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Abstract. We consider robust semi-definite programs which depend polynomially or ratio-

nally on some uncertain parameter that is only known to be contained in a set with a polyno-

mial matrix inequality description. On the basis of matrix sum-of-squares decompositions, we

suggest a systematic procedure to construct a family of linear matrix inequality relaxations for

computing upper bounds on the optimal value of the corresponding robust counterpart. With

a novel matrix-version of Putinar’s sum-of-squares representation for positive polynomials on

compact semi-algebraic sets, we prove asymptotic exactness of the relaxation family under a

suitable constraint qualification. If the uncertainty region is a compact polytope, we provide a

new duality proof for the validity of Putinar’s constraint qualification with an a priori degree

bound on the polynomial certificates. Finally, we point out the consequences of our results for

constructing relaxations based on the so-called full-block S-procedure, which allows to apply

recently developed tests in order to computationally verify the exactness of possibly small-sized

relaxations.

1. Introduction

It is well-established that a whole variety of analysis and synthesis problems in

control can be reduced to scalar polynomially constrained polynomial programs.
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Only rather recently, it has been suggested how to construct semi-definite pro-

gramming (SDP) relaxations of such non-convex optimization problems based on

the sum-of-squares (SOS) decomposition of multivariable polynomials [23,5,21,

7,6,12,11]. In particular in control engineering, many problems actually involve

semi-definite constraints on symmetric-valued polynomial matrices, such as the

spectral factorization of multidimensional transfer functions to asses dissipativity

of linear shift-invariant distributed systems [25], or the synthesis of H∞-optimal

output feedback controllers with a constraint on the controller structure, such

as an a priori bound on its McMillan degree [13].

Control systems are typically affected by uncertainty which captures the

mismatch between the employed model and the real plant under consideration

for analysis or synthesis. For different important classes, such as parametric or

dynamic, time-invariant or time-varying deterministic uncertainties, it is well-

understood how to reduce robust stability and performance analysis or robust

state-feedback and estimator synthesis problems to so-called robust semi-definite

programs [10,1,33]. Although dynamic model-mismatch in feedback interconnec-

tions leads to complex uncertainties which enter in a rational fashion [37], it is

not difficult to reduce to real uncertainty and polynomial dependence [18].

This leads us to the subject of this paper, the following robust polynomial

semi-definite program with optimal value vopt:

infimize cT y

subject to F (x, y) � 0 for all x ∈ Rm with G(x) 4 0.
(1)
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Here F : Rm×Rn → Sp and G : Rm → Sq are symmetric-valued functions which

depend polynomially on the uncertainty parameter x ∈ Rm, while F depends

affinely on the design parameter y ∈ Rn. Therefore F (x, y) � 0 is a standard

linear matrix inequality (LMI) in y for fixed x, while the robust counterpart

requires to satisfy the LMI for all x in the uncertainty set

G = {x ∈ Rm : G(x) 4 0}, (2)

which itself admits a very general description in terms a polynomial semi-definite

constraint. Recall that multiple polynomial SDP-constraints can be easily col-

lected into one inequality by diagonal augmentation. We stress that, in many

interesting practical cases, G turns out to admit an LMI representation (G is

affine) or is even just a compact polytope (G is diagonal and affine). Note also

that polynomial semi-definite programs sup{f(x) : x ∈ Rm, G(x) 4 0} as con-

sidered in [19,13] are recovered from (1) with F (x, y) = y−f(x) and c = 1. If, in

addition, G(x) = diag(−g1(x),−g2(x), . . . ,−gq(x)) is scalar-diagonal, we arrive

at the problem class considered in [21,24,36].

If F depends also affinely on the uncertainty x and if G is the convex hull of

a moderate number of explicitly given generators, it is clear that (1) amounts

to solving a standard LMI problem. If the number of extreme points to describe

G is large, it is often possible to construct efficiently computable relaxation

with beautiful a priori guarantees on the relaxation error [2,3]. The situation

drastically differs if the uncertainties enter nonlinearly, since then such a priori

guarantees are out of reach. Still, however, various relaxation schemes in robust
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control (such as multiplier relaxation in structured singular value theory [9,22,

15,16,30]) have been applied to construct efficiently computable relaxations.

In general, it cannot be expected that these relaxations are exact, and the

only known techniques to systematically reduce the relaxation gap with guar-

anteed convergence is restricted to boxes [4] or to finitely generated polytopes

with known generators [31,33]. As the main goal of this paper, we show how such

asymptotically exact relaxation families can be constructed on the basis of ma-

trix SOS decompositions for the much larger class of uncertainty sets G, based

directly on the implicit polynomial matrix inequality description (2) if G(x)

satisfies a suitable constraint qualification. In contrast to approaches based on

scalarization and a subsequent application of existing relaxation techniques [21,

24,36], we will be able to show that the size of the constructed LMI relaxations

grow at most bi-quadratically in the dimension p of F (x, y) and q of G(x) respec-

tively. Moreover, we will reveal how the techniques in [33] can be applied in order

to verify whether a given finite relaxation does not involve any conservatism.

The paper is structured as follows. In Section 2 we introduce the concept of

SOS matrices and discuss how it can be verified whether a polynomial matrix is

SOS by solving a linear SDP. This section comprises the exact reformulation of

(1) in terms of SOS matrices as formulated in our main Theorem 1. Moreover, we

point out a direct consequence, a novel generalization of Putinar’s representation

theorem [28] to polynomial matrices which are positive definite on G. We also

briefly discuss why existing scalar relaxation techniques fail to guarantee the

claimed growth of the relaxation size in the dimension of F (x, y) and G(x).
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The proof of our main result is provided in Section 4. As a preparation, the

main purpose of Section 3 is to prove a particular version of Putinar’s repre-

sentation theorem [28] for polynomial matrices which are positive definite on

a set described by scalar polynomial inequalities. Although the validity of the

required constraint qualification for compact polytopes has been established in

[17] with techniques from real algebraic geometry, we will give a new proof based

on Lagrange duality, which allows to extract explicit degree bounds.

In Section 5 we describe how to construct finite-dimensional LMI relaxations

with full flexibility in the choice of the underlying monomial basis, which leads to

an explicit estimate of the relaxation size. In order to numerically verify whether

any of these finite-dimensional relaxation is exact, we reveal, in Section 6, how

to subsume (1) to the general framework in [33]. Finally, in Section 7 we provide

a numerical illustration for a well-known academic example in robust control.

2. Construction of an exact SOS reformulation

2.1. Sum-of-squares decomposition of polynomial matrices

A p× p-polynomial matrix S(x) in x ∈ Rm is said to be a sum-of-squares (SOS)

if there exists a (not necessarily square and typically tall) polynomial matrix

T (x) such that

S(x) = T (x)TT (x).

If p = 1 and if Tj(x) denote the components of the column vector T (x) of length

r, we infer S(x) =
∑r

j=1 Tj(x)2 which motivates our terminology. Clearly any
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SOS polynomial matrix is globally positive semi-definite, but as for p = 1, the

converse is in general not true. The reader is referred to the nice survey [29] for

a detailed discussion and a large collection of references concerning scalar SOS

decompositions, and to [19,6] for related extensions to polynomial matrices.

A computational procedure for verifying whether S(x) is SOS proceeds as

follows. Choose pairwise different monomials u1(x), . . . , unu
(x) and search for

the coefficient matrix Y in the representation

T (x) = Y (u(x)⊗ Ip) with Y =
(
Y1 · · · Ynu

)
, u(x) =


u1(x)

...

unu(x)

 .

S(x) is said to be SOS with respect to u(x) if there exists some Y satisfying

S(x) = T (x)TT (x) = (u(x)⊗Ip)T (Y TY )(u(x)⊗Ip). This motivates the variable

substitution Z = Y TY to arrive at the following result.

