
Int. J. Bioinformatics Research and Applications, Vol. x, No. x, xxxx 1

Phylogenetic Analysis Using Complete
Signature Information of Whole Genomes and
Clustered Neighbor-Joining Method

Xiaomeng Wu∗, Xiu-Feng Wan†,
Gang Wu∗, Dong Xu‡, and Guohui Lin∗§

∗Bioinformatics Research Group
Department of Computing Science, University of Alberta
Edmonton, Alberta T6G 2E8, Canada.
Emails: xiaomeng,wgang,ghlin@cs.ualberta.ca

†Department of Microbiology, Miami University
Oxford, Ohio 45056, USA.
E-mail: wanx@muohio.edu

‡Digital Biology Laboratory
Department of Computer Science, University of Missouri – Columbia
Columbia, Missouri 65211, USA.
Emails: xudong@missouri.edu

§ To whom correspondence should be addressed.

Abstract: The availability of complete genomic sequences allows us
to infer the evolutionary footprints for species more precisely at a global
scale. However, the size of these genomic sequences poses a challenge on
computational efficiency and optimality of information representation in
phylogenetic analyses. In this paper, a new method called complete com-
position vector (CCV), which is a collection of composition vectors, is
described to infer evolutionary relationships between species using their
complete genomic sequences. Such a method bypasses the complexity
of performing multiple sequence alignments and avoids the ambiguity of
choosing individual genes for species tree construction. It is expected
to effectively retain the rich evolutionary information contained in the
whole genomic sequence. The method was applied to infer the evolu-
tionary footprints for several datasets that have been previously studied.
The final phylogenies were built by an improved clustered Neighbor-
Joining method. The generated phylogenetic trees are highly consistent
with taxonomy hierarchy and previous studies, with some biologically
interesting disagreements.
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1 Introduction

Molecular phylogenetic analyses have been employed widely in the fundamental
understanding of evolutionary footprints for various sets of species. Traditional
molecular phylogenetic approaches, such as maximum parsimony, utilize only par-
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tial nucleotide or amino acid sequence of each species, mostly due to their limited
computing strength. It is well known that the analyses using different parts of se-
quence information may generate conflicting results for the evolutionary pathways
of a same set of species. The advances in sequencing technologies have produced
a vast amount of sequence data, typically whole genomes for the interested living
organisms. Such an availability of whole genomic data provides us an opportu-
nity to analyze the evolutionary footprints of living organisms at the genome scale.
Nonetheless, this huge amount of data poses challenges for both information repre-
sentation and computational complexity resolving.

During the past a few years, a number of efforts have been contributed to
phylogenetic analyses using whole genomic sequences, which could be either whole
genomes, or complete gene sequence sets, or complete protein sequence sets [4, 8, 9,
10, 11, 12, 14, 15, 16, 17, 19, 21, 22, 23, 24, 25, 26, 27]. These approaches all avoid the
high computational complexity of multiple sequence alignment (including genome
reorganization) to compute an evolutionary distance between species, which is a
big challenge in distance-based phylogenetic analyses. Based on the nature of their
proposed distance measurements, these methods can be classified into the following
three categories: (1) Gene content based [11, 12, 21, 23]. In these methods, the
evolutionary distance between two species is measured as the number of homologous
genes divided by the total number of genes, or its variants. (2) Data compression
based. Extended from plain text or image data compression, regularities identified
in genetic sequences by compression algorithms are assumed to represent biological
significance for evolutionary history [8, 16]. These methods include Kolmogorov
complexity [4, 14], gzip [1], and Lempel-Ziv compression algorithm [13, 31]. It has
been noted that due to the involvement of several sophisticated procedures, these
compression-based methods generally suffer from aggregated errors. (3) String
composition based. It is found that some short palindromes are underrepresented
in many bacterial genomic sequences and thus the numbers of their occurrences
might serve as species-specific signatures [9]. String composition is a comprehensive
representation of the genome. Different evolutionary distance measurements have
been proposed to utilize string composition, based on the composition vector on
short strings of a fixed length [7, 10, 17], or on the information discrepancy of short
strings of a fixed length [15], or on the singular value decomposition (SVD) of a
tri/tetra-peptide frequency matrix [25, 26]. Essentially, they utilized either partial
[10, 15] or some abstracted [25] string composition information.

In this paper, we propose a new evolutionary information representation, com-
plete composition vector (CCV), by using a collection of composition vectors. These
composition vectors are built on the frequencies of length-k strings, where k is
within a range. The range of k is empirically determined to ensure that the CCV
contains the largest amount of evolutionary information hidden in the whole ge-
nomic data. CCV is developed on top of composition vector but it is not a simple
extension of composition vector whereby several disadvantages such as the discon-
nectivity between composition vectors have been overcome. By its nature, CCV
can be classified into the third category in the above. A new evolutionary distance
measurement based on CCV is then designed, and empirically verified through the
phylogenetic footprint analyses of a dataset of 64 vertebrate mitochondria and a
dataset of 99 microbial whole genomes. For this purpose, we have integrated a
clustering algorithm, k-medoids, into the ordinary Neighbor-Joining method [20]
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to construct phylogenies in a layered style. Such a variant is called the clustered
Neighbor-Joining.

