
A Self-Managing Wide-Area Data Streaming Service
using Model-based Online Control

Viraj Bhat#1, Manish Parashar#2, Hua Liu%3, Mohit Khandekar*4, Nagarajan Kandasamy*5, Sherif Abdelwahed@6
Scott Klasky$7

#Department of Electrical and Computer Engineering, Rutgers University
94 Brett Road, Piscataway, NJ, 08854, USA

%Xerox Innovation Group, 800 Phillips Rd, Mailstop 128-30E Webster NY 14580
Email:hua.liu@xeroxlabs.com

1virajb@caip.rutgers.edu,2parashar@caip.rutgers.edu
*Department of Electrical and Computer Engineering, Drexel University

3141 Chestnut Street, Philadelphia, PA 19104, USA
3mdk372@drexel.edu,4kandasamy@cbis.ece.drexel.edu

@Institute for Software Integrated Systems, 2015
5sherif@isis.vanderbilt.edu

Terrace Place Nashville, TN 37235, USA
$Oak Ridge National Laboratory

P.O. Box 2008, Oak Ridge, TN, 37831, USA
6klasky@ornl.gov

Abstract— Efficient and robust data streaming services are a
critical requirement of emerging Grid applications, which are
based on seamless interactions and coupling between
geographically distributed application components. Furthermore
the dynamism of Grid environments and applications requires
that these services be able to continually manage and optimize
their operation based on system state and application
requirements. This paper presents a design and implementation
of such a self-managing data-streaming service based on online
control strategies. A Grid-based fusion workflow scenario is used
to evaluate the service and demonstrate its feasibility and
performance.

I. INTRODUCTION
Grid computing has established itself as the dominant
paradigm for wide-area high-performance distributed
computing. As Grid technologies and testbeds mature, they
are enabling a new generation of scientific and engineering
application formulations based on seamless interactions and
couplings between geographically distributed computational,
data, and information services. A key requirement of these
applications is the support for high-throughput low-latency
robust data streaming between the corresponding distributed
components. For example, a typical Grid-based fusion
simulation workflow consists of coupled simulation codes
running simultaneously on separate HPC resources at
supercomputing centers. Further, they must interact at runtime
with services for interactive data monitoring, online data
analysis and visualization, data archiving, and collaboration
that also run simultaneously on remote sites. The fusion codes
generate large amounts of data, which must be streamed
efficiently and effectively between these distributed
components. Moreover, the data-streaming services
themselves must have minimal impact on the execution of the

simulations, satisfy stringent application/user space and time
constraints, and guarantee that no data is lost.

Satisfying the above requirements in large-scale,
heterogeneous and highly dynamic Grid environments with
shared computing and communication resources, and where
the application behaviour and performance is highly variable,
is a significant challenge. It typically involves multiple
functional and performance-related parameters that must be
dynamically tuned to match the prevailing application
requirements and Grid operating conditions. As Grid
applications grow in scale and complexity, and with many of
these applications running in batch mode with limited or no
direct runtime access, maintaining desired QoS using current
approaches based on ad hoc manual tuning and heuristics is
not just tedious and error-prone, but infeasible. A practical
data streaming service must, therefore, be largely self-
managing, i.e., it must dynamically detect and respond,
quickly and correctly, to changes in application behaviour and
state of the Grid.

This paper presents the design, implementation, and
experimental evaluation of such a self-managing data
streaming service for wide-area Grid environments. The
service is deployed using an infrastructure for self-managing
Grid services, including a programming system for specifying
self-managing behaviour as well as models and mechanisms
for enforcing this behaviour at runtime [14]. A key
contribution of this paper is the combination of typical rule-
based self-management approaches with more formal model-
based online control strategies. While the former are relatively
simple and easy to implement, they require expert knowledge,
are very tightly coupled to specific applications, and their
performance is difficult to analyse in terms of optimality,
feasibility, and stability properties. Advanced control

formulations offer a theoretical basis for self-managing
adaptations in distributed applications. Specifically, this paper
combines model-based limited look-ahead controllers (LLC)
with rule-based managers to dynamically achieve adaptive
behaviour in Grid applications under various operating
conditions [7].

This paper also illustrates and evaluates the operation of the
data streaming service using a Grid-based fusion simulation
workflow. This workflow consists of long-running coupled
simulations, executing on remote supercomputing sites at
NERSC (National Energy Research Scientific Computing
Center) in California (CA) and ORNL (Oak Ridge National
Laboratory) in Tennessee (TN), and generating several
terabytes of data, which must be streamed over the network
for live analysis and visualization at PPPL (Princeton Plasma
Physics Laboratory) in New Jersey (NJ) and for archiving at
ORNL (TN). The service aims to minimize the overhead
associated with data streaming on the simulation, adapt
quickly to network conditions, and prevent any loss of
simulation data.

The rest of this paper is organized as follows. Section II
describes the driving Grid-based fusion simulation project and
highlights its data streaming requirements and challenges.
Section III describes the models and mechanism for enabling
self-managing Grid services and applications. Section IV
presents the design, implementation, operation and evaluation
of the self-managing data streaming service. Section V
presents the evaluation of rule driven autonomic services and
the model based online control in conjunction with the rule
driven services. Section VI addresses the scalability of the
service and then proposes as well as evaluates hierarchical
control strategies. Section VII presents related work. Section
VIII concludes the paper.

II. WIDE-AREA DATA STREAMING IN THE FUSION
SIMULATION PROJECT

A. Fusion Simulation Workflow
GTC Runs on

Teraflop/Petaflop
Supercomputers

D
ata archiving

Data replication

Large data analysis

End-to-end system with
monitoring routines

Data replication

User monitoring

Post processing

40Gbps

User monitoring

Visualization

Fig. 1 A workflow for the Fusion Simulation Project

The DoE SciDAC CPES fusion simulation project [11] is
developing a new integrated Grid-based predictive plasma
edge simulation capability to support next-generation burning
plasma experiments such as the International Thermonuclear
Experimental Reactor (ITER). Effective online management

and transfer of simulation data are critical to this project and
the scientific discovery process. Fig. 1 shows a typical
workflow comprising of coupled simulation codes − the edge
turbulence particle-in-cell (PIC) code (GTC) and the
microscopic MHD code (M3D) − running simultaneously on
thousands of processors at various supercomputing centers.
The data produced by these simulations must be streamed live
to remote sites for online simulation monitoring and control,
simulation coupling, data analysis and visualization, online
validation, and archiving.

B. Requirements for a wide-area data streaming service
The fundamental requirement of the wide area data

streaming service is to efficiently and robustly stream data
from live simulations to remote services while satisfying the
following constraints: (1) Enable high-throughput, low-
latency data transfer to support near real-time access to the
data. (2) Minimize related overhead on the executing
simulation. Since the simulation is long running and executes
in batch for days, the overhead due to data streaming on the
simulation should be less than 10% of the simulation
execution time. (3) Adapt to network conditions to maintain
desired QoS. The network is a shared resource and the usage
patterns vary constantly. (4) Handle network failures while
eliminating data loss. Network failures can lead to buffer
overflows, and data has to be written to local disks to avoid
loss. However, this increases overhead on the simulation and
the data is not available for real-time remote analysis and
visualization.

III. MODEL, MECHANISMS AND INFRASTRUCTURE FOR SELF-
MANAGEMENT

The data streaming service described in this paper is
constructed using the Accord programming infrastructure [14],
which provides the core models and mechanisms for realizing
self-managing Grid services. These include models and
mechanisms for autonomic management using rules as well as
model-based online control. Its key components described in
the following sections.

