
CYCLIC MODULES OF FINITE GORENSTEIN

INJECTIVE DIMENSION AND GORENSTEIN RINGS

HANS–BJØRN FOXBY AND ANDERS J. FRANKILD

Abstract. The main result asserts that a local commutative noetherian ring
is Gorenstein if it possesses a non-zero cyclic module of finite Gorenstein injec-
tive dimension. From this follows a classical result by Peskine and Szpiro: A
local ring is Gorenstein if it admits a non-zero cyclic module of finite (classical)
injective dimension.

The main result applies to local homomorphisms of local rings: If the target
has finite Gorenstein injective dimension over the source, and the source is a
homomorphic image of a Gorenstein ring, then the source is a Gorenstein ring.
This, in turn, applies to the Frobenius endomorphism when the local ring has
prime characteristic: If the ring is a homomorphic image of a Gorenstein ring,
then it is Gorenstein precisely when some (equivalently, all) proper iteration of
the Frobenius endomorphism turns the ring into a module of finite Gorenstein
injective dimension over the ring.

Dedicated to the achievements of Phil Griffith

1. Introduction

In 1956 Auslander, Buchsbaum, and Serre showed that regular local rings are
exactly the local rings for which every finitely generated module has finite projective
dimension. Their characterization works equally well if projective dimension is
replaced by injective dimension, and it is not necessary to consider finitely generated
modules only. The Auslander–Buchsbaum Equality [5] states the following: If
M is a non-zero finitely generated module over a local ring R and the projective
dimension pdR M finite, then

pdR M = depth R − depthR M .

Moreover, for every integer n in the range from 0 to depthR, it is easy to construct a
finitely generated module M of projective dimension n. For the injective dimension
of finitely generated modules, the story is somewhat different. Bass’ paper [12]
on the ubiquity of Gorenstein rings (1963) determines the injective dimension of a
non-zero finitely generated R–module N of finite injective dimension as the value

idR N = depth R.

In the same paper Bass writes [12, rmk. p. 14] that it is conceivable that the exis-
tence of a finitely generated module of finite injective dimension over a commutative
local noetherian ring implies that it is Cohen–Macaulay. This remark is often re-
ferred to as Bass’ question; it was answered—in the affirmative—over the time
span 1972–86 by Peskine and Szpiro [36], and Roberts [37] for local rings of prime
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characteristic, by Hochster [29] for rings containing a field, and finally for mixed
characteristic by Roberts [38].

Roughly ten years after Auslander, Buchsbaum, and Serre characterized regular
local rings, Auslander [3], and Auslander and Bridger [4] developed the theory
of G–dimensions for finitely generated modules; it’s likely that the “G” stands for
Gorenstein, because the G–dimension detects Gorenstein rings exactly as projective
dimension detects regular rings.

However, this G–dimension is only defined for finitely generated modules. To ex-
tend the theory of Auslander and Bridger to all modules, Enochs and Jenda [19]
developed a notion of Gorenstein projective and injective modules, and Enochs,
Jenda, and Torrecillas [20] developed a notion of Gorenstein flat modules; consult
(3.1)–(3.3) for the definitions. By taking resolutions with these modules one obtains
Gorenstein projective, Gorenstein injective, and Gorenstein flat dimensions. The
Gorenstein projective dimension is a refinement for the projective dimension in the
sense that the former is always less or equal to the latter, and if the latter is finite
then it equals the former. Likewise, the Gorenstein flat and Gorenstein injective
dimensions are refinements of the flat and injective dimensions, respectively. More-
over, for finitely generated modules the Gorenstein projective dimension agrees with
the G–dimension; this follows by a result by Avramov, Buchweitz, Martsinkovsky,
and Reiten (see [14]).

It is a notable feature of, say, Gorenstein projective dimension, that the underlying
local ring R is Gorenstein precisely when the Gorenstein projective dimension of
any module is finite. The other two homological dimensions have the same property.

Returning to the paper by Peskine and Szpiro, they obtain the following corollary
to their answer to Bass’ question for rings of prime characteristic: If the finitely gen-
erated module of finite injective dimension is cyclic, then the underlying ring is ac-
tually Gorenstein; see [36, cor. (5.3)]. Moreover, Peskine and Szpiro [36, thm. (5.5)]
also show that this corollary holds for every local ring.

Theorem (Peskine–Szpiro). If there exists a non-zero cyclic R–module N with
the injective dimension finite, then R is Gorenstein.

The next theorem—which is the main result of this paper—is a Gorenstein version
of previous one; it is repeated as Theorem (4.7) and is proved there.

Theorem A. If there exists a non-zero cyclic R–module N with the Gorenstein
injective dimension finite, then R is Gorenstein.

The theorem has been proved in special cases by Takahashi; see [41, thm. 3.5]. As
an immediate consequence of our theorem it follows that R is Gorenstein if and
only if R has finite Gorenstein injective dimension as an R–module; this is the
local commutative version of the main result in Holm [30]. Another immediate
consequence is that R is Gorenstein if and only if the residue field k has finite
Gorenstein injective dimension as an R–module.

The proof of Theorem A uses Bass series IMR (t) and Poincaré series PR
M (t) for

finitely generated R–modules M . These series are formal power series, and their
coefficients are the Bass numbers and the Betti numbers, respectively. The series
and their basic properties are recalled in section 4, and Proposition (4.3) contains
the next result which holds over homomorphic images of local Gorenstein rings:
If N is a finitely generated R–module of finite Gorenstein injective dimension,
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then there exists a finitely generated R–module K of finite Gorenstein projective
dimension such that there is an equality of formal power series

PR
N (t)tdepth R = PR

K(t) IR(t) .

The proof of Proposition (4.3) requires, in turn, auxiliary techniques, and these
involve two categories of bounded complexes of R–modules, namely the Auslander
category A(R) and the Bass category B(R); these are defined whenever the ring R
admits a dualizing complex D; see (2.5) and (2.6). In this introduction we focus on
the two full subcategories of A(R) and B(R) consisting of complexes with degreewise

finitely generated homology; these are denoted Af(R) and Bf(R). The connection to
Gorenstein injective dimension is provided by the main result in [16] by Christensen,
Frankild, and Holm; it implies, in particular, that a finitely generated R–module
is of finite Gorenstein injective dimension if and only if it belongs to Bf(R). The
full statement is in (3.5). Important for the proof of Theorem A are the next four
functors

(−)∗ = RHomR(−, R) D ⊗L

R −

(−)† = RHomR(−, D) RHomR(D,−) .

The two functors in the last column are discussed in further detail in paragraph
(2.6) where it is proved that these functors fit into the next diagram

Af(R)
(−)∗

wwnnnnnnnnnnnn
(−)†

((PPPPPPPPPPPP

Af(R)

(−)∗

77nnnnnnnnnnnn D⊗L

R− //
Bf(R) .

RHomR(D,−)
oo

(−)†

hhPPPPPPPPPPPP

Here the inner triangle and the outer triangle are commutative, each of the two pair
of parallel tilted arrows provides a duality of categories, and the pair of horizontal
arrows provides an equivalence of categories.

In Avramov, Iyengar and Miller [11, thm. 13.2] it is stated that: If ϕ : R −→ S is a
local homomorphism such that the target S has finite injective dimension over the
source R, then R is Gorenstein and S has finite flat dimension over R. The next
is a Gorenstein version of this result, modulo the fact that we require R to be a
homomorphic image of a Gorenstein ring; see Theorem (5.4) and its proof.

Theorem B. Assume that ϕ : R −→ S is local homomorphism such that the source
R is a homomorphic image of a Gorenstein local ring. If the target S has finite
Gorenstein injective over the source R, then R is Gorenstein and S has has finite
Gorenstein flat dimension over R.