2 Methods and Material

The nucleotide composition and the amino acid composition have been widely
applied in analyzing genetic sequences, and they are employed as species signatures
to define the evolutionary distance in phylogeny construction. String composition
generalizes the notion to include longer consecutive segments, called strings, of the
sequences into consideration [7, 10, 15, 17, 25, 26].

We noticed that, although the set of dinucleotide odd ratio values constitute a
signature of each DNA genome, more interests have been shown in studying the
protein product of DNA genome to identify the evolutionary closeness. As shown
in [10], among the whole DNA genome sequences, coding regions and protein se-
quences, using protein sequences can discover more accurate phylogenetic relations.
Peptide composition information has also been used to build composition profiles
for proteins [29] and thus provides a view for evolutionary process. This is be-
cause protein sequences are far away from random, particularly some portions such
as catalytic domains are under strong conservation pressure. In this paper, we
concentrate on the analysis and the subsequent results on amino acid sequences.

In the more general and recent format along this line of research, composition
vector (CV) [10], complete information set (CIS) [15], and tri/tetra-peptide compo-
sition [25] are three most recent evolutionary information representations for whole
genome phylogeny construction. The complete composition vector (CCV) is to
integrate the key strategies from both CV and CIS to retain the most evolution-
ary information. In the following subsections, we will first describe the concepts
of CV and CIS respectively, and then CCV followed by a new evolutionary dis-
tance measurement based upon it. Lastly, the clustered Neighbor-Joining method
to construct phylogenies in a layered style is presented.

2.1 Composition Vector

The k-th composition vector for a genomic sequence, represented as a set of
its protein sequences, is defined on the set of length-k strings/peptides. In the
simplest case, when k = 1, it reduces to single amino acid composition. In [10],
the composition vector is computed in two stages, namely, counting and random
background subtraction. Through these two steps, a complete protein sequence set
is transformed into a composition vector. Note that there are in total 20k distinct
length-k strings to be considered. To illustrate, given a protein sequence S, in
the counting stage, the total number of appearances of string α1α2 . . . αk in S,
called the frequency and denoted as f(α1α2 . . . αk), is obtained. The appearance
probability p(α1α2 . . . αk) of string α1α2 . . . αk in S is defined as

p(α1α2 . . . αk) =
f(α1α2 . . . αK)

L− k + 1
, (1)

where L is the length of S and (L − k + 1) is the total number of length-k strings
in S. Such frequencies or probabilities imply the results of “random mutation and
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selective evolution” in terms of using length-k strings as “building blocks”.
The next stage of computation is to remove the “random mutation” from the

probabilities such that the remaining “selective evolution” information can be used
as species-specific evolutionary evidence or signature. Such a process is based on the
assumption that at the molecular level, mutations occur randomly and selections
shape the direction of evolution with neutral random changes remained. The stage
of random background subtraction is to highlight the role of selective evolution,
and is described as follows.

When k = 1, the following subtraction process does not apply, and the vector
of probabilities is adopted as the composition vector. Assuming k ≥ 2, the proba-
bilities of all length-k, length-(k − 1), and length-(k − 2) strings are calculated as
in the above. (We set the probability for the empty string to be 1 [7].) From the
probabilities of length-(k − 1) and length-(k − 2) strings, the expected probability
of appearance of a length-k string α1α2 . . . αk, denoted as p0(α1α2 . . . αk), can be
estimated by assuming a Markov model:

p0(α1α2 . . . αk) =

{
p(α1α2...αk−1)×p(α2α3...αk)

p(α2α3...αk−1)
, if p(α2α3 . . . αk−1) 6= 0,

0, otherwise.
(2)

We note that such a kind of Markov model estimation has been used for biological
sequence analysis for a long time [2], and the dinucleotide odd ratio values in [7]
is a special case for k = 2. p0(α1α2 . . . αk) is calculated to capture the extent of
random mutation. The difference between the actual probability p(α1α2 . . . αk) and
the expected probability reflects the role of selective evolution, that is,

s(α1α2 . . . αk) =

{
p(α1α2...αk)−p0(α1α2...αk)

p0(α1α2...αk) , if p0(α1α2 . . . αk) 6= 0,
0, otherwise.

(3)

The s(·) values for all length-k strings for species S are calculated and put together
in a fixed indexing order, for instance the alphabetical order, to form the k-th
composition vector for species S:

Sk = (s1, s2, . . . , sNk
),

where Nk = 20k is the number of distinct length-k strings (for protein sequences).
Note that in the above notation we used numerical indices rather than alphabetical
ones of length-k strings, but such a mapping can be easily specified.

2.2 Complete Information Set

The concept of Complete Information Set (CIS) was first proposed in phyloge-
netic studies by Li et al. [15], but not fully used in their real computations. Given
a sequence S with length of L, for every integer k in the range [1, L], the appear-
ance probability p(α1α2 . . . αk) for each length-k string α1α2 . . . αk is computed
as in Equation (1). These p(·) values for all the distinct length-k strings form
the k-th information set Uk for sequence S. The collection of information sets
(U1, U2, . . . , UL) contain all primary information of S (in particular the L-th infor-
mation set UL uniquely determines S), and it is called the Complete Information
Set of sequence S. An evolutionary distance measures the information discrepancy
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based on the CIS and it is employed in [15] for whole genome phylogenetic analysis.
It should be mentioned that in [15], however, not the CIS (U1, U2, . . . , UL) but only
one information set U `max of a fixed window size `max was used in the calculation of
pairwise evolutionary distance. Their empirical studies showed that `max is usually
small, for example, `max = 12 if L ≈ 100Mb. It is unclear though, according to [15],
how the window size is related to input sequence length, although an empirical for-
mula was given in the article. One criticism on CIS [15] has been that the method
mainly depends on information theory, the discrepancy, rather than a meaningful
biological model. It is also not obvious if the random mutation background can be
removed by the measure of information discrepancy.