Lemma 1. The polynomial matrix S(x) of dimension p is SOS with respect to

the monomial basis u(x) iff there exists a symmetric Z with

S(x) = (u(x)⊗ Ip)TZ(u(x)⊗ Ip) and Z < 0. (3)

Proof. We have proved ‘only if’. For the proof of ‘if’ suppose Z satisfies (3).

If we factorize Z as Y TY , we infer that T (x) = Y (u(x)⊗ Ip) is as desired.

Since the first relation (3) just amounts to an affine equation constraint on

Z, it is a standard LMI problem to verify the existence of some Z with (3). In

summary, one can check whether S(x) is SOS with respect to some monomial

basis by simple solving a linear SDP.
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2.2. The main result

In order to systematically construct relaxations, let us introduce the bilinear

mapping

(., .)p : Rpq×pq × Rpq×pq → Rp×p, (A,B)p = trp(AT (Ip ⊗B))

with

trp(C) :=


tr(C11) · · · tr(C1p)

...
. . .

...

tr(Cp1) · · · tr(Cpp)

 for C ∈ Rpq×pq, Cjk ∈ Rq×q.

Clearly, (A,B)1 just equals the standard inner product 〈A,B〉 = Trace(ATB).

For later reference let us note that

trp(AT (Ip ⊗B)) = trp((Ip ⊗B)AT ). (4)

This allows to prove the following essential property:

(A,B)p < 0 if A < 0 and B < 0. (5)

Indeed, if we decompose B = DDT , we infer (Ip ⊗ D)TA(Ip ⊗ D) < 0. Since

the trace operator as a mapping from Rp×p into R is completely positive [8],

we obtain trp((Ip ⊗D)TA(Ip ⊗D)) < 0. If exploiting (4), we can conclude that

trp(A(Ip ⊗D)(Ip ⊗DT )) < 0 and hence trp(A(Ip ⊗DDT )) = (A,B)p < 0.

With the help of this bilinear mapping, let us now define uopt as the value

of the optimization problem

infimize cT y

subject to ε > 0, S(x) and F (x, y) + (S(x), G(x))p − εIp are SOS in x
(6)
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in the decision variables y, ε, and the polynomial matrix S(x) of dimension pq.

As the main result of this paper, we will prove that the values of (1) and (6)

are equal, uopt = vopt, under a rather mild constraint qualification on G(x).

Due to Lemma 1, computing (6) amounts to solving an infinite dimensional but

linear semi-definite program, which can be easily relaxed to a standard LMI

problem by restricting S(x) to finite-dimensional subspaces. These insights form

the basis for constructing a sequence of LMI relaxations, whose values define

upper bounds of vopt which converge to vopt, as discussed in Section 5.

Without any hypothesis it is easy to see that uopt ≥ vopt. Indeed, suppose y,

ε and S(x) are feasible for (6). Choose an arbitrary x0 ∈ Rm with G(x0) 4 0;

since S(x) is SOS we infer S(x0) < 0; since F (x, y)+ (S(x), G(x))p− εIp is SOS,

we similarly infer F (x0, y) + (S(x0), G(x0))p � 0; it finally remains to exploit

(5) to conclude F (x0, y) � 0; since x0 ∈ G was arbitrary, we have indeed shown

that y is also feasible for (1).

Theorem 1. Suppose the following constraint qualification holds true: There ex-

ist some r ∈ R and some SOS matrix Ψ(x) of dimension q such that

r2 − ‖x‖2 + 〈Ψ(x), G(x)〉 is SOS. (7)

If vopt, uopt denote the optimal values of (1), (6) respectively then vopt = uopt.

Remark 1. The constraint qualification is a natural generalization of that used by

Schweighofer [36] for multiple scalar polynomial constraints. It implies that G is

contained in {x ∈ Rm : ‖x‖ ≤ r}, and hence compact. Conversely, if G is known

to be contained in the ball around zero with radius r, we can replace G(x) 4 0
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by G̃(x) := diag(G(x), ‖x‖2− r2) 4 0 in (1) without modifying the optimization

problem, and the constraint qualification is satisfied for G̃(x). Similarly as in

the scalar case, we note that the constraint qualification can be alternatively

formulated as follows: There exist SOS polynomial matrices Ψ(x) and ψ(x) of

dimension q and 1 such that {x ∈ Rm : 〈Ψ(x), G(x)〉 − ψ(x) ≥ 0} is compact.

To the best of our knowledge, this exactness result for robust polynomial

matrix inequalities (p > 1) with matrix-valued polynomial constraints on the

uncertainties (q > 1) is new. Theorem 1 hence combines the results on polyno-

mial semi-definite programming [19,13] (with scalar-valued F ) and robust LMI

problems with polytopic uncertainty regions (with diagonal and affine G) [31,

34] to a very general formulation with a wide range of applications, in particular

in control.

As an immediate corollary, we can extract the following new representation

result for positive definite polynomial matrices on sets that are described by

semi-definite polynomial inequalities.

Corollary 1. Suppose G(x) satisfies the constraint qualification in Theorem 1.

If H(x) is a symmetric-valued polynomial matrix of dimension p which is positive

definite on G, there exists some SOS matrix S(x) of dimension pq such that

H(x) + (S(x), G(x))p is SOS.

Proof. Just choose c = 0 and F (x, y) = H(x) such that vopt = 0. By

Theorem 1, we infer uopt = 0 which implies that (6) is feasible. Hence there
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exists ε > 0 and some SOS matrix S(x) such that H(x) + (S(x), G(x))p − εIp

and hence also H(x) + (S(x), G(x))p are SOS.

If H(x) is a scalar polynomial (p = 1), this result has been obtained inde-

pendently in [19,13], while generalizations to constraints defined by polynomial

inequalities in Jordan algebras can be found in [20]. If further specializing to

G(x) = −diag(g1(x), . . . , gq(x)) with scalar polynomials g1(x), . . . , gq(x), (8)

we arrive at Putinar’s fundamental representation theorem [28] for positive poly-

nomials on semi-algebraic sets.

Remark 2. Let us explicitly formulate the specialization of Theorem 1 for (8).

The constraint qualification then requires the existence of r and scalar SOS

polynomials ψ0(x), ψ1(x), . . . , ψq(x) such that

r2 − ‖x‖2 = ψ0(x) +
q∑

j=1

ψj(x)gj(x). (9)

Due to Theorem 1, the value vopt then equals the infimal cT y such that there

exist ε > 0 and SOS polynomial matrices S0(x), S1(x), . . . , Sq(x) with

F (x, y) = S0(x) +
q∑

j=1

Sj(x)gj(x) + εIp. (10)

2.3. Scalarization

To scalarize the particular problem as described in Remark 2, one introduces

the new variables v ∈ Rp and defines the polynomials

f(v, x, y) := vTF (x, y)v, gq+1(v, x) = 2− vT v, gq+2(v, x) = vT v − 1.
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Then vopt equals the infimal cT y such that

f(v, x, y) > 0 for all (x, v) with gj(v, x) ≥ 0, j = 1, . . . , q + 2. (11)

The SOS counterpart with optimal value uopt amounts to infimizing cT y over

ε > 0 and SOS polynomials sj(v, x), j = 0, . . . , q + 2, such that

f(v, x, y) = s0(v, x) +
q+2∑
j=1

sj(v, x)gj(v, x) + ε. (12)

If gj(v, x), j = 1, . . . , q+2, satisfy Putinar’s constraint qualification then vopt =

uopt [28,21]. However, although the scalar polynomials f(v, x, y) and gj(v, x)

are quadratic in v, no available result allows to draw the conclusion vopt = uopt

after imposing any constraints on the degrees of the SOS polynomials sj(v, x)

with respect to v. The particular version of Theorem 1 in Remark 2 implies

that one can indeed confine the search to sq+1(v, x) = 0, sq+2(v, x) = 0 and

to sj(v, x) = vTSj(x)v, j = 0, 1, . . . , q, which are homogenously quadratic in

v, without violating vopt = uopt. In this sense, Theorem 1 can be interpreted

as providing a generic degree bound in the SOS reformulation of the scalarized

problem, which is in turn the key for the bi-quadratic growth of the relaxation

size in the dimension of F (x, y) and G(x) as discussed in Section 5.