When the local ring R is of prime characteristic p, Theorem C below applies, in
particular, to the Frobenius endomorphism given by r 7−→ rp. For every local en-
domorphism ϕ : R −→ R and every R–module M , we let ϕn

M denote M viewed
as an R–module via ϕn, that is, the abelian group M equipped with the multi-
plication (r, m) 7−→ ϕn(r)m. Recall, that a local ring is regular precisely when
the projective dimension, or equivalently the flat dimension, or equivalently the
injective dimension of its residue field is finite. Replacing the previous dimensions
with their Gorenstein counterparts, we get a similar characterization of Gorenstein
rings. When R is of prime characteristic, we may replace the residue field k with
ϕn

R and obtain the same conclusion. The classical results by Kunz [34, (2.1)] and
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Rodicio [39] show that the ring is regular precisely when ϕn

R has finite flat dimen-
sion (or, equivalently finite projective dimension). On the other hand, Avramov,
Iyengar and Miller [11, thm. 13.3] showed that this is equivalent to the finiteness of
the injective dimension of ϕn

R. Moreover, the result [31, thm. 6.5] by Iyengar and
Sather-Wagstaff implies that the ring is Gorenstein exactly when the Gorenstein
flat dimension of ϕn

R is finite.

The Frobenius endomorphism is a particular instance of a local endomorphism
ϕ : (R, m) −→ (R, m) such that ϕi(m) ⊆ m2 for some integer i > 1; this condi-
tion is equivalent to the condition that for every element x from m the sequence
(ϕi(x))i>1 converges to zero in the m–adic topology. Such an endomorphism is
called a contraction.

The next result is part of Theorem (5.8) and concerns endomorphisms that are not
necessarily contractions.

Theorem C. Let ϕ : (R, m) −→ (R, m) be a local endomorphism and assume that
R is a homomorphic image of a Gorenstein local ring. The following conditions are
then equivalent.

(i) R is Gorenstein.

(ii) GidR
ϕn

R is finite for some integer n > 1.

(iii) GidR
ϕn

R is finite for all integers n > 1.

If one of the above conditions is met, then GidR
ϕn

R = depthR = dim R.

Theorem C is a Gorenstein version of the next theorem which is [11, thm. 13.3].

Theorem (Avramov–Iyengar–Miller). Let ϕ : (R, m) −→ (R, m) be a contrac-
tion. If idR

ϕn

R is finite for some integer n > 1, then R is regular.

On the other hand, the last theorem follows—in view of Avramov, Iyengar, and
Miller [11, thm. 13.2]—from our Theorem C and the classical results by Kunz and
Rodicio.

Organization of the paper. The main results, Theorems A, B, and C, belong
to classical homological algebra. Their proofs, however, take—of necessity—place
in the derived category D(R) of the category of R–modules. For now there is no
suitable description of the applications of this hyperhomological algebra in commu-
tative ring theory. Thus, necessary background material is scattered throughout
sections 2–4,

2. Dualities and Equivalences

(2.1) Derived category. Throughout the paper, we will work within the derived
category D(R) of the module category over a local commutative noetherian ring
(R, m, k); here m denotes the unique maximal ideal, and k is the residue field R/m.

The objects in D(R) are complexes of R–modules. A complex M is a sequence of
R–modules (M)n∈Z equipped with R–linear differentials ∂M

n : Mn −→ Mn−1. If m
is an integer, the symbol Σ

mM denotes the complex M shifted (or translated, or
suspended) m degrees to the left, that is, against the direction of the differential; its
modules are given by (ΣmM)i = Mi−m, and its differential is ∂Σ

mM
i = (−1)m∂M

i−m.
The symbol ≃ will denote isomorphisms in the derived category.

The full subcategory of D(R) consisting of complexes with bounded homology is
denoted D<=(R), while D

f
<=

(R) denotes the full subcategory of D<=(R) consisting of

complexes with each homology module finitely generated; the complexes in D
f
<=

(R)
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will be referred to as finite complexes. Each R–module M may be viewed, in a
canonical way, as a complex concentrated in degree zero. Moreover, each complex
M of R–modules with homology concentrated in degree zero is isomorphic in D(R)
to the module H0(M). Thus we identify R–modules with complexes homologically
concentrated in degree zero.

For details on the derived category and derived functors, the reader should consult
the original texts, Verdier’s thesis [42] and Hartshorne’s notes [28]. For a modern
account, the reader is referred to Gelfand and Manin [27].

To capture the homological size of a complex M we consider its homological infi-

mum, its homological supremum and its amplitude

inf M = inf{ ℓ | Hℓ(M) 6= 0 } , supM = sup{ ℓ | Hℓ(M) 6= 0} , and

amp M = supM − inf M.

We always operate under the conventions that inf ∅ = ∞ and sup ∅ = −∞. Thus,
M belongs to D<=(R) if and only if supM < ∞ and inf M > −∞. Moreover,
amp M = 0 if and only if M is isomorphic (in the derived category) to Σ

nK for
some non-zero R–module K and some integer n; in this case, K is isomorphic to
Hn(M).

If M is a homologically bounded complex, then M is said to be of finite projective

dimension, finite injective dimension, or finite flat dimension, when M is isomorphic
(in D(R) ) to a bounded complex consisting of, respectively, projective modules,
injective modules, or flat modules, in which case we write, respectively, pdR M < ∞,
idR M < ∞, or fdR M < ∞. For details the reader is referred to [6].

(2.2) Derived functors. The left derived tensor product functor −⊗L

R − applied
to a pair (M ,N) of complexes of R–modules is defined, up to isomorphism in D(R),
as follows

P ⊗R N ≃ M ⊗L

R N ≃ M ⊗R Q

whenever P
≃
−−→ M is a semi-projective resolution of M or Q

≃
−−→ N is a semi-

projective resolution of N . An R–complex P is said to be semi-projective, if the
functor RHomR(P,−) preserves surjective quasi-isomorphisms. It turns out that an
R–complex is semi-projective, if it is bounded to the right and consists of projective
modules. A semi-projective resolution of M is a quasi-isomorphism π : P −→ M
with semi-projective source. For existence of semi-projective resolutions consult [9].

Dually, an R–complex I is said to be semi-injective, if the functor RHomR(−, I)
carries injective quasi-isomorphisms into surjective quasi-isomorphisms; and a semi-
injective resolution of N is a quasi-isomorphism ι : N −→ I with semi-injective
target. An R–complex is semi-injective, if it is bounded to the left and consists of
injective modules. For existence of semi-projective resolutions consult [9].

The right derived homomorphism functor RHomR(−,−) applied to a pair (M ,N)
of complexes of R–modules is defined, up to isomorphism in D(R), as follows

HomR(P, N) ≃ RHomR(M, N) ≃ HomR(M, I)

whenever and P
≃
−−→ M is a semi-projective resolution of M or N

≃
−−→ I is a

semi-injective resolution of N .

If M and N are R–modules, then there are isomorphisms

Hℓ(M ⊗L

R N) ∼= TorR
ℓ (M, N) and Hℓ(RHomR(M, N)) ∼= Ext−ℓ

R (M, N)

for all integers ℓ.
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The next standard isomorphisms are used throughout the paper. To facilitate the
description here, also the other ring S is supposed to be commutative, and not all
the boundedness conditions imposed on the complexes are strictly necessary.

(2.3) Functorial Isomorphisms. Let K, L, and M belong to D(R), let P belong
to D(S), and let N belong to the derived category D(R, S) of the category of R–
S–bimodules. There are then the next functorial isomorphisms in D(R, S).

