ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 5, 2007, PP 1-10 1

Formal Methods for Service Composition

Maurice H. ter Beek

Istituto di Scienza e Tecnologie dell’Informazione, CNR
Via G. Moruzzi 1, 56124 Pisa, Italy

maurice.terbeek@isti.cnr.it

Antonio Bucchiarone

IMT Lucca Institute for Advanced Studies
Piazza S. Ponziano 6, 55100 Lucca, Italy

antonio.bucchiarone@imtlucca.it

Stefania Gnesi

Istituto di Scienza e Tecnologie dell’Informazione, CNR
Via G. Moruzzi 1, 56124 Pisa, Italy

stefania.gnesi@isti.cnr.it

Abstract— Current approaches to service composition
range from industrial standards (like BPEL and OWL-S)
to formal methods (like Petri nets and process algebras).
In this paper, we survey a number of such approaches
and compare them with respect to a carefully selected
set of characteristics (like exception handling and quality
of services). We conclude that formal methods, often
including tool support, are ideal to assist designers and
developers because their use leads to increased confidence
in the obtained compositions.

Index Terms— Formal methods, Web Services, Service
Composition.

I. INTRODUCTION

EB services (WSs) are distributed and indepen-
dent computational elements that solve specific
tasks, varying from simple requests to complex business
processes, and that communicate using XML messages
following the SOAP standard. Current research studies
how to specify them (in a formal and expressive enough
language), how to (automatically) compose them, how
to discover them (on the Internet) and how to ensure
their correctness. We focus on service composition.
Several organizations are developing languages for
service composition, the most important ones being the
Web Services Business Process Execution Language
WS-BPEL [9] (BPEL for short) and the Web Services
Choreography Description Language WS-CDL [74].
Many of these languages however have only a lim-
ited ability to support automatic service composition,
mostly due to the absence of semantic representations
of the available services. The Semantic Web community
and others have proposed several solutions to these
limitations, among which the Web Ontology Language
for Web Services OWL-S [3] and the Web Service
Modeling Ontology WSMO [77].

In this paper, we first describe and compare these
approaches to service composition w.r.t. a selected set
of main characteristics to assess their quality, much in
the style of [49]. We then survey the increasing use of
formal methods (mainly state-action models like Petri
nets or process models like the 7-calculus) to formally
specify, compose and verify service compositions, and
also compare these w.r.t. the selected set of characteris-
tics. Finally, we discuss the expected advantage of using
formal methods—in particular their tool support—to
perform appropriate mathematical analyses in order to
increase one’s confidence in service compositions. By
doing so, we hope to provide a reference for service
composition designers and developers willing to use
formal methods and tools.

II. SERVICE COMPOSITION APPROACHES

A main feature of services is the reuse mechanism
to build new applications, which often need to be
defined out of finer-grained subtasks that are likely
available as services again. Composition rules describe
how to compose coherent global services. In particular,
they specify the order in which, and the conditions
under which, services may be invoked. We distinguish
syntactic (XML-based) and semantic (ontology-based)
service composition.

A. Syntactic Service Composition

We recognize two main approaches. The first ap-
proach, referred to as service orchestration, combines
available services by adding a coordinator (the orches-
trator) that is responsible for invoking and combining
the single subactivities.

ISSN 1109-9305 (© 2007 AMCT

2 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 5, 2007, PP 1-10

The second approach, referred to as service chore-
ography, instead does not assume a coordinator but
rather defines complex tasks via the definition of the
conversation that should be undertaken by each par-
ticipant; the overall activity is then achieved as the
composition of peer-to-peer interactions among the col-
laborating services. While several proposals exist for
orchestration languages, the most important one being
BPEL, choreography languages are still in a preliminary
stage of definition.

1) BPEL: This XML-based language was designed
to enable the coordination and composition of a set of
services. It is based on the Web Services Description
Language WSDL [75], which is basically an interface
description language for WS providers. BPEL is a
behavioral extension of WSDL using a workflow-based
approach. It expresses relationships between multiple
invocations by means of control and data flow links, and
it employs a distributed concurrent computation model
with variables. A main construct to model the flow of
services is a process, which is a concurrent description
connecting activities that send/receive messages to/from
external WS providers. Each provider can be seen as a
port of a particular port type, which has an appropri-
ate WSDL description. A partner link specifies which
activity is linked to a particular port provider.

2) WS-CDL: This XML-based specification lan-
guage is targeted at composing interoperable, long-
running, peer-to-peer collaborations between service
participants with different roles, as defined by a chore-
ography description. Its most important element is the
interaction activity, which describes an information
exchange between parties, with a focus on the receiver.
It consists of three main parts, corresponding to the
participants involved, the information being exchanged
and the channel over which the information is be-
ing exchanged. Exception handling and compensations
are supported through so-called exception and finalizer
work units. Messages that are exchanged between par-
ticipants are modeled with variables and tokens, whose
types can be specified in XML schema or in WSDL.
Channels are used to specify how and where message
exchanges can take place. Synchronization among ac-
tivities can be achieved via a work unit, which defines
the guard condition that must be fulfilled to continue
an activity.

WS-CDL describes a global view of the observable
behavior of message exchanges of all participating ser-
vices, intended for abstract process specification (inde-
pendent of the platform or programming language used
to implement the services). WS-CDL thus complements

languages like BPEL, in which such behavior is defined
from the viewpoint of the orchestrator.

B. Semantic Service Composition

Current WS technologies address only the syntactic
aspects of services and thus provide a set of rigid WSs
that cannot adapt to a changing environment without hu-
man intervention. The vision underlying semantic web
services [47] is to describe the various aspects of WSs
by using explicit, machine-understandable semantics,
and as such automate all stages of the service lifecycle.

The Semantic Web [66] provides a process-level
description of WSs which, in addition to functional
information, models the pre- and postconditions of
processes so that the evolution of the domain can be
logically inferred. It relies on ontologies to formalize
the domain concepts that are shared among WSs. For
the Semantic Web, the Internet is viewed as a globally
linked database in which web pages are marked with
semantic annotations. Given this infrastructure, power-
ful applications can be written that use the annotations
and suitable inference engines to automatically discover,
execute, compose and interoperate services. These great
potential benefits have led to major research activities,
both in industry and academia, with the aim of realizing
semantic web services.