A. The Accord Autonomic Services Architecture
The Accord programming system defines conceptual,

implementation and enforcement models for utilizing
knowledge (in the form of rules and policies) to guide the
execution and adaptation of services. This is achieved by
adapting the behaviours of individual services and their
interactions (communication/ coordination) to respond to
changing application requirements/state and execution
environments using dynamically defined rules and policies.

The Accord autonomic service architecture extends the
service-based Grid programming paradigm to relax
assumptions of static (defined at the time of instantiation)
application requirements and system/application behaviours,
and allow them to be dynamically specified. It also enables
the behaviours of services and applications to be sensitive to
the dynamic state of the system and the changing
requirements of the application, and to adapt to these changes

at runtime. This is achieved by extending Grid services to
include the specifications of policies and mechanisms for self-
management, and providing a decentralized runtime
infrastructure for consistently and efficiently enforcing these
policies to enable self-managing functional, interaction, and
composition behaviours based on current requirements, state
and execution context.

Function
control

Performance
control

Interaction
control

Service manager

Rule base

Service

Interaction rules

Performance data

Adaptation rules

Invocations of
service interfaces

Service
port

Control
port

Fig. 2 An autonomic service in Accord

1) Definition of Autonomic Services
An autonomic service (see Fig. 2) extends a Grid service

with a control port for external monitoring and steering, and a
service manager that monitors and controls the runtime
behaviours of the managed element/service. The control port
consists of sensors that enable the state of the service to be
queried, and actuators that enable the behaviours of the
service to be modified. The control port and service port are
used by the service manager to control the functions,
performance, and interactions of the managed service. The
control port is described using WSDL[9] and may be a part of
the general service description, or may be a separate document
to control access to it. An example of the control port is
shown in Fig. 8. Rules are simple if-condition-then-action
statements described using XML and include service
adaptation and service interaction rules. An example of a rule
is shown in Fig. 9.

2) The Runtime Infrastructure
The Accord runtime infrastructure (shown in Fig. 3)

consists of a user/developer portal, peer service and
application composition/coordination managers, the
autonomic services, and a decentralized rule enforcement
engine. This infrastructure enables adaptations of the
behaviours of individual services as well as the interactions
between services.

Behaviour Adaptation: Behaviour adaptation rules are
used to adapt the behaviours of individual services and do not
change their functionalities (described by service ports as
contracts) and as a result, these adaptations are transparent to
other services. This localized adaptation simplifies the
specification and execution of adaptation rules by restricting
the conditions monitored and actions performed within the
individual services.

Behaviour adaptations include modification of service
parameters and dynamic selection of algorithms and

implementations to optimize and tune service performance,
meet QoS requirements, correct detected errors, avoid or
recover from failures, and/or to protect the service.

Service managers execute these rules to adapt the
functional behaviours of the managed services, and evaluate
and tune their performance. These adaptations are realized by
invoking appropriate control (sensors, actuators) and
functional interfaces.

Interaction Adaptation: An application composition
manager decomposes incoming application workflows
(defined by the user or a workflow engine) into interaction
rules for individual services, and forwards these rules to
corresponding service managers. Service managers execute
these rules to establish interaction relationships among
services by negotiating communication protocols and
mechanisms and dynamically constructing coordination
relationships in a distributed and decentralized manner.

Interaction rules are used to adapt service interactions, for
example communication paradigms and/or coordination
relationships. When local optimization of individual services
cannot satisfy the global objectives, interaction rules are used
to modify the application composition.

Accord portal / composition manager

Application workflow Adaptation strategies
application requirements

Interaction
rules

Service
manager

service

Service
manager

service Service
manager

service

WS services

Adaptation
rules

Interaction
rules

Adaptation
rules

Interaction
rules

Adaptation
rules

Fig. 3 Accord runtime infrastructure: Solid lines indicate interactions among

services and dotted lines represent invocation of WS instances providing
supporting services such as naming and discovery.

Rule Execution: Rule execution at the service managers
consists of three phases: condition inquiry, condition
evaluation and conflict resolution, and batch action invocation.
During condition inquiry, the service managers query the
sensors used by the rules in parallel, assimilates their current
values, and fire corresponding triggers.

During the next phase, condition evaluations for all the
rules are performed in parallel. Rule conflicts are detected
during this phase when the same actuator is invoked with
different values. These conflicts are resolved by relaxing the
rule condition, using user-defined strategies, until the
actuator-actuator conflict is resolved. If the conflicts are not
resolved, errors are reported to users. If interacting services
try to use different communication/coordination paradigms as
a result of their independent adaptation behaviours, the
services negotiate with each other to resolve the conflict [13].

After rule conflict resolution, the actions are executed in
parallel. Note that the rule execution model presented here
focuses on correct and efficient execution of rules, providing
mechanisms to detect and resolve conflicts at runtime.
However, correctness of rules and conflict resolution
strategies are the responsibilities of the users.

3) Autonomic Service Adaptation and Composition
Dynamic and autonomic compositions are enabled in

Accord using a combination of interaction and adaptation
rules. Composition consists of defining the organization of
services and the interactions among them [13]. The service
organization describes a collection of services that are
functionally compose-able, determined semantically (e.g.,
using OWL [27]) or syntactically using WSDL [9].
Interactions among services define the coordination between
services and the communication paradigm used, e.g., message
passing, RPC/RMI, or shared spaces.

Once a workflow has been generated (e.g., using the
mechanism in [4]), and the services have been discovered
(using middleware services), the Accord composition manager
decomposes the workflow into interaction rules. This
decomposition process consists of mapping workflow patterns
[26] in the workflow into corresponding rule templates [13].
Accord provides templates for basic communication
paradigms such as notification, publisher/subscriber,
rendezvous, shared spaces and RPC/RMI, and control
structures such as sequence, AND-split, XOR-split, OR-split,
AND-join, XOR-join, and OR-join. More complex interaction
and coordination structures (e.g., loops) can be constructed
from these basic patterns.

The interaction rules are then injected into corresponding
service managers, which execute the rules to establish
communication and coordination relationships among
involved services. Note that there is no centrally controlled
orchestration. While the interaction rules are defined by the
composition manager, the actual interactions are established
by service managers in a decentralized and parallel manner.

The communication paradigms and coordination
relationships among the interacting autonomic services can be
dynamically changed according to current application state
and execution context by replacing/changing the related
interaction rules. As a result, a new service can be brought
into an application, and interactions among services can be
changed at runtime, without taking the application offline.
The two adaptation approaches, adaptation within individual
services and dynamic composition of services, can be used
separately or in combination to enable the autonomic self-
configuring, self-optimizing and self-healing behaviours of
services and applications [13].

B. Model-Based Control within Accord
Fig. 4 shows the overall framework of a limited look-ahead

controller (LLC) [1] where the QoS management problem is
posed as one of sequential optimization under uncertainty.
Relevant operating parameters of the Grid environment such
as data-generation patterns and network bandwidth are
estimated and used by a mathematical model to forecast future

application behaviour over a prediction horizon N. The
controller optimizes the forecast behaviour as per the specified
QoS goals by selecting the best control inputs to apply to the
system. At each time step k, the controller finds a feasible
sequence]},1[|)({ * Nkkiiu ++∈ of control decisions
within the prediction horizon. Then, only the first move is
applied to the system and the whole optimization procedure is
repeated at time k +1 when the new system state is available.

Fig. 4 The LLC control structure

The LLC approach allows for multiple QoS goals and
operating constraints to be represented in the optimization
problem and solved for each control step. It can be used as a
management scheme for systems and applications that exhibit
non-linear behaviour and where control or tuning inputs must
be chosen from a finite set.