2.3 Complete Composition Vector and an Evolutionary Distance Measure

Composition vector is expected to effectively capture the signature information
of natural selection that shapes the evolution through a background noise subtrac-
tion. However, the subtraction stage disconnects the k-th composition vector and
the (k − 1)-th composition vector. For instance, in the k-th composition vector of
sequence S, i.e. Sk = (s1, s2, . . . , sNk

), the components s(α1α2 . . . αk)’s are not able
to be used to recover s(α1α2 . . . αk−1)’s or lower orders of components. This can
be seen clearly at the extreme case when length-k strings become unique in given
sequence S. In that extreme case, the (k + 2)-th composition vector becomes a
zero vector and thus does not contain any information. Nonetheless, from the k-th
information set Uk = {p1, p2, . . . , pNk

}, the (k− 1)-th information set Uk−1 can be
easily recovered. Thus, we propose the Complete Composition Vector (CCV), a new
evolutionary information representation method, to integrate the idea of “random
mutation background subtraction” in CV and the idea of “complete information”
in CIS. The advantage of CCV over CV is to supplement the information loss
in CV during the subtraction stage by using a collection of composition vectors
(Sk1 , Sk1+1, . . . , Sk2), where k1 and k2 (k1 ≤ k2) are two pre-determined bounds
on the length of strings. The advantage of CCV over CIS is to remove random
mutation background from the evolutionary distance calculation. Intuitively, by
setting k1 = 1 and k2 = L, CCV would capture the most comprehensive evolution-
ary information for the target species as CIS does, yet remove background noise as
CV does. In the next section, we will have an experiment designed to empirically
determine k1 and k2, since composition vectors on too short and too long strings
carry little evolutionary information. We found that k1 = 3 and k2 = 7 is one of the
best settings. Note also that by narrowing down the length range, the computation
becomes more efficient.

To compute the evolutionary distance between two species, we represent the
species as vectors in the high dimensional space using their CCVs. We use the co-
sine of the angle formed by two representing vectors to be the relative relatedness
(correlation) between the two species. Such a correlation has been adopted in some
other papers such as [10, 25], and it is based on the observations that a pair of molec-
ular sequences having similar compositions of short strings would be represented
in high dimensional space by only two slightly different vectors and as the evolu-
tion diverges, the vector representations start to separate in the high-dimensional
space and thus the angle between their vectors is increasing at the same time. A
theoretical and empirical justification for the use of cosines to measure relatedness
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can be found in [18]. Once the relative relatedness of two species is identified, it
is trivial to convert it into a distance measure [10, 25]. In this way, a pairwise
distance matrix can be constructed which is then fed into the standard distance
based phylogeny construction methods, such as the Neighbor-Joining method [20],
to generate phylogenies.

Given the string length range [k1, k2], for any two species with their genomic
sequences S and T , their CCV’s are

S = (Sk1 , Sk1+1, . . . , Sk2) and T = (T k1 , T k1+1, . . . , T k2).

The correlation C(S, T ) is defined as follows, which is the cosine of the angle
between the above two vectors:

C(S, T ) =

∑k2
j=k1

∑Nj

i=1(s
j
i × tji )√

(
∑k2

j=k1

∑Nj

i=1(s
j
i )2)× (

∑k2
j=k1

∑Nj

i=1(t
j
i )2)

, (4)

where sj
i (tji ) is the i-th entry in the j-th composition vector for sequence S (T ,

respectively). C(S, T ) is converted into an evolutionary distance between S and T
as follows:

D(S, T ) = − ln
(

1 + C(S, T )
2

)
(5)

(in [10], D(S, T ) = 1−C(S,T )
2 is taken to measure the evolutionary distance).

2.4 String Length Range Empirical Determination

It is easily seen that single amino acid composition, or equivalently the 1st com-
position vector, might not contain sufficient evolutionary information. Similarly,
as argued in Section 2.3, the k-th composition vector where k is large might not
contain significant evolutionary information either. Therefore, to make the Com-
plete Composition Vector the most effective, an important issue is to set the range
[k1, k2] of string length. There is no theory that has been developed and can be
of immediate use for this purpose. We chose to determine the range empirically.
The outline of the determination process is as follows. To determine the upper
bound k2: For this purpose, we set the starting value for k2 to be 11. Using range
[`, k2], where ` = 1, 2, . . . , 6, in the CCV-based evolutionary distance measure, we
computed a distance matrix D for the set of 64 vertebrate species using their whole
sets of mitochondrial protein sequences (the vertebrate data introduced in Section
3.1). We employed three different ways to evaluate the significance of the k2-th
composition vector.

1. Besides matrix D, we computed another distance matrix D′ using range
[`, k2 − 1]. We defined the difference d(D,D′) between these two distance
matrices D and D′ as follows:

d(D,D′) =
∑
i,j

|Dij −D′
ij |

D′
ij

.

