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Abstract. Typing rhythms are one of the rawest form of data stemming from
the interaction between humans and computers. When properly analyzed, they
may allow to ascertain personal identity. In this paper we provide experimental
evidence that the typing dynamics of free text can be used for user identification
and authentication even when typing samples are written in different languages.
As a consequence, we argue that keystroke analysis can be useful even when
people may use different languages, in those areas where ascertaining personal
identity is important or crucial, such as within Computer Security.

1 Introduction to Keystroke Analysis

Keystroke Analysis is the biometric area concerned with the problem of ascertaining
users’ identity through the way they type on a computer keyboard [1]. As such, it is es-
sentially a form of Pattern Recognition, as it involves representation of input data mea-
sures, extraction of characteristic features and classification or identification of patterns
data so as to decide to which pattern class these data belong [9].

In the case of typing rhythms, input data is usually represented by a sequence of
typed keys, together with appropriate timing information so that it is possible to com-
pute the elapsed time between the release of the first key and the depression of the
second (the so-called digraph latency) and the amount of time each key is held down
(the keystroke duration). The extraction of such features turns a sequence of keystrokes
into a typing sample. Appropriate algorithms are then used to classify a typing sample
among a set of pattern classes, each one containing information about the typing habits
of an individual. Pattern classes are often called profiles or models, and they are built
using earlier typing information gathered from the involved individuals.

Within computer science, a biometric such as keystroke dynamics is particularly ap-
pealing, since it can be sampled without the aid of special tools, just the keyboard of the
computer where the biometric analysis has to be performed. Keystroke analysis is how-
ever a difficult task, for several reasons: (1) keystrokes, unlike other biometric features,
convey an unstructured and very small amount of information. Keystroke duration and
digraph latency are in fact a pretty shallow kind of information. (2) Keystroke dynamics
are a behavioral biometric, like voiceprints and handwritten signatures. As such, they
are intrinsically unstable, and show a certain degree of variability even without any evi-
dent reason. After all, it is pretty difficult to control the number of milliseconds we hold
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down a key when typing. (3) The variability of typing rhythms may be magnified by
the fact that, of course, during the normal use of a computer, different texts are entered,
possibly in different languages.

To deal with the instability of typing dynamics, most experiments within keystroke
analysis have been limited to samples produced from a unique pre-defined text (e.g.
[13,12,5,6,17,3]) or from a small number of different, but still pre-defined texts, (e.g.
[14,10,4]). and we refer to [3] and [4] for a thorough descriptions of the various methods
found in the literature. However, a large part of the interest in keystroke analysis lies
in the possibility to use what stems from the normal use of a computer: the typing
rhythms of free text. For example, Intrusion Detection techniques would benefit from
such ability, as we discuss at the end of the paper. Unfortunately, when analyzing the
typing dynamics of free text the variability of keystroke dynamics is akin to get worse,
since the timings of a sequence of keystrokes may be influenced in different ways by
the keystrokes occurring before and after the one currently issued. This is even more
true if different languages are involved.

Analysis of “true” free text is attempted in [16], where the authors test different
methods based on the Euclidean distance and on the mean typing speed and standard
deviation of digraphs to measure similarities and differences among typing samples of
31 users, reaching a 23% of correct classification of the typing samples.

In [8] four users are monitored for some weeks during their normal activity on
computers, so that thousands of digraphs latencies can be collected. Authors use both
statistical analysis and different data mining algorithms on the users’ data sets, and are
able to reach an almost 60% of correct classification. Authors’ approach is improved
in [7], both in the outcomes and in the number of users (35) involved, collecting over
three months of continuous monitoring more than 5 millions keystrokes.

In [4] we showed experimentally that, on the average, typing samples of different
texts provided by the same individual are more similar than typing samples of the same
text provided by different individuals. Thus, it was shown that keystroke analysis of free
text, though more difficult than keystroke analysis of fixed text, can still be achieved.

