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Introduction

Müller generalized in [12] the notion of a Frobenius extension to left (right) quasi-Frobenius
extension and proved the endomorphism ring theorem for these extensions. Recently, Guo
observed in [9] that for a ring homomorphism ϕ : R → S, the restriction of scalars functor
has to induction functor S ⊗R − : RM → SM as right ”quasi” adjoint if and only if ϕ
is a left quasi-Frobenius extension. In this paper we shall give a further generalization of
the notion of quasi-Frobenius extension in a more general setting from the viewpoint of
an adjoint triple of functors. Using the definition of quasi-strongly adjoint pair for module
categories given by K. Morita [11], we introduce the notion of quasi-Frobenius triple of
functors for Grothendieck categories. A triple of functors (L,F,R), where F : A → B
has a left adjoint L : B → A and a right adjoint R : B → A is said to be quasi-Frobenius
whenever the functors L and R are similar in sense functorial. In this case, the functor F is
called quasi-Frobenius functor. F is a Frobenius functor in the case it has the same right and
left adjoint, i.e., L ∼= R (cf. [5]). Clearly, the class of quasi-Frobenius functors include to
the class of Frobenius functors. First we study basic properties of quasi-Frobenius functors
for Grothendieck categories. This concept generalizes la notion of left quasi-Frobenius
pair of functors given in Guo [9]. In Section 2 we give an easy and natural proof of the
characterization of quasi-Frobenius functors between module categories. In particular, a
bijective correspondence between quasi-Frobenius triple of functors is presented (in fact,
a duality). Another interesting case is given by graded rings and modules and this is
considered in Section 3. The notion of Frobenius extension for coalgebras over fields was
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introduced by Castaño Iglesias et al., [5] and extended recently to corings by Zarouali-
Darkaoui [17]. In Section 4 we characterize the quasi-Frobenius functors between categories
of comodules over corings. In the last section we introduce the notion de quasi-Frobenius
homomorphism of corings. Next we focus on corings for which the forgetful functor from
the category of right comodules of an A-coring to the category of right A-modules is quasi-
Frobenius. We term such corings quasi-Frobenius corings.

1 Quasi-Frobenius functors and properties

Let A be a Grothendieck category and consider an object X of A. For any positive integer
n, we denote by Xn the direct sum of n copies of X in the category A. Given additive and
covariant functors L,R : B → A between Grothendieck categories, we say that L divide
to R, denoted by L | R, if for some positive integer n there are natural transformations

L(X)
φ(X)

// R(X)n
ψ(X)

// L(X)

such that ψ(X) ◦ φ(X) = 1L(X) for every X ∈ B. Analogously, R | L if for some positive
integer m there are natural transformations

R(X)
φ′(X)

// L(X)m
ψ′(X)

// R(X)

such that ψ′(X) ◦ φ′(X) = 1R(X) for every X ∈ B. The functor L is said to be similar to
R, denoted by L ∼ R, whenever L | R and R | L.

Consider now a triple of functors Γ = (L,F,R), where F : A → B has a left adjoint
L : B → A and also a right adjoint R : B → A. Notice that F is exact and preserves
inverse and direct limits, L always preserves projective objects and R injective objects.

1.1 Definition. A quasi-Frobenius triple for the categories A and B consists of a triple of
functors Γ = (L,F,R) where L and R are similar functors.

The following are some nice properties of a quasi-Frobenius triple.

1.2 Lemma. Consider Grothendieck categories A,B and C. If (L,F,R) is a quasi-
Frobenius triple for A and B, then

(a) The functors L,F and R are exact, preserve injective and projective objects, direct
sums and finitely generated objects.