We observed that for every ` = 1, 2, . . . , 6, d(D,D′) is very close to 0 for
k2 = 11, 10, 9, 8 (results not shown).
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2. Again we computed matrix D′, besides D. We then turned to compute the
quartet topologies for every subset of 4 species, using the corresponding dis-
tance sub-matrices of dimension 4× 4 in D and D′, respectively. We adopted
the four-point method [6] in this work. Let Q and Q′ denote the set of quartet
topologies associated with D and D′, respectively. We used the number of
quartet topologies that are in Q − Q′ to measure the difference d(D,D′) be-
tween D and D′. Again, we observed that for every ` = 1, 2, . . . , 6, d(D,D′)
is close to 0 for k2 = 11, 10, 9, 8 (results not shown).

3. The third method has to do with the distance-based phylogeny construction
method Neighbor-Joining [20]. Similarly, we computed matrix D′ besides D.
For both D and D′, we applied the Neighbor-Joining method to construct
phylogenies T and T ′, respectively. Let Q and Q′ denote the set of quartet
topologies induced from T and T ′, respectively. We used the number of
quartet topologies that are in Q − Q′ to measure the difference d(D,D′)
between D and D′. Again, we observed that for every ` = 1, 2, . . . , 6, d(D,D′)
is very close to 0 for k2 = 11, 10, 9, 8 (results not shown).

The above three evaluation methods gave consistent results that the complete com-
position vector converges when k2 ≥ 7, for every ` = 1, 2, . . . , 6. Consequently, we
finalized the length upper bound k2 to be 7.

To determine the lower bound k1: For this purpose, we fixed k2 = 7 and used
the similar evaluation methods to evaluate the significance of the k-th composition
vector, for k = 1, 2, . . . , 6, compared to the complete composition vector using
length range [k + 1, 7]. The dataset used in the evaluation is again the vertebrate
dataset containing 64 whole sets of mitochondrial protein sequences. We observed
that the complete composition vector converges when k ≤ 3 (results not shown).
Consequently, we set k1 = 3, which was used in all subsequent experiments.

2.5 Clustered Neighbor-Joining Phylogeny Construction and Statistical Evaluation

It is known that the ordinary Neighbor-Joining method [20] uses heuristics dur-
ing computing the distance between intermediate pseudo-taxa and real taxa in each
step. Therefore, it is likely to have accumulated inaccuracies in the final resultant
phylogeny. We noticed that among the disagreements between CCV-based phy-
logenies built by the ordinary Neighbor-Joining method and the taxonomy trees,
particularly when the input size is big as in the 99 microbial dataset, the most
common ones are the displacements above class level. That is, the small groups
within one class or phylum are correctly identified, but they are massaged into other
branches together. One possible interpretation is that during the computation of
the relative distances, once one species within a clade has been chosen to be the
next taxa to merge into the current pseudo-taxa, all the others within the same
clade will be merged afterwards immediately.

We propose here a clustered Neighbor-Joining method by integrating a clustering
algorithm k-medoids as the first step in the phylogeny construction. In more details,
given an N × N distance matrix for the input species set, a typical k-medoids
algorithm is run to partition the N points into k clusters. The cost function that
measures the average dissimilarity between a point and the medoid of its cluster
is defined using the input distance intuitively. To reduce the bias brought by the
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arbitrariness of selecting initial medoids, 200 runs of k-medoids are applied and the
partition with the smallest cost is chosen. Once the k selected medoids and the
corresponding clusters are obtained, the ordinary Neighbor-Joining method is used
in each cluster to identify the evolutionary closeness between the species within
it. The distances among medoids are extracted from the original N × N distance
matrix and the ordinary Neighbor-Joining method is run once more to form the final
phylogeny. As k is the only parameter required by the k-medoids algorithm, we run
k from 1 to N

4 and select the best setting for k based on manual inspection between
the final phylogenies and the taxonomy tree. In this way, we expect to overcome the
potential drawbacks in the ordinary Neighbor-Joining method. Indeed, we found
that the clustered Neighbor-Joining method performs consistently better than or
at least as well as the ordinary version, in terms of the closeness to the taxonomy
trees. This becomes more obvious when the size of the input dataset increases.

Besides the clustered Neighbor-Joining method, we have also utilized a boot-
strapping procedure to statistically evaluate the output phylogenies. In the proce-
dure, for every species with n protein sequences, we randomly remove 0.3n protein
sequences from the pool. In the remaining pool, we randomly duplicate 0.3n pro-
tein sequences to ensure that there were n protein sequences in the pool at the end,
though some of them might be duplicates. We generate in total 200 such re-sampled
protein sequence sets for each species. From them, we form in total 200 datasets by
randomly picking one re-sampled protein sequence set for each species. We run the
CCV-based phylogeny construction algorithm on them to obtain 200 phylogenies.
One consensus tree is computed using CONSENSUS program provided in PHYLIP
package. The value assigned to a branch in the consensus tree is the number of
occurrences of the branch in the 200 phylogenies.

3 Experimental Results and Discussions

We outline in the following the steps of operations in the CCV-based phylogeny
construction:

Step 1. For each species in the dataset (we have two datasets), use its set of
protein sequences to compose the CCV using the length range [3, 7],
as described in Sections 2.1–2.3.