In this paper we perform a further step, and show that it is possible to identify a
user through the way he types on a keyboard, even when the user is entering free text
in a language different from the one used to form his profile. Such ability is important
since, for example, more and more people writing text with a computer may use their
own language when communicating with others understanding the same language, but
use English as the “Lingua Franca” to communicate with the rest of the world.

As we showed in [11], typing dynamics may provide meaningful information to
improve the accuracy of an Intrusion Detection System, and may help to limit the num-
ber of false alarms. Thus, being able to deal with typing dynamics regardless of the
language in use provides a double advantage. On the one hand, a legal user is free of
entering text in the language she prefers, without particular risks of raising more alarms:
the ability of the system to acknowledge her as the legal owner of the account under ob-
servation will not be affected by the use of a different language. On the other hand,
intruders would not find any benefit by trying to disguise themselves using a language
different from the one normally used by the intruded user: the system will not be fooled
by the typing rhythms of a language different from the one of the user’s profile.
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As far as we know, this is the first work showing that keystroke analysis can be used
to ascertain personal identity even when different languages are involved.

2 Computing the Distance Between Two Typing Samples

We will use the combination of two measures to evaluate the similarities and differences
between the typing rhythms “recorded” in two samples we want to compare. We intro-
duced the first measure, d1, in [3]. The second measure, d2, is described here for the
first time. The only timing information we use in our experiments is the time elapsed
between the depression of the first key and the depression of the second key of each di-
graph. We call such interval the duration of the digraph. If the typed text is sufficiently
long, the same digraph may occur more than once. In such case, we report the digraph
only once, and we use the mean of the duration of its occurrences.

Given any two typing samples S1 and S2, each one turned into digraphs and sorted
with respect to duration of such digraphs, we define the distance between S1 and S2,
d1(S1,S2), as the sum of the absolute values of the distances of each digraph of S2 w.r.t.
the position of the same digraph in S1. When computing d1(S1,S2), digraphs that are
not shared between the two samples are simply removed. It is clear that, from the defi-
nition of d1, we may compute the distance between any two typing samples, provided
they have some digraphs in common, even if written in different languages. As an exam-
ple, in the left part of the Table 1 we report typing samples E1 and E2 obtained typing,
respectively the texts mathematics and sympathetic. Only digraphs shared between E1
and E2 are actually shown. Numbers beside digraphs are their typing speed in millisec-
onds. The right part of the table illustrates pictorially the computation of the distance
between E1 and E2. From the figure it is easy to see that: d1(E1,E2) = 3+0+0+1+4 = 8.

Given any two typing samples, the maximum distance they may have is when the
shared digraphs, sorted by their typing speed, appear in reverse order in one sample
w.r.t. the other sample. Hence, if two samples share N digraphs, the maximum distance
they can have is given by: N2/2 (if N is even); (N2-1)/2 (if N is odd).

The above value can be used as a normalization factor of the distance between two
typing samples sharing N digraphs, dividing their distance by the value of the maximum
distance they may have. In this way it is possible to compare the distances of pairs
of samples sharing a different number of digraphs: the normalized distance d1(S1,S2)
between any two samples S1 and S2 is a real number between 0 and 1. Measure d1
returns 0 when the digraphs shared by the two samples are exactly in the same order
w.r.t. their duration, and returns 1 when the digraphs appear in reverse order (d1(S1,S2)
is also set to 1 if S1 and S2 do not share any digraph). In our example, E1 and E2 share
5 digraphs. Thus, their normalized distance is 8/[(52-1)/2] = 0.66666. From now on, in
the paper we will always use the normalized version of d1.

Distance d1 performed very well to identify users through their typing rhythms
on fixed text, and we refer to [3] for a thorough description of the measure and its
properties. Readers may have noticed that d1 completely overlooks any absolute value
of the timings associated to the samples. Only the relative positions (which is a con-
sequence of the typing speed) of the digraphs in the two samples are taken into
consideration.
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Table 1. Computation of the distance for typing samples E1 and E2

E1 E2
156 ti 270
184 ic 136
195 he 201
197 at 128
207 th 250 d = 4

d = 1

d = 0

d = 3

d = 0

ti 156

ic 184

he 195

th 207

at 197

at 128

ic 136

he 201

ti 270

th 250

E1 E2

However, even the actual typing speed at which digraphs are entered can be useful
to discriminate between different individuals. For example, users A and B may both
type the word on more slowly than the word of, but if the average typing speed of the
two words are, for user A, say: on = 127 millisec.; of = 115 millisec.; and for B: on =
239 millisec.; of = 231 millisec., than A and B can hardly be the same individual.

