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Abstract— Efficient and robust data streaming services are a 
critical requirement of emerging Grid applications, which are 
based on seamless interactions and coupling between 
geographically distributed application components. Furthermore 
the dynamism of Grid environments and applications requires 
that these services be able to continually manage and optimize 
their operation based on system state and application 
requirements. This paper presents a design and implementation 
of such a self-managing data-streaming service based on online 
control strategies. A Grid-based fusion workflow scenario is used 
to evaluate the service and demonstrate its feasibility and 
performance. 

I. INTRODUCTION 
Grid computing has established itself as the dominant 
paradigm for wide-area high-performance distributed 
computing. As Grid technologies and testbeds mature, they 
are enabling a new generation of scientific and engineering 
application formulations based on seamless interactions and 
couplings between geographically distributed computational, 
data, and information services. A key requirement of these 
applications is the support for high-throughput low-latency 
robust data streaming between the corresponding distributed 
components. For example, a typical Grid-based fusion 
simulation workflow consists of coupled simulation codes 
running simultaneously on separate HPC resources at 
supercomputing centers. Further, they must interact at runtime 
with services for interactive data monitoring, online data 
analysis and visualization, data archiving, and collaboration 
that also run simultaneously on remote sites. The fusion codes 
generate large amounts of data, which must be streamed 
efficiently and effectively between these distributed 
components. Moreover, the data-streaming services 
themselves must have minimal impact on the execution of the 

simulations, satisfy stringent application/user space and time 
constraints, and guarantee that no data is lost. 

Satisfying the above requirements in large-scale, 
heterogeneous and highly dynamic Grid environments with 
shared computing and communication resources, and where 
the application behaviour and performance is highly variable, 
is a significant challenge. It typically involves multiple 
functional and performance-related parameters that must be 
dynamically tuned to match the prevailing application 
requirements and Grid operating conditions. As Grid 
applications grow in scale and complexity, and with many of 
these applications running in batch mode with limited or no 
direct runtime access, maintaining desired QoS using current 
approaches based on ad hoc manual tuning and heuristics is 
not just tedious and error-prone, but infeasible. A practical 
data streaming service must, therefore, be largely self-
managing, i.e., it must dynamically detect and respond, 
quickly and correctly, to changes in application behaviour and 
state of the Grid. 

This paper presents the design, implementation, and 
experimental evaluation of such a self-managing data 
streaming service for wide-area Grid environments. The 
service is deployed using an infrastructure for self-managing 
Grid services, including a programming system for specifying 
self-managing behaviour as well as models and mechanisms 
for enforcing this behaviour at runtime [14]. A key 
contribution of this paper is the combination of typical rule-
based self-management approaches with more formal model-
based online control strategies. While the former are relatively 
simple and easy to implement, they require expert knowledge, 
are very tightly coupled to specific applications, and their 
performance is difficult to analyse in terms of optimality, 
feasibility, and stability properties. Advanced control 



formulations offer a theoretical basis for self-managing 
adaptations in distributed applications. Specifically, this paper 
combines model-based limited look-ahead controllers (LLC) 
with rule-based managers to dynamically achieve adaptive 
behaviour in Grid applications under various operating 
conditions [7]. 

This paper also illustrates and evaluates the operation of the 
data streaming service using a Grid-based fusion simulation 
workflow. This workflow consists of long-running coupled 
simulations, executing on remote supercomputing sites at 
NERSC (National Energy Research Scientific Computing 
Center) in California (CA) and ORNL (Oak Ridge National 
Laboratory) in Tennessee (TN), and generating several 
terabytes of data, which must be streamed over the network 
for live analysis and visualization at PPPL (Princeton Plasma 
Physics Laboratory) in New Jersey (NJ) and for archiving at 
ORNL (TN). The service aims to minimize the overhead 
associated with data streaming on the simulation, adapt 
quickly to network conditions, and prevent any loss of 
simulation data. 

The rest of this paper is organized as follows. Section II 
describes the driving Grid-based fusion simulation project and 
highlights its data streaming requirements and challenges. 
Section III describes the models and mechanism for enabling 
self-managing Grid services and applications. Section IV 
presents the design, implementation, operation and evaluation 
of the self-managing data streaming service. Section V 
presents the evaluation of rule driven autonomic services and 
the model based online control in conjunction with the rule 
driven services. Section VI addresses the scalability of the 
service and then proposes as well as evaluates hierarchical 
control strategies. Section VII presents related work. Section 
VIII concludes the paper. 

II. WIDE-AREA DATA STREAMING IN THE FUSION 
SIMULATION PROJECT 

A. Fusion Simulation Workflow 
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Fig. 1 A workflow for the Fusion Simulation Project 

The DoE SciDAC CPES fusion simulation project [11] is 
developing a new integrated Grid-based predictive plasma 
edge simulation capability to support next-generation burning 
plasma experiments such as the International Thermonuclear 
Experimental Reactor (ITER). Effective online management 

and transfer of simulation data are critical to this project and 
the scientific discovery process. Fig. 1 shows a typical 
workflow comprising of coupled simulation codes − the edge 
turbulence particle-in-cell (PIC) code (GTC) and the 
microscopic MHD code (M3D) − running simultaneously on 
thousands of processors at various supercomputing centers. 
The data produced by these simulations must be streamed live 
to remote sites for online simulation monitoring and control, 
simulation coupling, data analysis and visualization, online 
validation, and archiving.  

B. Requirements for a wide-area data streaming service 
The fundamental requirement of the wide area data 

streaming service is to efficiently and robustly stream data 
from live simulations to remote services while satisfying the 
following constraints: (1) Enable high-throughput, low-
latency data transfer to support near real-time access to the 
data. (2) Minimize related overhead on the executing 
simulation. Since the simulation is long running and executes 
in batch for days, the overhead due to data streaming on the 
simulation should be less than 10% of the simulation 
execution time. (3) Adapt to network conditions to maintain 
desired QoS. The network is a shared resource and the usage 
patterns vary constantly. (4) Handle network failures while 
eliminating data loss. Network failures can lead to buffer 
overflows, and data has to be written to local disks to avoid 
loss. However, this increases overhead on the simulation and 
the data is not available for real-time remote analysis and 
visualization. 