L ⊗L

R M
≃
−−→ M ⊗L

R L .(Comm)

(M ⊗L

R N) ⊗L

S P
≃
−−→ M ⊗L

R (N ⊗L

S P ) .(Assoc)

RHomS(M ⊗L

R N, P )
≃
−−→ RHomR(M,RHomS(N, P )) .(Adjoint)

RHomR(M,RHomS(P, N))
≃
−−→ RHomS(P,RHomR(M, N)) .(Swap)

Moreover, there are the following evaluation morphisms.

αKNP : RHomR(K, N) ⊗L

S P −→ RHomR(K, N ⊗L

S P ) and(Tensor–eval)

βPNM : P ⊗L

S RHomR(N, M) −→ RHomR(RHomS(P, N), M) .(Hom–eval)

The next two facts are useful

• The morphism αKNP is an isomorphism, if K is finite, H(N) is bounded,
and either fdS P or pdR K is finite.

• The morphism βPNM is an isomorphism, if P is finite, H(N) is bounded,
and either pdS P or idR M is finite.

For details the reader is referred to [14, A.4] and the references therein.

(2.4) Dimension and Depth. For a finite complex M we define its depth and
dimension as follows

dimR M = sup{ dimR Hℓ(M) − ℓ | ℓ ∈ Z } and

depthR M = inf{ ℓ | H−ℓ(RHomR(k, M)) 6= 0 } .

Here dimR Hℓ(M) denotes the (Krull) dimension of the module Hℓ(M). If M
is a finitely generated module, then these invariants yield the classical depth and
dimension of M . As shown by Foxby, see [21, (16.3)], the dimension of a complex
M may be computed as

dimR M = sup { dimR/p − inf Mp | p ∈ Spec R }.

The ring R is a Cohen–Macaulay ring if its depth equals its dimension, that is,
depthR = dimR. Finally, the width of a complex M is defined to be

widthR M = inf{ ℓ | Hℓ(k ⊗L

R M) 6= 0 } .

In general there is the next inequality

widthR M > inf M .

and equality holds (by Nakayama’s lemma), if the homology modules of M are
finitely generated.

(2.5) Dagger Duality. In this paragraph we assume that R admits a dualizing

complex D, that is, D is a finite R–complex, its injective dimension idR D is finite,
and the canonical morphism µD : R −→ RHomR(D, D) is an isomorphism. If D
and E are dualizing complexes for R, then there exists an integer n such that
E ≃ Σ

nD. A dualizing complex is normalized when k ≃ RHomR(k, D); in this
situation it follows that

sup D = dimR and inf D = depthR.
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When M is a finite complex, we consider the dagger dual M † = RHomR(M, D),
and the next hold

sup M † = dimR M and inf M † = depthR M,

for details see [21, (16.20)]. In particular, if H(M) 6= 0 then depthR M 6 dimR M ,
and the Cohen–Macaulay defect of M is defined to be the non-negative integer
cmdR M = dimR M − depthR M .

If R is a homomorphic image of a local Gorenstein ring Q, then RHomQ(R, Q) is a
dualizing complex over R, and the shifted complex Σ

n RHomQ(R, Q) is normalized
for n = dim Q − dim R. Consequently, every local ring which is complete in the
topology induced by the maximal ideal admits a dualizing complex. On the other
hand, if a local ring admits a dualizing complex, then it is a homomorphic image
of a Gorenstein ring by Kawasaki’s proof of Sharp’s conjecture; for detail see [33].

The contravariant functor (−)† = RHomR(−, D) carries the category D
f
<=

(R) into
itself, and for every finite M there is the next biduality isomorphism

δM
D : M

≃
−−→ M † † = RHomR(RHomR(M, D), D)

which is obtained from the next commutative diagram

M
δM

D // RHomR(RHomR(M, D), D)

M ⊗L

R R
M⊗L

RµD

≃ // M ⊗L

R RHomR(D, D)

βMDD≃

OO

where the rightmost vertical isomorphism is (Hom–eval) in (2.3). This induces the
next duality of categories.

D
f
<=

(R)
(−)† //

D
f
<=

(R) .
(−)†

oo

If R is a Cohen–Macaulay ring of dimension d possessing a normalized dualizing
complex D, then Hn(D) = 0 for n 6= d, and Hd(D) is said to be the dualizing (or
canonical) module for R, [13, chap. 3].

(2.6) Dualizing Equivalence. Let D be a dualizing complex for R. The pair of
adjoint functors

D ⊗L

R − and RHomR(D,−)

is naturally equipped with the unit morphism ηR : 1D(R) −→ RHomR(D, D ⊗L

R −)

and the counit morphism εR : D ⊗L

R RHomR(D,−) −→ 1D(R). The unit fits into
the commutative diagram

M
ηR

M // RHomR(D, D ⊗L

R M)

R ⊗L

R M
µD⊗L

RM

≃ // RHomR(D, D) ⊗L

R M

αDDM

OO
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where M is any R–complex. The counit fits into the commutative diagram

N D ⊗L

R RHomR(D, N)

βDDN

��

εR
Noo

RHomR(R, N) RHomR(RHomR(D, D), N)
RHomR(µD ,N)

≃oo

where N is any R–complex.

The Auslander category A(R) and the Bass category B(R) with respect to D are
the full subcategories of D<=(R) defined as follows.

(a) M is in A(R) if and only if D ⊗L

R M is homologically bounded and the unit
ηR

M is an isomorphism.

(b) N is in B(R) if and only if RHomR(D, N) is homologically bounded and
the counit εR

N is an isomorphism.

The definitions of the Auslander and Bass categories are designed such that we
have an equivalence of categories

A(R)
D⊗L

R− //
B(R).

RHomR(D,−)
oo

This equivalence was introduced in [8]. It follows from (2.3) that every complex
of finite flat dimension belongs to A(R), and that every complex of finite injective
dimension belongs to B(R). By restricting to the full subcategory D

f
<=

(R) (consisting
of complexes having degreewise finitely generated homology), we obtain the next
equivalence of categories

Af(R)
D⊗L

R− //
Bf(R).

RHomR(D,−)
oo

For details, the reader is referred to [8].

In the following lemma we consider the two functors (−)∗ = RHomR(−, R) and
(−)† = RHomR(−, D).

(2.7) Lemma. The following hold for the next diagram.

Af(R)
(−)∗

wwnnnnnnnnnnnn
(−)†

((PPPPPPPPPPPP

Af(R)

(−)∗

77nnnnnnnnnnnn D⊗L

R− //
Bf(R) ,

RHomR(D,−)
oo

(−)†

hhPPPPPPPPPPPP

(1) The inner triangle is commutative (up to canonical isomorphism).
(2) The outer triangle is commutative (up to canonical isomorphism).
(3) The left pair of parallel tilted arrows provides a duality of categories.
(4) The right pair of parallel tilted arrows provides a duality of categories.
(5) The pair of horizontal arrows provides an equivalence of categories.

Proof. The assertion concerning the horizontal arrows follows by dualizing equiv-
alence (2.6). The functor (−)∗ provides a duality on Af(R), see also [8, (4.1.7)]
or [15, thm. (4.7)]. The corresponding assertion concerning (−)† follows from [14,
lem. (3.2.9)].
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The commutativity (up to canonical isomorphism) of the inner triangle is estab-
lished as follows

(D ⊗L

R M)† = RHomR(D ⊗L

R M, D)

≃
−−→ RHomR(M,RHomR(D, D))

≃
−−→ RHomR(M, R) = M∗ .

Here the first isomorphism is by (Adjoint) in (2.3), and the second follows from the

isomorphism R
≃
−−→ RHomR(D, D). The commutativity (up to canonical isomor-

phism) of the outer triangle is established as follows

RHomR(D, M †) = RHomR(D,RHomR(M, D))

≃
−−→ RHomR(M,RHomR(D, D))

≃
−−→ RHomR(M, R) = M∗ .