Step 2. For every pair of species, compute their evolutionary distance using
Equations (4–5). This gives a distance matrix D for the set of species
in the dataset.

Step 3. Feed D into the clustered Neighbor-Joining method to construct a
phylogeny.

Step 4. Bootstrapping for 200 iterations to produce 200 phylogenies and
feed them into CONSENSUS program provided in PHYLIPa to con-
struct a consensus tree.

Step 5. The consensus tree is taken as the final output phylogeny, which is
drawn using TreeViewb.

ahttp://evolution.genetics.washington.edu/phylip.html
bhttp://taxonomy.zoology.gla.ac.uk/rod/treeview.html

http://evolution.genetics.washington.edu/phylip.html
http://taxonomy.zoology.gla.ac.uk/rod/treeview.html
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The experiments were done on IBM AIX5.2.0.0 with PowerPC POWER4 processor
of 1.7GHz. The output phylogenies were compared to phylogenies constructed using
some other methods such as CV-based and SVD-based. They were also compared
to the gold standard taxonomy trees drawn through NCBI Taxonomy Common
Tree [28].

3.1 Vertebrate Phylogeny

The vertebrate dataset [26] contains in total 832 mitochondrial proteins obtained
from the whole mitochondrial genomes for 64 vertebrates, with 13 homologous pro-
teins for each species. We adopt the abbreviations used in [26]. The readers may
refer to [26] for the full names of the species. Using the dataset, the CCV-based
phylogeny is shown in Figure 1. The taxonomy tree on these 64 vertebrates is shown
in Figure 2. We can see that the constructed phylogeny is largely consistent with
the taxonomy tree. For example, all perissodactyls, carnivores, cetartiodactyls, ro-
dents, primates, non-eutherians, birds, reptiles, bony fish, and cartilaginous fish
are correctly grouped together, as they show up in the taxonomy tree. For com-
parison purpose, we point out that the SVD-based phylogeny constructed in [26]
has a very similar topology as our CCV-based phylogeny. However, there are two
major disagreements among these three phylogenies: One is in the taxonomy tree
Teur, Eeur, and Ajam are grouped together, but they are far from each other in
the SVD-based phylogeny, while our CCV-based phylogeny puts two of them Teur
and Ajam together; The other is though Lcha and Porn are bony fish and they are
closely related in both the SVD-based and our CCV-based phylogenies, they are
treated not too close in the taxonomy tree. These observations demonstrate that
the CCV of one whole genome is an at least equally informative representation
to the SVD-based representation. Another advantage of CCV is that it is more
transparent and easily computed (SVD method involves a high complexity stage of
matrix decomposition).

We also constructed the CV-based phylogeny for comparison purpose, accord-
ing to the precise procedure described in [17], which is shown in Figure 3. This
phylogeny confirms some consistencies in the SVD-based and the CCV-based phy-
logenies, for example, it also treats Teur and Ajam as close, but it contains many
non-smooth details, for example, the bony fish branch becomes more loosely con-
nected.

3.2 Microbial Phylogeny

Currently there are 225 completed sequenced microbial genomes available in
NCBI database. These invaluable sequence data has brought an opportunity as
well as a challenge to re-analyze the phylogenetic footprints at the molecular level.
To test the effectiveness of CCV-based measure of pairwise evolutionary distance,
we explored the phylogenetic relationships for microbes using their complete protein
sequence sets. The standard taxonomy tree obtained through http://ncbi.nlm.
nih.gov/Taxonomy was used to evaluate the results from the experiment.

Dataset. From 225 currently completed sequenced microbes available in NCBI

http://ncbi.nlm.nih.gov/Taxonomy
http://ncbi.nlm.nih.gov/Taxonomy
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Figure 1 The consensus CCV-based phylogeny on the 64 vertebrates. The number
of trees in which a given cluster is observed is shown above the branch leading to that
cluster, out of 200 trees.

database, we have chosen in total 99 species to form the dataset, where every species
is represented by its complete set of protein sequences. The species, their accession
numbers, and their taxonomy information are listed in Tables 1 and 2.

This dataset is collected with no prior preference and is assembled to repre-
sent the large branching factor and adequate lineage length. Four sub-datasets of
bacterial phyla with an outgroup of Aquifex aeolicus are also used to for compar-
ison between the CCV-based and the CV-based phylogenies: (1) Proteobacteria,
Firmicutes, Cyanobacteria, and Actinobacteria; (2) three classes within Proteobac-
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Figure 2 The taxonomy tree on the 64 vertebrates, extracted from NCBI.

teria: Alphaproteobacteria, Gammaproteobacteria, and Betaproteobacteria; (3) Fir-
micutes, Cyanobacteria, and Actinobacteria; (4) Firmicutes and Actinobacteria.

Results. We have also constructed the CV-based phylogeny, besides the CCV-
based phylogeny. The three phylogenies for these 99 microbes, the CCV-based
phylogeny, the taxonomy tree, and the CV-based phylogeny, are shown in Figures
4, 5, and 6.

