was significantly de-
pressed compared with that in NLC mice
(Fig. 2B). This finding indicates that basal
Gq signaling is decreased in the transgenic
hearts, verifying the in vivo Gq-inhibitory
properties of the transgene.

We also studied p42/44 mitogen-activat-
ed protein (MAP) kinase activity in re-

sponse to endogenous myocardial Gq-cou-
pled receptor stimulation. In anesthetized
transgenic and NLC mice, we directly in-
jected phenylephrine, AngII, or saline into
the left ventricle (13). In the hearts of NLC
animals, phenylephrine elicited an approx-
imate threefold increase in MAP kinase
activity, whereas very little stimulation of
MAP kinase activity was caused by phenyl-
ephrine in TG GqI mice (Fig. 2C). AngII-
stimulated myocardial MAP kinase activity
in TG GqI mice was also significantly re-
duced compared with that in NLC mice
(Fig. 2C). Similar results were also obtained
with endothelin I (11). In all agonist stud-
ies, there was no difference in basal MAP
kinase activity between TG GqI and NLC
myocardial extracts (Fig. 2C). Thus, acute in

vivo signaling through multiple Gq-coupled
receptors is inhibited by the GqI peptide. To
demonstrate specificity, we tested MAP ki-
nase activation elicited by the Gi-coupled
receptor agonist carbachol (14), and re-
sponses were the same in TG GqI and NLC
mice (Fig. 2D). In addition, adenylyl cyclase
activity in response to b-AR–Gs stimulation
was the same in TG GqI and NLC myocar-
dial membrane extracts (15) (Table 1).
Thus, the GqI peptide is specific for inhibit-
ing Gq-coupled receptor signaling in vivo.

To assess the in vivo physiological role of
Gq-coupled receptor signaling in the devel-
opment of pressure overload hypertrophy, we
subjected TG GqI and NLC mice to pressure
overload by surgical transverse aortic con-
striction (TAC) (16). In this model, left
ventricular hypertrophy can be seen 7 days
after surgery (17) by using the left ventricle
weight to body weight ratio (LVW/BW) as
an index of myocardial mass. There was no
difference in LVW/BW between sham-oper-
ated TG GqI and NLC mice (Table 2). In
the TAC group, LVW/BW in NLC animals
increased by 36% compared with that in
sham-operated animals. In contrast, 7 days
after TAC the TG GqI mice had a signifi-
cantly smaller increase (14%) in LVW/BW
compared with sham-operated TG GqI mice
(P , 0.01). The mean systolic pressure gra-
dient created by TAC, an index of the load
placed on the ventricle, was not different
between the two groups: 66.4 6 7.4 mm Hg
for TAC in NLC animals and 62.3 6 6.8
mm Hg for TAC in TG GqI animals (P, not
significant). Across a wide range of systolic
pressure gradients measured, LVW/BW was
lower for the TG GqI mice compared with
that in NLC mice (Fig. 3). Therefore, it
appears that cardiac Gq-coupled receptors
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Gαq
(305-359)

Fig. 2. Myocardial ex-
pression and in vivo in-
hibitory activity of the GqI
peptide. (A) Expression
of Gaq(305-359) was de-
termined by protein im-
munoblot analysis of
myocardial extracts from
an NLC (lane 1) or TG GqI
(lane 2) heart, or from
COS-7 cells expressing
the GaqI(305-359) mini-
gene product (lane 3)
(24). (B) Lipid extraction
was done from NLC (n 5
5) and TG GqI (n 5 5) left
ventricles, and basal di-
acylglycerol (DAG) con-
tent was quantified as
described (12). Data
shown are means 6
SEM. *P , 0.05 versus
NLC (Student’s t test).
(C) Left ventricle injec-
tions of the Gq-coupled
receptor agonists phen-
ylephrine (PE) (n 5 6) or
AngII (n 5 8) (100 mM), compared with saline injections, were performed in NLC (open bars) and TG GqI
(black bars) mice, and myocardial MAP kinase activity toward myelin basic protein (MBP) was measured
(13). Activity is expressed as the percent of NLC basal activity determined in saline-injected hearts. Data
shown represent means 6 SEM of phosphorylated MBP, quantified with a PhosphorImager. Also shown
is a representative PE experiment done in two animals for each condition. *P , 0.02 versus NLC (Student’s
t test). (D) MAP kinase activation in response to carbachol, an agonist for Gi-coupled receptors (100 mM)
(14) (n 5 4). Carbachol-elicited responses in NLC (open bars) and TG GqI (black bars) mice were
significantly elevated (P , 0.05) compared with basal (saline-injected) responses (Student’s t test).