III. MODEL, MECHANISMS AND INFRASTRUCTURE FOR SELF-
MANAGEMENT 

The data streaming service described in this paper is 
constructed using the Accord programming infrastructure [14], 
which provides the core models and mechanisms for realizing 
self-managing Grid services. These include models and 
mechanisms for autonomic management using rules as well as 
model-based online control. Its key components described in 
the following sections.  

A. The Accord Autonomic Services Architecture 
The Accord programming system defines conceptual, 

implementation and enforcement models for utilizing 
knowledge (in the form of rules and policies) to guide the 
execution and adaptation of services. This is achieved by 
adapting the behaviours of individual services and their 
interactions (communication/ coordination) to respond to 
changing application requirements/state and execution 
environments using dynamically defined rules and policies. 

The Accord autonomic service architecture extends the 
service-based Grid programming paradigm to relax 
assumptions of static (defined at the time of instantiation) 
application requirements and system/application behaviours, 
and allow them to be dynamically specified. It also enables 
the behaviours of services and applications to be sensitive to 
the dynamic state of the system and the changing 
requirements of the application, and to adapt to these changes 



at runtime. This is achieved by extending Grid services to 
include the specifications of policies and mechanisms for self-
management, and providing a decentralized runtime 
infrastructure for consistently and efficiently enforcing these 
policies to enable self-managing functional, interaction, and 
composition behaviours based on current requirements, state 
and execution context. 
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Fig. 2 An autonomic service in Accord 

1)  Definition of Autonomic Services 
An autonomic service (see Fig. 2) extends a Grid service 

with a control port for external monitoring and steering, and a 
service manager that monitors and controls the runtime 
behaviours of the managed element/service. The control port 
consists of sensors that enable the state of the service to be 
queried, and actuators that enable the behaviours of the 
service to be modified. The control port and service port are 
used by the service manager to control the functions, 
performance, and interactions of the managed service. The 
control port is described using WSDL[9] and may be a part of 
the general service description, or may be a separate document 
to control access to it. An example of the control port is 
shown in Fig. 8. Rules are simple if-condition-then-action 
statements described using XML and include service 
adaptation and service interaction rules. An example of a rule 
is shown in Fig. 9. 

2)  The Runtime Infrastructure 
The Accord runtime infrastructure (shown in Fig. 3) 

consists of a user/developer portal, peer service and 
application composition/coordination managers, the 
autonomic services, and a decentralized rule enforcement 
engine. This infrastructure enables adaptations of the 
behaviours of individual services as well as the interactions 
between services. 

Behaviour Adaptation: Behaviour adaptation rules are 
used to adapt the behaviours of individual services and do not 
change their functionalities (described by service ports as 
contracts) and as a result, these adaptations are transparent to 
other services. This localized adaptation simplifies the 
specification and execution of adaptation rules by restricting 
the conditions monitored and actions performed within the 
individual services. 

Behaviour adaptations include modification of service 
parameters and dynamic selection of algorithms and 

implementations to optimize and tune service performance, 
meet QoS requirements, correct detected errors, avoid or 
recover from failures, and/or to protect the service. 

Service managers execute these rules to adapt the 
functional behaviours of the managed services, and evaluate 
and tune their performance. These adaptations are realized by 
invoking appropriate control (sensors, actuators) and 
functional interfaces. 

Interaction Adaptation: An application composition 
manager decomposes incoming application workflows 
(defined by the user or a workflow engine) into interaction 
rules for individual services, and forwards these rules to 
corresponding service managers. Service managers execute 
these rules to establish interaction relationships among 
services by negotiating communication protocols and 
mechanisms and dynamically constructing coordination 
relationships in a distributed and decentralized manner. 

Interaction rules are used to adapt service interactions, for 
example communication paradigms and/or coordination 
relationships. When local optimization of individual services 
cannot satisfy the global objectives, interaction rules are used 
to modify the application composition. 
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Fig. 3 Accord runtime infrastructure: Solid lines indicate interactions among 

services and dotted lines represent invocation of WS instances providing 
supporting services such as naming and discovery.  

Rule Execution: Rule execution at the service managers 
consists of three phases: condition inquiry, condition 
evaluation and conflict resolution, and batch action invocation. 
During condition inquiry, the service managers query the 
sensors used by the rules in parallel, assimilates their current 
values, and fire corresponding triggers.  

During the next phase, condition evaluations for all the 
rules are performed in parallel. Rule conflicts are detected 
during this phase when the same actuator is invoked with 
different values. These conflicts are resolved by relaxing the 
rule condition, using user-defined strategies, until the 
actuator-actuator conflict is resolved. If the conflicts are not 
resolved, errors are reported to users. If interacting services 
try to use different communication/coordination paradigms as 
a result of their independent adaptation behaviours, the 
services negotiate with each other to resolve the conflict [13].  



After rule conflict resolution, the actions are executed in 
parallel. Note that the rule execution model presented here 
focuses on correct and efficient execution of rules, providing 
mechanisms to detect and resolve conflicts at runtime. 
However, correctness of rules and conflict resolution 
strategies are the responsibilities of the users. 

3)  Autonomic Service Adaptation and Composition 
Dynamic and autonomic compositions are enabled in 

Accord using a combination of interaction and adaptation 
rules. Composition consists of defining the organization of 
services and the interactions among them [13]. The service 
organization describes a collection of services that are 
functionally compose-able, determined semantically (e.g., 
using OWL [27]) or syntactically using WSDL [9]. 
Interactions among services define the coordination between 
services and the communication paradigm used, e.g., message 
passing, RPC/RMI, or shared spaces. 

Once a workflow has been generated (e.g., using the 
mechanism in [4]), and the services have been discovered 
(using middleware services), the Accord composition manager 
decomposes the workflow into interaction rules. This 
decomposition process consists of mapping workflow patterns 
[26] in the workflow into corresponding rule templates [13]. 
Accord provides templates for basic communication 
paradigms such as notification, publisher/subscriber, 
rendezvous, shared spaces and RPC/RMI, and control 
structures such as sequence, AND-split, XOR-split, OR-split, 
AND-join, XOR-join, and OR-join. More complex interaction 
and coordination structures (e.g., loops) can be constructed 
from these basic patterns.  

The interaction rules are then injected into corresponding 
service managers, which execute the rules to establish 
communication and coordination relationships among 
involved services. Note that there is no centrally controlled 
orchestration. While the interaction rules are defined by the 
composition manager, the actual interactions are established 
by service managers in a decentralized and parallel manner.  