(b) If (L′,F′,R′) is a quasi-Frobenius triple for B and C, then

(L ◦ L′,F′ ◦ F,R ◦ R′)

is also a quasi-Frobenius triple for A and C.
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Proof. (b) is straightforward.
(a) Since F is exact, L preserves projective objects and R injective objects. Suppose that
L ∼ R. Then there are natural transformations

L
φ

// Rn
ψ

// L (1)

such that ψ ◦ φ = 1L and

R
φ′

// Lm
ψ′

// R (2)

such that ψ′ ◦ φ′ = 1R. From (1) and (2), we easily deduce that R preserve projective
objects and L injective objects. Consider now any short exact sequence in B

0 // X
f

// Y
g

// Z // 0 (3)

Applying Rn to (3), we obtain the commutative diagram with exact rows

0 // Rn(X)
Rn(f)

// Rn(Y )
Rn(g)

// Rn(Z)

L(X)
L(f)

//

φX

OO

L(Y )
L(g)

//

φY

OO

L(Z)

φZ

OO

// 0

0

OO

0

OO

0

OO

from which it follows that L(f) is monic and therefore, L exact. A similar argument with
Lm shows that R is exact.

To prove that R preserves direct sums, suppose that (Mα)α∈I is an indexed set of objects
of B. From the inclusion maps iα : Mα → ⊕α∈IMα, we have the monomorphisms R(iα) :
R(Mα) → R(⊕α∈IMα). Then the direct sum map i = ⊕iα : ⊕αR(Mα) → R(⊕α∈IMα) is
also a monomorphism. Now, from commutative diagram (right square)

0 // R(⊕Mα)
φ⊕Mα

// Ln(⊕Mα)
ψ⊕Mα

// R(⊕Mα) // 0

0 // ⊕R(Mα)
⊕φMα

//

i

OO

⊕Ln(Mα)
⊕ψMα

//

∼=

OO

⊕R(Mα)

i

OO

// 0

we have that i is also epic which implies that the functor R preserves direct sums. Sim-
ilar proof being that L preserves also direct sums. Recalling that an object M of A is
finitely generated if the functor HomA(M,−) preserves direct unions, the last affirmation
is straightforward.

1.3 Definition. A functor F : A → B is said to be quasi-Frobenius functor if (L,F,R) is
a quasi-Frobenius triple for some functors L,R : B → A.
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The notion of a left quasi-Frobenius pair of functors appeared in Guo [9] where he
proved that a ring extension ϕ : R → S is left quasi-Frobenius if and only if (ϕ∗,−⊗R S)
is a left quasi-Frobenius pair of functors, where ϕ∗ is the restriction of scalars functor.
In general, to categories A and B with finite direct sums, the pair de functors (F,L) is
called a left quasi-Frobenius pair of functors if F : A → B is a right adjoint of L : B → A
and for some positive integer n, there are natural transformations

α : 1A → (LF)n and α : (FL)n → 1B

such that
αF(X) ◦ F(αX) = 1F(X)

for all X ∈ A.
On the other hand, if the functor R : B → A is a right adjoint to F, then the unity

η : 1A → RF and the counit ρ : FR → 1B satisfied the identities ρ
F(X) ◦ F(ηX) = 1F(X)

and R(ρY ) ◦ ηR(Y ) = 1R(Y ), for all X ∈ A and Y ∈ B.
The next proposition implies, in particular, that if Γ = (L,F,R) is a quasi-Frobenius

triple of functors, then (F,L) is a left quasi-Frobenius pair.

1.4 Proposition. If Γ = (L,F,R) is a quasi-Frobenius triple of functors for A and B,
then (F,L) and (R,F) are left quasi-Frobenius pair.

Proof. Assume R|L. Then there exist morphisms

R
φ′

// Ln
ψ′

// R

such that ψ′ ◦ φ′ = 1R.
We define the functorial morphism α : 1A → (LF)n by the composition of morphisms

X
ηX

// RF(X)
φ′
F(X)

// Ln(F(X)) ∼= (LF)n(X)

for every X ∈ A. Similarly, for any Y ∈ B, the composition

(FL)n(Y ) ∼= F(Ln(Y ))
F(ψ′

Y
)
// FR(Y )

ρY
// Y

define the functorial morphism α : (FL)n → 1B. Then

αF(X) ◦ F(αX) = ρF(X) ◦ F(ψ′
F(X) ◦ φ

′
F(X) ◦ ηX)

= ρF(X) ◦ F(1RF(X) ◦ ηX)

= ρF(X) ◦ F(ηX) = 1F(X)

.