Fig. 3. Hypertrophic response to pressure over-
load. The index of left ventricular mass (LVW/BW)
is plotted against the systolic pressure gradient
produced by TAC for each NLC (n 5 12) and TG
GqI (n 5 20) animal (open and black circles, re-
spectively). The slopes of the linear regressions for
NLC [y 5 0.025x 1 3.61, r 5 0.85 (r is the corre-
lation coefficient)] and TG GqI (y 5 0.011x 1 3.61,
r 5 0.60) animals were significantly different (P ,
0.0005, ANOVA).

Table 2. Physiological parameters in response to pressure overload. Data are expressed as mean 6
SEM. The systolic pressure gradient (SPG) is the difference between right and left carotid arterial systolic
pressure, an index of load placed on the left ventricle.

Parameter
Sham TAC

NLC (n 5 8) TG GqI (n 5 8) NLC (n 5 10) TG GqI (n 5 18)

BW (g) 20.86 6 0.73 21.40 6 1.56 20.37 6 0.64 22.62 6 0.78
LVW/BW (mg/g) 3.84 6 0.30 3.72 6 0.15 5.35 6 0.21* 4.31 6 0.12*†
SPG (mm Hg) 66.4 6 7.4 62.3 6 6.8

*P , 0.05 NLC TAC versus NLC sham; TG GqI TAC versus TG GqI sham (t test). †P , 0.005 TG GqI TAC versus
NLC TAC (t test).
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play a critical role in triggering left ventric-
ular hypertrophy after the mechanical stim-
ulus of hemodynamic stress.

Myocardial hypertrophy is associated
with enhanced Gq signaling and accompa-
nied by reactivation of ventricular embry-
onic genes including those for atrial natri-
uretic factor (ANF), skeletal a-actin, and
b-myosin heavy chain (1). Similar findings
have been reported in vitro after stimula-
tion of Gq-coupled receptors, particularly
a1-ARs (18). We therefore measured ven-
tricular ANF mRNA in TG GqI and NLC
mice 7 days after sham-operation or TAC.
Basal ventricular ANF mRNA was nearly
undetectable and not different between the
two groups (Fig. 4). However, after the
stimulus of pressure overload, ventricular
ANF mRNA increased almost sevenfold in
the NLC group but only about twofold in
TG GqI mice (Fig. 4). Furthermore, after
TAC, left ventricular diacylglycerol con-
tent was increased in NLC mice (73%) but
not in TG GqI mice (11).

Because the depression of basal diacyl-
glycerol content in TG GqI mice did not
affect LVW/BW ratios in the absence of
pressure overload (Table 2), it appears that
Gq-mediated signals do not influence the
normal growth of myocytes. In fact, no
phenotype is evident in these animals until
stress is placed on the heart. Transgenic
mice with cardiac-specific expression of a
constitutively active mutant a1B-AR have a
hypertrophic phenotype (4). Transgenic
mice with cardiac AngII receptor overex-
pression show even greater myocardial hy-
pertrophy (5). Also, a transgenic mouse
model with cardiac overexpression of Gaq
itself exhibits myocardial hypertrophy (6).

Antagonists of AngII or endothelin I can
attenuate ventricular hypertrophy and heart

failure in response to pressure overload in
animal models (3, 19). However, because
these drugs act on vascular receptors to alter
afterload, the direct involvement of these
myocardial receptors in the hypertrophic re-
sponse has not been established. Our ap-
proach was to block signaling from multiple
receptors coupled to a single class of G pro-
teins. TG GqI mice after TAC have the
opportunity to use multiple mechanisms for
initiating compensatory hypertrophy except
signaling through Gq-coupled receptors
present on cardiomyocytes. Our results indi-
cate that Gq is a critical molecule in the
initiation of myocardial hypertrophy. Tar-
geting the receptor–G protein interface may
point the way to the development of thera-
pies that have the potential advantage over
traditional receptor antagonists of dampen-
ing an entire class of receptor signals (those
coupled to a particular G protein) rather
than those derived from only a single type of
receptor.
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Fig. 4. Left ventricle ANF mRNA quantitation. To-
tal RNA (15 mg) was isolated (25) from the left
ventricles of NLC (hatched bars) and TG GqI (black
bars) hearts that underwent sham-operation or
TAC. Northern blots were generated and probed
with a mouse ANF cDNA followed by a glyceral-
dehyde phosphate dehydrogenase (GAPDH)
cDNA (4). The signals from the ANF blots were
quantified with a PhosphorImager and normalized
to the GAPDH signal. Data shown are the means
6 SEM for n 5 5 in each group. *P , 0.05 TG GqI
TAC versus NLC TAC (ANOVA).
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