We consider two main initiatives. OWL-S [46] is an
effort to define an ontology for the semantic markup
of WSs, intended to enable the automation of service
discovery, invocation, composition, interoperation and
execution monitoring by providing appropriate seman-
tic descriptions of WSs. The WS Modeling Ontology
WSMO [77] is an effort to create an ontology to de-
scribe various aspects related to semantic web services,
aiming to solve the integration problem. The goal of
both initiatives is to provide a standard for the semantic
description of WSs.

1) OWL-S: This initiative defines a service ontology
with four main elements. The service concept serves
as an organizational point of reference for declaring
services. Every service is declared by creating a service
instance. It links the remaining three elements of a ser-
vice through properties like presents, describedBy and
supports. The service profile describes what a service
does at a high level, describing its functionality and non-
functional properties, which is used to locate services
based on their semantic description. Both the service
offered by a provider and the service requested by a
consumer are described. The service model describes
how a service achieves its functionality, including a
detailed description of its constituent processes (if any)
as a process model. The service grounding, finally,

MAURICE H. TER BEEK ET AL “FORMAL METHODS FOR SERVICE COMPOSITION” 3

describes how to use a service (i.e. how clients can
actually invoke it).

2) WSMO: This initiative defines a model to de-
scribe semantic web services, based on the concep-
tual design set up in the WS Modeling Framework
WSMEF [18]. The latter distinguishes four elements: on-
tologies, services, goals and mediators. WSMO inherits
these elements and further refines and extends them
as follows. Ontologies are a key element, since they
provide (domain-specific) terminologies to describe the
other elements. They moreover link machine and human
terminologies by formal semantics. Services use the
standard web-based protocols to exchange and combine
data in new ways. They are described from three
different perspectives: non-functional properties, func-
tionality and behavior. Goals specify the objectives of a
client when consulting a service, i.e. the functionalities
a service should provide from the user perspective.
Mediators, finally, aim to overcome the mismatches
appearing between the different elements constituting
a WSMO description. They allow one to link possibly
heterogeneous resources.

In addition to these core elements, WSMO introduces
a set of core non-functional properties that are defined
globally and that can be used by all its modeling
elements. WSMO is moreover accompanied by a formal
language, the WS Modeling Language WSML [77],
which allows one to write annotations of WSs according
to the conceptual model, and by an execution environ-
ment WSMX [78] for the dynamic discovery, selection,
mediation, and invocation of services.

A significant difference between the abovementioned
initiatives is that OWL-S does not separate what the
user wants from what the service provides. The service
profile (such as its name, a human-readable description
and contact information) is not explicitly based on
standard metadata specification. WSMO recommends
the use of widely-accepted vocabularies (such as the
Dublin Core [72]). Another difference is that non-
functional properties can be expressed in any WSMO
element, whereas in OWL-S this is restricted to the ser-
vice profile. Furthermore, in OWL-S the service model
does not clearly distinguish between choreography and
orchestration; it is not based on any formal model, even
if some work on defining the formal semantics of OWL-
S processes has been done. OWL-S defines only one
service model per service, so there is only one way to
interact with the service.

In WSMO, on the other hand, choreography and
orchestration are specified in the interface of a ser-
vice description. A choreography describes the external
visible behavior of the service and an orchestration
describes how other services are composed in order to

achieve the required functionality of the service. Since
it is expected that there could be more than one way
to interact with a particular service, WSMO allows the
definition of multiple interfaces for a single service. To
facilitate linkage of heterogeneous resources between
one another, various kinds of mediation are required.
Therefore WSMO explicitly defines mediators in the
conceptual model. OWL-S does not explicitly do so:
The underlying infrastructure is assumed to handle this.
To summarize, OWL-S is more mature in certain aspects
(like choreography), whereas WSMO provides a more
complete conceptual model because it addresses aspects
like goals and mediators.

III. A SELECTION OF SERVICE COMPOSITION
CHARACTERISTICS

In this section, we describe the set of character-
istics w.r.t. which we compare the abovementioned
approaches to service composition and the formal ap-
proaches that will be described later. We believe that
any service composition approach should aim to support
these characteristics; we of course do not claim these
to be all characteristics of importance. Our choice is
based on the related proposals [72], [77], [79] and in
particular on [49] and on the Ontology [68] developed
in the EU project SENSORIA in which we are involved.

A. Connectivity

Reliable connectivity is needed to reason about ser-
vice interactions before composition, in order to guaran-
tee the continuity of service delivery after composition.
Measures of interest include the following.

1) Reliability: The ability to deliver responses con-
tinuously in time (service reliability) and the
ability to correctly deliver messages between two
endpoints (message reliability).

2) Accessibility: The responsiveness towards service
requests.

3) Exception handling/Compensations: What hap-
pens in case of an error and how to undo the
already completed activities.

The latter two measures in particular are receiving a
lot of attention nowadays. Services often make use of
external or third-party services (not owned and thus not
under control) and hence one must take into account the
fact that the latter services can unexpectedly fail. Since
services are usually long-running processes that may
take hours or weeks to complete, the ability to manage
compensations of service invocations is critical.

B. Correctness

Service composition may lead to large, complex sys-
tems of concurrently executing services. An important

4 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 5, 2007, PP 1-10

aspect of such systems is the correctness of their (tem-
poral) behavior. The behavioral properties that a service
should satisfy are usually defined by a specification
that precisely documents the desired behavior. Formal
methods then provide rigorous mathematical means to
guarantee a system’s conformance to a specification.

1) Safety/Liveness: Safety properties are assertions
that some undesired event never happens in the
course of a computation, while liveness properties
assert that some event does eventually happen. By
verifying such properties, one obtains measures of
correctness of a service (composition).