The communication paradigms and coordination 
relationships among the interacting autonomic services can be 
dynamically changed according to current application state 
and execution context by replacing/changing the related 
interaction rules. As a result, a new service can be brought 
into an application, and interactions among services can be 
changed at runtime, without taking the application offline. 
The two adaptation approaches, adaptation within individual 
services and dynamic composition of services, can be used 
separately or in combination to enable the autonomic self-
configuring, self-optimizing and self-healing behaviours of 
services and applications [13]. 

B. Model-Based Control within Accord 
Fig. 4 shows the overall framework of a limited look-ahead 

controller (LLC) [1] where the QoS management problem is 
posed as one of sequential optimization under uncertainty. 
Relevant operating parameters of the Grid environment such 
as data-generation patterns and network bandwidth are 
estimated and used by a mathematical model to forecast future 

application behaviour over a prediction horizon N. The 
controller optimizes the forecast behaviour as per the specified 
QoS goals by selecting the best control inputs to apply to the 
system. At each time step k, the controller finds a feasible 
sequence ]},1[|)({ * Nkkiiu ++∈  of control decisions 
within the prediction horizon. Then, only the first move is 
applied to the system and the whole optimization procedure is 
repeated at time k +1 when the new system state is available. 

 

Fig. 4 The LLC control structure 

The LLC approach allows for multiple QoS goals and 
operating constraints to be represented in the optimization 
problem and solved for each control step. It can be used as a 
management scheme for systems and applications that exhibit 
non-linear behaviour and where control or tuning inputs must 
be chosen from a finite set. 

As shown in Fig. 5, the element (service) managers within 
the Accord programming system are augmented with online 
controllers [7]. Each manager monitors the state of its 
underlying elements and their execution context, collects and 
reports runtime information, and enforces the adaptation 
actions decided by the controller. These managers thus 
augment human-defined rules  which may be error-prone and 
incomplete with mathematically sound models, optimization 
techniques, and runtime information. Specifically, the 
controller decides when and how to adapt the application 
behaviour and the managers focus on enforcing these 
adaptations in a consistent and efficient manner.  

 
Fig. 5 A self-managing element and the interaction between an element 

manager and the corresponding controller 

IV. THE SELF-MANAGING DATA-STREAMING SERVICE 
This section describes a self-managing data streaming 

services for the Grid-based fusion simulation workflow based 
on the models and mechanisms presented in the previous 
section. A specific driving simulation workflow is shown in 
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Fig. 6, and consists of a long running G.T.C. fusion simulation 
executing on a parallel supercomputer at NERSC (CA) and 
generating terabytes of data over its lifetime. This data must 
be analysed and visualized in real time, while the simulation is 
still running, at a remote site at PPPL (NJ), and also archived 
either at PPPL (NJ) or ORNL (TN). 
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Fig. 6 A self-managing data streaming service 

The data streaming service in Fig. 6 has four core services: 
(1) A Simulation Service (SS) executing on an IBM SP 
machine at NERSC, and generating data at regular intervals; 
(2) A Data Analysis Service (DAS) executing on a computer 
cluster located at PPPL to analyse the data streamed from 
NERSC; (3) A Data Storage Service (DSS) to archive the 
streamed data using the Logistical Networking backbone [21], 
which builds a Data Grid of storage services located at ORNL 
and PPPL; (4) An Autonomic Data Streaming Service (ADSS) 
that  manages the data transfer from SS (at NERSC) to DAS 
(at PPPL) and DSS (at PPPL/ORNL).  

The objectives of the self-managing ADSS are the 
following. (1) Prevent any loss of simulation data: Since data 
continuously generated and the buffer sizes are limited, the 
local buffer at each data transfer node must be eventually 
emptied. Therefore, if the network link to the analysis cluster 
is congested, then data from the transfer nodes must be written 
to a local hard disk at NERSC itself. (2) Minimize overhead 
on the simulation: In addition to transferring the generated 
data, the transfer nodes must also perform useful 
computations related to the simulation. Therefore, the ADSS 
must minimize the computational and resource requirements 
of the data transfer process on these nodes; (3) Maximize the 
utility of the transferred data: We would like to transfer as 
much of the generated data as possible to the remote cluster 
for analysis and visualization. Storage on the local hard disk is 
an option only if the available network bandwidth is 
insufficient to accommodate the data generation rate and there 
is a danger of losing simulation data. 

A. Design of the ADSS Controller 
The ADSS controller is designed using the LLC concepts 

discussed in Section III. Fig. 7 shows the system model for the 
streaming service where the key operating parameters for a 
data transfer node ni at time step k are as follows: (1) State 
variable: The current average queue size at ni denoted as qi(k). 
(2) Environment variables: λi(k) denotes the data generation 
rate into the queue qi and B(k) the effective bandwidth of the 
network link. (3) Control or decision variables: Given the 

state and environment variables at time k, the controller 
decides μi(k) and ωi(k), the data-transfer rate over the network 
link and to the hard disk respectively. The system dynamics at 
each node ni evolves as per the following equations: 

Tkkkkqkq iiiii ⋅−−⋅+=+ )))()(1()(ˆ()()1(ˆ ωμλ  

)),1(()( kkk ii −= λφλ  
The queue size at time k + 1 is determined by the current 

queue size, the estimated data generation rate λi(k), and the 
data transfer rates (decided by the controller) to the network 
link and the local hard disk. The data generation rate is 
estimated using a forecasting model φ, implemented here by 
an Exponentially-Weighted Moving-Average (EWMA) filter. 
The sampling duration for the controller is denoted as T. Both 

1)(0 ≤≤ kiμ  and 1)(0 ≤≤ kiω  are chosen by the controller 
from a finite set of appropriately quantized values. Note that 
in practice, the data transfer rate is a function of the effective 
network bandwidth B(k) at time k, the number of sending 
threads, and the size of each data block transmitted from the 
queue. These parameters are decided by appropriate 
components within the data-streaming service (as discussed in 
Section IV-B).  

 
Fig. 7 The system model for the data streaming service 

The LLC problem is now formulated as a set-point 
specification where the controller aims to maintain each 
node’s ni queue around a desired value q* while maximizing 
the utility of the transferred data, i.e., by minimizing the 
amount of data transferred to the hard disk/local storage. 
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Here, Np denotes the prediction or look-ahead horizon, qmax 
the maximum queue size, and αi and βi denote user-specified 
weights in the cost function.  