To take care of such situations, we introduce a second distance measure, d2, based
on the actual typing speeds of digraphs. We could just consider the average typing speed
of samples entered by the user, but since we want to combine this new distance with d1,
we prefer to use a measure that considers the average typing speed of single digraphs,
and that is normalized in the interval [0..1]. We define d2(S1,S2) be the number of
digraphs shared by S1 and S2 whose typing speeds do not differ for more than 30%,1

divided by the total number of digraphs shared by S1 and S2. For example, in the case
of samples E1 and E2, it is easy to check that d2(E1,E2) = 2/5 = 0.4.

Finally, to combine together distances d1 and d2 we simply define d(S1,S2), the
distance between any two samples S1 and S2 that will be used in all the experiments
described in this paper, as: d(S1,S2) = d1(S1,S2) + d2(S1,S2).

3 Experiments in User Identification and User Authentication

To perform the experiments described in this paper, we asked 31 volunteers to provide
two typing samples written in Italian and two typing samples written in English. All
the people participating to the experiments are native speakers of Italian, and, though
with varying typing skills, all of them are well used to type on normal computer key-
boards. Moreover, all volunteers are more or less used to write in English, since they
are colleagues and PhD students.

People provided the samples from their computer, through an HTML form with
a text area of 780 characters to be filled by the users and submitted to the collecting
server. A client side Javascript was used to record the time (in milliseconds) when a key
was depressed, together with the ascii value of the key.

1 In order to chose this “30% rule”, at the same time trying to limit overfitting, we did the
following. When the first five volunteers of our experiments had provided their samples, we
performed the identification task described in Section 3, in order to test different percentages:
10%, 20%, 30% and 40%. The best outcomes were reached using a 30% rule, and thus this
value is used in all the experiments of this paper. It is of course possible that better outcomes
could be reached for some other values (say, 15% or 33%), but we did not bother to find such
particular values, that would hardly perform in a similar way on a different set of users.
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Volunteers were instructed to enter the samples in the most natural way, more or less
as if they were writing an e-mail to someone. They were completely free to choose what
to write, and the only limitations were of not typing the same word or phrase repeatedly
in order to fill the form, and not to enter the same text in two different samples. People
were free to make typos, and to correct them or not, using the backspace key or the
mouse, as preferred. People were free to pause in every moment when producing a
sample, for whatever reason and as long as they wanted. No sample provided by the
volunteers was rejected, for any reason.

In our approach, a user’s profile is simply made of a set of typing samples provided
by that user. Hence, suppose we are given a set of users’ profiles and a new typing
sample from one of the users, so that we want to identify who actually provided the
sample. If the measure d defined in Section 2 works well, we may expect the computed
distance between two samples of the same user to be smaller than the distance between
two samples coming from different users. As a consequence, we may expect the mean
distance of a new sample X from (the samples in) the profile of user U to be smaller if
X has been provided by U than if X has been entered by someone else.

Hence, suppose we have three users A, B and C, with, say, 3 typing samples each
one in their profiles (so that, for example, A’s profile contains typing samples A1, A2
and A3). A new typing sample X has been provided by one of the users, and we have
to decide who entered the sample. We may compute the mean distance (md for short)
of X from each user’s profile as the mean of the distances of X from each sample in the
profile:

md(A,X) = (d(A1,X) + d(A2,X) + d(A3,X))/3;
md(B,X) = (d(B1,X) + d(B2,X) + d(B3,X))/3;
md(C,X) = (d(C1,X) + d(C2,X) + d(C3,X))/3.