This means that (F,L) is a left quasi-Frobenius pair. Likewise, using that L|R, we obtain
the other afirmation.
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2 Quasi-Frobenius functors for module categories

Consider associative and unital rings R and S. We use the standard module theory no-
tation, for example a (R, S)-bimodule M is denoted by RMS, HomR(−,−) denotes the
Abelian group of R-module maps. The dual of a left R-module M is denoted by (RM)∗.
Finally, RMS denotes the category of all (R, S)-bimodules. Bimodules M ∈ RMS and
N ∈ RMS are called similar, abbreviated RMS ∼ RNS, if there are m,n ∈ N and (R, S)-
bimodules P and Q such that M ⊕ P ∼= N (m) and N ⊕ Q ∼= M (n) as bimodules (cf. [2]).
It is easy see that “∼” defines an equivalence relation on the class of (R, S)-bimodules.

2.1 Lemma. Let M and N be (R, S)-bimodules. Then RMS ∼ RNS if and only if the
tensor functors M ⊗S − and N ⊗S − are similar.

Proof. It is clear because the tensor product preserves direct sums.

The following characterization could be deduced from results in the Morita’s paper [11],
but we shall give here its proof for the sake of completeness.

2.2 Theorem. For functors F : RM → SM and L,R : SM → RM, the following
statements are equivalent.

(a) (L,F,R) is a quasi-Frobenius triple.

(b) There exist bimodules SMR, RNS and RNS with the following properties:

(1) SMR and RNS are finitely generated and projectives on both sides.

(2) F ∼= M ⊗R −, L ∼= N ⊗S − and R ∼= N ⊗S −.

(3) (RN)∗ ∼= SMR and (SM)∗ ∼= RNS as bimodules and RNS ∼ RNS.

Proof. Assume (a) and write M = F(RR), N = L(SS) and N = R(SS). It is well known
that M is an (S,R)-bimodule and N,N are (R, S)-bimodules. By Lemma 1.2, SM, RN

and RN are finitely generated and projectives. Also, from Lemma 1.2 and [15, Theorem
3.7.5] , we have F ∼= M ⊗R −, L ∼= N ⊗S − and R ∼= N ⊗S −. Now from the adjoint pair
(L,F) we have the functorial isomorphism

HomR(L(−),−) ∼= HomS(−,F(−))

and, in particular, the isomorphism of (R, S)-bimodules

HomR(L(SS),RR) ∼= HomS(SS,F( RR))

So, (RN)∗ ∼= SMR as (S,R)-bimodules and this implies that MR is finitely generated and
projective as right R-module. Similarly, from adjoint pair (F,R) we have the isomorphism
of (R, S)-bimodules (SM)∗ ∼= RNS, and, hence, NS is also finitely generated and projective.
Finally, by Lemma 2.1, RNS ∼ RNS since L ∼ R.
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Assume (b). We want to prove that (N ⊗S−,M ⊗R−, N ⊗S−) is a quasi-Frobenius triple.
By [2], the functor F ∼= M ⊗R − is left adjoint to HomS(M,−). But

HomS(M,−) ∼= (SM)∗ ⊗S − ∼= N ⊗S −,

which implies that
HomS(M,−) ∼= N ⊗S −

Hence, the functor N⊗S− is right adjoint to the functor M⊗R−. Analogously, the functor
N ⊗S − is left adjoint to M ⊗R −. The similarity of the functors N ⊗S − and N ⊗S − it
follows of Lemma 2.1, since RNS ∼ RNS.

2.3 Proposition. For each quasi-Frobenius triple (L,F,R) for RM and SM there is a
quasi-Frobenius triple (L,F,R) for MR and MS such that the correspondence (L,F,R) 7→
(L,F,R) between quasi-Frobenius triples is bijective up to natural isomorphisms. In fact,
is a duality between the categories of quasi-Frobenius functors.

Proof. By Theorem 2.5, there are finitely generated projective bimodules SMR, RNS and

RNS with the property (RN)∗ ∼= SMR, (SM)∗ ∼= RNS and RNS ∼ RNS. Moreover,
F ∼= M ⊗R −, L ∼= N ⊗S − and R ∼= N ⊗S −. Put RM

′
S = (SM)∗; SN

′
R = (RN)∗ and

SN
′

R = (RN)∗. The bimodules RM
′
S and SN

′

R are finitely generated and projective on both
side. Define the functors F : RM → SM and L,R : SM → RM as

F = −⊗R N ; L = −⊗S M ; R = −⊗S (RN)∗.