2) Security/Trust: The ability of a service (com-
positon) to provide proper authentication, autho-
rization, confidentiality and data encryption. This
requires the means to validate the credentials of a
WS client, to grant, deny and revoke access to ser-
vices, and to protect certain sensitive information
or service functionality. A key property of trust
is the assurance that a service (composition) will
perform as expected despite possible environmen-
tal disruptions, human and operator errors, hostile
attacks and design and implementation errors.

C. Quality of Services

There are several measures that determine the quality
of service (QoS).

1) Accuracy: The error rate of a service, measured
as the number of errors generated by a service in
a certain time interval.

2) Availability: The probability that a service is
available at any given time, measured as the
percentage of time a service is available over an
extended period of time.

3) Performance: The quality of service requests,
measured as response time, throughput and la-
tency. Response time is the guaranteed maximum
time needed to complete a request, throughput the
number of completed requests over a period of
time and latency the time needed to process a
request.

IV. COMPARING STANDARDIZATION APPROACHES
TO SERVICE COMPOSITION

Ideally, any approach to service composition should
satisfy the set of characteristics we compiled in the
previous section. In this section, we compare the ap-
proaches of Section [[I] w.r.t. these characteristics. The
outcome is summarized in Fig.|l} in which +, 4+ and —
indicate that the particular characteristic is addressed, is
hardly addressed or is not at all addressed, resp., by the
particular approach.

A. Connectivity

All industrial approaches offer connectivity, each in
a slightly different way. As said before, in BPEL the
result of a service composition is a process, its con-
stituting services are partners, message exchanges are
activities and a process interacts with external partner
services through a WSDL interface. BPEL has several
element groups that support connectivity, like invoke
and receive for reliable (synchronous and asynchronous)
information exchange, sequence and flow for sequential
and parallel execution and switch for logic control. In
WS-CDL, the lowest level actions performed within
a choreography are described by basic activities like
interaction, send and receive for the reliable exchange
of information between the participants and participate
to indicate a participant’s role. OWL-S distinguishes
the process types atomic, simple and composite, and
constituent processes are specified by flow-control con-
structs like sequence, split and iterate. In WSMO, medi-
ators can be used on the protocol level to communicate
in a reliable way between services and on the process
level to combine services.

Regarding exception handling, BPEL has a mecha-
nism to catch and handle faults, similar to common
programming languages like Java. We recall that in WS-
CDL exception handling is supported through the excep-
tion and finalizer work units. WS-CDL handles a lot of
errors (e.g. interaction failures, protocol, timeout errors,
application failures, etc.) using the exception block of a
choreography [74]. WSMO explicitly models the error
information of a service in the inferface description
of the service specification. OWL-S does not consider
these details directly, but errors can be captured by using
conditional outputs. This characterization of errors is
not explicit, as the definition of a conditional output
does not necessarily imply that one of the possible
outputs is an error [82].

Regarding compensations, WS-CDL uses the excep-
tion and finalizer work units. In BPEL, one may define a
compensation handler to enable compensation activities
if actions cannot be explicitly undone. OWL-S cannot
be used to describe compensation operations. In fact, a
goal of the OWL-S specification is “the ability to find
out where in the process the request is and whether any
unanticipated glitches have appeared” [6]. In WSMO,
finally, when an invoked WS fails, the WS that invoked
it may implement a strategy for compensation.

B. Correctness

Neither of the industrial approaches offer any direct
support for the verification of service compositions at
design time, to evaluate in this way its correctness. As a
matter of fact, in the next section we will see that this is

MAURICE H. TER BEEK ET AL “FORMAL METHODS FOR SERVICE COMPOSITION” 5

(Syntax-based Semantics-based)
Characteristics BPEL WS-CDL OWL-S WSMO
Connectivity + + + +
| Exception handiing | + o+ | + | +
| Compensations | + |+ | - | +
Correctness - - - -
| Qos + + + +

Fig. 1.

the main issue where formal methods (and tools) come
into play. For instance, there have been many attempts
to formally capture and analyze the (temporal) behavior
of BPEL [14], [20], [24], [25], [29], [32]-[36], [38],
[45], [56], [81].

C. Quality of Services

The management of QoS when composing services
requires a careful consideration of the QoS charac-
teristics of the constituent services. BPEL and WS-
CDL do not directly support the specification of most
QoS measures. To enable the specification and mon-
itoring of QoS aspects like accuracy, availability and
performance, various approaches have been developed.
Examples include IBM’s Web Service Level Agreement
WSLA [76] and HP’s Open View Internet Services. The
latter describes a theoretic QoS parameter specification
model and introduces SLAs for services in the form of
WSML. In OWL-S and WSMO, on the other hand, QoS
measures like accuracy and availability are specified
as service parameters in the service description, but
the specification of metrics and guarantees is missing.
Moreover, there is no way to specify functional relations
between metrics and therefore quality-aware service
discovery is not feasible.

V. FORMAL METHODS FOR SERVICE COMPOSITION

Services are typically designed to interact with other
services to form larger applications. From a software
engineering point of view, the construction of new
services by composing existing services raises exciting
perspectives, which can significantly impact the way
future industrial applications will be developed. It also
raises a number of challenges, however, one of them
being the challenge to guarantee the correct interaction
of independent, communicating pieces of software. Due
to the message-passing nature of service interaction,
many subtle errors might occur when several services

Comparing standardization approaches to service composition.

are put together (unreceived messages, deadlocks, in-
compatible behaviors, etc.). These problems are well
known and recurrent in distributed applications, but they
become even more critical in the world of service-
oriented computing that is ruled by the long-term vision
of “services used by services”, rather than by humans,
and in which interactions should—ideally—be as trans-
parent and automatic as possible.

A major problem of the approaches we met in the
previous section, viz. the lack of software tools to verify
the correctness of service compositions, is at the same
time the main advantage of most formal methods. In
particular, formal methods and tools can be used to
decide whether services

1) are in some precise sense equivalent and

2) satisfy certain desirable properties.

If one should discover that a service composition does
not match an abstract specification of what is desired,
or that a main property is violated, this can be of help
to correct a design or to diagnose bugs in a service.
Recently several formal methods, most of them with a
semantics based on transition systems (e.g. automata,
Petri nets, process algebras), have been used to guaran-
tee correct service compositions.