To scalarize a genuine semi-definite constraint G(x) 4 0 in the general situ-

ation of (1), one can equivalently rewrite it in terms of the principal minors as

Mi(G(x)) ≤ 0, i = 1, . . . , 2q, whose number grows exponentially in the dimen-

sion q of G(x) [14]. Even if p = 1, the size of scalar SOS relaxations [23,21,36]

depend exponentially on q. In contrast, Theorem 1 allows the construction of
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relaxations whose size grows at most bi-quadratically in p and q respectively, as

demonstrated in Section 5.

3. Matrix positivity on semi-algebraic sets

The main goal of this section is to prove the following particular version of

Corollary 1 for (8) under the hypothesis that the constraint qualification as

formulated in Remark 2 holds true.

Theorem 2. If the symmetric-valued polynomial matrix H(x) is positive definite

on G, there exist ε > 0 and SOS polynomial matrices S0(x), S1(x), . . . , Sq(x) of

dimension p such that

H(x) = S0(x) +
q∑

j=1

Sj(x)gj(x) + εIp. (13)

The proof is provided by combining a matrix version of Pólya’s classical theorem

[27,31] with a nice penalty technique suggested by Schweighofer [36].

3.1. Reduction to matrix positivity on the standard simplex

Since G is compact there exist constants λ0 > 0 and µ0 > 0 such that

H(x) < λ0I for all x ∈ Rm satisfying gj(x) ≥ −µ0, j = 1, . . . , q. (14)

W.l.o.g. we assume that r in (9) is positive. With the all-ones vector e and this

r define Σ := {x ∈ Rm : x ≥ −re, eTx ≤ r
√
m}. Again by compactness, there

exist real λ1 and µ1 > 0 with

H(x) < λ1I and gj(x) ≤ µ1 for all x ∈ Σ, j = 1, . . . , q. (15)
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With fixed ρ = 1/(m+
√
m) > 0 let us now perform the change of coordinates

z = ρ(x/r + e) ⇐⇒ x = r(z/ρ− e).

Under this transformation, Σ maps into the standard unit simplex

Σ̂ := {z ∈ Rm : z ≥ 0, eT z ≤ 1} = ρ(Σ/r + e).

Introduce

Ĥ0(z) := H(r(z/ρ− e)) and ĝj(z) := gj(r(z/ρ− e))/µ1

and substitute x = r(z/ρ− e) in (9). With the SOS polynomials

ψ̂0(z) := ψ0(r(z/ρ− e))/r, ψ̂j(z) := µ1ψj(r(z/ρ− e))/r, j = 1, . . . , q, (16)

we infer that the constraint qualification equation reads in new coordinates as

1− ‖z/ρ− e‖2 = ψ̂0(z) +
q∑

j=1

ĝj(z)ψ̂j(z). (17)

Clearly (14) and (15) imply, with µ := µ0/µ1, that

Ĥ0(z) < λ0I for all z ∈ Rm with ĝj(z) ≥ −µ, j = 1, . . . , q, (18)

as well as

Ĥ0(z) < λ1I and ĝj(z) ≤ 1 for all z ∈ Σ̂. (19)

Our main goal is to prove that there are λ > 0 and SOS polynomials ŝj(z)

with

P (z) := Ĥ0(z)−
q∑

j=1

ŝj(z)ĝj(z)I − λI < λI for all z ∈ Σ̂. (20)
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For this purpose, we follow (a slight variant) of the arguments in Schweighofer

[36]. Fix an integer k ≥ 0 and some ξ > 0 with

λ :=
1
2

min
{
λ0 −

qξ

2k + 1
, λ1 −

qξ

2k + 1
+ ξ(1 + µ)2kµ

}
> 0. (21)

Let us now reveal that we can just take

ŝj(z) := ξ(1− ĝj(z))2k, j = 1, . . . , q.

Since (1− t)2kt ≤ 1/(2k + 1) for all t ∈ [0, 1], we infer from (19) that

∑
{j: ĝj(z)≥0}

(1− ĝj(z))2kĝj(z) ≤ q/(2k + 1) for all z ∈ Σ̂.

This implies (after legitimately dropping the terms with 0 > ĝj(z) > −µ) that

P (z) < Ĥ0(z)−
qξ

2k + 1
I − ξ

∑
{j:−µ≥ĝj(z)}

(1− ĝj(z))2kĝj(z)I − λI.

If z ∈ Σ̂ satisfies ĝj(z) > −µ for all j = 1, . . . , q, then (20) follows from (18) and

the definition of λ in (21). If there is at least one j0 with −µ ≥ ĝj0(z) we infer

(1− ĝj0(z))
2k ≥ (1 + µ)2k and hence

−ξ
∑

{j:−µ≥ĝj(z)}

(1− ĝj(z))2kĝj(z) ≥ ξ(1 + µ)2k[−ĝj0(z)] ≥ ξ(1 + µ)2kµ.

Then (20) is a consequence of (19) and, again, of the definition of λ in (21).

3.2. Characterizing matrix positivity on the standard simplex

Throughout this section, we assume that the p×p-dimensional polynomial matrix

P (z) has degree d and satisfies, for some λ > 0,

P (z) < λI for all z ∈ Σ̂. (22)
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If p = 1 and if P (z) is homogenous, the classical theorem of Pólya’s [26] implies

that (eT z)NP (z) has only positive coefficients for sufficiently large N . Let us

first provide a generalization to p > 1 with an explicit bound for N in terms of

d and λ [27]. For this purpose, recall the standard notations |α| = α1 + · · ·+αm,

α! = α1! · · ·αm!, xα = zα1
1 · · · zαm

m , and Dα = ∂α1
1 · · · ∂αm

m for any multi-index

α ∈ Nm
0 and z ∈ Rm. With the spectral norm ‖.‖ we follow [27,36] and define

L(P ) := max
α∈Nm

0

‖DαP (0)‖
|α|!

.

Theorem 3. If P (z) is homogenous and N + d > d(d − 1)L(P )/(2λ) then all

coefficients of (eT z)NP (z) are positive definite.

Proof. In what follows, α ∈ Nm
0 and s(z) = eT z. We have

P (z) =
∑
|α|=d

DαP (0)
α!

zα and s(z)NP (z) =
∑

|α|=d+N

Dα(sNP )(0)
α!

zα.

Choose any v ∈ Rp of norm one. On the one hand, we infer vTP (z)v ≥ λ for all

z ∈ Σ̂. On the other hand, since the coefficients of the z-polynomial vTP (z)v

are vT [DαP (0)]v/α!, we have

max
α∈Nm

0

∣∣∣∣ α!
|α|!

vT [DαP (0)]v
α!

∣∣∣∣ ≤ max
α∈Nm

0

‖DαP (0)‖
|α|!

= L(P ).

By [27] we conclude that the z-polynomial s(z)NvTP (z)v = vT (s(z)NP (z))v

has positive coefficients. This implies vTDα(sNP )(0)v > 0 for all |α| = N + d.

Since v was chosen arbitrarily of norm one and since N is independent of v, we

end up with Dα(sNP )(0) � 0 for all |α| = N + d.