Clearly (M ′
S)

∗ ∼= SN
′

R and (N ′
R)∗ ∼= RM

′
S. Finally, from RNS ∼ RNS, we get (RN)∗ ∼

(RN)∗. But

(RN)∗ ∼= SMR = SN
′

R and (RN
∗ ∼= SN

′
R.

Therefore, SN
′

R ∼S N ′
R. Now, by Theorem 2.5, (L,F,R) is a quasi-Frobenius triple for

MR and MS. Clearly, this correspondence is bijective.

Let ϕ : R → S be a ring homomorphism. Then S can be regarded as a two-sided
R-module by ϕ in the natural way. Thus HomR(RS,R) has a structure of (R, S)-bimodule:
(rfs)(x) = rf(sx) for f ∈ HomR(RS,R), s, x ∈ S and r ∈ R. We can associate to ϕ the
restriction of scalars functor lϕ∗ : SM → RM, the induction functor S⊗R− : RM → SM
and the coinduction functor HomR(RSS,−) : RM → SM. It is well known that S ⊗R − is
left adjoint to lϕ∗ and that HomR(RSS,−) is right adjoint to lϕ∗. From Theorem 2.5, lϕ∗

is a quasi-Frobenius functor if and only if RS is finitely generated projective and SSR ∼
HomR(S,R). By symmetry, we can consider also the restriction functor ϕr∗ : MS → MR

and its adjoint functors −⊗R S and HomR(SR,−).

2.4 Corollary. If (S ⊗R −, lϕ∗, HomR(RS,−)) is a quasi-Frobenius triple for RM and

SM, then (−⊗R S, ϕ
r
∗, HomR(SR,−)) is a quasi-Frobenius triple for MR and MS.
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Proof. Straightforward from Proposition 2.3, since F ∼= −⊗S S = ϕr∗.

The rest of this section will study the notion of quasi-Frobenius extension (left and
right extension) in terms of quasi-Frobenius functors. A ring homomorphism ϕ : R → S

is called left quasi-Frobenius extension if RS is finitely generated and projective and

SSR |HomR(RS,R). Equivalently, SR is finitely generated projective and HomR(SR, R) | RSS.
Similarly, ϕ is called right quasi-Frobenius extension if SR is finitely generated and projec-
tive and RSS |HomR(SR, R) (or HomR(RS,R) | SSR). Then ϕ is a quasi-Frobenius extension
(left and right extension) if RS is a finitely generated projective and SSR ∼ HomR(RS,R).
Equivalently, SR is finitely generated projective and RSS ∼ HomR(SR, R). Therefore, the
ring extension ϕ is quasi-Frobenius if and only ϕ∗ : SM → RM is a quasi-Frobenius
functor. The next lemma it follows from our remarks above.

2.5 Lemma. Let ϕ : R → S be a ring extension. Then the following statements are
equivalent.

(a) ϕ is a quasi-Frobenius extension.

(b) lϕ∗ is a quasi-Frobenius functor.

(c) ϕr∗ is a quasi-Frobenius functor.

Recall of [2] that a k-algebra R is called quasi-Frobenius if RRk ∼ Homk(R, k). This is
equivalent to say that the functor (−)ε : MR → Mk is quasi-Frobenius where ε : k → R

is the canonical ring morphism.

2.6 Lemma. Let ϕ : R → S be and ψ : S → T be two quasi-Frobenius extensions of
k-algebras. Then the composition ψ ◦ ϕ is also a quasi-Frobenius extension. In particular,
if R is a quasi-Frobenius algebra, then S too.

Proof. This follows from Lemma 1.2 (b).

2.7 Remark. An example of finite-dimensional quasi-Frobenius algebra which is not a
Frobenius algebra is gives in [13]. This shows that there are quasi-Frobenius functors
which are not Frobenius functors.