In summary, most of the branches (up to class or even phylum levels) from the
CCV-based phylogeny and the taxonomy tree are similar to each other. In more
details, the CCV-based phylogeny has the following characteristics. The CCV-
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Figure 3 The consensus CV-based phylogeny on the 64 vertebrates, using string
length 5. The number of trees in which a given cluster is observed is shown above the
branch leading to that cluster, out of 200 trees.

based phylogeny can successfully recognize evolutionary closeness within species
and thus group those strains together. This can be seen from the fact that species
containing multiple strains, such as Mycobacterium, Streptococcus, and Bacillus, all
have identical relationships as in the taxonomy tree. The genus level and family level
can also be successfully recognized. All the phyla are correctly grouped together,
and the trees show substantial areas of agreement with those of the believed true
taxonomy, supported by the bootstrapping runs.

For comparison purpose, we also constructed CCV-based and CV-based phylo-
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Full Name Accession Number Taxonomy (Phylum; Class)
Agrobacterium tumefaciens C58 Cereon NC 003062 Proteobacteria; Alphaproteobacteria
Sinorhizobium meliloti NC 003037 Proteobacteria; Alphaproteobacteria
Bradyrhizobium japonicum NC 004463 Proteobacteria; Alphaproteobacteria
Rhodopseudomonas palustris CGA 009 NC 005296 Proteobacteria; Alphaproteobacteria
Bartonella henselae NC 005956 Proteobacteria; Alphaproteobacteria
Bartonella quinatana NC 005955 Proteobacteria; Alphaproteobacteria
Brucella suis 1330 NC 004310 Proteobacteria; Alphaproteobacteria
Mesorhizobium loti NC 002678 Proteobacteria; Alphaproteobacteria
Rickettsia prowazekii NC 000963 Proteobacteria; Alphaproteobacteria
Rickettsia typhi str. Wilmington NC 006142 Proteobacteria; Alphaproteobacteria
Rickettsia conorii NC 003103 Proteobacteria; Alphaproteobacteria
Wolbachia endosymbiont of Brugia malayi NC 006833 Proteobacteria; Alphaproteobacteria
Wolbachia endosymbiont of Drosophila m. NC 002978 Proteobacteria; Alphaproteobacteria
Anaplasma marginale str. St. Maries NC 004842 Proteobacteria; Alphaproteobacteria
Enrlichia ruminantium str. Welgevonden NC 005295 Proteobacteria; Alphaproteobacteria;
Caulobacter vibrioides NC 002696 Proteobacteria; Alphaproteobacteria
Zymomonas mobilis NC 006526 Proteobacteria; Alphaproteobacteria
Silicibacter pomeroyi DSS-3 NC 003911 Proteobacteria; Alphaproteobacteria
Gluconobacter oxydans 621H NC 006672 Proteobacteria; Alphaproteobacteria
Salmonella enterica NC 006511 Proteobacteria; Gammaproteobacteria
Yersinia pestis KIM NC 004088 Proteobacteria; Gammaproteobacteria
Escherichia coli K12 NC 000913 Proteobacteria; Gammaproteobacteria
Blochmannia floridanus NC 005061 Proteobacteria; Gammaproteobacteria
Vibrio vulnificus CMCP6 NC 004459 Proteobacteria; Gammaproteobacteria
Vibrio cholerae NC 002505 Proteobacteria; Gammaproteobacteria
Photobacterium profundum SS9 NC 005871 Proteobacteria; Gammaproteobacteria
Xanthomonas campestris NC 003902 Proteobacteria; Gammaproteobacteria
Xylella fastidiosa Temecula1 NC 004554 Proteobacteria; Gammaproteobacteria
Haemophilus ducreyi 35000HP NC 002940 Proteobacteria; Gammaproteobacteria
Mannheimia succiniciproducens MBEL55E NC 006300 Proteobacteria; Gammaproteobacteria
Pasteurella multocida NC 002663 Proteobacteria; Gammaproteobacteria
Pseudomonas aeruginosa NC 002516 Proteobacteria; Gammaproteobacteria
Acinetobacter sp ADP1 NC 005966 Proteobacteria; Gammaproteobacteria
Legionella pneumophila Lens NC 006366 Proteobacteria; Gammaproteobacteria
Coxiella burnetii NC 002971 Proteobacteria; Gammaproteobacteria
Idiomarina loihiensis L2TR NC 006512 Proteobacteria; Gammaproteobacteria
Methylococcus capsulatus Bath NC 002977 Proteobacteria; Gammaproteobacteria
Bordetella bronchiseptica NC 002927 Proteobacteria; Betaproteobacteria
Burkholderia mallei ATCC 23344 NC 006348 Proteobacteria; Betaproteobacteria
Ralstonia solanacearum NC 003295 Proteobacteria; Betaproteobacteria
Neisseria meningitidis MC58 NC 003112 Proteobacteria; Betaproteobacteria
Azoarcus sp EbN1 NC 006513 Proteobacteria; Betaproteobacteria
Helicobacter pylori 26695 NC 000915 Proteobacteria; Epsilonproteobacteria
Wolinella succinogenes NC 005090 Proteobacteria; Epsilonproteobacteria
Bdellovibrio bacteriovorus NC 005363 Proteobacteria; Deltaproteobacteria
Streptococcus pyogenes MGAS315 NC 004070 Firmicutes; Bacilli
Streptococcus pyogenes M1 GAS NC 002737 Firmicutes; Bacilli
Streptococcus thermophilus CNRZ1066 NC 006449 Firmicutes; Bacilli
Streptococcus pneumoniae R6 NC 003098 Firmicutes; Bacilli
Streptococcus agalactiae NEM316 NC 004368 Firmicutes; Bacilli