Below we first present a selective overview of the
use of well-known languages and models by the formal
methods community, to realize the approaches to service
composition discussed in Section [} Subsequently we
indicate which of these approaches have been used to
address the service composition characteristics selected
in Section

A. Automata

Automata or Labeled Transition Systems (LTSs) are
a well-known model underlying formal system spec-
ifications. The intuitive way in which automata can
model system behavior has lead to several automata-
based specification models, like (variants of) I/O au-
tomata [31], timed automata [2] and team automata [4].

6 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 5, 2007, PP 1-10

Their formal basis allows automatic tool support and—
as a result—automata-based models are increasingly
being used to formally describe, compose, and verify
service compositions. Below follow some exemplary
approaches.

In [24], [25], the authors introduce a framework to
analyze and verify properties of service compositions
of BPEL processes communicating via asynchronous
XML messages. This framework first translates the
BPEL processes to a particular type of automaton whose
every transition is equipped with a guard in the form
of an XPath [80] expression, after which these guarded
automata are translated into Promela, the input language
of the model checker SPIN [30]. Also in [21] automata
are used to translate BPEL processes to Promela. SPIN
can then be used to verify whether service composi-
tions satisfy certain properties expressed in the Linear
Temporal Logic LTL. In [35], a (composition of) WSs is
modeled by a (composition of) so-called state transition
systems, after which LTL is again used to verify prop-
erties that such compositions should satisfy by means
of the NuSMV model checker [12]. This approach is
extended in [34], [36] by using so-called extended state
transition systems and by performing (and comparing)
verifications with both SPIN and NuSMV.

In [14], a case study shows how descriptions of
services written in BPEL/WS-CDL can be automat-
ically translated to timed automata and subsequently
be verified by the model checker UPPAAL [43]. This
technique is consequently used in [15] to model check
the time requirements of WS compositions specified in
WS-CDL by using UPPAAL.

In [32], the authors provide an encoding of BPEL
processes into WS timed state transition systems, a
formalism that is closely related to timed automata, and
discuss a framework in which timed properties (both
qualitative and quantitative) expressed in the Duration
Calculus DC [11] can be model checked. These analysis
capabilities are consequently extended in [33] by using
the quantified discrete-time duration calculus [57].

In [16], a framework to automatically verify systems
modeled in the orchestration language Orc [54] is
proposed. To this aim, the authors define a formal
timed-automata semantics for Orc expressions, which
conforms to Orc’s operational semantics. UPPAAL can
then be used to model check Orc models.

In [52], services are modeled as I/O Automata, af-
ter which the supervision of service composition by
a choreographer is verified by simulations over I/O
automata, using a so-called universal service automaton.

B. Petri Nets

Petri nets are a framework to model concurrent
systems [59], [60]. Their main attraction is the natural

way of identifying basic aspects of concurrent systems,
both mathematically and conceptually. This has con-
tributed greatly to the development of a rich theory of
concurrent systems based on Petri nets. Moreover, their
ease of conceptual modeling (largely due to an easy-to-
understand graphical notation) has made Petri nets the
model of choice in many applications.

In fact, Petri nets are very popular in BPM-related
fields due to the large variety of process control flows
they can capture [37]. In particular, the dead-path-
elimination technique that is used in BPEL to bypass
activities whose preconditions are not met, can be
readily modeled in Petri nets. In [56], it is shown how to
map all BPEL control-flow constructs into labeled Petri
nets (thus including control flows for exception handling
and compensations). This is automated by the open-
source tool BPEL2PNML, whose output can be used to
verify BPEL processes by means of the open-source
tool WofBPEL [55] (including reachability analysis).
We now give some examples of such approaches.

In [53], the authors define the semantics of a relevant
subset of DAML-S (now OWL-S) in terms of a first-
order logic, viz. the situation calculus [61]. Based on
this semantics they describe WS compositions in a
Petri-net-based formalism, complete with an operational
semantics. They discuss the implementation of a tool to
describe and automatically verify service compositions.

In [27], the authors introduce a Petri-net-based alge-
bra to compose services, based on control flows, and
show how to use it for performance analysis.

In [81], a Petri-net-based design and verification
framework for service composition is proposed, which
can be used to visualize, create and verify existing
BPEL processes. The authors still need to develop a
graphical interface, with a Petri-net view and a BPEL
view, to assist the creation of WS compositions.

In [83], a Petri-net-based architectural description
language, in which service-oriented systems can be
modeled and analyzed in an automatic way, is intro-
duced and a small case study is presented. To deal with
real-life applications and to eliminate manual transla-
tion errors, the authors intend to develop an automatic
translation engine from WSDL to their language.

In [29], a complete and formal Petri-net seman-
tics for BPEL is presented, thus including exception
handling and compensations. Furthermore, the authors
present their BPEL2PN parser which can automatically
transform BPEL processes into Petri nets. As a result,
a variety of Petri-net verification tools are applicable
to automatically analyze BPEL processes. Yet another
framework for modeling and analyzing BPEL processes
by means of Petri nets is presented in [45], including an
effective algorithm to verify usability-based properties.

In [63], Orc is translated into colored Petri nets,

MAURICE H. TER BEEK ET AL “FORMAL METHODS FOR SERVICE COMPOSITION” 7

which is a generalization of Petri nets that can deal
with recursion and data handling. The authors extend
their framework in [62] to deal with QoS aspects in a
sound way.

Finally, a very recent Petri-net-based approach to for-
mally model service composition can be found in [28]:
It contains a rigorous account of the composition of
services, represented as so-called open Petri nets, thus
permitting correctness analyses.

C. Process Algebras

Like Petri nets, process algebras are precise and well-
studied formalisms that allow the automatic verifica-
tion of both functional and non-functional properties.
They come with a rich theory on bisimulation analysis,
i.e. to establish whether two processes have equivalent
behaviors. Such analyses are useful to establish whether
one service can substitute another service in a service
composition or to verify the redundancy of a service.