3 Quasi-Frobenius functors in graded rings

Let G be a group with neutral element e. A ring R is said to be G-graded if there is a family
{Rx; x ∈ G} of additive subgroups of R such that R =

⊕
x∈GRx, and the multiplication in

R is such that, for all x and y in G, RxRy ⊆ Rxy. Similarly, a left R-module M is graded by
G if there is a family {Mx; x ∈ G} of additive subgroups of M such that M =

⊕
x∈GMx,

and for all x and y in G, RxMy ⊆Mxy. We will denote by R-gr the category of all G-graded
left R-modules over the unital group-graded ring R. It is well known (see e.g. [14]) that
associated to ring homomorphism ϕ : Re → R we have always the adjoint pair

Ind(−) : Re
M ⇄ R-gr : (−)e

7



where (−)e is the exact restriction at e functor give by M 7→ Me, for every left graded
R-module M =

⊕
x∈GMx and Ind(−) the induction functor give by Ind(N) = R ⊗Re

N ,
for every left Re-module N . This left R-module can be graded by putting (Ind(N))y =
Ry⊗Re

N for every y ∈ G. It was shown in [14] that the functor Ind(−) is a left adjoint of
the functor (−)e and the unity of the adjunction η : 1

Re
M → (−)e ◦ Ind(−) is a functorial

isomorphism.
The functor (−)e has also a right adjoint called the e-th coinduced functor

Coind(−) : Re
M → R-gr,

where for every left Re-module N , Coind(N) is an object of R-gr, with gradation

Coind(N)y = {f ∈ HomRe
(R,N) | f(Rx) = 0, ∀x 6= y−1}

Moreover, the counity of this adjunction τ : (−)e ◦ Coind(−) → 1
Re

M is a functorial
isomorphism. Clearly, (−)e is a quasi-Frobenius functor if (Ind(−), (−)e, Coind(−)) is a
quasi-Frobenius triple of functors.

3.1 Theorem. Let R be a G-graded ring. The following assertions are equivalent.

(a) (−)e is a quasi-Frobenius functor.

(b) Ind(−) ∼ Coind(−).

(c) ∀x ∈ G, Rx is finitely generated and projective in Re
M and R ∼ Coind(Re).

Proof. (a) ⇔ (b) is clear.
(b) ⇒ (c). Assume that Ind(−) ∼ Coind(−). Then Ind(Re) ∼ Coind(Re). But Ind(Re) ∼=
R which implies that R ∼ Coind(Re) as (R,Re)-bimodules. On the other hand, by the
properties of adjoint functors it follows that the functor (−)e has the following property:
”If M ∈ R-gr is a finitely generated projective object, then Me ∈ Re

M is finitely generated
projective Re-module”. In particular, if M = R(x) for any x ∈ G, then Rx is a projective
and finitely generated Re-module.
(c) ⇒ (b). Assume that RRRe

|Coind(Re). Then there exists morphisms in Re
M

R
f

// Coind(Re)
n g

// R (4)

with g ◦ f = 1R. For any left Re-module X, apply the functor − ⊗Re
X to (4) and we

obtain

R ⊗Re
X

f⊗X
// Coind(Re)

n ⊗Re
X ∼= (Coind(Re) ⊗Re

X)n
g⊗X

// R⊗Re
X (5)

By assumption Rx is finitely generated and projective, whence HomRe
(Rx, Re) ⊗Re

X ∼=
HomRe

(Rx, X). In particular, Coind(Re) ⊗Re
X ∼= Coind(X). Then the sequence (5) is

given by

R⊗Re
X

f⊗X
// Coind(X)n

g⊗X
// R ⊗Re

X

Since (g ⊗ X) ◦ (f ⊗ X) = (g ◦ f) ⊗ X = 1R ⊗ X, this implies that Ind(−) |Coind(−).
Analogously, we can prove that Coind(−) | Ind(−). Therefore, Ind(−) ∼ Coind(−).
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3.2 Remark. Let R =
⊕

x∈GRx be a k-algebra graded by a group G. We consider the
forgetful functor U : R-gr → RM, where R-gr is the category of G-graded modules. It is
well know that U has a right adjoint functor F : RM → R-gr. If U is a quasi-Frobenius
functor, then U commutes with direct products and by [5, Corollary 4.4], G is finite. This
implies that U is a Frobenius functor (see [6, Proposition 2.5]).