Similarly as in [27], even if P is not homogenous, it not difficult to derive the

following generalization of Handelman’s theorem for the standard simplex and

with degree bounds.
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Lemma 2. If M > d(d2 − 1)L(P )/(2λ) there exist Pβ � 0 such that

P (z) =
∑

β∈Nm+1
0 , |β|=M

Pβ z
β1
1 · · · zβm

m (1− eT z)βm+1 . (23)

Proof. Decompose P into P0 + · · ·+ Pd with homogenous P0, . . . , Pd of degrees

0, . . . , d. With t ∈ R, define the homogenous d-degree polynomial

Q(z, t) :=
d∑

j=0

Pj(z)(eT z + t)d−j

whose restriction to {(z, t) : z ≥ 0, t ≥ 0, eT z + t = 1} equals P (z). Therefore,

the smallest eigenvalue of Q(z, t) on this set is not smaller than λ. Moreover,

with s(z, t) = eT z + t we can apply Lemma 5 in the appendix to infer

L(Q) ≤
d∑

j=0

L(Pjs
d−j) ≤

d∑
j=0

L(Pj)L(sd−j) =
d∑

j=0

L(Pj) ≤ (d+ 1)L(P ).

For N + d > d(d− 1)(d+ 1)L(P )/(2λ) we conclude with Theorem 3 that

(eT z + t)NQ(z, t) =
∑

β∈Nm+1
0 , |β|=N+d

Pβ z
β1
1 · · · zβm

m tβm+1 where Pβ � 0.

The result follows with the substitution t = 1− eT z.

Remark 3. With the same M as in Lemma 2 it is easy to show that

P (z) =
∑

δ∈{0,1}m+1

Sδ(z) zδ1
1 · · · zδm

m (1− eT z)δm+1

for SOS polynomial matrices Sδ(z) of degree at most M . This is a matrix version

of Schmüdgen’s classical representation result [35] for the simplex which includes

explicit bounds on the degrees of Sδ(z).

The following representation result is elementary.



Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs 17

Lemma 3. For nonzero β ∈ Nm+1
0 there exist SOS polynomials sβ(z) and tβ(z)

with degrees 2|β| and 2|β| − 2 such that

zβ1
1 · · · zβm

m (1− eT z)βm+1 = sβ(z) + tβ(z)(1− ‖z/ρ− e‖2). (24)

Proof. With t0(z) := ρ
√
m/2 ≥ 0, it is easy to verify that s0(z) := 1−eT z−

t0(z)(1 − ‖z/ρ − e‖2) is nonnegative and hence SOS (since of degree 2). This

leads to the SOS representation

1− eT z = s0(z) + t0(z)(1− ‖z/ρ− e‖2)

with s0, t0 of degrees 2 and 0 respectively. Similarly we have

zi = si(z)+ti(z)(1−‖z/ρ−e‖2) for si(z) = (ρ/2)‖z/ρ−(e−ei)‖2, ti(z) = ρ/2.

This finishes the proof for |β| = 1, and it is simple to recursively construct (24)

from this representation for |β| > 1.

If we just combine Lemma 2 with Lemma 3, we arrive at the main goal of

this section, the following instrumental representation result.

Lemma 4. If M > d(d2 − 1)L(P )/(2λ) and ρ = 1/(m +
√
m), there exist SOS

matrices S, T of degree at most 2M , 2M − 2 such that

P (z) = S(z) + T (z)(1− ‖z/ρ− e‖2). (25)

Proof. With (23) and (24), we infer (25) for the SOS matrices

S(z) =
∑

β∈Nm+1
0 , |β|=M

Pβ sβ(z) and T (z) =
∑

β∈Nm+1
0 , |β|=M

Pβ tβ(z).
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3.3. Completion of the proof of Theorem 2

Let us combine (17), (20) and (25) to conclude

Ĥ0(z) = Ŝ0(z) +
q∑

j=1

Ŝj(z)ĝj(z) + λIp

for the SOS polynomial matrices

Ŝ0(z) := S(z) + T (z)ψ̂0(z), Ŝj(z) := ŝj(z)Ip + T (z)ψ̂j(z), j = 1, . . . , q.

Then (13) just follows by substituting z = ρ(x/r − e) with the SOS matrices

S0(x) := Ŝj(ρ(x/r − e)), Sj(x) := Ŝj(ρ(x/r − e))/(rµ1), and with ε = λ.

3.4. Discussion of degree bounds

Given the constants λ0, λ1 and µ1, µ2 as defined at the beginning of Section 3.1,

it is simple to determine k ≥ 0 and ξ > 0 which render λ in (21) positive, and

to just compute P by (20). With

D := deg(P )(deg(P )2 − 1)L(P )/λ− 1,

we can extract the following rather explicit bounds on the degree of the SOS

polynomial matrices in the representation (13):

deg(S0) ≤ max{D + 2, D + deg(ψ0)}, deg(Sj) ≤ max{2k,D + deg(ψj)}.

As stressed in [36], this bound still depends on the degrees of the polynomials

ψj , j = 0, 1, . . . , q, which appear in the constraint qualification.

As another technical contribution of this paper, let us show that this difficulty

can be overcome if the constraint functions gj(x) are all affine and define a
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compact polytope G. It is a consequence of rather deep results in real algebraic

geometry [17] that the constraint qualification is indeed satisfied, but no results

on degree bounds for ψj(x) are available. In Appendix B, we will provide a new

proof based on semi-definite duality, which allows to show that the constraint

qualification certificate polynomials can be chosen quadratic.

Theorem 4. If the affine functions g1(x), . . . , gq(x) define a compact polytope

G = {x ∈ Rm : g1(x) ≥ 0, . . . , gq(x) ≥ 0}, then there exist r ∈ R and SOS

polynomials ψ0(x), ψ1(x), . . . , ψq(x) of degree at most two with (9).

4. Proof of Theorem 1

As a consequence of the constraint qualification, if

G(x) 4 0 is replaced by G̃(x) := diag(G(x), ‖x‖2 − r2) 4 0

then (1) is not modified (Remark 1). In a first step of the proof let us show that

the same is true for the SOS reformulation (6).

Indeed, suppose F (x, y) + (S(x), G(x))p − εIp = S0(x) with SOS matri-

ces S0(x) and S(x). If we partition S(x) = (Sjk(x))jk into q × q-blocks, then

S̃(x) := (diag(Sjk(x), 0))jk satisfies (S̃(x), G̃(x))p = (S(x), G(x))p and, there-

fore, F (x, y) + (S̃(x), G̃(x))p − εIp = S0(x).

Conversely, suppose F (x, y)+(S̃(x), G̃(x))p−εIp = S̃0(x) with SOS matrices

S̃0(x), S̃(x). Now we make explicit use of r2 − ‖x‖2 = ψ(x)− 〈Ψ(x), G(x)〉 with
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SOS matrices ψ(x), Ψ(x). Let us partition

S̃(x) =


Sjk(x) ∗

∗ sjk(x)




jk

into blocks of size (q + 1)× (q + 1),

and define S(x) := (Sjk(x) + sjk(x)Ψ(x))jk, s(x) = (sjk(x))jk of dimension

pq, p respectively. It is easy to verify that both matrices are SOS and satisfy

(S̃(x), G̃(x))p = (S(x), G(x))p−s(x)ψ(x). This implies F (x, y)+(S(x), G(x))p−

εIp = S̃0(x) + s(x)ψ(x) and it remains to observe that S̃0(x) + s(x)ψ(x) is SOS.

Therefore, from now on we can assume w.l.o.g. that

vT
1 G(x)v1 = ‖x‖2 − r2 (26)

where v1 = (0, . . . , 0, 1)T ∈ Rq. It remains to show uopt ≤ vopt. For this purpose,

it suffices to choose an arbitrary y0 which is feasible for (1), and to prove that

y0 is as well feasible for (6).

Let us hence assume F (x, y0) � 0 for all x ∈ G. Choose a sequence of unit

vectors v2, v3, . . . such that vi, i = 1, 2, . . . is dense in {v ∈ Rq : ‖v‖ = 1}.