Here the first isomorphism is by (Swap) in (2.3), and the second follows from the

isomorphism R
≃
−−→ RHomR(D, D). �

3. Gorenstein Homological Dimensions

(3.1) Gorenstein Injective Dimension. A complex I of R–modules is said to be
a complete injective resolution, if it is exact and consists of injective modules, and it
is such that HomR(I ′, I) is exact for all injective R–modules I ′. An R–module J is
said to be Gorenstein injective, if it is a cokernel in a complete injective resolution.
Thus, every injective module is Gorenstein injective.

The Gorenstein injective dimension GidR M of M ∈ D<=(R) is defined to be the
infimum of the set of integers n such that there exists a complex I consisting of
Gorenstein injective modules satisfying M ≃ I and Iℓ = 0 for −ℓ > n. (Recall
that we always use homological notation.) Thus, a complex of R–modules has
finite Gorenstein injective dimension if and only if it is isomorphic in D(R) to
a bounded complex of Gorenstein injective modules. Moreover, the Gorenstein
injective dimension is a refinement of the (classical) injective dimension

GidR M 6 idR M with equality if idR M is finite.

For details consult [14, chap. 6].

(3.2) Gorenstein Projective Dimension. The Gorenstein projective dimension

GpdR M of M ∈ D<=(R) was introduced by Enochs and Jenda and is defined dually
to the injective one above. It is a refinement of the (classical) projective dimension

GpdR M 6 pdR M with equality if pdR M is finite.

For details consult [14, chap. 4].

(3.3) Gorenstein Flat Dimension. The definition of the Gorenstein flat dimen-

sion GfdR M of M ∈ D<=(R) is similar to the Gorenstein injective dimension above.
A complex F of R–modules is said to be a complete flat resolution, if it is exact and
consists of flat modules, and it is such that also I ′ ⊗R F is exact for all injective
R–modules I ′. An R–module G is said to be Gorenstein flat, if it is a cokernel in
a complete flat resolution. Thus, every flat module is Gorenstein flat.

The Gorenstein flat dimension GfdR M of M ∈ D<=(R) is defined to be the infimum
of the set of integers n such that there exists a complex F consisting of Gorenstein
flat modules satisfying M ≃ F and Fℓ = 0 for ℓ > n. Thus, a complex of R–
modules has finite Gorenstein flat dimension if and only if it is isomorphic in D(R)
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to a bounded complex of Gorenstein flat modules. Moreover, the Gorenstein flat
dimension is a refinement of the (classical) flat dimension

GfdR M 6 fdR M with equality if fdR M is finite.

For details consult [14, chap. 5].

(3.4) Auslander’s G–dimension. If G is a finitely generated R–module, then it
turns out, see for example, [14, (4.4.6)], that it is Gorenstein projective if and only
if it satisfies the next three conditions.

(1) ExtℓR(G, R) = 0 for ℓ > 0,

(2) ExtℓR(HomR(G, R), R) = 0 for ℓ > 0, and
(3) the canonical homomorphism G −→ HomR(HomR(G, R), R) is an isomor-

phism.

Auslander’s Gorenstein dimension G–dimR M of a finite R–complex M is defined
to be at most n exactly when M is isomorphic in D(R) to a bounded complex G
such that Gℓ = 0 for ℓ > n, and such that each Gℓ is a finitely generated R–modules
satisfying the above three condition, confer [14, (2.3.2)]. The next is known as the
Auslander–Bridger Equality.

(3.4.1) G–dimR M = depth R − depthR M , if G–dimR M < ∞ ,

confer [14, (1.4.8), (2.3.13)]. Furthermore, it turns out that the next holds.

(3.4.2) G–dimR M = GpdR M = GfdR M ,

when M is a finite R–complex; for details consult [16, prop. 3.8].
The next result by Foxby, see Yassemi [43, (2.7)], provides a relation between

finiteness of G-dimension and the Auslander category.

(3.4.3) G–dimR M < ∞ if and only if M ∈ Af(R) ,

for further details see [14, (3.1.11)].

This is extended by next result which is the main theorem in Christensen, Frankild
and Holm [16]; it underlines the importance of the Auslander and Bass categories.

(3.5) Finiteness of Gorenstein dimensions. Assume that R is a homomorphic
image of a Gorenstein ring. Let M be a complex of R–modules. Then following
are equivalent.

(i) M belongs to A(R).

(ii) M has finite Gorenstein projective dimension, that is, GpdR M < ∞.

(iii) M has finite Gorenstein flat dimension, that is, GfdR M < ∞.

Furthermore, if N is a complex of R–modules, then the following are equivalent.

(i) N belongs to B(R).

(ii) N has finite Gorenstein injective dimension, that is, GidR N < ∞.

For details the reader is referred to [16, thm. 4.1 and thm. 4.4].

The next result on completion and Gorenstein injective dimension is due to Chris-
tensen, Frankild, and Iyengar. We thank Christensen and Iyengar for allowing us
to include it here. Note that it does not require R to be a homomorphic image of
a Gorenstein ring.

(3.6) Theorem. Let R be a local ring, and let M be a finite R–complex. If M has

finite Gorenstein injective dimension over R, then M ⊗R R̂ has finite Gorenstein

injective dimension over R̂.
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Proof. Let KR be the Koszul complex on a set of generators for the maximal ideal
m. Because the homology modules of KR have finite length, there is a isomorphism

KR ≃ R̂⊗RKR in D(R). By flatness of the completion map R −→ R̂, a minimal set

of generators for m extends to a minimal set of generators of m̂; in particular K
bR =

R̂⊗R KR is a Koszul complex on a minimal set of generators for m̂. Moreover, the

isomorphism of R–modules R/m ∼= k ∼= R̂/m̂ together with the fact that Hℓ(K
R) ∼=

Hℓ(K
bR) for all ℓ ∈ Z shows that KR ≃

−−→ K
bR in D(R).

Under the present assumptions on M , the complex

N = M ⊗R KR ≃ M ⊗R K
bR ≃ (M ⊗L

R R̂) ⊗ bR K
bR

has finite Gorenstein injective dimension over R; see [17, (5.5)(c’)]. Note that the
homology modules of N have finite length since M is finite. Hence there is an
isomorphism

N
≃
−−→ HomR(HomR(N, ER(k)), ER(k)) .

Here ER(k) denotes the injective envelope of the R–module k. In particular,

GidR HomR(HomR(N, ER(k)), ER(k)) < ∞

and, therefore, GfdR HomR(N, ER(k)) is finite by [14, (6.4.2)]. As the homology
modules of HomR(N, ER(k)) has finite length, the complex

(∗) HomR(N, ER(k)) ⊗R R̂ ≃ HomR(N, ER(k))

has finite Gorenstein flat dimension over R̂. Thus, using (∗) and (Adjoint) from
(2.3) we conclude

N
≃
−−→ Hom bR(HomR(N, ER(k)), ER(k))

has finite Gorenstein injective dimension over R̂ by [16, prop. 5.1]; this uses the

fact that the complete ring R̂ admits a dualizing complex D. From [16, thm. 4.4]
it follows that the complex

RHom bR(D, N) ≃ RHom bR(D, M ⊗L

R R̂) ⊗L

bR
K

bR

is homologically bounded. Thus, from [24, 1.3] it follows that the complex

RHom bR(D, M ⊗L

R R̂) is homologically bounded as well. Consider the commuta-
tive diagram

(M ⊗L

R R̂) ⊗L

bR
K

bR D ⊗L

bR
RHom bR(D, (M ⊗L

R R̂) ⊗L

bR
K

bR)

ε
bR

(M⊗L

R
bR)⊗L

bR
K

bR

≃
oo

≃

��

(M ⊗L

R R̂) ⊗L

bR
K

bR (D ⊗L

bR
RHom bR(D, M ⊗L

R R̂)) ⊗L

bR
K

bR ,
(ε

bR

M⊗L

R
bR
)⊗L

bR
K

bR

oo

where the rightmost vertical isomorphism is by (Tensor-eval) and (Assoc) in (2.3).