The m-calculus [51] is a process algebra that has
inspired modern service composition languages like
BPEL. As with Petri nets, the rationale behind us-
ing the m-calculus to describe processes lies in the
advantages that a formal calculus with a rich theory
provides for the automatic verification of behavioral
properties expressed in such a calculus. From a com-
positional perspective, the m-calculus offers constructs
to compose activities in terms of sequential, parallel,
and conditional execution, combinations of which can
lead to compositions of arbitrary complexity. We now
give some examples of process-algebraic approaches to
specify and verify service compositions.

In [22], [23], a verification process is described and
applied on several case studies. It is based on translating
a BPEL model of a WS composition into a process
calculus called Finite State Processes FSP [44] and
subsequently into LTSs. Consequently, one can check
the resulting FSP composition for correctness based on
behavioral (trace) equivalence as well as model check
the resulting LTS for safety and liveness properties.

In [65], the authors advocate the use of process
algebras to describe, compose and verify services, with
a particular focus on their interactions. Therefore they
present a case study that uses CCS [50] to specify
and compose services as processes, and the Concur-
rency Workbench [13] to validate properties like correct
service composition. The Concurrency Workbench is
also used in [38]: This time as a verification environ-
ment for the BPE-calculus, a small CCS-like language
containing the main control flow constructs of BPEL
while abstracting from many details (including fault and
compensation handlers).

To be of use in real-life applications one needs to use
more advanced calculi than CCS (e.g. the m-calculus)

in order to consider additional issues like the exchange
of data during service interactions and dynamic service
compositions. In [20], e.g., a two-way mapping is
defined between BPEL and the more expressive process
algebra LOTOS [7]. An advantage of the translation is
the inclusion of compensations and exception handling,
thus permitting the verification of temporal properties
with the CADP [19] model-checking toolbox.

Finally, in [64] the authors introduce the BPEL2EC
tool that can automatically transform BPEL processes
into the Event Calculus EC [39]: It takes a WS compo-
sition as input and outputs its behavioral specification
in the EC, after which such a specification is turned into
a format that the theorem prover SPIKE [69] accepts to
check for behavioral properties expressed in the EC.

1) SENSORIA Calculi for Service Composition:
The remainder of this section is dedicated to recent
process-algebraic approaches to model and verify ser-
vice compositions (through orchestration and choreog-
raphy) that have been proposed in the context of the
EU project SENSORIA [67] in which we are involved.
In particular, we briefly discuss a number of advanced
process calculi that are equipped with basic primitives
used to execute complex service applications (like long-
running transactions).

We divide these calculi in two different categories.
The first one consists of calculi that use an explicit
notion of session, while the second one contains calculi
that are based on correlation information. The resulting
principal difference between these two categories is the
way in which an orchestrator manages service com-
munication. In the first category, the orchestrator must
activate a set of different sessions that are related to the
number of services in the orchestration. In the second
one, the orchestrator runs only one process instance and
a correlation information set is declared, which is used
to allow services to interact with the right session.

a) Session-based Calculi: When a service is
called, the calculi of this first category create a new
session, i.e. a private bidirectional channel between
caller and callee. In order to establish a communication,
each side of the channel has a communication protocol
installed. This category contains the Service Centered
Calculus SCC [8], which was introduced as a com-
bination of Orc’s service-oriented characteristics and
the name-passing communication mechanisms provided
by the m-calculus. Essentially, SCC is a name-passing
process calculus in which services can be created and
invoked. A service invocation produces a new session
in which interaction between clients and services can be
modeled. Moreover, a session can be explicitly closed
using the mechanism of process interruption (i.e. close).

8 ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 5, 2007, PP 1-10

SCC offers just a basic mechanism for service orches-
tration, which has been inspired by Orc’s pipeline con-
struct and which is expressive enough to encode most of
Van der Aalst’s orchestration patterns [1]. Nevertheless,
it can be very useful to have some more sophisticated
and flexible inter-session communication mechanism as
a primitive construct in the language. For this reason,
a number of variants of SCC were introduced (like
SSCC [40] and CSCC [70], which make use of stream-
oriented communication and message passing, resp.).

Regarding exception handling, these session-based
calculi provide primitives to deal with the proper closure
of a session, to install a termination handler and—in
case of SCC—to signal the decision to close a session
to partners.

b) Correlation-based Calculi: This second cate-
gory contains SOCK: A Calculus for Service Oriented
Computing [26] and COWS: A Calculus for Orchestra-
tion of Web Services [41]. Both calculi use correlation
information to compose services. Correlation informa-
tion (such as Internet cookies used by web sites) permits
a flexible mechanism to manage relationships among
collaborating partners. Recall from Section [II| that we
distinguish two approaches to assemble services, viz.
orchestration and choreography. In both SOCK and
COWS, a choreography consists of three main ele-
ments: the roles, the initial state constraints and the
conversations. Each role has a name and contains a set
of variables and operations. An orchestration, on the
other hand, consists of several orchestrators in parallel,
each of which identifies a process by an identifier
and memorizes the current values of its variables in a
storage.

The principal difference between SOCK and COWS
is that the latter is stateless as it bases correlation on
values, while SOCK is stateful as it bases correlation
on variables. Moreover, in SOCK the correlation infor-
mation can change during run-time and a process might
dynamically change partners (which is not permitted in
COWS). Finally, while SOCK associates a new process
with its state, in COWS it is added in parallel with the
other processes.

Both these correlation-based calculi contain mech-
anisms to define fault and compensation handlers. In
COWS one can force the immediate termination (by
means of a kill activity) of concurrent threads, pro-
gram ad-hoc fault and compensation handlers, and
protect some sensitive activities. SOCK, on the other
hand, distinguishes among fault handlers and termina-
tion/compensation handlers. In SOCK, it is possible to
associate handlers to any portion of code using the
scope construct and these handlers can be dynamically

defined and updated. COWS is extended with time
in [42], while a logical verification framework to check
functional properties of service compositions specified
with COWS is presented in [17].