Table 1 The set of 99 microbes and their associated properties (to be cont’d).

genies for four smaller datasets. All these results show that the CCV-based method
can produce good phylogenies for various size datasets. From the phylogeny for four
clades of microbes (Figures 7 and 8), it is evident that the CV-based phylogeny
could place more branches in disagreement with the taxonomy tree than the CCV-
based phylogeny. For example, in Figure 8, Prochlorococcus marinus MIT 9313 was
put into phylum Actinobacteria, and Propionibacterium acnes KPA 171202 was put
into phylum Firmicutes. Within phylum Proteobacteria, some branches belonging
to different classes were also placed ambiguously. For instance, Neisseria menin-
gitidis MC58 was put into Alphaproteobacteria. A few other similar disagreements
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Full Name Accession Number Taxonomy (Phylum; Class)
Lactococcus lactis NC 002662 Firmicutes; Bacilli
Lactobacillus acidophilus NCFM NC 006814 Firmicutes; Bacilli
Enterococcus faecalis V583 NC 004668 Firmicutes; Bacilli
Bacillus anthracis str Sterne NC 005945 Firmicutes; Bacilli
Bacillus cereus ATCC 10987 NC 003909 Firmicutes; Bacilli
Bacillus thuringiensis konkukian NC 005957 Firmicutes; Bacilli
Bacillus clausii KSM-K16 NC 006582 Firmicutes; Bacilli
Listeria innocua NC 003212 Firmicutes; Bacilli
Mycoplasma gallisepticum NC 004829 Firmicutes; Mollicutes
Ureaplasma urealyticum NC 002162 Firmicutes; Mollicutes
Mesoplasma florum L1 NC 006055 Firmicutes; Mollicutes
Clostridium acetobutylicum NC 001988 Firmicutes; Clostridia
Thermoanaerobacter tengcongensis NC 003869 Firmicutes; Clostridia
Mycobacterium tuberculosis CDC 1551 NC 002755 Actinobacteria; Actinobacteria
Mycobacterium bovis NC 002945 Actinobacteria; Actinobacteria
Mycobacterium avium paratuberculosis NC 002944 Actinobacteria; Actinobacteria
Corynebacterium efficiens YS 314 NC 004369 Actinobacteria; Actinobacteria
Nocardia farcinica IFM 10152 NC 006361 Actinobacteria; Actinobacteria
Streptomyces avermitilis NC 003155 Actinobacteria; Actinobacteria
Propionibacterium acnes KPA 171202 NC 006085 Actinobacteria; Actinobacteria
Bifidobacterium longum NC 004307 Actinobacteria; Actinobacteria
Synechococcus elongatus PCC 6301 NC 006576 Cyanobacteria; Chroococcales
Thermosynechococcus elongatus NC 004113 Cyanobacteria; Chroococcales
Prochlorococcus marinus MIT 9313 NC 005071 Cyanobacteria; Prochlorales
Gloeobacter violaceus NC 005125 Cyanobacteria; Gloeobacteria
Chlamydophila pneumoniae AR39 NC 002179 Chlamydiae; Chlamydiae
Chlamydophila caviae NC 003361 Chlamydiae; Chlamydiae
Chlamydia muridarum NC 002182 Chlamydiae; Chlamydiae
Parachlamydia sp UWE25 NC 005861 Chlamydiae; Chlamydiae
Borrelia burgdorferi NC 000948 Spirochaetes; Spirochaetes
Treponema denticola ATCC 35405 NC 002967 Spirochaetes; Spirochaetes
Leptospira interrogans serovar Copenhageni NC 005823 Spirochaetes; Spirochaetes
Bacteroides fragilis YCH46 NC 006297 Bacteroidetes; Bacteroidetes
Porphyromonas gingivalis W83 NC 002950 Bacteroidetes; Bacteroidetes
Chlorobium tepidum TLS NC 002932 Chlorobi; Chlorobia
Thermus thermophilus HB27 NC 005835 Deinococcus-Thermus; Deinococci
Deinococcus radiodurans NC 000958 Deinococcus-Thermus; Deinococci
Aquifex aeolicus NC 000918 Aquificae; Aquificae
Pyrococcus abyssi NC 000868 Euryarchaeota; Thermococci
Thermococcus kodakaraensis KOD1 NC 006624 Euryarchaeota; Thermococci
Thermoplasma acidophilum NC 002578 Euryarchaeota; Thermoplasmata
Picrophilus torridus DSM 9790 NC 005877 Euryarchaeota; Thermoplasmata
Haloarcula marismortui ATCC 43049 NC 006389 Euryarchaeota; Halobacteria
Methanosarcina acetivorans NC 003552 Euryarchaeota; Methanomicrobia
Methanococcus jannaschii NC 000909 Euryarchaeota; Methanococci
Archaeoglobus fulgidus NC 000917 Euryarchaeota; Archaeoglobi
Sulfolobus solfataricus NC 002754 Crenarchaeota; Thermoprotei
Pyrobaculum aerophilum NC 003364 Crenarchaeota; Thermoprotei
Nanoarchaeum equitans NC 005213 Nanoarchaeota; Nanoarchaeum

Table 2 The set of 99 microbes and their associated properties (cont’d).

can also be spotted. Moreover, it is shown that some misplacements happen when
the input dataset contains more phyla.