Again, using [24, 1.3] and a standard mapping cone argument it follows ε
bR
M⊗L

R
bR

is

a isomorphism. Whence,

M ⊗R R̂ ∼= M ⊗L

R R̂

has finite Gorenstein injective dimension over R̂ by [16, thm. 4.4]. �
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4. Bass and Poincaré Series

(4.1) Bass and Poincaré Series. For a finite R–complex M and an integer ℓ,
the ℓ th Bass number and the ℓ th Betti numbers are, respectively, the next vector
space dimensions over the residue field k

µℓ
R(M) = rankk H−ℓ(RHomR(k, M)) and βR

ℓ (M) = rankk Hℓ(k ⊗L

R M) .

The ring of formal Laurent series with integer coefficients is denoted Z(|t|); its
elements are have the form

∑
ℓ∈Z

aℓt
ℓ with aℓ ∈ Z and aℓ = 0 for ℓ ≪ 0. For a

finite R–complex M the Bass series IMR (t) and the Betti series PR
M (t) are elements

in Z(|t|) defined as follows.

IMR (t) =
∑

ℓ∈Z

µℓ
R(M)tℓ and PR

M (t) =
∑

ℓ∈Z

βR
ℓ (M)tℓ .

The Bass series for the ring is denoted IR(t), and the ring R is Gorenstein precisely
when IR(t) = ts for some non-negative integer s. Every finite R–complex D is a

normalized dualizing complex, if and only if IDR (t) = 1.

The next equations for Bass and Poincaré series are used throughout. The first two
are proved in [8, (1.5.3)] while the last two are proved in [23, (4.3)].

(4.2) Bass–Poincaré Equalities. For finite complexes M and N there are the
next equalities of formal Laurent series, that is, equalities in Z(|t|).

PR
M⊗L

R
N(t) = PR

M (t) PR
N (t) .(PP)

I
RHomR(M,N)
R (t) = PR

M (t) INR (t) .(PI)

I
M⊗L

RN
R (t) = IMR (t) PN

R (t−1) provided pdR N < ∞ .(IP)

PR
RHomR(M,N)(t) = IMR (t) IRN (t−1) provided idR N < ∞ .(I I)

(4.3) Proposition. Let R be a homomorphic image of a Gorenstein ring, and let
N be a finite R–complex of finite Gorenstein injective dimension. There exists then
a finite R–complex K of finite Gorenstein projective dimension with inf K = inf N
and amp K 6 amp N such that there is the next equality of formal Laurent series.

PR
N (t)tdepth R = PR

K(t) IR(t) .

If N is of finite (classical) injective dimension, then K has finite (classical) projec-
tive dimension.

Proof. Throughout the proof, we let D be a normalized dualizing complex, and set

M = N † and L = RHomR(D, N) and s = depthR.

Note that depthR M = inf N by (2.5). As N belongs to Bf(R) by (3.5), Lemma
(2.7) yields that M and L belong to Af(R), and that L∗ ≃ M and M∗ ≃ L. As M
belongs to Af(R), the G–dimension of M is finite by (3.5). Whence, by [14, (1.2.7)
and (1.4.8) ] we obtain

inf L = inf M∗ = −G–dimR M = depthR M − depth R = inf N − depth R.

Next, [14, (A.4.6)] yields the next inequality

sup L = supRHomR(D, N) 6 − inf D + supN = supN − depth R.

The last equality is by (2.5). Hence, ampL 6 amp N . Set K = Σ
sL which has finite

Gorenstein projective dimension as it belongs to Af(R). It still remains to prove
the equation for the Laurent series. Recall that s = depth R. The computation

K∗† ≃ ((ΣsL)∗)† = (Σ−sL∗)† ≃ (Σ−sM)† = Σ
sM † ≃ Σ

sN.
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yields the next formula.

(4.3.1) N ≃ Σ
−sK∗†.

Using that IDR (t) = 1 by (2.5) and that PR(t) = 1, the formulae (II) and (PI) in
(4.2) yields the next equalities

PR
N (t) = PR

Σ−sK∗†(t) = t−s PR
K∗†(t) = t−s IK

∗

R (t) = t−s PR
K(t) IR(t).

Finally, if idR N is finite, it follows that pdR N † is finite as well, and this implies
that pdR N † ∗ < ∞, that is, pdR K < ∞. �

(4.4) Remark on depth. For every finite R–complexes M and N there is the next
equality of integers

depthR RHomR(M, N) = inf M + depthR N .

Indeed, (PI) in (4.2) yields the identity

I
RHomR(M,N)
R (t) = PR

M (t) INR (t) ,

which gives the second equality below.

depthR RHomR(M, N) = ord I
RHomR(M,N)
R (t) = ord(PR

M (t) INR (t))

= ordPR
M (t) + ord INR (t) = inf M + depthR N .

In particular, let M = D be a normalized dualizing complex and let K =
Σ

s RHomR(D, N) be the complex considered in the proof of (4.3). From the above
it thus follows that depthR K = depthR N .

(4.5) Remark on dimension. For the sake of simplicity, we assume in this para-
graph that N from Proposition (4.3) is a module. Let D be a normalized dualizing
complex for R. Recall that

K = Σ
sL where L = RHomR(D, N) and s = depthR ,

and that K is a module. The support of D is the entire Spec R, and the homology of
RHomR(D, N) is zero precisely when N is trivial; see e.g., [8, lem. (1.2.3)]. Thus,
for a prime ideal p from Spec R we have Kp = 0 if and only if Np = 0 forcing
SuppR K = SuppR N . In particular, using (2.4) we read off that

(4.5.1) dimR K = dimR N,

in particular, it follows from (4.4) that

cmdR K = cmdR N.

Since D is normalized, the Rp–complex Σ
− dim R/pDp is a normalized dualizing

complex for the localized ring Rp; see e.g., [21, (15.17)]. Thus, we immediately
conclude that

inf Kp = inf (ΣsL)
p

= depthR + inf RHomRp
(Dp, Np)

= depthR − dimR/p + inf RHomRp
(Σ− dim R/pDp, Np).

The assumption that R admits a dualizing complex ensures that the Gorenstein
injective dimension of Np is finite; see [16, prop. 5.5] and may be computed as

GidRp
Np = − inf RHomRp

(Σ− dim R/pDp, Np) = depthRp,

for details see [16, cor. 6.7 and thm. 6.3]. Consequently, using that K is a module,
and that SuppR K = SuppR N we obtain

(∗) depthR = dimR/p + depth Rp,
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for every prime p in the support of N . Compare this with the fact that for any
Cohen–Macaulay ring, and any prime p the formula in (∗) hold.

(4.6) Remark. In this remark we use the derived local cohomology RΓm(−) and
its right adjoint the derived local homology functor LΛm(−) (also referred to as
the derived completion functor), confer e.g. [1]. When the finite complex N from
Proposition (4.3) is a module, the finite complex K is also a module, and it has
finite Gorenstein projective dimension. Let D be a normalized dualizing complex.
The proof shows that

(∗) K = H−s(RHomR(D, N)),

where s = depthR. As D is normalized, RΓmD ≃ ER(k) by local duality, where
ER(k) is the injective hull of the residue field k. Therefore, we have the next string
of isomorphisms

RHomR(ER(k), N) ≃ RHomR(RΓmD, N) ≃ RHomR(D,LΛmN),

for details see e.g., [26, sec. 2] and the references therein. As N is finite, we have

RHomR(D,LΛmN) ≃ RHomR(D, N ⊗L

R R̂) ≃ RHomR(D, N) ⊗L

R R̂.