Define GN := {x ∈ Rm : vT
i G(x)vi ≤ 0, i = 1, . . . , N} to infer that GN is

compact (by (26)), and that GN ⊃ GN+1 ⊃ G for N = 1, 2, . . . . Therefore,

pN := min{λmin(F (x, y0)) : x ∈ GN} is attained by some xN and

pN ≤ pN+1 for all N = 1, 2, . . . .

Let us prove that there exists some N0 for which pN0 > 0, which implies

F (x, y0) � 0 for all x ∈ GN0 . (27)

Indeed, otherwise pN ≤ 0 for all N = 1, 2, . . ., and hence limN→∞ pN ≤ 0.

Choose a subsequenceNν with xNν
→ x0 to infer 0 ≥ limν→∞ λmin(F (xNν

, y0)) =
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λmin(F (x0, y0)). This contradicts the choice of y0 if we can show that G(x0) 4 0.

In fact, otherwise there exists a unit vector v with δ := vTG(x0)v > 0. By con-

vergence, there exists some K with ‖G(xNν
)‖ ≤ K for all ν. By density, there

exists a sufficiently large ν such that K‖vi − v‖2 + 2K‖vi − v‖ < δ/2 for some

i ∈ {1, . . . , Nν}. Since vTG(xNν )v → vTG(x0)v, we can increase ν to even guar-

antee vTG(xNν
)v ≥ δ/2, and we arrive at the following contradiction:

0 ≥ vT
i G(xNν

)vi =

= (vi − v)TG(xNν
)(vi − v) + 2vTG(xNν

)(vi − v) + vTG(xNν
)v ≥

≥ −K‖vi − v‖2 − 2K‖vi − v‖+ δ/2 > 0.

We are now in the position to apply Theorem 2 to (27) since, due to (26),

the constraint qualification is trivially satisfied. Hence, there exist ε > 0 and

polynomial matrices Ui(x) with p columns, i = 1, . . . , N0, such that

F (x, y0)− εI +
N0∑
i=1

[Ui(x)TUi(x)](vT
i G(x)vi) is SOS in x. (28)

With elementary Kronecker product manipulations and (4) we conclude

[Ui(x)TUi(x)](vT
i G(x)vi) = trp

(
[Ui(x)TUi(x)]⊗ (vT

i G(x)vi)
)

= trp

(
([Ui(x)TUi(x)]⊗ vT

i )(Ip ⊗G(x))(Ip ⊗ vi)
)

= trp

(
([Ui(x)TUi(x)]⊗ viv

T
i )(Ip ⊗G(x))

)
= ((Ui(x)⊗ vT

i )T (Ui(x)⊗ vT
i ), G(x))p.

With the SOS polynomial matrix S(x) :=
∑N0

i=1(Ui(x) ⊗ vT
i )T (Ui(x) ⊗ vT

i ), we

infer that F (x, y0) − εI + (S(x), G(x))p equals the left-hand side in (28) and is

hence SOS in x. Therefore, y0 is feasible for (6).
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5. Construction of LMI relaxations

Let us choose monomial vectors u(x), u0(x) of length nu, nu0 and parameterize

the SOS matrices S(x), S0(x) with Z < 0, Z0 < 0 as in Lemma 1 respectively.

The infimal cT y for which there exist ε > 0, Z0 < 0, Z < 0 that satisfy

F (x, y)−εIp + ((u(x)⊗ Ipq)TZ(u(x)⊗ Ipq), G(x))p =(u0(x)⊗ Ip)TZ0(u0(x)⊗ Ip)

defines an upper bound of the value uopt of (6), and hence also an upper bound

of the value vopt of (1), even without constraint qualification. Clearly, computing

this bound amounts to solving a finite dimensional linear SDP. The bound does

not increase, and is often improved, if adding additional monomials to the basis

vectors u(x), u0(x) respectively. If u(x), u0(x) comprise all monomials up to a

certain total degree d, the value of the computed upper bound is guaranteed

to converge to vopt for d → ∞ if the constraint qualification of Theorem 1 is

satisfied.

Let us finally clarify how the description of the SDP can be made explicit.

For this purpose we choose pairwise different monomials w1(x), . . . , wnw
(x) such

that there exist symmetric matrices P 0
j , Pj with

u0(x)u0(x)T =
nw∑
j=1

P 0
j wj(x), (Iq ⊗ u(x))G(x)(Iq ⊗ u(x)T ) =

nw∑
j=1

Pjwj(x),

as well as symmetric-valued affine mappings Aj(y, ε) with

F (x, y)− εIp =
nw∑
j=1

Aj(y, ε)wj(x).
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If Q0 denotes the permutation for which u0(x)⊗ Ip = Q0(Ip ⊗ u0(x)), we infer

(u0(x)⊗ Ip)TZ0(u0(x)⊗ Ip) = trp(Ip ⊗ u0(x)T )QT
0 Z0Q0(Ip ⊗ u0(x)) =

= trp

(
QT

0 Z0Q0(Ip ⊗ u0(x)u0(x)T )
)

=
nw∑
j=1

(QT
0 Z0Q0, P

0
j )p wj(x),

where we made use of (4). Similarly, with the permutation Q satisfying u(x) ⊗

Ipq = Q(Ipq ⊗ u(x)), we obtain

((u(x)⊗ Ipq)TZ(u(x)⊗ Ipq), G(x))p =

= trp

(
(Ip ⊗ Iq ⊗ u(x)T )QTZQ(Ip ⊗ Iq ⊗ u(x))(Ip ⊗G(x))

)
=

= trp

(
QTZQ[Ip ⊗ (Iq ⊗ u(x))G(x)(Iq ⊗ u(x)T )]

)
=

=
nw∑
j=1

trp

(
QTZQ[Ip ⊗ Pj ]

)
wj(x) =

nw∑
j=1

(QTZQ,Pj)pwj(x).

Therefore the upper bound relaxation requires to infimize cT y over

ε > 0, Z0 < 0, Z < 0, (29)

Aj(y, ε) + (QTZQ,Pj)p = (QT
0 Z0Q0, P

0
j )p, j = 1, ..., nw. (30)

The size of the relaxation is determined by three SDP constraints (29) in S1 ×

Spnu0 × Spqnu , and the nw affine equation constraints (30) in Sp. Moreover, it

involves the unknowns y, ε, Z0, Z of size n, 1, pnu0 , pqnu, which sums up to

n+ 1 + 0.5 pnu0(pnu0 + 1) + 0.5 pqnu(pqnu + 1) (31)

scalar decision variables. Generically, this number is reduced by 0.5nwp(p + 1)

through (30). This indeed reveals that the size of the relaxation grows bi-

quadratically in the dimension p of F (x, y) and the dimension q of G(x) re-

spectively.
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6. Relaxations based on the S-procedure

In this section, we intend to briefly address the relation of the suggested approach

to relaxations based on the so-called full-block S-procedure, as exposed with a

variety of concrete control applications in [32,33] and the references therein.

Indeed, even if F (x, y) is rational in x without pole at x = 0, one can construct

a so-called linear fractional representation

F (x, y) = ∆(x) ?

 A B

C(y) D(y)

 := D(y) + C(y)∆(x)(I −A∆(x))−1B (32)

where A, B are fixed matrices and C(y), D(y), ∆(x) are matrix-valued affine

mappings in y and x respectively. Let us stress that many robust control prob-

lems involve constraints that are naturally formulated in this fashion [9,37].