VI. COMPARING APPROACHES TO SERVICE
COMPOSITION IN FORMAL METHODS

In Fig. 2] we compare the formal methods surveyed
so far according to their ability to deal with the charac-
teristics of Section The entries correspond to papers
in the references. Each such paper appears only in the
column of the formal method used in that paper, while
it appears in a row if the respective characteristic is
addressed in the paper.

Note that not many of the considered formal methods
deal with connectivity in a satisfactory way, even though
a growing lot of them deal with exception handling and
compensations. As said before, their solid mathematical
basis does make formal methods very well suitable
to verify the (behavioral) correctness properties under
consideration. In fact, most of the considered formal
methods have the advantage of being accompanied
by tools that allow simulation and verification of the
behavior of a model ar design time, thus enabling the
detection and correction of errors as early as possible.
As such, these formal approaches can be used to in-
crease the correctness of service compositions.

In industry, various tools are being developed to sup-
port the specification and composition of services. Ex-
amples include IBM’s WebSphere Choreographer [71]
and Oracle’s BPEL Process Manager [10]. For verifica-
tion, however, formal methods are the means to use.

Finally, QoS issues like performance (analysis) are
also rather well supported by formal methods, again
largely due to their solid mathematical basis and their
tool support. Obviously, some quantitative information
from the actual use of services is needed for proper
performance analyses.

VII. CONCLUSION

Several papers compare and analyze service compo-
sition languages [5], [48], [49], [58], [73]. Of these,
[5] discusses service composition from the architectural
viewpoint, both [48] and [73] contain comparisons
conducted almost at the micro level, focusing on spe-
cific language structures and control patterns, and [58]
hardly addresses service composition, focusing more
on service-oriented computing as a whole. We instead
provide a general overview, remaining closer to [49]:
Seven exemplary approaches to service composition are
compared against a carefully selected set of characteris-
tics that any approach should aim to support to facilitate
service composition.

MAURICE H. TER BEEK ET AL “FORMAL METHODS FOR SERVICE COMPOSITION” 9

Semantic models

Characteristics Automata Petri nets Process algebras
Connectivity [14,15,21,24,25,34—36] |[27—29, 37,53, 56,62, 63,81, 83]|[8, 20, 22, 23, 26, 38, 40, 41, 64, 65, 70]
g"c"l’ti"“ handling/ [21, 32] [29, 37, 45, 56, 63, 81] 8, 20, 26, 40, 41, 70]
ompensations
Correctness [14—16,21, 24, 25,3236, 52] [27—29, 45, 53, 81] [17, 20, 22, 23, 38, 64, 65]
QoS [15,16, 24, 25, 32, 33] [53, 56, 62] [20, 23, 42, 65]

Fig. 2. Comparing approaches to service composition in formal methods.

The main problems with most practical approaches to
service composition are the verification of (behavioral)
correctness of service compositions and the (quantita-
tive) analysis of QoS aspects. We hope to have con-
vinced the reader that this is where formal methods can
be of use. Due to the solid theoretical basis of all formal
methods considered in this paper, the tool support that
comes with them allows the simulation and verifica-
tion of the behavior of a model at design time, thus
enabling the detection and correction of errors as early
as possible and in any case before implementation. As
a result, these approaches help increase the correctness
of service compositions. Hence formal methods, with
their tool support, are ideal for assisting designers and
developers, since their use leads to increased confidence
in the obtained service compositions.

ACKNOWLEDGMENTS

The work presented here has been partially funded
by the EU project SENSORIA (IST-2005-016004) and
by the Italian project TOCAIL.IT.

The authors are grateful to Roberto Bruni for his
comments that have helped to improve Section [V-C.I|
and to the anonymous referees for their suggestions that
have helped to improve the overall presentation.

REFERENCES

[11 W. M. P. van der Aalst et al., “Workflow patterns,” Distributed
and Parallel Databases, vol. 14, no. 1, pp. 5-51, 2003, cf. also
www.workflowpatterns.com.

[2] R. Alur and D. L. Dill, “A Theory of Timed Automata,”
Theoretical Computer Science, vol. 126, no. 2, pp. 183-235,
1994.

[3] A. Ankolekar et al., “DAML-S: Web Service Description for
the Semantic Web,” in Proc. ISWC’02, ser. LNCS, no. 2342.
Springer, 2002, pp. 348-363.

[4] M. H. ter Beek et al., “Synchronizations in Team Automata for
Groupware Systems,” Computer Supported Cooperative Work,
vol. 12, no. 1, pp. 21-69, 2003.

[5] B. Benatallah et al., “Service Composition: Concepts, Tech-
niques, Tools and Trends,” in Service-Oriented Software Sys-
tem Engineering—Challenges and Practices, Z. Stojanovic and
A. Dahanayake, Eds. Idea Group, 2005, pp. 48-66.

[6] D. Biswas, “Compensation in the World of Web Services
Composition,” in Proc. SWSWPC’04, ser. LNCS, no. 3387.
Springer, 2004, pp. 69-80.

[7]

[8]

[9]
[10]
(11]

[12]

[13]

[14]

[15]

(16]

(17]

[18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

T. Bolognesi and E. Brinksma, “Introduction to the ISO Spec-
ification Language LOTOS,” Computer Networks, vol. 14, pp.
25-59, 1987.

M. Boreale et al., “SCC: A Service Centered Calculus,” in
Proc. WS-FM’06, ser. LNCS, no. 4184. Springer, 2006, pp.
38-57.

BPEL vl.1, www.ibm.com/developerworks/library/ws-bpel.
BPEL process manager, www.oracle.com/technology/bpel.

Z. Chaochen, C. A. R. Hoare, and A. P. Ravn, “A Calculus of
Durations,” Information Processing Letters, vol. 40, no. 5, pp.
269-276, 1991.

A. Cimatti et al., “NUSMV: A New Symbolic Model Checker,”
International Journal on Software Tools for Technology Trans-

fer, vol. 2, no. 4, pp. 410-425, 2000.

R. Cleaveland, T. Li, and S. Sims, “Concurrency Workbench of
the New Century v1.2.”

G. Diaz et al., “Automatic Translation of WS-CDL Choreogra-
phies to Timed Automata,” in Proc. WS-FM’05, ser. LNCS, no.
3670. Springer, 2005, pp. 230-242.