Here the first isomorphism follows from [26, prop. (2.7)] and the second from
(Tensor-eval). Comparing this with (∗) shows that

K̂ = K ⊗R R̂ = H−s(RHomR(D, N)) ⊗R R̂ ∼= ExtsR(ER(k), N).

The latter module is used by Peskine and Spziro in the proof of their theo-
rem on cyclic modules of finite (classical) injective dimension; for details see [36,
thm. (4.10)].

(4.7) Theorem. If there exists a non-zero cyclic R–module N with the Gorenstein
injective dimension GidR N finite, then R is Gorenstein.

Proof. Note first that we may assume that R is complete and thus possesses a
dualizing complex, confer by (3.6). As N is cyclic, we have that N ∼= R/ AnnR N

and that constant term in PR
N (t) is then 1. Thus, (4.3) yields that the constant

term in PR
K(t) is also 1. In particular, the module K occurring in (4.3) is cyclic;

whence K ∼= R/ AnnR K. The formula (4.3.1) gives that AnnR N ⊇ AnnR K.
Applying the functor (−)†∗ to (4.3.1) we obtain the equation K ≃ Σ

sN †∗. This
yields AnnR N ⊆ AnnR K. Thus AnnR N = AnnR K, and it follows that N ∼= K,
so the equation in (4.3) implies that IR(t) = ts, that is, R is Gorenstein. �

(4.8) Remark on finite length modules. Assume that M is an R–module of
finite length and of finite Gorenstein projective dimension. As these assumptions
pass to the completion, we assume that R admits a (normalized) dualizing complex
D. Note that M belongs to A(R) by (3.5).

Since M has finite length it is easy to show that H(D ⊗L

R M) is concentrated in
degree s = depthR. By assumption it belongs to B(R). Applying (PP) from (4.2)

we obtain that the minimal number of generators for TorR
s (D, M) equals the type of

R times the minimal number of generators of M . Thus, if M is cyclic and the type of
R is 1, then TorR

s (D, M) is a cyclic module of finite Gorenstein injective dimension.
From (4.7) is follows that R is Gorenstein. Compare this with [40, thm. 2.3] where
Takahashi shows that R is Gorenstein precisely when R has type 1 and admits a
Cohen–Macaulay module of finite Gorenstein projective dimension or, if R admits
a Cohen–Macaulay module of type 1 and of finite Gorenstein projective dimension.
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(4.9) Cohen–Macaulay injective dimension. Theorem (4.10) below is an im-
mediate consequence of (4.7), and it characterizes Cohen–Macaulay rings in terms
finiteness of the Cohen–Macaulay injective dimension introduced by Holm and
Jørgensen [32]. Recall from [15] that a finitely generated R–module C is semi-

dualizing if the natural homomorphism R −→ HomR(C, C) is an isomorphism

and ExtiR(C, C) = 0 for all i > 0, that is, the homothety morphism R −→
RHomR(C, C) is an isomorphism in D(R). The Cohen–Macaulay injective dimen-

sion of an R–module M is defined as

CMidR M = inf{GidR⋉C M |C is a semi-dualizing module overR }.

Here R ⋉ C denotes the trivial extension ring; it is the R–module R × C equipped
with the multiplication (r, c)(r′, c′) = (rr′, rc′ + r′c). If (R, m, k) is local, then so is
(R ⋉ C, m × C, k). The ring homomorphism R ⋉ C −→ R defined by (r, c) 7−→ r
turns every R–module into an R ⋉ C– module; if N is cyclic over R, then it is so
over R ⋉ C. Finally, the module C is a dualizing module precisely when the ring
R ⋉ C is Gorenstein; for details see Foxby [22].

(4.10) Theorem. If there exists a non-zero cyclic R–module N with the Cohen–
Macaulay injective dimension CMidR N finite, then R is Cohen–Macaulay with
dualizing module. �

5. Local Homomorphisms

In this section we apply Theorem (4.7) to a homomorphisms of local rings
ϕ : (R, m, k) −→ (S, n, ℓ) which is assumed to be local, that is, ϕ(m) ⊆ n.

(5.1) Cohen factorizations. We will make use of the technology know as Cohen

factorizations of local homomorphisms due to Avramov, Foxby, and Herzog [10].
A Cohen factorization of ϕ is a commutative diagram of local homomorphisms

R′

ϕ′

    @
@@

@@
@@

@

R

·
ϕ

>>}}}}}}}
ϕ

// S

such that ϕ′ is surjective, and ϕ̇ is flat with the closed fiber R′/mR′ a regular ring
and with the target R′ complete. For details the reader is referred to [10].

Cohen factorizations often exists: the (so-called) semi-completion ϕ̀ : R −→ S −→

Ŝ always admits a Cohen factorization; see [10, (1.1)].

(5.2) Remark. A result due to Avramov, Iyengar, and Miller states: Let ϕ be a
local homomorphism. The injective dimension of S over R is finite precisely when
R is Gorenstein and the flat dimension of S over R is finite. For details, the reader
is referred to [11, thm. 13.2]. Theorem (5.4) below is a Gorenstein version of the
this result modulo the fact that we require R to admit a dualizing complex.

(5.3) Remark. Over a Gorenstein ring, say R, every module has finite Gorenstein
flat dimension. In particular, if ϕ : R −→ S is a local homomorphism it follows that
GfdR S is finite. Furthermore, when R is a homomorphic image of a Gorenstein
ring, the next theorem implies that the class of local homomorphisms of finite
Gorenstein injective dimension is a subclass of that of local homomorphisms of
finite Gorenstein dimension.
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(5.4) Theorem. Let ϕ : R −→ S be a local homomorphism, and assume that R is
a homomorphic image of a Gorenstein ring. Then GidR S < ∞ if and only if R is
Gorenstein.

Proof. If R is Gorenstein, then GidR S is finite. Next, assume that GidR S is finite.

Note that (A.5) implies that GidR Ŝ is finite as well. Pick a Cohen factorization

R −→ R′ −→ Ŝ of the semi-completion ϕ̀. From (A.5) we have that the cyclic

R′–module Ŝ has finite Gorenstein injective dimension. But then (4.7) yields that
R′ is Gorenstein, and by flat descent [35, (23.4)], so is R. �

(5.5) Almost finite complexes. Let M and N be finite R–complexes such that
the projective dimension of M and the injective dimension of N are both finite.
The Auslander–Buchsbaum and Bass Equalities yield the equalities

(⋆) fdR M = pdR M = sup (k ⊗L

R M) = depth R − depthR M,

and

(⋆⋆) idR N = − inf RHomR(k, N) = depthR − inf N.

Consider next a more general setup: Let ϕ : R −→ S be a local homomorphism,
and let M and N be finite complexes of S–modules; such complexes are said to
be almost finite complexes over R. Assume, furthermore, that fdR M and idR N
are finite. The next results due to André [2, (2.57)] and extended to complexes by
Avramov and Foxby [6, prop. 5.5] state that

(∗) fdR M = sup (k ⊗L

R M) = depthR − depthR M,

and

(∗∗) idR N = − inf (RHomR(k, N)) = depthR − inf N.

Relaxing the homological assumption on M from finite flat dimension to finite
Gorenstein flat dimension Christensen and Iyengar [18] proved

(∗ ∗ ∗) GfdR M = sup (ER(k) ⊗L

R M) = depth R − depthR M.