As shown in Fig. 5, the element (service) managers within
the Accord programming system are augmented with online
controllers [7]. Each manager monitors the state of its
underlying elements and their execution context, collects and
reports runtime information, and enforces the adaptation
actions decided by the controller. These managers thus
augment human-defined rules which may be error-prone and
incomplete with mathematically sound models, optimization
techniques, and runtime information. Specifically, the
controller decides when and how to adapt the application
behaviour and the managers focus on enforcing these
adaptations in a consistent and efficient manner.

Fig. 5 A self-managing element and the interaction between an element

manager and the corresponding controller

IV. THE SELF-MANAGING DATA-STREAMING SERVICE
This section describes a self-managing data streaming

services for the Grid-based fusion simulation workflow based
on the models and mechanisms presented in the previous
section. A specific driving simulation workflow is shown in

Internal
State

Contextual
State

Optimization
Function

LLC Controller Self-Managing
Element

Computational
Element

Element Manager

Advice

LLC Controller

Element Manager

Computational
Element Model

Predictive
Filter

System
Model

Optimizer

Current
state

Next
input

Future
states

Control
input

Physical
System

Environment
input

Future
forecasts

Fig. 6, and consists of a long running G.T.C. fusion simulation
executing on a parallel supercomputer at NERSC (CA) and
generating terabytes of data over its lifetime. This data must
be analysed and visualized in real time, while the simulation is
still running, at a remote site at PPPL (NJ), and also archived
either at PPPL (NJ) or ORNL (TN).

SS

NERSC

PPPL

ORNL

ADSS

DASDSS

DSS

Grid middleware,
Logistical Networking

backboneBMS DTS

Fig. 6 A self-managing data streaming service

The data streaming service in Fig. 6 has four core services:
(1) A Simulation Service (SS) executing on an IBM SP
machine at NERSC, and generating data at regular intervals;
(2) A Data Analysis Service (DAS) executing on a computer
cluster located at PPPL to analyse the data streamed from
NERSC; (3) A Data Storage Service (DSS) to archive the
streamed data using the Logistical Networking backbone [21],
which builds a Data Grid of storage services located at ORNL
and PPPL; (4) An Autonomic Data Streaming Service (ADSS)
that manages the data transfer from SS (at NERSC) to DAS
(at PPPL) and DSS (at PPPL/ORNL).

The objectives of the self-managing ADSS are the
following. (1) Prevent any loss of simulation data: Since data
continuously generated and the buffer sizes are limited, the
local buffer at each data transfer node must be eventually
emptied. Therefore, if the network link to the analysis cluster
is congested, then data from the transfer nodes must be written
to a local hard disk at NERSC itself. (2) Minimize overhead
on the simulation: In addition to transferring the generated
data, the transfer nodes must also perform useful
computations related to the simulation. Therefore, the ADSS
must minimize the computational and resource requirements
of the data transfer process on these nodes; (3) Maximize the
utility of the transferred data: We would like to transfer as
much of the generated data as possible to the remote cluster
for analysis and visualization. Storage on the local hard disk is
an option only if the available network bandwidth is
insufficient to accommodate the data generation rate and there
is a danger of losing simulation data.

A. Design of the ADSS Controller
The ADSS controller is designed using the LLC concepts

discussed in Section III. Fig. 7 shows the system model for the
streaming service where the key operating parameters for a
data transfer node ni at time step k are as follows: (1) State
variable: The current average queue size at ni denoted as qi(k).
(2) Environment variables: λi(k) denotes the data generation
rate into the queue qi and B(k) the effective bandwidth of the
network link. (3) Control or decision variables: Given the

state and environment variables at time k, the controller
decides μi(k) and ωi(k), the data-transfer rate over the network
link and to the hard disk respectively. The system dynamics at
each node ni evolves as per the following equations:

Tkkkkqkq iiiii ⋅−−⋅+=+)))()(1()(ˆ()()1(ˆ ωμλ

)),1(()(kkk ii −= λφλ
The queue size at time k + 1 is determined by the current

queue size, the estimated data generation rate λi(k), and the
data transfer rates (decided by the controller) to the network
link and the local hard disk. The data generation rate is
estimated using a forecasting model φ, implemented here by
an Exponentially-Weighted Moving-Average (EWMA) filter.
The sampling duration for the controller is denoted as T. Both

1)(0 ≤≤ kiμ and 1)(0 ≤≤ kiω are chosen by the controller
from a finite set of appropriately quantized values. Note that
in practice, the data transfer rate is a function of the effective
network bandwidth B(k) at time k, the number of sending
threads, and the size of each data block transmitted from the
queue. These parameters are decided by appropriate
components within the data-streaming service (as discussed in
Section IV-B).

Fig. 7 The system model for the data streaming service

The LLC problem is now formulated as a set-point
specification where the controller aims to maintain each
node’s ni queue around a desired value q* while maximizing
the utility of the transferred data, i.e., by minimizing the
amount of data transferred to the hard disk/local storage.

Minimize: ∑ ∑
+

= =

+−
pNk

kj

n

i
iiii jjqq

1

22*)())((ωβα

Subject to: ∑
=

≤
n

i
i jBj

1
)()(μ and iqjqi ∀≤ max)(

Local
HD

“n” data transfer
processors

λ1(k)

λ2(k)

λn(k) μn(k)

ω1(k)

Analysis
Clusters

Simulation
Processors

“m” simulation
processors ω2(k)

ωn(k)

μ1(k)

μ2(k)

q1(k)

Queue
Manager

qn(k)

Queue
Manager

Queue
Manager

Threadsn1

n2

nn

Data Blocks

....

Here, Np denotes the prediction or look-ahead horizon, qmax
the maximum queue size, and αi and βi denote user-specified
weights in the cost function.

When control inputs must be chosen from a set of discrete
values, the LLC formulation, as posed above, will show an
exponential increase in worst-case complexity with an
increasing number of control options and longer prediction
horizons. Since the execution time available to the controller
is often limited by hard application bounds, it is necessary to
consider the possibility that we may have to deal with
suboptimal solutions. For adaptation purposes, however, it is
not critical to find the global optimum to ensure system
stability; a feasible suboptimal solution will suffice. However,
we would still like to use the available time exploring the
most promising solutions leading to optimality. Taking
advantage of the fact that the operating environment does not
change drastically over a short period of time, we can obtain
suboptimal solutions using local search methods, where given
the current values of μi(k) and ωi(k), the controller searches a
limited neighbourhood of these values for a feasible solution
for the next step.

B. Implementation and Deployment of ADSS
ADSS is a composite service comprising a Buffer Manager

Service (BMS) managing the buffers allocated by the ADSS,
and a Data Transfer Service (DTS) managing the transfer of
data blocks from the buffers to remote services for analysis
and visualization at PPPL, and archiving at PPPL or ORNL.
The BMS supports two buffer management schemes. Uniform
buffering divides the data into blocks of fixed sizes, and is
more suitable when the simulation can transfer all its data
items to a remote storage. Aggregate buffering, on the other
hand, aggregates blocks across multiple time steps for
network transfer, and is used when the network is congested.
The control ports for these services are described in [14].

A EWMA filter with a smoothing constant of 0.5 estimates
the data generated by the simulation for the ADSS controller.
A single-step LLC strategy is used with a desired buffer size
of q* = 0 on each node ni. The weights in the multi-objective
cost function are set to αi = 1 and βi = 108, to penalize the
controller very heavily for writing data to the hard disk. The
decision variables μi and ωi are quantized in intervals of 0.1.
The controller sampling time T is set to 80 seconds in our
implementation.