We assume the constraint qualification of Theorem 1 to hold such that G is

compact. One can then apply the full block S-procedure [16,30] to infer that

det(I −A∆(x)) 6= 0 and F (x, y) � 0 for all x ∈ G

iff there exists a symmetric so-called multiplier matrix P such that∆(x)

I


T

P

∆(x)

I

 � 0 for all x ∈ G, (33)

 I 0

A B


T

P

 I 0

A B

−

 0 I

C(y) D(y)


T  0 I

I 0


 0 I

C(y) D(y)

 ≺ 0. (34)

Although the uncertainties x enter the original problem in a rational fashion,

we observe that (33) is quadratic in x and affine in P . We can hence apply



Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs 25

Theorem 1 to infer that (33) holds iff there exist ε > 0 and SOS matrices S(x),

S0(x) with

∆(x)

I


T

P

∆(x)

I

+ (S(x), G(x))p = S0(x) + εI. (35)

If constraining S(x), S0(x) to be SOS with respect to fixed monomial basis vec-

tors u(x), u0(x), it is possible to turn (35) into a finite-dimensional genuine LMI

constraint (Section 5). By infimizing cT y over these LMI’s combined with (34),

one determines an upper bound of vopt, which is again guaranteed to converge

to vopt if u(x), u0(x) comprise all monomials up to a certain degree, and if the

degree grows to infinity.

Even for short monomial bases, it can often be observed for specific problem

instances that the value of the relaxation equals vopt, and is hence exact. Since

the suggested LMI relaxation falls in the general class as discussed in [33], we can

directly apply all results in this reference in order to numerically verify exactness

in practice. Finally, it is suggested in [33] how to construct asymptotically exact

relaxation families if G is a polytope with an explicit description in terms of its

convex hull generators. In contrast, the above technique offers the extension to

implicitly described polytopes (for affine diagonal G(x)), and it even includes

uncertainty regions with a general description by LMI’s (for affine G(x)) or by

polynomial matrix inequalities. This flexibility goes far beyond approaches that

have been proposed in the literature so far.
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Relax- Line in Monomial bases

ation Figure 1 u0(x)T u1(x)T u2(x)T u3(x)T u4(x)T

A −− (1, x1, x2) (1, x1) (1, x1) 1 1

B · · · (1, x1, x2) 1 1

(
1 x1

) (
1 x2

)
C − (1, x1, x2) (1, x1, x2) (1, x1, x2) (1, x1, x2) (1, x1, x2)

D − (1, x1, x2, x1x2) (1, x1, x2) (1, x1, x2) (1, x1, x2) (1, x1, x2)

Table 1. Sos bases employed for relaxations.

7. Numerical example

Consider a variation of an example in [22,33]: Compute the infimal y with y fa(x)

fa(x) y

 � 0 for all x ∈ G := {x ∈ R2 : gj(x) ≥ 0, j = 1, . . . , 4}

for 20 equidistant values of a ∈ [0.5, 1], where

fa(x1, x2) := 1− 2ax2
1x2

2− 2ax2 + ax1x2 − x1
− x2(2ax2 + x2

1 + ax2
1x2 − 2)

2− 2a2x2
2 − x2

1 + x2
1a

2x2
2

,

g1(x) := 0.8− x1, g2(x) = 0.7 + x1, g3(x) = 0.7− x2, g4(x) = 0.65 + x2.

Note that the optimal value equals supx∈G |fa(x)|. Moreover, one easily deter-

mines a linear fractional representation of fa with∆(x) = diag(x1I2, x2I2). Since

the polytope G is compact, the constraint qualification is satisfied (Theorem 4),

and we can either apply the relaxation in Section 6 (labeled by A, B, C) or

we can use the direct approach as in Section 5 (labeled by D), both based on

the special version of Theorem 1 as discussed in Remark 2. The corresponding

upper bounds have been computed for SOS matrices Sj(x), j = 0, 1, . . . , 4, with

respect to the monomial bases uj(x), j = 0, 1, . . . , 4, as given in Table 1.
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Fig. 1. Upper and lower bounds for relaxations A (dashed), B (dotted), C and D (solid).

Figure 1 depicts the computed upper bounds on vopt, together with lower

bounds that are obtained by constructing a worst-case uncertainty as described

in [33]. Clearly, A, B suffer from a relaxation gap, while both C and D are exact

as confirmed by the exactness test of [33] for the S-procedure relaxation C.

8. Conclusions

For a general class of robust SDP problems with polynomial or rational de-

pendence on the uncertainties, we have shown how to approximately compute

upper bounds on the optimal value. The uncertainty region can admit an im-

plicit description in terms of a polynomial matrix inequality, with LMI regions

or compact polytopes as special, yet practically important, instances. Our ma-

jor technical contributions comprise an extension of Putinar’s SOS represen-

tation result to matrix-valued polynomials, and the verification of the related
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constraint qualification for uncertainty polytopes with degree bounds on the

certificate polynomials. With a suitable matrix-version of the constraint qualifi-

cation, we have revealed how to construct a convergent sequence of relaxations

whose size grows bi-quadratically in the dimension of the describing matrices.

We have finally pointed out how one can numerically verify the exactness of even

small-sized relaxations for problems with linear fractional representations.

Acknowledgements. We would like to thank Didier Henrion, Pablo Parrilo, Andrea Garulli,

and Michael Overton for stimulating discussions.

A. An auxiliary result

In addition to L(P ) in Section 3.1, define

∆(P ) := max{|α| : DαP (0) 6= 0, α ∈ Nm
0 }︸ ︷︷ ︸

degmax(P )

−min{|α| : DαP (0) 6= 0, α ∈ Nm
0 }︸ ︷︷ ︸

degmin(P )

.

Then, among the following properties, only (36) is not elementary.

Lemma 5. For two matrix-valued m-variable polynomials P and Q (of compat-

ible dimension) one has ∆(PQ) ≤ ∆(P )+∆(Q), L(P +Q) ≤ L(P )+L(Q), and

L(ξP ) ≤ |ξ|L(P ) for all ξ ∈ R. Moreover

L(PQ) ≤ min{∆(P ) + 1,∆(Q) + 1}L(P )L(Q). (36)

Proof. To prepare the proof of (36), let us apply the generalized product rule

to the function sm = sm̂sm−m̂ with s(x) = x1 + · · · + xm and with n = |α| for

α ∈ Nm
0 :

Dαs
m(0)︸ ︷︷ ︸

=|α|!

=
∑

0≤k≤α, |k|=m̂

α!
k!
Dks

m̂(0)︸ ︷︷ ︸
=|k|!

Dα−ks
(m−m̂)(0)︸ ︷︷ ︸

=(|α|−|k|)!

. (37)
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Using
∑
∅ = 0, we hence observe again with the general product rule that

L(PQ) = max
α∈Nm

0

1
|α|!

‖(DαPQ)(0)‖ =

= max
α∈Nm

0

1
|α|!

∥∥∥∥∥∥
∑

0≤k≤α

α!
k!
DkP (0)Dα−kQ(0)

∥∥∥∥∥∥ ≤
≤ max

α∈Nm
0

∑
0 ≤ k ≤ α

degmin(P ) ≤ |k| ≤ degmax(P )

degmin(Q) ≤ |α− k| ≤ degmax(Q)

α!
k!
|k|!(|α| − |k|)!

|α|!
‖DkP (0)‖

|k|!
‖Dα−kQ(0)‖
(|α| − |k|)!

≤

≤ max
α∈Nm

0

∑
m ∈ [degmin(P ), degmax(P )]

m̂ ∈ [|α| − degmax(Q), |α| − degmin(Q)]

∑
0 ≤ k ≤ α

|k| = m̂

α!
k!
|k|!(|α| − |k|)!

|α|!
L(P )L(Q) =

= L(P )L(Q) max
α∈Nm

0

∑
m̂∈[degmin(P ),degmax(P )]∩ [|α|−degmax(Q),|α|−degmin(Q)]

1,

where the latter equation follows from (37). Since the sum consists of at most

min{∆(P ) + 1,∆(Q) + 1} nonzero terms, the result follows.