Note that the residue field k in (∗) is replaced with its injective hull ER(k) in (∗∗∗).
Next, we give the Gorenstein injective version of this result modulo the fact that
we require the source ring R to be a homomorphic image of a Gorenstein ring.

(5.6) Theorem. Let ϕ : R −→ S be a local homomorphism, and assume that R is
a homomorphic image of a Gorenstein ring. Let N be a finite S–complex such that
GidR N is finite. Then

GidR N = − inf (RHomR(ER(k), N)) = depth R − inf N.

Proof. First, we note that the finiteness of GidR N ensures that

− inf (RHomR(ER(k), N)) = depthR − inf N,

by [16, thm. 6.6]. It is an immediate consequence of e.g., [16, thm. 3.3] that

(∗) − inf (RHomR(ER(k), N)) 6 GidR N.

Therefore, in order to complete the argument, it suffices to show that

GidR N 6 depthR − inf N.

1◦ First we reduce to the case where R and S are complete with respect to the
topologies induced by their respective maximal ideals. As we have

depthR = depth R̂ and inf N = inf N̂ ,
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it immediately follows from the (in)equalities established in (A.6) in conjunction
with [16, thm. 6.3] that

depth R̂ − inf N̂ = depth R − inf N 6 GidR N 6 Gid bR N̂ .

Thus, once the statement has been proved for complete rings, it holds in general.
Therefore, we may assume that R and S are complete.

2◦ Next, we reduce to the case where ϕ is flat with regular closed fiber. Since S is
assumed to be complete, the local homomorphism ϕ admits a Cohen factorization;
see (5.1). Whence ϕ factors according to the following diagram

R′

ϕ′

    A
AA

AA
AA

A

R

·
ϕ

>>}}}}}}}
ϕ

// S.

where
·
ϕ is flat, the closed fiber R′/mR′ is regular, and ϕ′ is surjective. By as-

sumption N is a finite complex consisting of S–modules. As ϕ′ is a surjection, it
follows that N is also a finite complex over the intermediate ring R′. Consequently,
it suffices to consider the case where ϕ : R −→ S is flat with regular closed fiber.

3◦ As ϕ is flat with regular closed fiber it is Gorenstein, see (A.2). Let DS denote
the normalized dualizing complex for S. Since N is a finite complex of S–modules
we have that the biduality morphism

(†) N −→ RHomS(RHomS(N, DS), DS)

is a isomorphism in D(S); see (2.5). To keep notation simple, we let

(−)†S = RHomS(−, DS)

in the sequel. In particular, we may conclude that GidR N = GidR(N †S †S ). Note
that the finiteness of GidR N forces GidS N to be finite as well; this is a consequence
of (A.7) and uses the fact that in the present setup ϕ is flat and Gorenstein.
Moreover, a reference to [16, thm. 3.3] yields the existence of an injective R–module,
say J , such that the following equality holds

GidR(N †S †S ) = − inf RHomR(J, N †S †S ).

This allows us to compute as follows

GidR N = − inf RHomR(J, N †S †S )(‡)

= − inf RHomS(N †S ,RHomR(J, DS))

6 GpdS N †S − inf RHomR(J, DS)

6 GpdS N †S + idR DS .

Here the first equality comes from (†); the second follows from (Swap) from (2.3);
the first inequality from [16, thm. 3.1], as J†S is an S–complex of finite flat dimen-
sion it has finite projective dimension (recall, that ϕ is flat); the final inequality
follows from [6, thm. 2.4.I]. From [16, cor. 6.4] we conclude that GpdS N †S is finite.
As N †S is finite over S, it follows from [16, prop. 3.8(b)] and [14, thm. (2.3.13)]
that

(∗∗) GpdS N †S = depth S − depthS N †S .

From the fact that ϕ : R −→ S is flat we conclude from [8, prop. (4.6)] that the
injective dimension of DS is finite over R. Also, as the homology of DS is finite
over S we may employ the result by André to obtain that

(∗ ∗ ∗) idR DS = depth R − inf DS = depth R − depth S.
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Here the second equality stems from the fact that DS is a normalized dualizing
complex over S. Thus, inserting the equalities from (∗∗) and (∗ ∗ ∗) we finally get

GidR N 6 depth S − depthS N †S + idR DS

= depth S − inf N + depth R − depth S

= depth R − inf N.

Here the first equality again follows from the fact that DS is normalized. �

The following result on contractions is due to Iyengar and Sather-Wagstaff, see [31,
thm. 8.14 and 8.15].

(5.7) Theorem (Iyengar–Sather-Wagstaff). Let ϕ : (R, m) −→ (R, m) be a
contraction, that is, ϕi(m) ⊆ m2 for some integer i > 1. The following conditions
are equivalent.

(i) R is Gorenstein.

(ii) GfdR
ϕn

R is finite for all integers n > 1.

(iii) There exists a finite R–complex P with H(P ) 6= 0 and pdR P finite such
that GfdR

ϕn

P is finite for some integer n > 1.

If one of the above equivalent conditions is met, then GfdR
ϕn

R = 0.

What follows may be thought of as a Gorenstein injective version of the above.
However, the result is not restricted to contracting endomorphisms.

(5.8) Theorem. Let ϕ : (R, m) −→ (R, m) be a local homomorphism, and assume
that R is a homomorphic image of a Gorenstein ring. The following conditions are
equivalent

(i) R is Gorenstein.

(ii) GidR
ϕn

R is finite for all integers n > 1.

(iii) There exists a finite R–complex P with H(P ) 6= 0 and pdR P finite such
that GidR

ϕn

P is finite for some integer n > 1.

If one of the above equivalent conditions is met, we have

GidR
ϕn

R = depthR = dim R.

Proof. The equivalence of (i) and (ii) is just a reformulation of Theorem (5.4) for
endomorphisms. Clearly (iii) is stronger than (ii), and it is trivial that (i) implies
(iii).

By (5.6) we have GidR
ϕn

R = depthR = dimR where the last equality follows from
the fact that R is Gorenstein, in particular, R is Cohen–Macaulay. �
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Appendix: Stability results for Gorenstein injectives

(A.1) Remark. In this appendix we collect results needed for establishing (5.6).
Although some of them may be known to experts, we have chosen to present them
here to increase the readability.

When ϕ : R −→ S is a local homomorphism and N is a complex of S–modules,

we let Ñ = N ⊗S Ŝ where Ŝ is the completion of (S, n) with respect to its n–adic
topology.
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(A.2) Remark. Recall, that a flat local homomorphism ϕ : R −→ S is Gorenstein
at n precisely when the closed fiber S/mS is a Gorenstein ring, confer e.g, [7, (4.2)].

(A.3) Proposition. Let ϕ : R −→ S be a local flat Gorenstein homomorphism. If
N is a finite R–complex of such that idS(N ⊗R S) is finite, then the fiber k(p)⊗R S
is a Gorenstein ring for every contraction p = q ∩ R where q is a prime from
SuppS(N ⊗R S).

Proof. Let N be a finite R–complex, and assume that idS(N ⊗R S) is finite. Note
that [21, cor. (22.25)] forces idR N to be finite as well. Pick a prime q from
SuppS(N ⊗R S), and let p be its contraction through ϕ. Localizing implies that
idSq

(Np ⊗Rp
Sq) is finite, and as the localized homomorphism ϕq : Rp −→ Sq still

is flat [21, cor. (22.25)] states that the fiber k(p) ⊗R S is a Gorenstein ring. �

(A.4) Corollary. Assume that R is a homomorphic image of a Gorenstein ring.
Let ϕ : R −→ S be a local flat Gorenstein homomorphism, N a finite R–complex
such that idS(N ⊗R S) is finite, and assume that SuppS(N ⊗R S) equals Spec S.
Then for any prime p in Spec R there are (in)equalities

idS(ER(R/p) ⊗R S) = id(k(p) ⊗R S) < ∞.