The ADSS Element Manager supplies the controller with
internal state of the ADSS and SS services, including the
observed buffer size on node ni, the simulation-data
generation rate, and the network bandwidth. The effective
network bandwidth of the link between NERSC and PPPL is
measured using Iperf [20], which reports the bandwidth
available to datagram packets in the TCP protocol, and their
delay jitter and loss rate. The element manager also stores a
set of rules which are triggered based on controller decisions.

The element manager triggers adaptations within the
DTS/BMS service. For example, the controller decides the
amount of data to be sent over the network or to local storage,
and the element manager decides the corresponding buffer

management scheme to be used within the BMS to achieve
this. The element manager also adapts the DTS service to send
data to local/low latency storage, e.g., NERSC/ORNL, when
the network is congested.

V. EVALUATION OF THE SELF-MANAGING DATA-STREAMING
SERVICE

This section presents an evaluation of the Accord-based
self-managing data-streaming service. The first group of
experiments evaluate the rule-based adaptations while the
second group evaluates a combination of rule-based and
control-based adaptations. A comparison of the two strategies
and the overhead of the self managing data streaming service
are also presented.

The setup for experiments presented in this section
consisted of the GTC fusion simulation running on 32 to 256
processors at NERSC, and streaming data for analysis to
PPPL. A 155 Mbps (peak) ESNET connection between PPPL
and NERSC was used. A single controller was used, and the
controller and managers were implemented using threading. A
maximum of four simulation processors were used for data
streaming.

A. Self-Managing Scenarios using Rule based Adaptations
Scenario 1: Self-optimizing behaviour of BMS.

This scenario illustrates the self-optimizing behaviour of
the BMS using rules. The service adaptation within BMS
service is transparent to other services. BMS selects the
appropriate blocking technique, orders blocks in the buffer
and optimizes the size of the buffer(s) used to ensure low
latency high performance steaming and minimize the impact
on the execution of the simulation. The adaptations are based
on the current state of the simulation and more specifically the
following three runtime parameters. (1) The data generation
rate, which is the amount of data generated per iteration
divided by the time required for the iteration, and can vary
from 1 to 400 Mbps depending on the domain decomposition
and the type of analysis to be performed. (2) The network
connectivity and the network transfer rate. The latter is limited
by the 100 Mbps link between NERC and PPPL. (3) The
nature of data being generated in the simulation, e.g.,
parameters, 2D surface data or 3D volume data. BMS
provides three algorithms:
• Uniform Buffer Management: This algorithm divides the

data into blocks of fixed sizes, which are then transmitted
by the DTS. This static algorithm is more suited for the
simulations generating data at a small or medium rate
(50Mbps). Using smaller block sizes have significant
advantages at the receiving end as less time is required
for decoding the data and processing it for analysis and
visualization.

• Aggregate Buffer Management: This algorithm
aggregates blocks across iterations and the DTS transmits
these aggregated blocks. This algorithm is suited for high
data generation rates, i.e., between 60-400 Mbps.

• Priority Buffer Management: This algorithms orders data
blocks in the buffer based on the nature of the data. For

example, 2D data blocks containing visualization or
simulation parameters are given higher priority as
compared to 3D raw volume data. To enable adaptations,
the BMS exports two sensors, “DataGenerationRate” and
“DataType”, and one actuator, “BlockingAlgorithm” as
part of its control port shown in Fig. 8. This document
describes the name, type, message format and protocol
details for each sensor/actuator. Further, the BMS self-
optimization behaviour is governed by the rule shown in
Fig. 9, which states that if the data generation rate is
greater than the peak network transfer rate (i.e., 100 Mps),
the aggregate buffer management is used otherwise the
uniform buffer management algorithm is used.

Fig. 8 The control port for the BMS

The resulting adaptation behaviour is plotted in Fig. 10(a).
The figure shows that BMS switches to aggregate buffer
management during simulation time intervals 75 sec to 150
sec and 175 sec to 250 sec, as the simulation data generation
rate peaks to 100Mbps and 120 Mbps during these intervals.
The aggregation is an average of 7 blocks. Once the data
generation rate falls to 50Mbps, BMS switches back to the
uniform buffer management scheme, and constantly sends 3
blocks of data on the network. Fig. 10 (b) plots the percentage
overhead on the simulation execution with and without

autonomic management (using rules). Overhead is computed
as the absolute difference between the time required to
generate data without the ADSS service and the time required
to stream the data using ADSS service.

Fig. 9 The adaptation rule for BMS

The plot shows that the BMS switches from uniform buffer
management to aggregate buffer management at data
generation rates of around 80-90 Mbps. This increases the
overhead slightly, however the overheads remains less than
5%. Without autonomic management, the overheads increase
to about 10% for higher data rates as the BMS continues to
use uniform buffer management.

When the simulation service generates 2D visualization
data in addition to 3D data, the priority buffer management
algorithm is triggered. The 2D data blocks are given higher
priority and are moved to the head to data transmission queue.
As a result, transmission of the 2D data is expedited with
almost no impact to the 3D data.

<rule name=”BlockingRule" attribute=”active”>
 <trigger name=”2D” sensor=”DataType” op=”EQ” value=”2D” type=”string”/>
 <trigger name=”DGR” sensor=”DataGenerationRate” op=”GT” value=peakRate

 <when>
 <and>
 <operand trigger=”2D”/>

 <operand trigger=”DGR”/>
 </and>
 </when>
 <do>

 <action actuator=”BlockingAlgorithm”>
 <input value=”priorityAggregation” type=”string”/>
 </action>
 </do>

 <when>
 <and>
 <operand trigger=”2D”/>
 <not>
 <operand trigger=”DGR”/>
 </not>

 </and>
 </when>
 <do>
 <action actuator=”BlockingAlgorithm”>
 <input value=”priority” type=”string”/>
 </action>
 </do>

 <when>
 <and>

 <operand trigger=”DGR”/>
 <not>

 <operand trigger=”2D”/>
 </not>

 </and>
 </when>
 <do>
 <action actuator=”BlockingAlgorithm”>

 <input value=”aggregate” type=”string”/>
 </action>
 </do>

 <else>
 <action actuator=”BlockingAlgorithm”>

 <input value=”uniform” type=”string”/>
 </action>
 </else>

</rule>

 type=”float”/>

<controlPort name=”BMS_controlPort” service=”BufferManagerService”>
 <types>
 <sensor name=”DataGenerationRate”>
 <element name=”DataGenerationRateReq” type=”string”/>
 <element name=”DataGenerationRateResp” type=”double”/>
 </sensor>
 <sensor name=”DataType”>
 <element name=”DataTypeReq” type=”string”/>
 <element name=”DataTypeResp” type=”string”/>
 </sensor>
 <actuator = name=”BlockingAlgorithm”>
 <element name=”BlockingAlgorithmReq” type=”string”/>
 </actuator>
 </types>

 <message name=”GetDataGenerationRateIn”>
 <part name=”body” element=”DataGenerationRateReq”/>
 </message>
 <message name=”GetDataGenerationRateOut”>
 <part name=”body” element=”DataGenerationRateResp”/>
 </message>
 <message name=”GetDataTypeIn”>
 <part name=”body” element=”DataTypeReq”/>
 </message>
 <message name=”GetDataTypeOut”>
 <part name=”body” element=”DataTypeResp”/>
 </message>
 <message name=”SetBlockingAlgorithm”>
 <part name=”body” element=”BlockingAlgorithmReq”/>
 </message>