4 Quasi-Frobenius functors between categories of co-

modules over corings

Let A be an associative and unitary algebra over a commutative ring (with unit) k. We
recall from [16] that an A-coring C consists of an A-bimodule C with two A-bimodule maps

∆ : C → C ⊗A C, ǫ : C → A

such that (C ⊗A ∆) ◦ ∆ = (∆ ⊗A C) ◦ ∆ and (C ⊗A ǫ) ◦ ∆ = (ǫ ⊗A C) ◦ ∆ = 1C. A right
C-comodule is a pair (M, ρM) consisting of a right A-module M and an A-linear map
ρM : M → M ⊗A C satisfying (M ⊗A ∆) ◦ ρM = (ρM ⊗A C) ◦ ρM and (M ⊗A ǫ) ◦ ρM = 1M .
The right C-comodules together with their morphisms form the additive category MC. If

AC is flat, then MC is a Grothendieck category.
Throughout this section, C and D denote corings over the associative and unitary k-
algebras A and B, respectively. Following [8, 2.3 and 2.4], the (C,D)-bicomodules are
the objects of the k-linear category CMD whose morphism are those (A,B)-bimodule
maps, which are morphisms of C-comodules and of D-comodules. Furthermore, given
bicomodules N ∈ DMC and N ∈ CMD′

with D
′ any B′-coring, we can consider the

cotensor product N�CN . If DB and B′D are flat modules, then N�CN is a (D,D′)-
bicomodule. In particular, N�CC ∼= N as (D,C)-bicomodule.

4.1 Definition. A bicomodule DNC will be said to be similar to bicomodule DNC, ab-
breviated DNC ∼ DNC, if there are m,n ∈ N and (D,C)-bicomodules P and Q such that

N ⊕ P ∼= N
(m)

and N ⊕Q ∼= N (n) as bicomodules.

It is easy see that “∼” defines an equivalence relation on the class of (D,C)-bicomodules.
In this section we will characterize quasi-Frobenius functors between categories of comod-
ules over corings. We first prove the following result.

4.2 Lemma. Suppose that AC and BD are flat and N,N ∈ DMC. Then DNC ∼ DNC if
and only if −�DN ∼ −�DN.

Proof. If −�DN ∼ −�DN , then D�DN ∼ D�DN and hence DNC ∼ DNC. Assume
now that DNC | DNC. This condition establish that for some positive integer n there are
bicomodule morphisms

N
f

// N
n g

// N

9



such that g ◦ f = 1N . For any right D-comodule X we apply the cotensor functor X�D−
to the above sequence and we obtain

X�DN
1X�f

// (X�DN)n
1X�g

// X�DN

Clearly, (1X�g) ◦ (1X�f) = 1X�(g ◦ f) = 1X�DN . This implies that −�DN | −�DN.

Analogously, from DNC | DNC we get −�DN | −�DN. Thus −�DN ∼ −�DN.

Recall of [1] that a bicomodule X ∈ CMD is called an injector as right D-comodule if
the functor −⊗A N : M → MD preserves injective objects.

4.3 Theorem. Suppose that AC and BD are flat. For k-linear functors F : MC → MD

and L,R : MD → MC, the following statements are equivalent.

(a) Γ = (L,F,R) is a quasi-Frobenius triple.

(b) There exist bicomodules CMD, DNC and DNC with the following properties.

(1) MD and NC are quasi-finite and injector comodules.

(2) F ∼= hC(N,−), L ∼= hD(M,−) and R ∼= −�DN.

(3) hC(N,C) ∼= CMD, hD(M,D) ∼= DNC and hD(M,D) ∼ DNC as bicomodules.