B. Proof of Theorem 4

Let us first assume gi(x) = xi, i = 1, . . . ,m, and gm+1(x) = 1 − eTx. With

z(x) = col(1, x), any quadratic function can be represented as z(x)TY z(x) with

some symmetric matrix Y , and this function is SOS iff Y < 0. In particular,

with r2 −‖x‖2 = z(x)TRz(x) for R = diag(r2,−1, · · · ,−1), our goal is to prove

that there exist r and Yi � 0, i = 0, . . . ,m, with

z(x)TRz(x) = r2 − ‖x‖2 = z(x)TY0z(x)(1− eTx) +
m∑

i=1

z(x)TYiz(x)xi =

= 〈z(x)z(x)T , Y0〉+
m∑

i=1

〈xiz(x)z(x)T , Yi − Y0〉. (38)
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If w1(x) = 1, and if wj(x), j = 2, . . . , k, is the list of all pairwise different

monomials in m variables of degree at least one and at most three (in any

ordering), we can determine the representations

z(x)z(x)T =
k∑

j=1

Q0
jwj(x), xiz(x)z(x)T =

k∑
j=1

Qi
jwj(x)

to infer z(x)TRz(x) = 〈z(x)z(x)T , R〉 =
∑k

j=1〈Q0
j , R〉wj(x). Our problem re-

duces to proving the existence of positive definite Y0, Y1, . . . , Ym with

〈Q0
j , R〉 = 〈Q0

j , Y0〉+
m∑

i=1

〈Qi
j , Yi − Y0〉, j = 1, . . . , k. (39)

This is true iff the infimum of all t with Yi+tI < 0, i = 0, . . . ,m, and with (39) is

negative. Since this programm is strictly feasible (choose Yi = R, i = 0, . . . ,m,

and t large), we can dualize without gap. With Lagrange multipliers Γi < 0,

i = 0, . . . ,m, and γj , j = 1, . . . , k, (39) has positive definite solutions iff

max
Γi<0, 1−〈

∑m
i=0 Γi,I〉=0,∑k

j=1 γjQ0
j
−

∑m
i=1

∑k
j=1 γjQi

j
−Γ0=0,

∑k
j=1 γjQi

j
−Γi=0, i=1,...,m

−〈
k∑

j=1

γjQ
0
j , R〉 < 0.

With Mm
i (γ) :=

∑k
j=1 γjQ

i
j , i = 0, . . . ,m, this is equivalent to

Mm
i (γ) < 0, i = 1, . . . ,m, Mm

0 (γ)−
m∑

i=1

Mm
i (γ) < 0, 〈Mm

0 (γ), I〉 = 1 ⇒

⇒ 〈Mm
0 (γ), R〉 > 0. (40)

We have indicated the number of variables m in this definition since it is essential

to exploit the structural relation of Mm−1
i (γ) and Mm

i (γ) that is easily identified

as follows: If

Mm
m (γ) =

 c0 · · · cm−1 cm

d0 · · · dm−1 dm

 ∈ R(m+1)×(m+1)
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for suitable Rm-vectors ci and scalars di then

Mm
i (γ) =

Mm−1
i (γ) ci

cTi di

 ∈ R(m+1)×(m+1) for i = 0, . . . ,m− 1. (41)

With the all-ones vector e and the standard unit vectors ei let us define the

length (m+ 1)-vectors

fi = e− ei+1, gi = e− e1 − ei+1 = f0 − ei+1, i = 0, . . . ,m

as well as the scalar

sm := eT

(
Mm

0 (γ)−
m∑

i=1

Mm
i (γ)

)
e+0.5

(
m∑

i=1

fT
i M

m
i (γ)fi +

m∑
i=1

gT
i M

m
i (γ)gi

)
.

As an essential ingredient of our proof, we exploit that sm ≥ 0 if the hypothesis in

(40) is satisfied. Moreover the specific vectors in the definition of sm are chosen to

be able to obtain the following recursion. Indeed with the corresponding vectors

e, ei, fi, gi of length m we have, due to (41),

sm = eTMm−1
0 (γ)e+ 2cT0 e+ d0 −

m−1∑
i=1

(eTMm−1
i (γ)e+ 2cTi e+ di)−

−
m∑

i=0

(cTi e+ di) + 0.5

(
m−1∑
i=1

(fT
i M

m−1
i (γ)fi + 2cTi fi + di)+

+ (gT
i M

m−1
i (γ)gi + 2cTi gi + di) +

m−1∑
i=0

cTi e+
m−1∑
i=1

cTi f0

)
,

which simplifies to

sm = sm−1 + 2cT0 e+ d0 −
m−1∑
i=1

(3cTi e+ 2di)− (cT0 e+ d0)− (cTme+ dm)+

+
m−1∑
i=1

(cTi fi + cTi gi + di) + 0.5

(
m−1∑
i=1

cTi e+ cTi f0

)
+ 0.5cT0 e.
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Since cTme = d0 + · · ·+ dm−1 (just because Mm
m (γ) is symmetric), we infer

sm = sm−1 + 1.5cT0 e−
m−1∑
i=1

2di − (d0 + dm) +
m−1∑
i=1

cTi (fi + gi + 0.5f0 − 2.5e).

With fi+gi+0.5f0 = (e−ei+1)+(e−e1−ei+1)+0.5(e−e1) = 2.5e−2ei+1−1.5e1

and cT0 e − cT1 e1 − · · · − cTm−1e1 = cT0 e1 (again since Mm
m (γ) is symmetric), we

obtain

sm = sm−1 − d0 − dm + 1.5cT0 e1 −
m−1∑
i=1

2di − 2
m−1∑
i=1

cTi ei+1.

Let us finally exploit di = eT
m+1M

m
i (γ)em+1, i = 0, . . . ,m, and cTi ei+1 =

eT
i+1M

m
m (γ)ei+1, i = 1, . . . ,m− 1 as well as

2cT0 e1 = eT
1 M

m−1
0 (γ)e1 + eT

m+1M
m
0 (γ)em+1 − (e1 − em+1)TMm

0 (γ)(e1 − em+1)

to end up with

sm = sm−1 +
3
4
eT
1 M

m−1
0 (γ)e1 −

1
4
eT
m+1M

m
0 (γ)em+1 − eT

m+1M
m
m (γ)em+1−

−3
4
(e1−em+1)TMm

0 (γ)(e1−em+1)−2
m−1∑
i=1

eT
m+1M

m
i (γ)em+1−2

m−1∑
i=1

eT
i+1M

m
m(γ)ei+1.

Due to the choice w1(x) = 1, we have eT
1 M

ν
0 (γ)e1 = γ1 for all ν = 1, 2, . . . ,m.

Hence for m = 1 we conclude

M1
1 (γ) =

 c0 c1

d0 d1

 =

 c0 d0

d0 d1

 and M1
0 (γ) =

 γ1 c0

cT0 d0


and thus

s1 = (γ1 − c0) + 2(c0 − d0) + (d0 − d1) + 0.5c0 =

= 1.75eT
1M

1
0 (γ)e1−0.25eT

2M
1
0 (γ)e2−eT

2M
1
1 (γ)e2−0.75(e1−e2)TM1

0 (γ)(e1−e2).
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Let us now assume that the hypothesis in (40) is satisfied. Just due to (41)

we can conclude Mν
i (γ) < 0 for i = 0, . . . , ν and ν = m − 1,m − 2, . . . , 1 (by

induction). This implies

s1 ≤ 1.75eT
1 M

1
0 (γ)e1 − 0.25eT

2 M
1
0 (γ)e2,

0 ≤ sν ≤ sν−1 + 0.75eT
1 M

ν−1
0 (γ)e1 − 0.25eT

ν+1M
ν
0 (γ)eν+1, ν = 2, . . . ,m.