 <portType name=”BMSControlPortType”>
 <operation name=”SensorDataGenerationRate”>
 <input message=”tns:GetDataGenerationRateIn”/>
 <output message=”tns:GetDataGenerationRateOut”/>
 </operation>
 <operation name=”SensorDataType”>
 <input message=”tns:GetDataTypeIn”/>
 <output message=”tns:GetDataTypeOut”/>
 </operation>
 <operation name=”ActuatorBlockingAlgorithm”>
 <input message=”tns:SetBlockingAlgorithm”/>
 </operation>
 </portType>
</controlPort>

Simulation Time (sec)
0 50 100 150 200 250 300 350 400

N
um

be
r o

f B
lo

ck
s

Se
nt

 (1
0M

B
/b

lo
ck

)

2

4

6

8

10

12

14

100Mbps
Aggregate Buffer Management

Uniform Buffer Mangement
 50Mbps

120Mbps

Fig. 10(a) Self-optimization behaviours of the Buffer Management Service

(BMS) – BMS switches between uniform blocking and aggregate blocking
algorithms based on application data generation rates, network transfer rates
and the nature of data generated

 Data Generation Rate (Mbps)
0 20 40 60 80 100 120 140 160

%
 O

ve
rh

ea
d

on
 th

e
Si

m
ul

at
io

n

0

5

10

15

20

%Overhead vs Mbps using Autonomic Management
%Overhead vs Mbps without Autonomic Management

Fig. 10(b) Percentage overhead on simulation execution with and without

autonomic management using rules

Scenario 2: Self-configuring/self-optimizing behaviour of
ADSS.

The effectiveness of the data transfer between the
simulation service at NERSC and the analysis/visualization
service at PPPL depends on the network transfer rate, which
depends on data generation rates and/or network conditions.
Falling network transfer rates can lead to buffer overflows and
require the simulation to be throttled to avoid data loss. One
option to maintain data throughputs is to use multiple data
streams. Of course, this option requires multiple buffers and
hence uses more of the available memory. Implementing this
option requires the creation of multiple instances of ADSS. In
this scenario, ADSS monitors the effective network transfer
rate, and when this rate dips below a certain threshold, the
service causes another instance of the ADSS to be created and
incorporated into the workflow. Note that the maximum
number of ADSS instances possible is predefined. Similarly,
if the effective data transfer rate is above a threshold, the
number of ADSS instances is decreased to reduce memory
overheads. The upper and lower thresholds have been
determined using experiments in [6].

Fig. 11 The adaptation rule for the ADSS

 Data Generation Rate (Mbps)
0 20 40 60 80 100 120 140 160

 %
 N

et
w

or
k

th
ro

ug
hp

ut

0

20

40

60

80

100

N
um

be
r o

f A
D

SS
 In

st
an

ce
s

0

1

2

3

4

5

% Network throughput vs Mbps
Number of ADSS Instances vs Mbps

Fig. 12 Effect of creating new instances of the ADSS service when the
%Network Throughput dips to below the user defined 50% threshold

The self-configuration behaviour of ADSS is governed by
the rule shown in Fig. 11. When the network transfer rate is
below a pre-defined threshold, ADSS will use Accord to
create new instances of ADSS including BMS and DTS and

<rule name=”SplitRule" attribute=”active”>
 <trigger name=”SmallNTR” sensor=”NetworkTransferRate”
 op=”LT” value=lowerthreshold type=”float”/>
 <trigger name=”LargeNTR” sensor=”NetworkTransferRate”

 op=”GT” value=upperthreshold type=”float”/>
 <trigger name=”ADSSNum” sensor=”NumOfADSS” op=”LT”
 value=num type=”integer”/>
 <when>
 <and>
 <operand trigger=”SmallNTR”/>
 <operand trigger=”ADSSNum”/>
 </and>
 </when>
 <do>
 <action actuator=”Accord:NewInstances”>
 <input value=”BMS” type=”service”/>
 </action>
 <action actuator=”Accord:LoadRules”>
 <input value=”BMS” type=”service”/>

 <input value=”BMSRuleName” type=”string”/>
 </action>
 <action actuator=”Accord:NewInstances”>
 <input value=”DTS” type=”service”/>

 </action>
 <action actuator=”Accord:LoadRules”>
 <input value=”DTS” type=”service”/>

 <input value=”DTSRuleName” type=”string”/>
 </action>
 </do>

 <when>
 <operand trigger=”LargeNTR”/>
 </when>
 <do>
 <action actuator=”Accord:GetInstances”>
 <input value=”BMS” type=”service”/>

 <output value=”BMSInstanceList” type=”serviceInstanceList”/>
 </action>
 <action actuator=”Accord:DelInstances”>
 <input value=”BMSInstanceList” type=”serviceInstanceList”/>
 <input value=”number" type=”integer”/>
 </action>
 </do>

</rule>

load corresponding rules into the new BMS and DTS
instances to enable interactions between them. When the
network transfer rate is above a pre-defined threshold, ADSS
obtains the list of exiting ADSS instances using the Accord
runtime, and deletes a pre-defined number of instances.

The resulting behaviours are plotted in Fig. 12. This figure
plots the percentage of network throughput, which is the
difference between the current network transfer rate and the
maximum network rate between PPPL and NERSC, i.e., 100
Mbps. The figure shows that the number of ADSS instances
first increases as the network throughput dips below the 50%
threshold (corresponding to data generation rates of around 25
Mbps in the plot), as defined by the rule in Fig. 11. This
causes the network throughput to increase to above 80%. Even
more instances of ADSS services are created at data
generation rates of around 40 Mbps and the network
throughput once again jumps to around 80Mbps. The ADSS
instances increase until the limit of 4 is reached.

Scenario 3: Self-healing behaviour of ADSS

Fig. 13 The interaction/adaptation rule for ADSS.

This scenario addresses data loss in the cases of extreme
network congestion or network failures. These cases cannot be
addressed using simple buffer management or replication. One
option in these cases to avoid loss of data is to write data
locally at NERSC rather than streaming. However, this data
will not be available for analysis and visualization until the
simulation complete, which could be days. Writing data to the
disk also causes significant overheads to the simulation [6].
ADSS addresses these cases by temporarily or permanently
switching the streaming of the data to the DSS at ORNL
instead of PPPL. NERSC and ORNL are connected by a low
latency [12] link which has a lower probability of being
saturated. The data can be later transmitted from ORNL to
PPPL. Congestion is detected by observing the buffer - when

the buffer is filled to a capacity, the ADSS switches
subsequent streaming to ORNL, and when the buffer is no
longer saturated, switches the steaming back to PPPL. If the
service observes that buffer is being continuously saturated, it
infers that there is a network failure and permanently switches
the streaming to ORNL. In this case, the blocks already in the
PPPL buffer are transferred to the ORNL queue. Here ADSS
communicates with DSS at PPPL or DSS at ORNL under
different network conditions. This behaviour is defined by
interaction rules in ADSS. The rule specifying this self-
management behaviour is listed in Fig. 13.

The resulting self-healing behaviour is plotted in Fig. 14.
The figure shows that as the ADSS buffer(s) get saturated, the
data streaming switches to the DSS at ORNL, and when the
buffer occupancy falls below 20% it switches back to PPPL.
Note that while the data blocks are written to ORNL, data
blocks already queued for transmission to PPPL continue to
be streamed. The figure also shows that, at simulation time
1500 (X axis), the PPPL buffers once again get saturated and
the streaming switches to ORNL. If this persists, the steaming
would be permanently switched to ORNL.