Then, we decide that X belongs to the user with the smallest mean distance among the
three. This rule has been tested using all possible combinations of Italian and English
samples in the profiles of the 31 volunteers, while one of the remaining samples is the
one that must be identified. The outcomes of this experiment are reported in the “Identif.
errors” columns of Table 2. Outcomes are grouped w.r.t. the number of samples in
users’ profiles, and are detailed w.r.t. the actual composition of the profiles. Right below
each group we report the whole outcomes obtained for the corresponding group. Within
brackets we indicate the numerical values that provide the corresponding percentages.
For example, suppose there are 3 samples in users’ profiles, two Italian samples and one
English sample. In this case the system can be tested using the other English sample, for
a total of 62 attempted classifications (since both English samples play, in turn, the role
of testing sample). In this case all samples are correctly classified, with an identification
error of 0.0%. When profiles contain one Italian sample and two English samples, the
system makes 2 errors out of 62 attempts, for an identification error of 3.23%. On the
whole, when there are 3 samples in users’ profile, the system can be tested with 124
samples, and shows an error of 1.61%.

From the outcomes we see that the accuracy of the system increases with the number
of samples in users’ profiles. When profiles are made of just on sample, almost one
out of three testing samples are not correctly classified, with an identification error
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of 29.57%. But such value quickly shrinks to 6.18% when users’ profiles contain 2
samples, and to 1.61% with 3 samples in the profiles.

Quite obviously, when profiles contain exactly one sample in a given language, test-
ing samples are more easily classified correctly if they are written in the same language.
We detail more in depth this in the left part of the table. For example, when profiles con-
tain only one Italian sample, we have 12 identification errors out of 62 attempts when
trying to classify the other Italian sample, but 49 errors out of 124 attempts when trying
to classify the two English samples.

When users’ profiles contain two Italian samples, testing samples are all written in
English, but less than one out of 15 are not correctly classified, for an identification er-
ror of 6.45%. The identification error is larger when users’ profiles contain two English
samples, and the Italian ones must be classified. Presumably, this is due to the fact that
when users are writing in a language different from their own, their particular typing
traits tend to remain more hidden. By putting together outcomes of these two identifi-
cation tasks, we get 12 identification errors out of 124 attempts, that is, less than 10%
of mistakes when attempting to identify a typing sample written in a language different
from the one used for the two typing samples in the profiles. We get the best outcomes
when profiles contains samples written in both languages. In this case it is easier to
correctly identify the testing samples, regardless of the language used to write them.

Table 2. Results in user identification and authentication for different compositions of profiles

samples in Identif.
profiles errors

(Ita.)
19.35%

1 Italian (12/62)
sample

(Eng.)
39.51%
(49/124)

- - - - - -
(Ita.)

32.26%
1 English (40/124)

sample
(Eng.)

14.52%
(9/62)

1 sample 29.57%

samples in Identif. k = 0.9 k = 0.8
profiles errors IPR FAR IPR FAR
2 Italian 6.45% 2.07% 12.9% 1.24% 16.13%
samples (4/62) (77/3720) (8/62) (46/3720) (10/62)

2 English 12.9% 2.07% 14.51% 1.24% 17.74%
samples (8/62) (77/3720) (9/62) (46/3720) (11/62)

1 Ita. + 1 Eng. 4.44% 2.17% 5.65% 1.44% 8.47%
sample (11/248) (323/14880) (14/248) (214/14880) (21/248)

2 samples 6.18% 2.14% 8.33% 1.37% 11.29%

2 Ita.+1 Eng. 0.0% 1.98% 0.0% 1.07% 0.0%
samples (0/62) (147/7440) (0/62) (80/7440) (0/62)

1 Ita.+2 Eng. 3.23% 2.02% 4.83% 1.09% 6.45%
samples 2/62 (150/7440) (3/62) (81/7440) (4/62)

3 samples 1.61% 1.99% 2.42% 1.08% 3.23%

The identification rule just described can be used to authenticate users simply by
marking the samples with an identity: a new sample X claimed to come from user A is
authenticated as belonging to A if md(A,X) is the smallest among all known users. Now,
the system can be evaluated w.r.t. two kinds of mistakes it can make: 1) the Impostor
Pass Rate (IPR), which is the percentage of cases in which a sample X from an unknown
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individual is erroneously attributed to one of the users of the system; 2) the False Alarm
Rate (FAR), which is the percentage of cases in which a sample belonging to some user
is not identified correctly.