G. Diaz et al., “Analysis and Verification of Time Requirements
Applied to the Web Services Composition,” in Proc. WS-FM’06,
ser. LNCS, no. 4184. Springer, 2006, pp. 178-192.

J. Dong et al., “Verification of Computation Orchestration via
Timed Automata,” in Proc. ICFEM’06, ser. LNCS, 2006.

A. Fantechi et al., “A model checking approach for verifying
COWS specifications,” in Proc. FASE’08, ser. LNCS. Springer,
2008.

D. Fensel and C. Bussler, “The Web Service Modeling Frame-
work WSMEF,” Electronic Commerce Research and Applica-
tions, vol. 1, no. 2, pp. 113-137, 2002.

J. Fernandez et al., “CADP: A Protocol Validation and Verifica-
tion Toolbox,” in Proc. CAV’96, ser. LNCS, no. 1102. Springer,
1996, pp. 437-440.

A. Ferrara, “Web Services: a Process Algebra Approach,” in
Proc. ICSOC’04. ACM, 2004, pp. 242-251.

J. A. Fisteus, L. Sanchez Fernandez, and C. D. Kloos, “For-
mal Verification of BPEL4WS Business Collaborations,” in
Proc. EC-Web’04, ser. LNCS, no. 3182. Springer, 2004, pp.
76-85.

H. Foster et al., “Model-based Verification of Web Service
Compositions,” in Proc. ASE’03. 1EEE, 2003, pp. 152-163.
H. Foster et al., “Model checking service compositions under
resource constraints,” in Proc. ESEC/FSE’07. ACM, 2007, pp.
225-234.

X. Fu, T. Bultan, and J. Su, “Analysis of Interacting BPEL Web
Services,” in Proc. WWW’04. ACM, 2004, pp. 621-630.

X. Fu, T. Bultan, and J. Su, “WSAT: A Tool for Formal Analysis
of Web Services,” in Proc. CAV’04, ser. LNCS, no. 3114.
Springer, 2004, pp. 510-514.

C. Guidi et al., “SOCK: A Calculus for Service Oriented Com-
puting,” in Proc. ICSOC’06, ser. LNCS, no. 4294. Springer,
2006, pp. 327-338.

R. Hamadi and B. Benatallah, “A Petri Net-based Model for
Web Service Composition,” in Proc. ADC’03, ser. CRPIT,
no. 17, 2003, pp. 191-200.

(28]

[29]

(30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(501

[51]

ANNALS OF MATHEMATICS, COMPUTING & TELEINFORMATICS, VOL 1, NO 5, 2007, PP 1-10

C. Hartonas, “Modeling Service Communication with Open
Petri Nets,” in Proc. SEEFM’07. South-East European Re-
search Center, 2007, pp. 79-97.

S. Hinz, K. Schmidt, and C. Stahl, “Transforming BPEL to Petri
Nets,” in Proc. BPM’05, ser. LNCS, no. 3649. Springer, 2005,
pp. 220-235.

G. J. Holzmann, The SPIN Model Checker.
2003.

D. Kaynar et al., Theory of Timed 1/O Automata.
Claypool, 2006.

R. Kazhamiakin, P. Pandya, and M. Pistore, “Timed Modelling
and Analysis in Web Service Compositions,” in Proc. ARES’06.
IEEE, 2006, pp. 840-846.

R. Kazhamiakin, P. Pandya, and M. Pistore, “Representation,
Verification, and Computation of Timed Properties in Web
Service Compositions,” in Proc. ICWS’06. 1EEE, 2006, pp.
497-504.

R. Kazhamiakin and M. Pistore, “A Parametric Communication
Model for the Verification of BPEL4AWS Compositions,” in
Proc. WS-FM’05, ser. LNCS, no. 3670. Springer, 2005, pp.
318-332.

R. Kazhamiakin and M. Pistore, “Static Verification of Control
and Data in Web Service Compositions,” in Proc. ICWS’06.
IEEE, 2006, pp. 83-90.

R. Kazhamiakin, M. Pistore, and L. Santuari, “Analysis of
communication models in web service compositions,” in Proc.
WWW’06. ACM, 2006, pp. 267-276.

B. Kiepusewski, A. ter Hofstede, and W. van der Aalst, “Fun-
damentals of Control Flow in Workflows,” Acta Informatica,
vol. 39, no. 3, pp. 143-209, 2003.

M. Koshkina and F. van Breugel, “Modelling and Verifying
Web Service Orchestration by means of the Concurrency Work-
bench,” in Proc. TAV-WEB’04. ACM, 2004, pp. 1-10.

R. A. Kowalski and M. J. Sergot, “A Logic-based Calculus of
Events,” New Generation Computing, vol. 4, no. 1, pp. 67-95,
1986.

I. Lanese et al., “Disciplining Orchestration and Conversation in
Service-Oriented Computing,” in Proc. SEFM’07. 1EEE, 2007,
pp. 305-314.

A. Lapadula, R. Pugliese, and F. Tiezzi, “A Calculus for
Orchestration of Web Services,” in Proc. ESOP’07, ser. LNCS,
no. 4421. Springer, 2007, pp. 33-47.

A. Lapadula, R. Pugliese, and F. Tiezzi, “COWS: A timed
service-oriented calculus,” in Proc. ICTAC’07, ser. LNCS, vol.
4711. Springer, 2007, pp. 275-290.

K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a Nut-
shell,” International Journal on Software Tools for Technology
Transfer, vol. 1, pp. 134-152, 1997.

J. Magee and J. Kramer, Concurrency—State Models and Java
Programs. John Wiley, 2006.

A. Martens, “Analyzing Web Service Based Business Pro-
cesses,” in Proc. FASE’05, ser. LNCS, no. 3442. Springer,
2005, pp. 19-33.