Buffer full
Local Storage Service Triggered

Simulation Time(sec)
0 500 1000 1500 2000

%
 B

uf
fe

r O
cc

up
an

cy

0

20

40

60

80

100

120

D
at

a
Se

nt
 to

 L
oc

al
 D

SS
(M

B
)

Data Sent to Local DSS (at ORNL) vs Simulation Time(sec)
% Buffer Occupancy vs Simulation Time (sec)

Buffer full second time
Local Storage Service Triggered

Fig. 14 Effect of switching from the DSS at PPPL to the DSS ORNL in

response to network congestion and/or failure

B. Self-Managing Scenarios using Rule and Control based
Adaptations

Controller Interval
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

D
at

a
Si

ze
 (M

B
)

40

45

50

55

60

Actual Data Generation in MB
Data Prediction using EWMA in MB

Fig. 15 Actual and predicted data generation rates for the GTC simulation

<rule name=”TransferRule" attribute=”active”>
 <trigger name=”transferFailed” sensor=”DataTransfer”
 op=”EQ” value=”0” type=”integer”/>
 <trigger name=”transferSwitch” sensor=”NumOfSwitches”
 op=”LT” value=switchThreshold type=”integer”/>

<when>
 <and>
 <operand trigger=”transferFailed”/>
 <operand trigger=”transferSwitch”/>
 </and>
</when>
<do>
 <action actuator=”TransferAlgorithm”>
 <input value=”remote” type=”string”/>
 </action>
</do>

<when>
 <not>
 <operand trigger=”transferSwitch"/>
 </not>
<do>
 <action actuator=”TransferAlgorithm”>
 <input value=”remote” type=”string”/>
 </action>
 <action actuator=”Accord:SetRuleAttribute”>
 <input value=”TransferRule” type=”string”/>
 <input value=”inactive” type=”string”/>
 </action>
</rule>

Predicting data generation rates: Fig. 15 compares the
actual amount of data generated by the simulation against the
corresponding estimation. The simulation ran for three hours
at NERSC on 64 processors and used four data streaming
processors. The incoming data rate into each transfer
processor was estimated with good accuracy by a EWMA
filter as follows:)1(ˆ)1()()(ˆ −⋅−+⋅= kkk iii λγλγλ where γ
= 0.5 is the smoothing factor.

Controller Interval
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

D
at

a
Tr

an
sf

er
rr

ed
 b

y
D

TS
 (M

B
)

0

10

20

30

40

50

60

70

80

90

100

N
et

w
or

k
B

an
dw

id
th

 (M
b/

se
c)

0

20

40

60

80

100

120

Data Transferred by DTS to WAN
Data Transferred by DTS to Local Computational Site
Network Bandwidth

Fig. 16 Controller and DTS operation for the GTC simulation

Controller behaviour for long-running simulations: Fig.
16 plots a representative snapshot of the streaming behaviour
for a long-running GTC simulation. During the shown period,
DTS always transfers data to remote storage and no data is
transferred to local storage, as the effective network
bandwidth remains steady and no congestions are detected.
This plot illustrates the stable operation of the controller.

Controller Interval
0 2 4 6 8 10 12 14 16 18 20 22 24

D
at

a
Tr

an
sf

er
rr

ed
 b

y
D

TS
(M

B
)

0

20

40

60

80

100

120

140

B
an

dw
id

th
 (M

b/
se

c)

0

20

40

60

80

100

120

DTS to WAN
DTS to LAN
Bandwidth
Congestion

Fig. 17 DTS adaptation due to network congestion

DTS adaptations based on control strategies: To observe
adaptation in the DTS, we congested the network between
NERSC and PPPL between controller intervals 9 and 19
(recall that each controller interval is 80 sec), as shown in Fig.
8. During intervals (1, 9), we observe no congestion in the
network, and data is transferred by DTS over the network to
PPPL. During the intervals of network congestion (9, 18), the
controller observes the environment and state variables and
advices the element manager to adapt the DTS behaviour

accordingly, causing some data to be transferred to a local
storage/hard disk in addition to sending data to the remote
location. This prevents data loss due to buffer overflows. It is
observed from Fig. 17 that this adaptation is triggered multiple
times until the network is no longer congested at around the
19th controller interval. The data sent to the local storage falls
to zero at this point.

Controller Interval
0 2 4 6 8 10 12 14 16 18 20 22 24 26

B
lo

ck
s

G
ro

up
ed

 b
y

B
M

S

0

1

2

3

4

5

6

7

8

B
an

dw
id

th
 (M

b/
se

c)

0

20

40

60

80

100

120

Blocks
1 Block = 4MB

Congestion

Bandwidth

Uniform
Buffer Management

Aggregate Buffer
Management

Fig. 18 BMS adaptations due to varying network conditions

Adaptations in the BMS: This scenario demonstrates the
adaptation of the BMS service. A uniform BMS scheme is
triggered in cases when data generation is constant and in
cases when the congestion increases an aggregate buffer
management is triggered. The triggering of the appropriate
buffering scheme in the BMS is prescribed by the controller to
overcome network congestion. Fig. 18 shows the
corresponding adaptations. During intervals (0, 7), the
uniform blocking scheme is used, and during (7, 16), the
aggregate blocking scheme used to compensate for network
congestion.

C. Comparison of Rule-based and Control-based Adaptation
in the ADSS

Time (sec)
0 100 200 300 400 500 600 700 800 900 1000

%
 B

uf
fe

r V
ac

an
cy

0

10

20

30

40

50

60

70

80

90

100

% Buffer Vacancy vs Time
Mean % Buffer Vacancy

Fig. 19 % Buffer Vacancy using heuristically based rules

This evaluation illustrates how the percentage buffer
vacancy (i.e., the empty space in the buffer) varies over time

for two scenarios; one in which only rules are used for buffer
management, and the other in which rules are used in
combination with controller inputs. Fig. 19 plots the % buffer
vacancy for the first case. In this case, management was
purely reactive and based on heuristics (rule based). The
element manager was not aware of the current and future data
generation rate and the network bandwidth. The average
buffer vacancy in this case was around 16%, i.e., in most
cases 84% of the buffer was full.

Time(sec)
0 100 200 300 400 500 600 700 800 900 1000

%
 B

uf
fe

r V
ac

an
cy

0

10

20

30

40

50

60

70

80

90

100

% Buffer Vacancy vs Time
Mean %Buffer Vacancy
Controller Interval

Fig. 20 % Buffer Vacancy using control-based self-management

Such a high occupancy leads to a slow down of the
simulation [6] and also results in increased loss of data due to
buffer overflows. Fig. 20 plots the corresponding % buffer
vacancy when the model-based controller was used in
conjunction with rule-based management. The mean buffer
vacancy in this case is around 75%. Higher buffer vacancy
leads to reduced overheads and data loss.

D. Overhead of the Self-Managing Data Streaming
Overheads on the simulation due the self-managing data

streaming service are primarily due to two factors. The first
are the activities of the controller during a controller interval.
This includes the controller decision time, the cost of
adaptations triggered by rule executions and the operation of
BMS and DTS. The second is the cost of the data streaming
itself. These overheads are presented below.

Overheads due to controller activities: For a controller
interval of 80 seconds, the average controller decision-time
was ≈2.1 sec (2.5%) at the start of the controller operation.
This reduced to ≈0.12 sec (0.15%) as the simulation
progressed due to local search methods used. The network
measurement cost was 18.8 sec (23.5%). The operating cost of
the BMS and DTS was 0.2 sec (0.25%) and 18.8 sec (23.5%)
respectively. Rule execution for triggering adaptations
required less than 0.01 sec. The controller was idle for the rest
of the control interval. Note that the controller was
implemented as a separate thread (using pthread [19]) and its
execution overlapped with the simulation.

Overhead of data streaming: A key requirement of the self
managing data streaming was that its overhead on the
simulation be less than 10% of the simulation execution time.