Proof. First, as ϕ is flat the going-down property holds for ϕ; consult [35,
thm. 7.3(i)] for details. By assumption SuppS(N ⊗R S) equals Spec S. Therefore,
to any prime p in Spec R we can find a prime q from SuppS(N ⊗R S) contracting
to p. For p in Spec R the only associated prime of the injective hull ER(R/p) is p.
Thus, the injective dimension of the S–module ER(R/p) ⊗R S is

idS(ER(R/p) ⊗R S) = id(k(p) ⊗R S)

according to [25, rmk. 1]. Applying Proposition (A.3) gives the conclusion. �

(A.5) Lemma. Assume R is a homomorphic image of a Gorenstein ring. Let

ϕ : R −→ S be a local homomorphism, R −→ R′ −→ Ŝ a Cohen factorization of
the semi-completion, and let N be a bounded complex of S–modules. Then

GidR N, GidR Ñ , and GidR′ Ñ

are simultaneously finite.

Proof. Let D denote the normalized dualizing complex for R. According to [16,
thm. 4.4] we are required to show the following two equivalences

N ∈ B(R) ⇐⇒ Ñ ∈ B(R) ⇐⇒ Ñ ∈ B(R′) .

1◦ The latter equivalence follows from [16, thm. 5.3].

2◦ We move on to establishing the first equivalence. As the completion Ŝ is faithfully
flat over S there is an isomorphism of S–complexes

RHomR(D, N) ⊗L

S Ŝ
≃
−−→ RHomR(D, Ñ).

This allows us to conclude that the homology of RHomR(D, Ñ) is bounded if and
only if the homology of RHomR(D, N) is. Moreover, from the commutative diagram

Ñ D ⊗L

R RHomR(D, Ñ)
εR

fNoo

N ⊗L

S Ŝ D ⊗L

R RHomR(D, N) ⊗L

S Ŝ

≃

OO

εR
N⊗L

R
bS

oo
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it follows, using a standard mapping cone argument, that the counit εR
eN

is an

isomorphism if and only if the counit εR
N is. �

(A.6) Lemma. Assume R is a homomorphic image of a Gorenstein ring. Let
ϕ : R −→ S be a local homomorphism, and let N be a bounded complex of S–
modules. Then there are (in)equalities

GidR N = GidR Ñ 6 Gid bR Ñ .

Proof. From (A.5) we know that all three numbers are simultaneously finite; we
assume this in the sequel. The existence of a dualizing complex for R ensures
that R has Gorenstein formal fibers. Fix a prime p in Spec R and consider the
indecomposable injective R–module ER(R/p). From the main result of [25, rmk. 1]
we conclude that

id bR(ER(R/p) ⊗R R̂) = id(k(p) ⊗R R̂) 6 dim R̂ = dimR.

In general ER(R/p)⊗R R̂ is not injective over the completion R̂. A straightforward
application of Matlis’ structure theorem shows that for any non-zero injective R–

module, say J , we have that the injective dimension of J ⊗R R̂ over R̂ is finite as
well.

1◦ First we focus on the inequality GidR Ñ 6 Gid bR Ñ . From [16, thm. 3.3] it follows
that

Gid bR Ñ = sup {− inf RHom bR(J ′, Ñ) | id bR J ′ < ∞}.

and that
GidR Ñ = sup {− inf RHomR(J, Ñ) | idR J < ∞}.

Let J be a non-zero R–module of finite injective dimension. By adjointness we
obtain

− inf (RHom bR(J ⊗R R̂, Ñ)) = − inf (RHomR(J, Ñ)),

and it immediately follows that GidR N 6 Gid bR Ñ .

2◦ It remains to show GidR N = GidR Ñ . From [16, thm. 6.8] it follows that

GidR N = sup { depthRp − widthRp
Np | p ∈ Spec R}.

and also that

GidR Ñ = sup { depthRp − widthRp
(Ñ)p | p ∈ Spec R}.

However, if p is a prime from Spec R then the integer widthRp
(Ñ)p can be computed

as follows

widthRp
(Ñ)p = inf (k(p) ⊗L

Rp
(Ñ)p)

= inf (k(p) ⊗L

R N ⊗L

S Ŝ)

= inf (k(p) ⊗L

R N)

= inf (k(p) ⊗L

Rp
Np)

= widthRp
Np.

The third equality uses that Ŝ is faithfully flat over S, and the others follow trivially.

Reinserting this into the above expression of GidR Ñ yields the conclusion. �

(A.7) Lemma. Assume that R is a homomorphic image of a Gorenstein ring. Let
ϕ : R −→ S be a flat local Gorenstein homomorphism. For any finite S–complex
N the quantities GidR N and GidS N are simultaneously finite, and there is an
inequality

GidR N 6 GidS N .
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Proof. Let D be a dualizing complex for R. As ϕ is assumed to be a Gorenstein
(at n), the base–changed complex D⊗R S is dualizing for S. From [8, cor. (7.9)] we
learn that N belongs to B(R) precisely when N belongs to B(S). Hence, from [16,
thm. 4.4] we conclude that GidR N is finite, if and only if GidS N is.

We may assume that GidR N and GidS N are finite. We will demonstrate that

GidR N 6 GidS N.

Note that by [16, cor. 3.4] the finiteness of GidR N implies the existence of a prime
p from Spec R such that

GidR N = − inf RHomR(ER(R/p), N).

Since N carries a S–structure compatible with its R–structure, we have N ≃
RHomS(S, N), whence adjointness yields

GidR N = − inf RHomR(ER(R/p), N)

= − inf RHomR(ER(R/p),RHomS(S, N))

= − inf RHomS(ER(R/p)⊗R S, N).

From (A.4) we know that the injective dimension of the S–module ER(R/p) ⊗R S
is finite; in particular

GidR N = − inf RHomS(ER(R/p) ⊗R S, N) 6 GidS N

through a reference to [16, thm. 3.3]. �

(A.8) Lemma. Assume R is a homomorphic image of a Gorenstein ring. Let
ϕ : R −→ S be a local homomorphism, and let P be a finite complex of S–modules
with pdS P finite. For any finite complex N consisting of S–modules, the two
numbers

GidR N and GidR(N ⊗L

S P )

are simultaneously finite.

Proof. Let D be a dualizing complex. According to [16, thm. 4.4] it is enough to
show that N ⊗L

S P belongs to B(R) precisely when N belongs to B(R). Before
doing so, we need a handy observation: Under the present assumptions (Tensor–
eval) from (2.3) yields an isomorphism

αDNP : RHomR(D, N) ⊗L

S P
≃
−−→ RHomR(D, N ⊗L

S P ).

1◦ From e.g., [8, (1.2.2)] it follows that RHomR(D, N) is homologically degree-
wise finitely generated. Therefore, an application of [31, thm. 2.9] yields that
RHomR(D, N) and RHomR(D, N ⊗L

S P ) are bounded simultaneously.

2◦ Consider the commutative diagram

N ⊗L

S P D ⊗L

R RHomR(D, N ⊗L

S P )
ε

N⊗L

S
P

oo

N ⊗L

S P D ⊗L

R RHomR(D, N) ⊗L

S P ,

D⊗L

RαDNP≃

OO

εN⊗L

SP

oo

from which we read off that εN ⊗L

S P is an isomorphism when and only when εN⊗L

S
P

is. Resorting to [31, prop. 2.10] we obtain that εN and εN⊗L

S
P are simultaneously

isomorphisms. �
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