D. L. McGuinness and F. van Harmelen, “OWL Web Ontology
Language Overview,” www.w3.org/TR/owl-features.

S. A. Mcllraith, T. C. Son, and H. Zeng, “Semantic Web
Services,” IEEE Intelligent Systems, vol. 16, no. 2, pp. 46-53,
2001.

J. Mendling and M. Miiller, “A Comparison of BPML and
BPELAWS,” in Proc. 1st Conf. Berliner XML-Tage, 2003, pp.
305-316.

N. Milanovic and M. Malek, “Current Solutions for Web Service
Composition,” IEEE Internet Computing, vol. 8, no. 6, pp. 51—
59, 2004.

R. Milner, Communication and Concurrency.
1989.

R. Milner, J. Parrow, and D. Walker, “A calculus of mobile
processes I & IL,” Information and Computation, vol. 100, no. 1,
pp. 1-77, 1992.

Addison Wesley,

Morgan

Prentice Hall,

[52]

(53]

[54]
[55]

[56]

[57]

[58]

[59]
[60]
[61]
[62]

[63]

[64]

[65]

[66]
[67]
[68]

[69]

[70]

[71]
[72]

(73]

[74]
[75]
[76]
(771
[78]
[79]
[80]
[81]

[82]

[83]

S. Mitra, R. Kumar, and S. Basu, “Automated Choreographer
Synthesis for Web Services Composition Using I/O Automata,”
in Proc. ICWS’07. IEEE, 2007, pp. 364-371.

S. Narayanan and S. Mcllraith, “Simulation, Verification and
Automated Composition of Web Services,” in Proc. WWW’02.
ACM, 2002, pp. 77-88.

Orc v0.5, www.cs.utexas.edu/users/wcook/projects/orc.

C. Ouyang et al., “WofBPEL: A Tool for Automated Analysis
of BPEL Processes,” in Proc. ICSOC’05, ser. LNCS, no. 3826.
Springer, 2005, pp. 484—489.

C. Ouyang et al., “Formal semantics and analysis of control flow
in WS-BPEL,” Science of Computer Programming, vol. 67, pp.
162-198, 2007.

P. K. Pandya, “Specifying and Deciding Qauntified Discrete-
time Duration Calculus formulae using DCVALID,” in Proc.
RTTOOLS 01, 2001.

M. P. Papazoglou et al., “Service-Oriented Computing: State of
the Art and Research Challenges,” Computer, vol. 40, no. 11,
pp. 3845, 2007.

W. Reisig and G. Rozenberg, Eds., Lectures on Petri Nets I:
Basic Models, ser. LNCS. Springer, 1998, no. 1491.

W. Reisig and G. Rozenberg, Eds., Lectures on Petri Nets II:
Applications, ser. LNCS. Springer, 1998, no. 1492.

R. Reiter, Knowledge in Action—Logical Foundations for Spec-
ifving and Implementing Dynamical Systems. MIT, 2001.

S. Rosario et al., “Foundations for Web services Orchestrations:
functional and QoS aspects,” in Proc. ISOLA’06, 2006.

S. Rosario et al., “Net system semantics of Web Service
Orchestrations modeled in Orc,” IRISA, Technical Report 1780,
2006.

M. Rouached and C. Godart, “Requirements-driven Verification
of WSBPEL Processes,” in Proc. ICWS’07. 1EEE, 2007, pp.
354-363.

G. Salaitin, L. Bordeaux, and M. Schaerf, “Describing and
Reasoning on Web Services using Process Algebra,” in Proc.
ICWS’04. 1EEE, 2004, pp. 43-50.

Semantic Web, www.w3.org/sw.

Sensoria, www.sensoria-ist.eu.

Sensoria Ontology, “Prototype language for service modelling-
ontology for SOAs presented through structured natural lan-
guage (deliverable 1.1a),” 2006, available via [67].

S. Stratulat, “A General Framework to Build Contextual Cover
Set Induction Provers,” Journal of Symbolic Computation,
vol. 32, no. 4, pp. 403-445, 2001.

H. T. Vieira, L. Caires, and J. C. Seco, “The Conversation
Calculus: a Model of Service Oriented Computation,” in Proc.
ESOP’08, ser. LNCS. Springer, 2008.

‘WebSphere, www.ibm.com/software/infol/websphere.

S. Weibel et al., “Dublin Core Metadata for Resource Discovery.
IETF 2413,” 1998, www.ietf.org/rfc/rfc2413.txt.

P. Wohed et al., “Pattern-Based Analysis of BPEL4WS,”
Queensland University of Technology, Brisbane, Technical Re-
port FIT-TR-2002-04, 2002.

WSCDL v1.0, www.w3.0rg/TR/2004/WD-ws-cdl-10-20040427.
WSDL vl1.1, www.w3.org/TR/wsdl.

WSLA v1.0, www.research.ibm.com/wsla.

WSMO working group, www.wsmo.org.

WSMX working group, www.wsmx.org.

WSs Architecture, www.w3.org/TR/ws-arch.

XML Path Language XPath v1.0, www.w3.org/TR/xpath.

X. Yi and K. Kochut, “A CP-nets-based Design and Verification
Framework for Web Services Composition,” in Proc. ICWS’04.
IEEE, 2004, pp. 756-760.

L. Zhang and M. Jeckle, “Conceptual Comparison of WSMO
and OWL-S,” in Proc. ECOWS’04, ser. LNCS, no. 3250.
Springer, 2004, pp. 254-269.

J. Zhang et al., “WS-Net: A Petri-net Based Specification Model
for Web Services,” in Proc. ICWS’04. 1EEE, 2004, pp. 420-
4217.

	Introduction
	Service Composition Approaches
	Syntactic Service Composition
	BPEL
	WS-CDL

	Semantic Service Composition
	OWL-S
	WSMO

	A Selection of Service Composition Characteristics
	Connectivity
	Correctness
	Quality of Services

	Comparing Standardization Approaches to Service Composition
	Connectivity
	Correctness
	Quality of Services

	Formal Methods for Service Composition
	Automata
	Petri Nets
	Process Algebras
	Sensoria Calculi for Service Composition

	Comparing Approaches to Service Composition in Formal Methods
	Conclusion
	References