From the “Identif. errors” column of Table 2 it is easy to see that our system shows,
e.g., an average FAR of 1.61% when users have in their profiles three samples: 2 sam-
ples out of 124 authentication attempts produce false alarms. But what about the IPR?
If there are 31 users in the system, it is simply (100/31)% = 3.23%. In fact, an impostor
unknown to the system, pretending to be a legal user U, has a chance out of 31 that
the sample she provides is closer to U’s profile than to any other profile known to the
system. We may improve such basic performance by observing the following. Suppose
again that we have 3 users A, B and C, with 3 samples in their profiles and a new sam-
ple X to be classified, so that we compute: md(A,X)=0.419025; md(B,X)=0.420123;
md(C,X)=0.423223. As a consequence, X is classified as belonging to user A. How-
ever, suppose that the mean of the distances of the samples forming the model of A
(denoted by m(A)) is:

d(A1,A2) = 0.312378; d(A1,A3) = 0.304381; d(A2,A3) = 0.326024.
m(A) = ( 0.312378 + 0.304381 + 0.326024 )/3 = 0.314261.

Then, we may expect another sample of A to have a mean distance from the model of
A similar to m(A), which is not the case for X in the example above. Even if X is closer
to A than to any other user’s profile in the system, it should be rejected.

To deal with such situations, we restate the classification rule as follow: a new sam-
ple X claimed to belong to user A is classified as belonging to A if and only if:

1. md(A,X) is the smallest w.r.t. any other user B and

2. md(A,X) is sufficiently closer to m(A) than to any other md(B,X) computed by the
system. Formally: md(A,X) < m(A) + |k(md(B,X) - m(A))| for any user B, and
for some k such that 0 < k ≤ 1.

If a user A meeting the above rules does not exist, X is rejected. Clearly, different values
for k provide different trade-offs between IPR and FAR. Smaller values of k will allow
to reject more samples from impostors, but could cause more false alarms. For k = 1,
we fall back to the plain classification rule.

The IPR and FAR columns of Table 2 reports the outcomes of the experiments in
user authentication for two different values for k. Again, in brackets are the numeri-
cal values from which we computed the corresponding percentage. For example, when
profiles contain two samples, the system can be tested 22320 times for attacks from
impostors: the profile of each user, in turn, is removed from the system,2 and the Ital-
ian and English samples of that (now unknown) individual are used to attack all users
in the systems.3 Hopefully, the system should reject the attacking samples. Moreover,

2 Otherwise, the attacking sample will be very likely attributed to the attacking user.
3 Thus, we have (31 attacking users)·(4 attacking samples)·(30 attacked users)·(6 different pair

of samples in a user’s profile) = 22320 impostors’ attacks.
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the system is tested 372 times with legal samples claimed to belong to the users who
actually provided them.4

The outcomes clearly show the effect of the authentication rule in use. For k = 0.8
and three samples in users’ profiles, the system shows an IPR of 1.08%, that is, about
one third of the IPR of the basic classification rule with 31 legal users. The cost is
in the worsening of the ability to identify legal users, since the FAR = 3.23%, is now
twice that of the basic classification method. Note also that, from the FAR columns we
see that English samples appear easier to authenticate correctly using Italian samples
in the profiles than vice versa. A result that we already noted in the experiments on
identification. On the contrary, the corresponding IPRs do not change in both cases.