Since eT
1 M

ν−1
0 (γ)e1 = eT

1 M
m
0 (γ)e1 and eT

ν+1M
ν
0 (γ)eν+1 = eT

ν+1M
m
0 (γ)eν+1 for

ν = 2, . . . ,m, we conclude by induction that

(1 + 0.75m)eT
1 M

m
0 (γ)e1 − 0.25

m∑
ν=1

eT
ν+1M

m
0 (γ)eν+1 ≥ sm ≥ 0

and consequently, for r =
√

5 + 3m,

〈R,Mm
0 (γ)〉 = 〈e1eT

1 ,M
m
0 (γ)〉+ 〈(4 + 3m)e1eT

1 −
m+1∑
ν=2

eν+1e
T
ν+1,M

m
0 (γ)〉︸ ︷︷ ︸

≥0

≥ 0.

If 〈R,Mm
0 (γ)〉 = 0 we infer 0 = 〈e1eT

1 ,M
m
0 (γ)〉 = eT

1 M
m
0 (γ)e1. This implies

eT
1 M

m
0 (γ)eν+1 = 0 and thus eT

1 M
m
ν (γ)e1 = 0 and thus eT

1 M
m
ν (γ)eν+1 = 0 and

thus eT
ν+1M

m
0 (γ)eν+1 = 0 and thus Mm

0 (γ)eν+1 = 0 for ν = 2, . . . ,m. Therefore,

Mm
0 (γ) = 0 in contradiction to 〈Mm

0 (γ), I〉 = 1. This proves (40) and Theorem

4 for the particularly chosen constraint functions.

Now assume that gi(x), i = 1, . . . , q, are general. If G is contained in the

simplex Σ := {x ∈ Rm : x ≥ 0, eTx ≤ 1}, there exist (by LP duality) vij ≥ 0,

i = 0, . . . , n, j = 1, . . . , q, such that

1− eTx =
q∑

j=1

v0jgj(x), xi =
q∑

j=1

vijgj(x), i = 1, . . . , n.
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If we combine with (38), we conclude

r2 − ‖x‖2 =
n∑

i=0

z(x)TYiz(x)
q∑

j=1

vijgj(x) =
q∑

j=1

[
z(x)T

(
n∑

i=0

Yivij

)
z(x)

]
gj(x)

which is the desired representation.

Finally, if G 6⊂ Σ, a suitably scaled and shifted version (G − c)/α described

as {z ∈ Rm : gj(αz + c) ≥ 0, j = 1, . . . , q} is contained in Σ (by com-

pactness). Then there exists β and SOS polynomials ψ̂j(z) with β2 − ‖z‖2 =∑q
j=1 ψ̂j(z)gj(αz+c) which implies β2−‖(x−c)/α‖2 =

∑q
j=1 ψ̂j((x−c)/α)gj(x).

It remains to observe that one can easily find positive r, t such that that

r2 − ‖x‖2 − t(β2 − ‖(x − c)/α‖2) =: ψ0(x) is non-negative for all x ∈ Rm,

and hence SOS. This finally leads to

r2 − ‖x‖2 = s0(x) + t(β2 − ‖(x− c)/α‖2) = s0(x) +
q∑

j=1

[tψ̂j((x− c)/α)]gj(x).

References

1. A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Al-

gorithms, and Engineering Applications. SIAM-MPS Series in Optimizaton. SIAM Pub-

lications, Philadelphia, 2001.

2. A. Ben-Tal and A. Nemirovski. On tractable approximations of uncertain Linear Matrix

Inequalities affected by interval uncertainty. SIAM J. Optim., 12(3):811–833, 2002.

3. A. Ben-Tal, A. Nemirovski, and C. Roos. Robust solutions of uncertain quadratic and

conic-quadratic problems. SIAM J. Optim., 13(2):535–560, 2002.

4. P. A. Bliman. On robust semidefinite programming. In B. Motmans B. De Moor, editor,

Proceedings MTNS 2004, Leuven, Belgium, 2004.



Matrix Sum-of-Squares Relaxations for Robust Semi-Definite Programs 35

5. G. Chesi, A. Garulli, A. Tesi, and A. Vicino. An LMI-based approach for characterizing

the solution set of polynomial systems. In Proc. 39th IEEE Conf. Decision and Control,

Sydney, Australia, 2000.

6. G. Chesi, A. Garulli, A. Tesi, and A. Vicino. Homogeneous Lyapunov functions for systems

with structured uncertainties. Automatica, 39(6):1027–1035, 2003.

7. G. Chesi, A. Garulli, A. Tesi, and A. Vicino. Robust stability of polytopic systems via

polynomially parameter-dependent lyapunov functions. In IEEEProc. 42nd IEEE Conf.

Decision and Control, pages 4670–4675, Maui, Hawaii, 2003.

8. M.D. Choi. Completely positive linear maps on complex matrices. Linear Algebra Appl.,

10:285–290, 1975.

9. J. Doyle, A. Packard, and K. Zhou. Review of LFT’s, LMI’s, and µ. In Proc. 30th IEEE

Conf. Decision and Control, pages 1227–1232, Brighton, UK, 1991.

10. L. El Ghaoui and S.I. Niculescu, editors. Advances in Linear Matrix Inequality Methods

in Control. SIAM, Philadelphia, 2000.

11. D. Henrion and A. Garulli, editors. Positive polynomials in control. Lecture Notes in

Control and Information Sciences. Springer-Verlag, Berlin, Heidelberg, New York.

12. D. Henrion and J. B. Lasserre. Solving nonconvex optimization problems. IEEE Control

Syst. Mag., 24(3):72–83, 2004.

13. C.W.J. Hol and C.W. Scherer. Fixed order H∞-synthesis: Computing optimal values by

robust performance analysis. In S.M. Phillips, editor, Proceedings of the 2004 American

Control Conference, pages 3285–3290, Boston, Mass, 2004.

14. R.A. Horn and C.R. Johnson. Matrix Analysis. Cambrigde University Press, New York,

1985.

15. T. Iwasaki and S. Hara. Well-posedness of feedback systems: insights into exact robustness

analysis. In Proc. 35th IEEE Conf. Decision and Control, pages 1863–1868, Kobe, Japan,

1996.

16. T. Iwasaki and G. Shibata. LPV system analysis via quadratic separator for uncertain

implicit systems. IEEE Trans. Aut. Contr., 46(8):1195–1208, 2001.

17. T. Jacobi and A. Prestel. Distinguished representations of strictly positive polynomials.

J. Reine Angew. Math., 532:223–235, 2001.



36 C.W. Scherer, C.W.J. Hol

18. D. Jibetean and E. De Klerk. Global optimization of rational functions: a semidefinite

programming approach. Technical report, CWI (Centrum voor Wiskunde en Informatica),

2003.

19. M. Kojima. Sums of squares relaxations of polynomial semidefinite programs. Technical

report, Tokyo Institute of Technology, 2003.

20. M. Kojima and M. Muramatsu. An extension of sums of squares relaxations to polynomial

optimization problems over symmetric cones. 2004.

21. J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM

J. Optim., 11(3):796–817, 2001.

22. A. Packard and J. Doyle. The complex structured singular value. Automatica, 29:71–109,

1993.

23. P. Parrilo. Structure semidefinite programs and semialgebraic geometry methods in ro-

bustness and optimization. PhD thesis, California Institute of Technology, 2000.

24. P. Parrilo and B. Sturmfels, editors. Minimizing polynomial functions, volume 60 of

Math. Theoret. Computer Sci., Algorithmic and Quantitative Real Algebraic Geometry.

Providence, RI.

25. H. Pillai and J.C. Willems. Lossless and dissipative distributed systems. SIAM J. Control

Optim., 40(5):1406–1430, 2002.
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