Proof. (a) ⇒ (b). F is exact and preserves inductive limits. By [8, Theorem 3.5], the functor
F is naturally equivalent to −�CM where CMD is a bicomodule such that MD = F(C).
From Lemma 1.2, L and R are also exact. Then L ∼= −�DN and R ∼= −�DN where DNC

and DNC are bicomodules such that NC = L(D) and NC = R(D). Now taking X = CMD

and Λ = DNC, the condition (i) in [17, Proposition 2.9] hold. This implies that NC is
quasi-finite and injector as a right C-comodule and hD(N,C) ∼= CMD. Since F is a left
adjoint to R and NC is quasi-finite, we obtain that F ∼= hC(N,−). By a similar argument,
taking X = DNC and Λ = CMD, we find that MD is quasi-finite and injector as a right
D-comodule and hD(M,D) ∼= DNC. Moreover, L ∼= hD(M,−). Finally, from L ∼ R it
follows that hD(M,D) ∼ DNC.

(b) ⇒ (a). Assume that there exist bicomodules CMD, DNC and DNC satisfying (1), (2)
and (3). From the condition hD(M,D) ∼ DNC of (3) and Lemma 4.2, −�DhD(M,D) ∼
−�DN . But hD(M,−) ∼= −�DhD(M,D), since MD is quasi-finite and injector (see [1,
Corollary 3.12]). Therefore, L ∼ R. Now, [8, Proposition 4.2] establish that the functors
hC(N,−) and hD(M,−) are left adjoint to −�DN and −�CM , respectively. Hence Γ is a
quasi-Frobenius triple.

5 Quasi-Frobenius corings versus quasi-Frobenius ex-

tension of corings

Following [8], a coring homomorphism from the A-coring C into the B-coring D is a pair
(ϕ, ρ), where ρ : A → B is a homomorphism of k-algebras and ϕ : C → D is a homomor-
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phism of A-bimodules such that

ǫD ◦ ϕ = ρ ◦ ǫC and ∆D ◦ ϕ = ωD,D ◦ (ϕ⊗A ϕ) ◦ ∆C,

where ωD,D : D ⊗A D → D ⊗B D is the canonical map induce by ρ : A → B. The functor
−⊗A B : MC → MD has a right adjoint −�D(B ⊗A C) : MD → MC [8, Proposition 5.4].
Moreover, if (C ⊗A B)D is a quasi-finite D-comodules, then the functor hD(C ⊗A B,−) :
MD → MC is a left adjoint to −�C(C ⊗A B) ∼= (−�CC) ⊗A B ∼= −⊗A B. In this case we
have a tripe de functors

Γ = (hD(C ⊗A B,−),−⊗A B,−�D(B ⊗A C))

between the Grothendieck categories MC and MD where (B ⊗A C)C is quasi-finite by [8,
Proposition 5.4]. Moreover, (B ⊗A C)C is an injector because the functor −�D(B ⊗A C) is
right adjoint to the exact functor −⊗A B. From Theorem 4.3 we have the following

5.1 Theorem. Let (ϕ, ρ) : C → D be a homomorphism of corings such that AC and BD

are flat. The following statements are equivalent

(a) −⊗A B : MC → MD is a quasi-Frobenius functor;

(b) C⊗AB is quasi-finite and injector as a right D-comodule and hD(C⊗AB,D) ∼ B⊗AC

as (D,C)-bicomodules.

5.2 Remark. 1. When applied to the case where C = A and D = B are the trivial
corings, Theorem 5.1 recover Lemma 2.5 where is gives a functorial characterization
of quasi-Frobenius ring extensions. In this case we have that A ⊗A B ∼= B is quasi-
finite as a right B-comodule if and only AB is finitely generated and projective.
Moreover, hB(B,−) ≃ −⊗B HomA(AB,A).

2. When A = B, the corectriction functor (−)ϕ : MC → MD is quasi-Frobenius if and
only if CD is a quasi-finite and injector and hD(C,D) ∼ C as (D,C)-bicomodules.

3. When A = B = k, Theorem 5.1 establish that the corectriction functor (−)ϕ :
MC → MD is quasi-Frobenius if and only if CD is a quasi-finite and injector and
hD(C,D) ∼ C as (D,C)-bicomodules. If k is a field, then the ”injector” condition is
equivalent to the ”injectivity” condition (cf. [1]).

It is then reasonable to give the following definition.