4 Discussion and Applications

Beside the outcomes of the previous section, an additional evidence of the fact that
personal identity can be ascertained through the analysis of typing rhythms even when
different languages are involved can be obtained by considering the mean distances (md
for short in the table) reported in the last but one row of Table 3 for the samples gathered
in our experiments.5

Table 3. Mean distances between different groups of samples

md between md between md between md between md between md between
the Ita. the Eng. Ita. and any two Ita. any two Eng. any Ita. and
samples samples Eng. samples samples samples Eng. samples
provided provided provided provided by provided by provided by

by the same by the same by the same different different different
individual individual individual individuals individuals individuals

md=1.11131 md=1.12666 md=1.15948 md=1.36223 md=1.37821 md=1.38149
(31) [141] (31) [150] (124) [123] (1860) [140] (1860) [139] (3720) [122]

From the values in the table we see that typing samples of different text and lan-
guage provided by the same individual (column 3) are, on the average, more similar
than typing samples of different text but same language provided by different indi-
viduals (columns 4 and 5). Of course, even samples of different text and languages,
coming from different individuals, have a larger distance between each other (column
6). Quite obviously, typing samples provided by the same individual in a certain lan-
guage (columns 1 and 2), are more similar than typing samples provided by the same
individual in different languages (column 3). But the mean of column 3 is only about

4 In fact, we have (31 users)·(6 different pair of samples in a user’s profile)·(2 testing samples)
= 372 legal connections’ attempts.

5 Again, within round brackets we report the number of distances between samples used to
compute the corresponding mean distance. For example, 62 English samples from different
individuals allows to compute in (62·61)/2 - 31 = 1860 distances, where 31 is the number of
comparisons between the two English samples provided by each volunteer.
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4.24% greater than the mean value of column 1. On the contrary, the mean distance of
typing samples written in the same language by different individuals (e.g., column 4)
is about 16% greater that the mean distance between typing samples provided by the
same individual in different languages (column 3). Thus, keystroke analysis involving
different languages, though more difficult than when samples are all written in the same
language, can still be achieved.

We also note that it is the combination of distances d1 and d2 that provides the
good outcomes illustrated in the previous section. For example, when d1 is used alone
in the experiments in user identification, we get an identification error of 9.67% with
3 samples in users’ profiles, and an error of 15.67% with 2 samples in users’ profiles.
When d2 is used alone, the identification error is, respectively, 16.32% and 25.27%.
The outcomes in user authentication worsen similarly when using only d1 or d2.

The accuracy of our method is related to the number of digraphs shared by the sam-
ples under comparison, as we showed in [3]. Samples written in different languages can
be compared only if the two languages share some legal digraphs (That is, digraphs that
occur in words belonging to the language). Within square brackets in Table 3 we report
the average number of digraphs shared between any two samples of the corresponding
columns. Samples of different languages (columns 3 and 6) share an average number of
digraphs smaller than samples written in the same language. Note that English samples
from the same user share a greater number of digraphs than Italian samples from the
same user, probably because people tend to use a more restricted set of words when
using a language different from their own. For a given length of the samples, the more
similar the two languages, the larger the number of digraphs shared by the samples on
the average, and the more accurate the distance between them returned by the distance
measure used in this paper. Clearly, our method stops being useful when the languages
involved (or just the samples under comparison) share a very small number of legal
digraphs.

The outcomes of our experiments are among the best found in the literature about
keystroke analysis of both free and fixed text, but one may wonder which is their sta-
tistical significance. A large amount of research on this issue, explicitly related to bio-
metrics, is available, and we refer to [20] for a comprehensive treatment of the subject
(or see [4] for a review of different available techniques). However, J. L. Wayman, Di-
rector of the U.S. National Biometric Test Center notes in [20] our inability to predict
even approximately how many tests will be required to have ‘statistical confidence’ in
our results. We currently have no way of accurately estimating how large a test will be
necessary to adequately characterize any biometric device in any application, even if
error rates are known in advance. In practice, the number of individuals and samples
collected to test a system are not determined by pre-defined confidence intervals, but
by the amount of time, budget and resources available [19]. Once test data has been
collected and used on the system, it is then possible to estimate the uncertainty of the
observed error rates with different methods, but such estimates will have to be taken
with a grain of salt, due to the many sources of variability that affect biometric features
[15]. We agree with the above view: especially in the case of an unstable biometric such
as keystroke dynamics, the only way to evaluate a system is to test it in real conditions,
with as many individuals as possible. The number of parameters that may influence
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keystroke rhythms is so high that any statistical evaluation of the system outcomes will
very likely be of limited use.