%overhead of the data streaming is defined as: (T*
s -Ts)/Ts,

where T*
s and Ts denote the simulation execution time with

and without data streaming respectively. The %overhead of
data streaming on the GTC simulation was less than 9% for
16-64 processors and reduced to about 5% for 128-256
processors. The reduction was due to the fact that as the
number of simulation processors increased, the data generated
per processors decreased.

VI. ADDRESSING SCALABILITY USING HIERARCHICAL CONTROL
In a distributed application consisting of multiple

interacting elements, a centralized scheme for enforcing self-
managing behaviours is not scalable – the number of control
options to be explored is simply too large. However, the
dimensionality of the overall optimization problem is
drastically reduced, if it can be decomposed into simpler sub-
problems, where each is solved independently. Higher-level
control can be used to enable coordinated adaptations across
these sub domains, as discussed below.

To solve performance management problems of interest
tractably in a distributed setting, service managers in Accord
can be dynamically composed in hierarchical fashion, as
shown in Fig. 21, where interactions between element
controllers are managed by higher-level ones. Decisions made
by high-level controllers are aimed at satisfying overall QoS
goals and act as additional operating constraints on lower-
level elements. Each element optimizes its behaviour using its
local controller, while satisfying these constraints.

Fig. 21 Constructing a hierarchy of controllers in Accord

The Accord runtime framework ensures coordinated and
consistent adaptations across multiple service (element)
managers. The overall operation is as follows. At runtime,
each element or service manager independently collects
element and context state information using sensors exposed
by the individual elements and the environment. The
managers then report this information to associated controllers,
which then computes control actions and informs the service
manager of desired adaptation behaviours. Service managers
then execute these adaptation behaviours using actuators
exposed by the environment and elements. If these local
adaptations do not achieve the desired objectives, service
managers collectively invoke higher-level controllers, which
results in coordination among multiple interacting managers
to change the element state and their interactions.
Composition managers coordinate adaptations across service
managers as described above.

Lower-level controllers

Higher-level
controllers

Element/Service Managers Computational Element or Service

Operational, Control
& Functional Ports

Accord Element

A. Hierarchical Control for Data Streaming
Recall that when control inputs must be chosen from a set

of discrete values, the optimization problem described in
Section IV-A will show an exponential increase in worst-case
complexity with an increasing number of control options and
longer prediction horizons. We can, however, substantially
reduce the dimensionality of the optimization problem via
hierarchical control decomposition. Exhaustive and bounded
search strategies are then used at different levels of the
hierarchy to solve the corresponding optimization problems
with low run-time overhead. As an example of how to apply
hierarchical control to the data streaming problem, consider
the multi-level structure shown in Fig. 22. Here, we have a
larger system compared to the one described in Section IV-B
− 256 processors generate simulation data while 16 data-
transfer nodes (instead of 4) collect this data and stream it
over the network link to PPPL. As before, the QoS goals are
to prevent any loss of simulation data and maximize the utility
of the transferred data. First, the data-transfer nodes are
logically partitioned, for the purposes of scalable control, into
four modules M1, M2, M3, and M4 where each module Mi
comprises four nodes. The data-generation or flow rate from
the simulation cluster into each Mi at time k is denoted by Fi(k).
This flow can be further split into sub-flows Fi1(k), Fi2(k),
Fi3(k), and Fi4(k), incoming into each node within module Mi.
Fig. 22 shows L1 and L0 controllers within a two-level
hierarchy working together to achieve the desired QoS goals
with the following responsibilities.

Fig. 22 Hierarchical Controller Formulation for Data Streaming

The L1 controller must decide the fraction of the available
network bandwidth to distribute to the various modules.
Therefore, given the incoming flow-rates into the various
modules, the effective network bandwidth B(k) and the current
state of each module in terms of the average buffer size of the
sending processors, the L1 controller must decide the vector
{γi}, i.e., the fraction of the network bandwidth γiB(k) to
allocate to each Mi.

The L0 controller within Mi solves the problem, originally
formulated in Section IV. It decides the following variables
for each node nj in the module: the fractions μij and ωij of the

incoming flow rate Fij(k) to send over the network link and to
the local/nearby storage, respectively. It is important to note
that the L0 controller within a module operates under the
dynamic constraints imposed by the L1 controller, in terms of
the bandwidth γi.B(k) that the L0 controller must distribute
among its sending processors.

The hierarchical structure in Fig. 22 reduces the
dimensionality of the original control problem substantially.
Where a centralized solution must decide the variables μ and
ω for each of the 16 sending processors, in our method, the L1
controller only decides a single-dimensional variable γ for
each of the four modules. Similarly, the L0 controller decides
control variables only for those processors within its module -
far fewer compared to the total number of sending processors
in the system.

To realize the hierarchical structure in Fig. 22, each L1
controller must know the approximate behaviour of the
components comprising the L0 level. For example, to solve
the combinatorial optimization problem of determining {γi},
the fraction of the available network bandwidth to allocate to
the modules, the L1 controller must be able to quickly
approximate the behaviour of each module. More specifically,
given the observed state of each Mi, and the estimated
environment parameters in terms of the effective network
bandwidth and flow rates, the L1 controller must obtain the
cost incurred by module Mi for various choices of γi. Note,
however, that Mi's behaviour includes complex and non-linear
interaction between its L0 controller and the corresponding
sending processors, and the resulting dynamics cannot be
easily captured via explicit mathematical equations. A detailed
model for each Mi will also increase the L1 controller's
overhead substantially, defeating our goal of scalable
hierarchical control.

We use simulation-based learning techniques [5] to
generate a look-up table that quickly approximates Mi's
behaviour. Here, Mi’s behaviour is learned by simulating the
module with a large number of training inputs from the
(quantized) domains of Fi, B, and γi. Once such an
approximation is obtained off-line, it can be used by the L1
controller to quickly generate decisions for use in real time.

B. Simulation Results
Fig. 23 summarizes the performance of the control

hierarchy when both the L0 and L1 controllers use a single-
step look-ahead LLC scheme. We assume a total of 16 data-
transfer nodes, arranged in four modules comprising four
nodes each. The sampling times for the L0 and L1 controllers
are both set to 120 seconds. The maximum buffer size on each
node was qmax = 3.107 bits (≈29MB) and the desired queue
size at the end of the prediction horizon was set to q* = 0. The
decision variable 10 ≤≤ iγ supplied by the L1 controller to
each Mi was quantized in intervals of 0.1.

Fig. 24 shows the data, in terms of Mbits, streamed by the
L0 controller within each module over the network link and
hard disk. It is clear that during periods of network congestion,
between 12 and 18, the L0 controllers within modules M1 and

M3 write a fraction of the incoming data to hard disk to
prevent data loss.

0 5 10 15 20 25 30
0

5

10
x 10

8 Data generated by the simulation cluster
M

bi
ts

0 5 10 15 20 25 30
3

3.5

4

4.5
x 10

8 Effective network bandwidth

Sampling time

M
bi

ts

Actual
Estimated

Fig. 23 GTC workload trace and effective network bandwidth between

NERSC and PPPL

0 10 20 30
0

5

10

15
x 10

7

M
bi

ts

Disk
Link

0 10 20 30
0

5

10

15
x 10

7

0 10 20 30
0

5

10

15
x 10

7

Sampling time

M
bi

ts

0 10 20 30
0

5

10

15
x 10

7

Sampling time
Fig. 24 Operation of the L0 and L1 controllers

VII. RELATED WORK
There have been several recent research efforts addressing

self-management. Some have investigated runtime adaptations
by tuning TCP buffers (Enable [25] and GridFTP [24]).
Others use feedback (or reactive) control for resource and
performance management for single-processor application
[10], application task scheduling [8], [16], bandwidth
allocation and QoS adaptation in web servers [3], load
balancing in e-mail and file servers [15], network flow control
[18], [23] and processor power management [17], [22].
Classical feedback control, however, has some inherent
limitations. It usually assumes a linear and discrete-time
model for system dynamics with an unconstrained state space,
and a continuous input and output domain. The objective of
this paper is to address this limitation and manage the
performance of Grid applications, which exhibit hybrid
behaviour comprising both discrete-event and time-based
dynamics [2], and execute under explicit operating constraints,

using the LLC method. Predictive and change-point detection
algorithms have been proposed for managing application
performance.