When control inputs must be chosen from a set of discrete 
values, the LLC formulation, as posed above, will show an 
exponential increase in worst-case complexity with an 
increasing number of control options and longer prediction 
horizons. Since the execution time available to the controller 
is often limited by hard application bounds, it is necessary to 
consider the possibility that we may have to deal with 
suboptimal solutions. For adaptation purposes, however, it is 
not critical to find the global optimum to ensure system 
stability; a feasible suboptimal solution will suffice. However, 
we would still like to use the available time exploring the 
most promising solutions leading to optimality. Taking 
advantage of the fact that the operating environment does not 
change drastically over a short period of time, we can obtain 
suboptimal solutions using local search methods, where given 
the current values of μi(k) and ωi(k), the controller searches a 
limited neighbourhood of these values for a feasible solution 
for the next step. 

B. Implementation and Deployment of ADSS 
ADSS is a composite service comprising a Buffer Manager 

Service (BMS) managing the buffers allocated by the ADSS, 
and a Data Transfer Service (DTS) managing the transfer of 
data blocks from the buffers to remote services for analysis 
and visualization at PPPL, and archiving at PPPL or ORNL. 
The BMS supports two buffer management schemes. Uniform 
buffering divides the data into blocks of fixed sizes, and is 
more suitable when the simulation can transfer all its data 
items to a remote storage. Aggregate buffering, on the other 
hand, aggregates blocks across multiple time steps for 
network transfer, and is used when the network is congested. 
The control ports for these services are described in [14]. 

A EWMA filter with a smoothing constant of 0.5 estimates 
the data generated by the simulation for the ADSS controller. 
A single-step LLC strategy is used with a desired buffer size 
of q* = 0 on each node ni. The weights in the multi-objective 
cost function are set to αi = 1 and βi = 108, to penalize the 
controller very heavily for writing data to the hard disk. The 
decision variables μi and ωi are quantized in intervals of 0.1. 
The controller sampling time T is set to 80 seconds in our 
implementation. 

The ADSS Element Manager supplies the controller with 
internal state of the ADSS and SS services, including the 
observed buffer size on node ni, the simulation-data 
generation rate, and the network bandwidth. The effective 
network bandwidth of the link between NERSC and PPPL is 
measured using Iperf [20], which reports the bandwidth 
available to datagram packets in the TCP protocol, and their 
delay jitter and loss rate. The element manager also stores a 
set of rules which are triggered based on controller decisions. 

The element manager triggers adaptations within the 
DTS/BMS service. For example, the controller decides the 
amount of data to be sent over the network or to local storage, 
and the element manager decides the corresponding buffer 

management scheme to be used within the BMS to achieve 
this. The element manager also adapts the DTS service to send 
data to local/low latency storage, e.g., NERSC/ORNL, when 
the network is congested. 

V. EVALUATION OF THE SELF-MANAGING DATA-STREAMING 
SERVICE 

This section presents an evaluation of the Accord-based 
self-managing data-streaming service. The first group of 
experiments evaluate the rule-based adaptations while the 
second group evaluates a combination of rule-based and 
control-based adaptations. A comparison of the two strategies 
and the overhead of the self managing data streaming service 
are also presented. 

The setup for experiments presented in this section 
consisted of the GTC fusion simulation running on 32 to 256 
processors at NERSC, and streaming data for analysis to 
PPPL. A 155 Mbps (peak) ESNET connection between PPPL 
and NERSC was used. A single controller was used, and the 
controller and managers were implemented using threading. A 
maximum of four simulation processors were used for data 
streaming. 

A. Self-Managing Scenarios using Rule based Adaptations 
Scenario 1: Self-optimizing behaviour of BMS. 

This scenario illustrates the self-optimizing behaviour of 
the BMS using rules. The service adaptation within BMS 
service is transparent to other services. BMS selects the 
appropriate blocking technique, orders blocks in the buffer 
and optimizes the size of the buffer(s) used to ensure low 
latency high performance steaming and minimize the impact 
on the execution of the simulation. The adaptations are based 
on the current state of the simulation and more specifically the 
following three runtime parameters. (1) The data generation 
rate, which is the amount of data generated per iteration 
divided by the time required for the iteration, and can vary 
from 1 to 400 Mbps depending on the domain decomposition 
and the type of analysis to be performed. (2) The network 
connectivity and the network transfer rate. The latter is limited 
by the 100 Mbps link between NERC and PPPL. (3) The 
nature of data being generated in the simulation, e.g., 
parameters, 2D surface data or 3D volume data. BMS 
provides three algorithms: 
• Uniform Buffer Management: This algorithm divides the 

data into blocks of fixed sizes, which are then transmitted 
by the DTS. This static algorithm is more suited for the 
simulations generating data at a small or medium rate 
(50Mbps). Using smaller block sizes have significant 
advantages at the receiving end as less time is required 
for decoding the data and processing it for analysis and 
visualization. 

• Aggregate Buffer Management: This algorithm 
aggregates blocks across iterations and the DTS transmits 
these aggregated blocks. This algorithm is suited for high 
data generation rates, i.e., between 60-400 Mbps. 

• Priority Buffer Management: This algorithms orders data 
blocks in the buffer based on the nature of the data. For 



example, 2D data blocks containing visualization or 
simulation parameters are given higher priority as 
compared to 3D raw volume data. To enable adaptations, 
the BMS exports two sensors, “DataGenerationRate” and 
“DataType”, and one actuator, “BlockingAlgorithm” as 
part of its control port shown in Fig. 8. This document 
describes the name, type, message format and protocol 
details for each sensor/actuator. Further, the BMS self-
optimization behaviour is governed by the rule shown in 
Fig. 9, which states that if the data generation rate is 
greater than the peak network transfer rate (i.e., 100 Mps), 
the aggregate buffer management is used otherwise the 
uniform buffer management algorithm is used. 