We conclude this section by proposing possible applications of keystroke analysis
of free text.
Intrusion detection. The generation of false alarms is an endemic problem within in-
trusion detection [2]. In principle, keystroke analysis can be used to notice possible
anomalies in the typing dynamics of individuals connected to the system, that may be
intruders. However, the inaccuracy of the analysis may itself be the source of false
alarms or undetected intrusions. On the contrary, if keystroke analysis is used conjunc-
tion with other techniques, it may be useful to mitigate the problem of false alarms, by
providing an additional evidence of identity, as we showed in [11]. A scenario where
keystroke analysis can be useful even used alone is when it is performed off-line, on
accounts monitored in the recent past, to look for possible anomalies that could be sim-
ply reported to the system administrator. At the very least, the legal user of the account
could be suggested (possibly by an automatic procedure) to change his/her password. In
such case, even a relatively high FAR of, say, 2% or 3% would not be a serious problem:
false alarms will simply make users changing their passwords a bit more frequently than
usual.

Intrusions are often successful because no monitoring procedure is active, and be-
cause different form of intrusions are used. Hence, it is important to “attack the attack-
ers” with different and complementary techniques, in order to improve the chances to
detect them reliably and quickly. Experiments in this paper show that keystroke analysis
can be a valid aid to intrusion detection even when individuals under analysis are using
different languages.
User identification over the Internet. The ability to identify users through their typ-
ing habits can be used to achieve some form of User and Usage Modeling, in order to
be able to offer personalized graphical interfaces, services and advertising to users on
their return on a Web site visited previously [18]. Keystroke analysis would in partic-
ular be of great help to identify returning users of web sites that provide mailing lists,
forums, chat lines and newsgroups access. The use of such services produces a large
amount of typed text, whose typing rhythms can be stored and used to identify people
on their return to the site, especially when no form of registration is required to visit
the site and use its services. User identification over the Internet through the analysis
of typing rhythms would find an interesting application also within the investigation of
illegal activities that use the web (e.g., newsgroups and anonymous mailing services)
to exchange information. For example, the analysis of the typing rhythms coming from
different anonymous accounts and web connections could be useful to restrict and direct
investigations on a subset of the individuals under observation.

It is worth to note that the above use of keystroke analysis may raise some concern
about user’s privacy. As a consequence, users should at the very least be informed that
some form of monitoring is going on. One may observe that if a typing sample is stored
only in term of the digraphs it is made, it would in general be pretty difficult to recover
the original text. However, various kind of digit sequences entered, such as phone num-
bers, numerical passwords and pins, could be easy to recover, thus undermining users’
privacy.
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5 Conclusion

In this paper we have shown that keystroke analysis of free text can be a useful tool
for user identification and authentication even when the typing dynamics stem from the
use of different languages. As far as we know, such a situation has never been investi-
gated before in the literature. Our outcomes have been obtained without any particular
form of overfitting or tailoring of the system on the given data set, and our technique
does not rely on the classical training-testing approach that may require the system to
be tuned anew when a different set of users’ profiles is involved. We used in our ex-
periments typing samples relatively long, but we believe that, at the current state of the
art, keystroke analysis of free text cannot be performed with very short samples: timing
analysis on such texts does not provide a sufficient amount of information to discrim-
inate accurately among legal users. On the contrary, if relatively long sample texts are
accepted, keystroke analysis can become a valid tool to ascertain personal identity.

The ability to deal with typing samples of different texts and languages improves the
possibility of making computers safer and more able to fit personal needs and prefer-
ences. We believe keystroke analysis can be a practical tool to help implementing better
systems able to ascertain personal identity, and our study represents a contribution to
this aim.

Acknowledgements: We want to thank all the volunteers in our Department who con-
tributed to our research.
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