VIII. CONCLUSION
The paper presented the design and implementation of a

self-managing data streaming service that enables efficient
data transport to support emerging Grid-based scientific
workflows. The presented design combines rule-based
heuristic adaptations with more formal model-based online
control strategies to provide a self-managing service
framework that is robust and flexible, and can address the
dynamism in the application requirements and system state. A
fusion simulation workflow was used to evaluate the data-
streaming service and its self-managing behaviours. The
results demonstrate the ability of the service to meet Grid-
based data-streaming requirements, as well as its efficiency
and performance. A hierarchical control architecture was also
presented to address scalability issues for large systems.
Simulations were used to demonstrate the feasibility and
effectiveness of this scheme.

ACKNOWLEDGMENT
The research presented in this paper is supported in part by National

Science Foundation via grants numbers ACI 9984357, EIA 0103674, EIA
0120934, ANI 0335244, CNS 0305495, CNS 0426354, IIS 0430826, and by
Department of Energy via the grant number DE-FG02-06ER54857.

REFERENCES
[1] S. Abdelwahed, N. Kandasamy and S. Neema, A Control-Based

Framework for Self-Managing Distributed Computing Systems,
Workshop on Self-Managed Systems (WOSS'04), Newport
Beach,CA USA, 2004.

[2] S. Abdelwahed, G. Karsai and G. Biswas, Online Safety Control of
a Class of Hybrid Systems, IEEE 2002 Conference on Decision
and Control, Las Vegas, NV, 2002, pp. 1988-1990.

[3] T. F. Abdelzaher, K. G. Shin and N. Bhatti, Performance
Guarantees for Web Server End-Systems: A Control Theoretic
Approach, IEEE Transactions on Parallel & Distributed Systems,
13 (2002), pp. 80-96.

[4] M. Agarwal and M. Parashar, Enabling Autonomic Compositions
in Grid Environments, Fourth International Workshop on Grid
Computing (Grid '03), IEEE Computer Society, Phoenix, Arizona,
USA, 2003, pp. 34-41.

[5] D. P. Bertsekas, Dynamic Programming and Optimal Control,
Athena Scientific, Nashua, NH, USA, 2005.

[6] V. Bhat, S. Klasky, S. Atchley, M. Beck, D. McCune and M.
Parashar, High Performance Threaded Data Streaming for Large
Scale Simulations, 5th IEEE/ACM International Workshop on
Grid Computing (Grid 2004), Pittsburgh, PA, USA, 2004, pp. 243-
250.

[7] V. Bhat, M. Parashar, H. Liu, M. Khandekar, N. Kandasamy and S.
Abdelwahed, Enabling Self-Managing Applications using Model-
based Online Control Strategies, 3rd IEEE International
Conference on Autonomic Computing, Dublin, Ireland, 2006.

[8] A. Cervin, J. Eker, B. Bernhardsson and K. Arzen, Feedback-
Feedforward Scheduling of Control Tasks, Real-Time Systems, 23
(2002), pp. 25 - 53.

[9] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana, Web
Services Description Language (WSDL) 1.1,
http://www.w3.org/TR/wsdl, 15 March 2001

[10] J. L. Hellerstein, Y. Diao, S. Parekh and D. M. Tilbury, Feedback
Control of Computing Systems, Wiley-IEEE Press, Hoboken, NJ,
2004.

[11] S. Klasky, M. Beck, V. Bhat, E. Feibush, B. Ludäscher, M.
Parashar, A. Shoshani, D. Silver and M. Vouk, Data management

on the fusion computational pipeline, Journal of Physics:
Conference Series, 16 (2005), pp. 510-520.

[12] Lawrence-Berkeley-National-Laboratory, Energy Sciences
Network, http://www.es.net/, 2004

[13] H. Liu, Accord: A Programming System for Autonomic Self-
Managing Applications, Electrical and Computer Engineering,
Rutgers University, Piscataway, NJ, USA, 2005, pp. 104.

[14] H. Liu, V. Bhat, M. Parashar and S. Klasky, An Autonomic Service
Architecture for Self-Managing Grid Applications, 6th
International Workshop on Grid Computing (Grid 2005), Seattle,
WA, USA, 2005, pp. 132-139.

[15] C. Lu, G. A. Alvarez and J. Wilkes, Aqueduct: Online Data
Migration with Performance Guarantees, USENIX Conference on
File Storage Technologies (FAST'02), Monterey, CA, 2002, pp.
219-230.

[16] C. Lu, J. A. Stankovic, S. H. Son and G. Tao, Feedback Control
Real-Time Scheduling: Framework, Modeling, and Algorithms,
Real-Time Systems, 23 (2002), pp. 85-126.

[17] Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach and K. Skadron,
Control-Theoretic Dynamic Frequency and Voltage Scaling for
Multimedia Workloads, International Conference on Compilers,
Architectures, & Synthesis Embedded Systems (CASES), ACM
Press, Grenoble, France, 2002, pp. 156-163.

[18] S. Mascolo, Classical Control Theory for Congestion Avoidance in
High-Speed Internet, 38th IEEE Conference on Decision and
Control, Phoenix, Arizona, USA, 1999, pp. 2709-2714.

[19] B. Nichols, D. Buttlar and J. P. Farrell, PThreads Programming,
O'Reilly, Sebastopol, CA, 1996.

[20] NLANR/DAST, Iperf 1.7.0 - The TCP/UDP Bandwidth
Measurement Tool, http://dast.nlanr.net/Projects/Iperf/, 2005

[21] J. S. Plank and M. Beck, The Logistical Computing Stack -- A
Design For Wide-Area, Scalable, Uninterruptible Computing,
Dependable Systems and Networks, Workshop on Scalable,
Uninterruptible Computing (DNS 2002), Bethesda, Maryland,
USA, 2002.

[22] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron and Z. Lu,
Power-aware QoS Management in Web Servers, Real-Time
Systems Symposium, Cancun, Mexico, 2003, pp. 63-72.

[23] R. Srikant, Control of Communication Networks, in T. Samad, ed.,
Perspectives in Control Engineering: Technologies, Applications,
New Directions, Wiley-IEEE Press, 2000, pp. 462-488.

[24] S. Thulasidasan, W. Feng and M. K. Gardner, Optimizing
GridFTP through Dynamic Right-Sizing, 12th IEEE International
Symposium on High Performance Distributed Computing
(HPDC'03), Seattle, WA, USA, 2003, pp. 14-23.

[25] B. L. Tierney, D. Gunter, J. Lee, M. Stoufer and J. B. Evans,
Enabling Network-Aware Applications, 10th IEEE International
Symposium on High Performance Distributed Computing (HPDC-
10'01), San Francisco, CA, USA, 2001, pp. 281-288.

[26] W. M. P. van-der-Aalst, A. H. M. ter-Hofstede, B. Kiepuszewski
and A. P. Barros, Workflow Patterns Distributed and Parallel
Databases 14 (2003), pp. 5-51.

[27] W3C, OWL Web Ontology Language Overview,
http://www.w3.org/TR/owl-features, 10 February 2004