 

 
Fig. 8 The control port for the BMS 

The resulting adaptation behaviour is plotted in Fig. 10(a). 
The figure shows that BMS switches to aggregate buffer 
management during simulation time intervals 75 sec to 150 
sec and 175 sec to 250 sec, as the simulation data generation 
rate peaks to 100Mbps and 120 Mbps during these intervals. 
The aggregation is an average of 7 blocks. Once the data 
generation rate falls to 50Mbps, BMS switches back to the 
uniform buffer management scheme, and constantly sends 3 
blocks of data on the network. Fig. 10 (b) plots the percentage 
overhead on the simulation execution with and without 

autonomic management (using rules). Overhead is computed 
as the absolute difference between the time required to 
generate data without the ADSS service and the time required 
to stream the data using ADSS service. 

 

 
Fig. 9 The adaptation rule for BMS 

The plot shows that the BMS switches from uniform buffer 
management to aggregate buffer management at data 
generation rates of around 80-90 Mbps. This increases the 
overhead slightly, however the overheads remains less than 
5%. Without autonomic management, the overheads increase 
to about 10% for higher data rates as the BMS continues to 
use uniform buffer management. 

When the simulation service generates 2D visualization 
data in addition to 3D data, the priority buffer management 
algorithm is triggered. The 2D data blocks are given higher 
priority and are moved to the head to data transmission queue. 
As a result, transmission of the 2D data is expedited with 
almost no impact to the 3D data. 

<rule name=”BlockingRule" attribute=”active”>
   <trigger name=”2D” sensor=”DataType” op=”EQ” value=”2D” type=”string”/>
  <trigger name=”DGR” sensor=”DataGenerationRate” op=”GT” value=peakRate

   <when>
     <and>
        <operand trigger=”2D”/>

         <operand trigger=”DGR”/>
      </and>
   </when>
  <do>

      <action actuator=”BlockingAlgorithm”>
        <input value=”priorityAggregation” type=”string”/>
     </action>
  </do>

   <when>
     <and>
        <operand trigger=”2D”/>
           <not>
              <operand trigger=”DGR”/>
           </not>

      </and>
   </when>
  <do>
     <action actuator=”BlockingAlgorithm”>
        <input value=”priority” type=”string”/>
     </action>
  </do>

   <when>
     <and>

         <operand trigger=”DGR”/>
        <not>

            <operand trigger=”2D”/>
        </not>

      </and>
   </when>
  <do>
     <action actuator=”BlockingAlgorithm”>

         <input value=”aggregate” type=”string”/> 
     </action>
  </do>

  <else>
     <action actuator=”BlockingAlgorithm”>

         <input value=”uniform” type=”string”/>
     </action>
  </else>

</rule>

     type=”float”/>

<controlPort name=”BMS_controlPort” service=”BufferManagerService”>
   <types> 
      <sensor name=”DataGenerationRate”>
         <element name=”DataGenerationRateReq” type=”string”/>
         <element name=”DataGenerationRateResp” type=”double”/>
      </sensor>
      <sensor name=”DataType”> 
         <element name=”DataTypeReq” type=”string”/>
         <element name=”DataTypeResp” type=”string”/>
      </sensor>
      <actuator = name=”BlockingAlgorithm”>
         <element name=”BlockingAlgorithmReq” type=”string”/> 
      </actuator>
   </types>

   <message name=”GetDataGenerationRateIn”> 
      <part name=”body” element=”DataGenerationRateReq”/>
   </message>
   <message name=”GetDataGenerationRateOut”>
      <part name=”body” element=”DataGenerationRateResp”/>
   </message>
   <message name=”GetDataTypeIn”>
      <part name=”body” element=”DataTypeReq”/> 
   </message>
   <message name=”GetDataTypeOut”>
      <part name=”body” element=”DataTypeResp”/>
   </message>
   <message name=”SetBlockingAlgorithm”>
      <part name=”body” element=”BlockingAlgorithmReq”/>
   </message>

   <portType name=”BMSControlPortType”> 
      <operation name=”SensorDataGenerationRate”> 
         <input message=”tns:GetDataGenerationRateIn”/>
         <output message=”tns:GetDataGenerationRateOut”/> 
      </operation>
      <operation name=”SensorDataType”> 
         <input message=”tns:GetDataTypeIn”/>
         <output message=”tns:GetDataTypeOut”/> 
      </operation>
      <operation name=”ActuatorBlockingAlgorithm”> 
         <input message=”tns:SetBlockingAlgorithm”/>
      </operation>
   </portType> 
</controlPort>
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Fig. 10(a) Self-optimization behaviours of the Buffer Management Service 

(BMS) – BMS switches between uniform blocking and aggregate blocking 
algorithms based on application data generation rates, network transfer rates 
and the nature of data generated 
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Fig. 10(b) Percentage overhead on simulation execution with and without 

autonomic management using rules 

Scenario 2: Self-configuring/self-optimizing behaviour of 
ADSS. 

The effectiveness of the data transfer between the 
simulation service at NERSC and the analysis/visualization 
service at PPPL depends on the network transfer rate, which 
depends on data generation rates and/or network conditions. 
Falling network transfer rates can lead to buffer overflows and 
require the simulation to be throttled to avoid data loss. One 
option to maintain data throughputs is to use multiple data 
streams. Of course, this option requires multiple buffers and 
hence uses more of the available memory. Implementing this 
option requires the creation of multiple instances of ADSS. In 
this scenario, ADSS monitors the effective network transfer 
rate, and when this rate dips below a certain threshold, the 
service causes another instance of the ADSS to be created and 
incorporated into the workflow. Note that the maximum 
number of ADSS instances possible is predefined. Similarly, 
if the effective data transfer rate is above a threshold, the 
number of ADSS instances is decreased to reduce memory 
overheads. The upper and lower thresholds have been 
determined using experiments in [6]. 