5.3 Definition. Let (ϕ, ρ) : C → D be a homomorphism of corings such that AC and BD

are flat. It is said to be a right quasi-Frobenius morphism of corings if −⊗AB : MC → MD

is a quasi-Frobenius functor.

Quasi-Frobenius corings. Let C be an A-coring. The forgetful functor U : MC → MA

has the right adjoint − ⊗A C (see [3, Lemma 3.1]). When AC is finitely generated and
projective, the functor HomA(C,−) : MA → MC is a left adjoint to U. We study corings
for which −⊗A C and HomA(C,−) are similar, i.e., those for which U is a quasi-Frobenius
functor.
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5.4 Definition. An A-coring C is called quasi-Frobenius coring provided the forgetful
functor U : MC → MA is a quasi-Frobenius functor.

A characterization of such corings is the following that generalizes [9, Theorem 4.2]
for left quasi-Frobenius corings. Before, we recall of [16, Proposition 3.2(a)] that, T =A

Hom(C, A) is a ring with unit ǫC. T is a left A-module via (a · t)(c) = t(c · a), for all
a ∈ A, c ∈ C, t ∈ T . Furthermore the map i : A → T given by i(a)(c) = ǫC(c)a is a ring
map.

5.5 Theorem. Let C be an A-coring wiht AC flat and T be the opposite algebra of ∗C.
Then the following assertions are equivalent.

(a) C is a quasi-Frobenius coring;

(b) AC is finitely generated projective module and i : A→ T is a quasi-Frobenius extension.

(c) AC is finitely generated projective module and C ∼ T as (A, T )-bimodules where C is a
right T -module via c · t = c(1) · t(c(2)), for all c ∈ C, and t ∈ T .

Proof. By [4, Example 2.6], A can be viewed as a trivial A-coring and the category of
comodules of A, MA is isomorphic to MA. Then (a) ⇔ (c) follows from letting D = A in
the Theorem 5.1 together with [17, Lemma 4.4 (1)].
(a) ⇔ (b). It follows from [3, Lemma 4.3]. Indeed, if AC is finitely generated projective
module, then the categories MC and MT are isomorphic. This implies that the functor
i∗ : MT → MA is quasi-Frobenius if and only if the forgetful functor U : MC → MA is
quasi-Frobenius.

5.6 Corollary. Let ϕ : C → D be a right quasi-Frobenius homorphism of A-corings. If D

is a quasi-Frobenius A-coring, then C is also a quasi-Frobenius A-coring.

Proof. Obvious from Lemma 1.2 (b), since the forgetful functor UC is the composition of
the quasi-Frobenius functors

MC
−⊗AA

// MD
UD

// MA

5.7 Remark. A categorical description of quasi-co-Frobenius corings was initiated recently
by Iovanov and Vercruysse [10]. Clearly, our concept of quasi-Frobenius coring is different.

From Sweedler [16], given a ring extension ρ : R → S one can view C = S ⊗R S as an
S-coring. C is known as Sweedler’s coring associated to ρ. The following result generalizes
[4, Theorem 2.7] and [9, Proposition 4.3] and can be viewed as the endomorphism ring
theorem for quasi-Frobenius extension in terms of corings.

5.8 Proposition. Let C = S ⊗R S be the Sweedler’s coring associated to a ring extension
ρ : R → S. If S is a quasi-Frobenius extension of R, then C is a quasi-Frobenius S-coring.
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Proof. Assume that ρ∗ is a quasi-Frobenius functor. Then RS is finitely generated projec-
tive and SSR ∼ (RS)∗ as (S,R)-bimodules. By Lemma 1.2, the functor − ⊗R S preserves
finitely generated and projective modules. Hence, (S ⊗R S)S is finitely generated and
projective as right S-module. Applying −⊗R S to SSR ∼ (RS)∗ we obtain

R(S ⊗R S)S ∼ (RS)∗ ⊗R S ∼= EndR(S).

Now from [7, Proposition 2.1], EndR(S) ∼= T , where T is the opposite algebra of ((S ⊗R

S)S)
∗. Therefore S ⊗R S ∼ T , and S ⊗R S is a quasi-Frobenius S-coring by Theorem

5.5.
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