In the CV-based phylogeny for Firmicutes, Cyanobacteria, and Actinobacteria
(Figure 9, right), Gloeobacter violaceus, grouped with Bifidobacterium longum from
Actinobacteria, was put closer to Firmicutes; while in the CCV-based phylogeny
Figure 9, left) and the CV-based phylogeny for Firmicutes and Actinobacteria (Fig-
ure 10, right), no such misplacement was found.

We also found that CCV and CV have disagreements in deep branches within
the same phyla, even they both have successfully recognized the clades (Figures
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Figure 4 The CCV-based phylogeny for the 99 microbial species.

8 – 11). Some of them are nontrivial to resolve. Both of CV-based and CCV-
based phylogenies has put β-Proteobacteria into γ-Proteobacteria, even the strains
within β-Proteobacteria have been clustered. This can be due to the confounding
horizontal gene transfer events. [3] shows the probable horizontal gene transfer
between β-Proteobacteria and γ-Proteobacteria based on a further analysis.
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Figure 5 The taxonomy tree for the 99 microbial species extracted from NCBI.

These evidences support that close species in evolution share similarities at
sequence level in terms of their composition information. On the other hand, our
method does not consider all the possible mutation models other than site mutation,
and thus that may cause ambiguous phylogeny inference in some deep branches as
well. In this sense, we conclude that the CCV whole genome representation could
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Figure 6 The CV-based phylogeny for the 99 microbial species.

be more informative than the CV representation.
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Figure 7 The CCV-based phylogeny for a sub-dataset of 4 clades of microbial species:
Proteobacteria, Firmicutes, Actinobacteria, and Cyanobacteria.

4 Conclusions and Remarks

In this paper, we presented a new pairwise evolutionary distance measurement
based on complete composition vector by integrating the key ideas in composi-
tion vector and complete information set. We also applied our method to infer
the phylogeny footprints of 64 vertebrates and 99 microbes, through a clustered
Neighbor-Joining method. The results demonstrated that the CCV-based evolu-
tionary distance measure is more effective for whole genome phylogeny construction.

CCV may look similar to CV at the first glance, but it certainly differs from
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Figure 8 The CV-based phylogeny for a sub-dataset of 4 clades of microbial species:
Proteobacteria, Firmicutes, Actinobacteria, and Cyanobacteria.

CV through using a collection of composition vectors. The key observation is
that with only one fixed string length k, the k-th composition vector might lose
the evolutionary information that is carried by shorter strings, particularly during
the stage of random mutation subtraction in CV method. For this reason, the
composition vectors of shorter strings are included to form a complete composition
vector, similar to an idea in Complete Information Set (although that was not taken
advantage of in their experiments).

It should be seen that the intensive computation is in the calculation of string
appearance frequencies (probabilities) in all three approaches: CV, CIS, and CCV.
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Figure 9 The CCV-based (left) and the CV-based (right) phylogenies for a sub-
dataset of 3 clades of microbial species: Firmicutes, Actinobacteria, and Cyanobacteria.

Compared to CV and CIS, CCV uses a higher dimensional space to locate the
representative vectors of species (if the maximum length of strings are set the
same). Inevitably, CCV consumes more memory than CV and CIS. Nonetheless, a
careful look reveals that CCV consumes no more than one third of memory that is
consumed by CV when DNA sequences are used and no more than one nineteenth
when protein sequences are used. On the other hand, our careful implementation
does not hold all the frequencies in memory during the calculation, but only a small
fraction of it. The observed memory consumption at the peak time in our second
experiment was a little more than 1GB, which indicates that most experiments
can be done on a typical desktop PC. In other words, with such a small fraction
of increase in memory requirement and subsequently a little more CPU cycles, a
higher resolution of evolutionary information between the species is obtained and
the saturation of the representative vectors is avoided.

Within our analyses on the microbial dataset, we found most of the phylogenetic
results based on CCV are similar to taxonomy tree. However, the branches for some
species are not close to their families in the taxonomy tree. For instance, in the
CCV-based phylogeny (Figure 4), the class Bacilli is partitioned into two parts —
this has been picked up by both CCV-based and CV-based phylogenies for a sub-
dataset shown in Figures 7 and 8. We suspected that the clustered Neighbor-Joining
phylogeny construction method might still propagate distance errors through the
iterations. We also believe that lateral gene transfer (LGT) [5] might play some
roles, which is another subject of our future research.

In summary, the proposed new concept of complete composition vector and
its associated evolutionary distance measurement are effective in whole genome
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Figure 10 The CCV-based (left) and the CV-based (right) phylogenies for a sub-
dataset of 2 clades of microbial species: Firmicutes and Actinobacteria.

phylogeny construction. We are planning to determine which subset(s) of strings
might contain the most evolutionary information, by which, we might be able to
reduce the vector dimension and thus the computational cost dramatically. We
would also like to reduce the dimensionality by combining homologous strings [30], if
appropriate. Based the observed disagreements between our generated phylogenies
and the taxonomic standards, we will be looking into another possible application
of CCV to infer LGT via recombination, by more examinations on multiple whole
genome phylogenies constructed by various methods.
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