 
Fig. 11 The adaptation rule for the ADSS 
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Fig. 12 Effect of creating new instances of the ADSS service when the 
%Network Throughput dips to below the user defined 50% threshold 

The self-configuration behaviour of ADSS is governed by 
the rule shown in Fig. 11. When the network transfer rate is 
below a pre-defined threshold, ADSS will use Accord to 
create new instances of ADSS including BMS and DTS and 

<rule name=”SplitRule" attribute=”active”> 
   <trigger name=”SmallNTR” sensor=”NetworkTransferRate”
                op=”LT” value=lowerthreshold type=”float”/> 
  <trigger name=”LargeNTR” sensor=”NetworkTransferRate”

                op=”GT” value=upperthreshold type=”float”/> 
   <trigger name=”ADSSNum” sensor=”NumOfADSS” op=”LT”
                value=num type=”integer”/> 
   <when>
      <and>
         <operand trigger=”SmallNTR”/> 
         <operand trigger=”ADSSNum”/> 
      </and>
   </when>
   <do>
      <action actuator=”Accord:NewInstances”> 
         <input value=”BMS” type=”service”/>
      </action>
      <action actuator=”Accord:LoadRules”> 
        <input value=”BMS” type=”service”/>

         <input value=”BMSRuleName” type=”string”/> 
      </action>
      <action actuator=”Accord:NewInstances”> 
        <input value=”DTS” type=”service”/>

      </action>
      <action actuator=”Accord:LoadRules”> 
        <input value=”DTS” type=”service”/>

         <input value=”DTSRuleName” type=”string”/> 
      </action>
  </do>

   <when>
      <operand trigger=”LargeNTR”/>
   </when>
   <do>
      <action actuator=”Accord:GetInstances”> 
        <input value=”BMS” type=”service”/>

         <output value=”BMSInstanceList” type=”serviceInstanceList”/>
      </action>
      <action actuator=”Accord:DelInstances”> 
         <input value=”BMSInstanceList” type=”serviceInstanceList”/>
         <input value=”number" type=”integer”/> 
      </action>
  </do>

</rule>



load corresponding rules into the new BMS and DTS 
instances to enable interactions between them. When the 
network transfer rate is above a pre-defined threshold, ADSS 
obtains the list of exiting ADSS instances using the Accord 
runtime, and deletes a pre-defined number of instances. 

The resulting behaviours are plotted in Fig. 12. This figure 
plots the percentage of network throughput, which is the 
difference between the current network transfer rate and the 
maximum network rate between PPPL and NERSC, i.e., 100 
Mbps. The figure shows that the number of ADSS instances 
first increases as the network throughput dips below the 50% 
threshold (corresponding to data generation rates of around 25 
Mbps in the plot), as defined by the rule in Fig. 11. This 
causes the network throughput to increase to above 80%. Even 
more instances of ADSS services are created at data 
generation rates of around 40 Mbps and the network 
throughput once again jumps to around 80Mbps. The ADSS 
instances increase until the limit of 4 is reached.  
 
Scenario 3: Self-healing behaviour of ADSS 
 

 
Fig. 13 The interaction/adaptation rule for ADSS. 

This scenario addresses data loss in the cases of extreme 
network congestion or network failures. These cases cannot be 
addressed using simple buffer management or replication. One 
option in these cases to avoid loss of data is to write data 
locally at NERSC rather than streaming. However, this data 
will not be available for analysis and visualization until the 
simulation complete, which could be days. Writing data to the 
disk also causes significant overheads to the simulation [6]. 
ADSS addresses these cases by temporarily or permanently 
switching the streaming of the data to the DSS at ORNL 
instead of PPPL. NERSC and ORNL are connected by a low 
latency [12] link which has a lower probability of being 
saturated. The data can be later transmitted from ORNL to 
PPPL. Congestion is detected by observing the buffer - when 

the buffer is filled to a capacity, the ADSS switches 
subsequent streaming to ORNL, and when the buffer is no 
longer saturated, switches the steaming back to PPPL. If the 
service observes that buffer is being continuously saturated, it 
infers that there is a network failure and permanently switches 
the streaming to ORNL. In this case, the blocks already in the 
PPPL buffer are transferred to the ORNL queue. Here ADSS 
communicates with DSS at PPPL or DSS at ORNL under 
different network conditions. This behaviour is defined by 
interaction rules in ADSS.  The rule specifying this self-
management behaviour is listed in Fig. 13. 

The resulting self-healing behaviour is plotted in Fig. 14. 
The figure shows that as the ADSS buffer(s) get saturated, the 
data streaming switches to the DSS at ORNL, and when the 
buffer occupancy falls below 20% it switches back to PPPL. 
Note that while the data blocks are written to ORNL, data 
blocks already queued for transmission to PPPL continue to 
be streamed. The figure also shows that, at simulation time 
1500 (X axis), the PPPL buffers once again get saturated and 
the streaming switches to ORNL. If this persists, the steaming 
would be permanently switched to ORNL. 
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Fig. 14 Effect of switching from the DSS at PPPL to the DSS ORNL in 

response to network congestion and/or failure 

B. Self-Managing Scenarios using Rule and Control based 
Adaptations 
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Fig. 15 Actual and predicted data generation rates for the GTC simulation 

<rule name=”TransferRule" attribute=”active”>
   <trigger name=”transferFailed” sensor=”DataTransfer”
                op=”EQ” value=”0” type=”integer”/>
   <trigger name=”transferSwitch” sensor=”NumOfSwitches”
                op=”LT” value=switchThreshold type=”integer”/>

<when> 
   <and>
      <operand trigger=”transferFailed”/> 
      <operand trigger=”transferSwitch”/> 
   </and>
</when> 
<do> 
   <action actuator=”TransferAlgorithm”> 
      <input value=”remote” type=”string”/>
   </action> 
</do>

<when> 
   <not>
      <operand trigger=”transferSwitch"/> 
   </not>
<do> 
   <action actuator=”TransferAlgorithm”> 
      <input value=”remote” type=”string”/>
   </action> 
   <action actuator=”Accord:SetRuleAttribute”>
      <input value=”TransferRule” type=”string”/>
      <input value=”inactive” type=”string”/>
   </action> 
</rule>



Predicting data generation rates: Fig. 15 compares the 
actual amount of data generated by the simulation against the 
corresponding estimation. The simulation ran for three hours 
at NERSC on 64 processors and used four data streaming 
processors. The incoming data rate into each transfer 
processor was estimated with good accuracy by a EWMA 
filter as follows: )1(ˆ)1()()(ˆ −⋅−+⋅= kkk iii λγλγλ  where γ 
= 0.5 is the smoothing factor. 
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Fig. 16 Controller and DTS operation for the GTC simulation 

Controller behaviour for long-running simulations: Fig. 
16 plots a representative snapshot of the streaming behaviour 
for a long-running GTC simulation. During the shown period, 
DTS always transfers data to remote storage and no data is 
transferred to local storage, as the effective network 
bandwidth remains steady and no congestions are detected. 
This plot illustrates the stable operation of the controller. 
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Fig. 17 DTS adaptation due to network congestion 

DTS adaptations based on control strategies: To observe 
adaptation in the DTS, we congested the network between 
NERSC and PPPL between controller intervals 9 and 19 
(recall that each controller interval is 80 sec), as shown in Fig. 
8. During intervals (1, 9), we observe no congestion in the 
network, and data is transferred by DTS over the network to 
PPPL. During the intervals of network congestion (9, 18), the 
controller observes the environment and state variables and 
advices the element manager to adapt the DTS behaviour 

accordingly, causing some data to be transferred to a local 
storage/hard disk in addition to sending data to the remote 
location. This prevents data loss due to buffer overflows. It is 
observed from Fig. 17 that this adaptation is triggered multiple 
times until the network is no longer congested at around the 
19th controller interval. The data sent to the local storage falls 
to zero at this point. 
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Fig. 18 BMS adaptations due to varying network conditions 

Adaptations in the BMS: This scenario demonstrates the 
adaptation of the BMS service. A uniform BMS scheme is 
triggered in cases when data generation is constant and in 
cases when the congestion increases an aggregate buffer 
management is triggered. The triggering of the appropriate 
buffering scheme in the BMS is prescribed by the controller to 
overcome network congestion. Fig. 18 shows the 
corresponding adaptations. During intervals (0, 7), the 
uniform blocking scheme is used, and during (7, 16), the 
aggregate blocking scheme used to compensate for network 
congestion. 

C. Comparison of Rule-based and  Control-based Adaptation 
in the ADSS 
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Fig. 19 % Buffer Vacancy using heuristically based rules 

This evaluation illustrates how the percentage buffer 
vacancy (i.e., the empty space in the buffer) varies over time 



for two scenarios; one in which only rules are used for buffer 
management, and the other in which rules are used in 
combination with controller inputs. Fig. 19 plots the % buffer 
vacancy for the first case. In this case, management was 
purely reactive and based on heuristics (rule based). The 
element manager was not aware of the current and future data 
generation rate and the network bandwidth. The average 
buffer vacancy in this case was around 16%, i.e., in most 
cases 84% of the buffer was full.  

Time(sec)
0 100 200 300 400 500 600 700 800 900 1000

%
 B

uf
fe

r V
ac

an
cy

0

10

20

30

40

50

60

70

80

90

100

% Buffer Vacancy vs Time
Mean %Buffer Vacancy
Controller Interval

 
Fig. 20 % Buffer Vacancy using control-based self-management 

Such a high occupancy leads to a slow down of  the 
simulation [6] and also results in increased loss of data due to 
buffer overflows. Fig. 20 plots the corresponding % buffer 
vacancy when the model-based controller was used in 
conjunction with rule-based management. The mean buffer 
vacancy in this case is around 75%. Higher buffer vacancy 
leads to reduced overheads and data loss. 

D. Overhead of the Self-Managing Data Streaming 
Overheads on the simulation due the self-managing data 

streaming service are primarily due to two factors. The first 
are the activities of the controller during a controller interval. 
This includes the controller decision time, the cost of 
adaptations triggered by rule executions and the operation of 
BMS and DTS. The second is the cost of the data streaming 
itself. These overheads are presented below. 

Overheads due to controller activities: For a controller 
interval of 80 seconds, the average controller decision-time 
was ≈2.1 sec (2.5%) at the start of the controller operation. 
This reduced to ≈0.12 sec (0.15%) as the simulation 
progressed due to local search methods used. The network 
measurement cost was 18.8 sec (23.5%). The operating cost of 
the BMS and DTS was 0.2 sec (0.25%) and 18.8 sec (23.5%) 
respectively. Rule execution for triggering adaptations 
required less than 0.01 sec. The controller was idle for the rest 
of the control interval. Note that the controller was 
implemented as a separate thread (using pthread [19]) and its 
execution overlapped with the simulation. 

Overhead of data streaming: A key requirement of the self 
managing data streaming was that its overhead on the 
simulation be less than 10% of the simulation execution time. 

%overhead of the data streaming is defined as: (T*
s -Ts)/Ts, 

where T*
s and Ts denote the simulation execution time with 

and without data streaming respectively. The %overhead of 
data streaming on the GTC simulation was less than 9% for 
16-64 processors and reduced to about 5% for 128-256 
processors. The reduction was due to the fact that as the 
number of simulation processors increased, the data generated 
per processors decreased. 

VI. ADDRESSING SCALABILITY USING HIERARCHICAL CONTROL 
In a distributed application consisting of multiple 

interacting elements, a centralized scheme for enforcing self-
managing behaviours is not scalable – the number of control 
options to be explored is simply too large. However, the 
dimensionality of the overall optimization problem is 
drastically reduced, if it can be decomposed into simpler sub-
problems, where each is solved independently. Higher-level 
control can be used to enable coordinated adaptations across 
these sub domains, as discussed below. 

To solve performance management problems of interest 
tractably in a distributed setting, service managers in Accord 
can be dynamically composed in hierarchical fashion, as 
shown in Fig. 21, where interactions between element 
controllers are managed by higher-level ones. Decisions made 
by high-level controllers are aimed at satisfying overall QoS 
goals and act as additional operating constraints on lower-
level elements. Each element optimizes its behaviour using its 
local controller, while satisfying these constraints. 

 

 
Fig. 21 Constructing a hierarchy of controllers in Accord 

The Accord runtime framework ensures coordinated and 
consistent adaptations across multiple service (element) 
managers. The overall operation is as follows. At runtime, 
each element or service manager independently collects 
element and context state information using sensors exposed 
by the individual elements and the environment. The 
managers then report this information to associated controllers, 
which then computes control actions and informs the service 
manager of desired adaptation behaviours.  Service managers 
then execute these adaptation behaviours using actuators 
exposed by the environment and elements. If these local 
adaptations do not achieve the desired objectives, service 
managers collectively invoke higher-level controllers, which 
results in coordination among multiple interacting managers 
to change the element state and their interactions. 
Composition managers coordinate adaptations across service 
managers as described above. 
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A. Hierarchical Control  for Data Streaming 
Recall that when control inputs must be chosen from a set 

of discrete values, the optimization problem described in 
Section IV-A will show an exponential increase in worst-case 
complexity with an increasing number of control options and 
longer prediction horizons. We can, however, substantially 
reduce the dimensionality of the optimization problem via 
hierarchical control decomposition. Exhaustive and bounded 
search strategies are then used at different levels of the 
hierarchy to solve the corresponding optimization problems 
with low run-time overhead. As an example of how to apply 
hierarchical control to the data streaming problem, consider 
the multi-level structure shown in Fig. 22. Here, we have a 
larger system compared to the one described in Section IV-B 
− 256 processors generate simulation data while 16 data-
transfer nodes (instead of 4) collect this data and stream it 
over the network link to PPPL. As before, the QoS goals are 
to prevent any loss of simulation data and maximize the utility 
of the transferred data. First, the data-transfer nodes are 
logically partitioned, for the purposes of scalable control, into 
four modules M1, M2, M3, and M4 where each module Mi 
comprises four nodes. The data-generation or flow rate from 
the simulation cluster into each Mi at time k is denoted by Fi(k). 
This flow can be further split into sub-flows Fi1(k), Fi2(k), 
Fi3(k), and Fi4(k), incoming into each node within module Mi. 
Fig. 22 shows L1 and L0 controllers within a two-level 
hierarchy working together to achieve the desired QoS goals 
with the following responsibilities. 

 
Fig. 22 Hierarchical Controller Formulation for Data Streaming 

The L1 controller must decide the fraction of the available 
network bandwidth to distribute to the various modules. 
Therefore, given the incoming flow-rates into the various 
modules, the effective network bandwidth B(k) and the current 
state of each module in terms of the average buffer size of the 
sending processors, the L1 controller must decide the vector 
{γi}, i.e., the fraction of the network bandwidth γiB(k) to 
allocate to each Mi.  

The L0 controller within Mi solves the problem, originally 
formulated in Section IV. It decides the following variables 
for each node nj in the module: the fractions μij and ωij of the 

incoming flow rate Fij(k) to send over the network link and to 
the local/nearby storage, respectively. It is important to note 
that the L0 controller within a module operates under the 
dynamic constraints imposed by the L1 controller, in terms of 
the bandwidth γi.B(k) that the L0 controller must distribute 
among its sending processors. 

The hierarchical structure in Fig. 22 reduces the 
dimensionality of the original control problem substantially. 
Where a centralized solution must decide the variables μ and 
ω for each of the 16 sending processors, in our method, the L1 
controller only decides a single-dimensional variable γ for 
each of the four modules. Similarly, the L0 controller decides 
control variables only for those processors within its module - 
far fewer compared to the total number of sending processors 
in the system. 

To realize the hierarchical structure in Fig. 22, each L1 
controller must know the approximate behaviour of the 
components comprising the L0 level. For example, to solve 
the combinatorial optimization problem of determining {γi}, 
the fraction of the available network bandwidth to allocate to 
the modules, the L1 controller must be able to quickly 
approximate the behaviour of each module. More specifically, 
given the observed state of each Mi, and the estimated 
environment parameters in terms of the effective network 
bandwidth and flow rates, the L1 controller must obtain the 
cost incurred by module Mi for various choices of γi. Note, 
however, that Mi's behaviour includes complex and non-linear 
interaction between its L0 controller and the corresponding 
sending processors, and the resulting dynamics cannot be 
easily captured via explicit mathematical equations. A detailed 
model for each Mi will also increase the L1 controller's 
overhead substantially, defeating our goal of scalable 
hierarchical control.  

We use simulation-based learning techniques [5] to 
generate a look-up table that quickly approximates Mi's 
behaviour. Here, Mi’s behaviour is learned by simulating the 
module with a large number of training inputs from the 
(quantized) domains of Fi, B, and γi. Once such an 
approximation is obtained off-line, it can be used by the L1 
controller to quickly generate decisions for use in real time. 

B. Simulation Results 
Fig. 23 summarizes the performance of the control 

hierarchy when both the L0 and L1 controllers use a single-
step look-ahead LLC scheme. We assume a total of 16 data-
transfer nodes, arranged in four modules comprising four 
nodes each. The sampling times for the L0 and L1 controllers 
are both set to 120 seconds. The maximum buffer size on each 
node was qmax = 3.107 bits (≈29MB) and the desired queue 
size at the end of the prediction horizon was set to q* = 0. The 
decision variable 10 ≤≤ iγ  supplied by the L1 controller to 
each Mi was quantized in intervals of 0.1. 

Fig. 24 shows the data, in terms of Mbits, streamed by the 
L0 controller within each module over the network link and 
hard disk. It is clear that during periods of network congestion, 
between 12 and 18, the L0 controllers within modules M1 and 



M3 write a fraction of the incoming data to hard disk to 
prevent data loss. 
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Fig. 23 GTC workload trace and effective network bandwidth between 

NERSC and PPPL 
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Fig. 24 Operation of the L0 and L1 controllers 

VII. RELATED WORK 
There have been several recent research efforts addressing 

self-management. Some have investigated runtime adaptations 
by tuning TCP buffers (Enable [25] and GridFTP [24]). 
Others use feedback (or reactive) control for resource and 
performance management for single-processor application 
[10], application task scheduling [8], [16], bandwidth 
allocation and QoS adaptation in web servers [3], load 
balancing in e-mail and file servers [15], network flow control 
[18], [23] and processor power management [17], [22]. 
Classical feedback control, however, has some inherent 
limitations. It usually assumes a linear and discrete-time 
model for system dynamics with an unconstrained state space, 
and a continuous input and output domain. The objective of 
this paper is to address this limitation and manage the 
performance of Grid applications, which exhibit hybrid 
behaviour comprising both discrete-event and time-based 
dynamics [2], and execute under explicit operating constraints, 

using the LLC method. Predictive and change-point detection 
algorithms have been proposed for managing application 
performance. 

VIII. CONCLUSION 
The paper presented the design and implementation of a 

self-managing data streaming service that enables efficient 
data transport to support emerging Grid-based scientific 
workflows. The presented design combines rule-based 
heuristic adaptations with more formal model-based online 
control strategies to provide a self-managing service 
framework that is robust and flexible, and can address the 
dynamism in the application requirements and system state. A 
fusion simulation workflow was used to evaluate the data-
streaming service and its self-managing behaviours. The 
results demonstrate the ability of the service to meet Grid-
based data-streaming requirements, as well as its efficiency 
and performance. A hierarchical control architecture was also 
presented to address scalability issues for large systems. 
Simulations were used to demonstrate the feasibility and 
effectiveness of this scheme. 
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