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Abstract 
In the present work, two different types of artificial neural network (ANN) architectures viz. back propagation 
neural network (BPNN) and radial basis function network (RBFN) have been used in an attempt to predict flank 
wear in drills. Flank wear in drill depends upon speed, feed rate, drill diameter and hence these parameters along 
with other derived parameters such as thrust force, torque and vibration have been used to predict flank wear using 
ANN. Effect of using increasing number of sensors in the efficacy of predicting drill wear by using ANN has been 
studied. It has been observed that inclusion of vibration signal along with thrust force and torque leads to better 
prediction of drill wear. The results obtained from the two different ANN architectures have been compared and 
some useful conclusions have been made. 
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1 Introduction 
Manufacturing industries are trying to reduce the operation cost as well as better quality of 

product. So automation with online monitoring in metal cutting operation is a new approach 

toward improvement of the quality of the product as well as reduction of the overall cost of the 

product. Monitoring of drill wear is an important issue since wear on drill affect the hole quality 

and tool life of the drill. Direct visual inspection of cutting edge is not feasible and hence indirect 

methods using sensory feed back during machining has been is use to assess the wear of the drill. 



  

For improving the performance of decision-making in tool condition monitoring, different type 

of intelligent systems has been put forwarded by many authors. Following paragraph describes 

some of the relevant researches in this direction. 

Lin and Ting [1] used the neural network model to study the drill wear and observed that the 

training error in case of sample mode converges faster than that in case of batch mode. Li and 

Tso [2] monitored the tool wear based on current signals of spindle motor and feed motor using 

regression model. Tsao [3] used the radial basis function network (RBFN) and adaptive based 

radial basis function network (ARBFN) to predict the flank wear, and compared their results 

with experimental observation. Abbu [4] predicted wear rate in drilling using Fast Fourier 

Transformation (FFT) of vibration signature as an input to ANN. Multiple objectives linear 

programming models for optimizing drill hole quality with different cutting conditions such as 

speed and feed rate was proposed by Kim and Ramulu [5]. A.K Singh et al. [6] used back 

propagation neural network for prediction of flank wear of High Speed Steel (HSS) drill   in a 

copper work piece using spindle speed, feed rate, drill diameter, thrust force and torque as input 

parameters and maximum flank wear as output parameter in a neural network. S.S Panda et al. 

[7] used back propagation neural network for prediction of flank wear of HSS drill   in a mild 

steel work piece using the spindle speed, feed rate, drill diameter, thrust force, torque and chip 

thickness as input parameters and maximum flank wear as output parameter to neural network 

and concluded that inclusion of chip thickness as an input parameter to network leads to better 

prediction of flank wear. Li et al. [8] proposed hybrid learning for monitoring of drill wear using 

a combination of fuzzy system and neural network. Kuo and Kohen [9] applied a modified fuzzy 

neural network for detecting the defective sensor signal using membership function at the input 

node and fuzzy rule base. Lo [10] described the tool state in turning operation using artificial 

neuro fuzzy inference system (ANFIS) architecture, and concluded that higher accuracy could be 

achieved in the case of triangular and bell shape membership function. Hashmi et al. [11] 

proposed a fuzzy model for correlating the drilling speed with hardness of work material. They 

have used triangular membership function with fuzzy rule base in there analysis. Chung-Chen 

Tsao [12] used radial basis function network to forecast the flank wear of different coated drill   

using hybrid learning rule i.e combination of least square method and gradient descent method. 

G.H Lim [13] in his work correlated the flank wear of tool with the acceleration amplitude of 



  

vibration signature in turning operation and he concluded that vibration acceleration produces 

two-peak amplitudes just before tool failure. Marek Balazinski et al. [14] used three artificial 

intelligence (AI) methods: feed forward back propagation neural network, fuzzy decisions 

support system and an artificial neural network based fuzzy inference system to monitor the 

flank wear in turning operation. Toshiyuki Obikawa et al. [15] used unsupervised and self-

organizing neural network Adaptive Resonance Theory (ART2) for monitoring of flank wear in 

high speed machining operation. C. Chungchoo et al. [16] used fuzzy neural network model for 

online tool wear estimation in CNC turning. D.K Sonar et al. [17] used radial basis function 

neural network for predicting the surface roughness in turning operation 

The present paper aims at studying the efficacy of ANN in predicting drill wear when trained 

with different combination of sensor signals. Comparison has also been made between standard 

BPNN model and RBFN in predicting drill wear on cast iron work-piece.  

2.  Back propagation neural network 

2.1 Back propagation neural network architecture 
Back propagation neural network is a three-layered feed forward architecture. The three layers 

are input layer, hidden layer and output layer. Functioning of back propagation proceeds in three 

stages, namely learning or training, testing or inferences and validation. 

Fig. 1 shows the l-m-n (l input neurons, m hidden neurons, and n output neurons) architecture of 

a back propagation neural network model. Input layer receives information from the external 

sources and passes this information to the network for processing. Hidden layer receives 

information from the input layer, and does all the information processing, and output layer 

receives processed information from the network, and sends the results out to an external 

receptor. The input signals are modified by interconnection weight, known as weight factor jiw , 

which represents the interconnection of ith node of the first layer to jth node of the second layer. 

The sum of modified signals (total activation) is then modified by a sigmoidal transfer function. 

Similarly, outputs signal of hidden layer are modified by interconnection weight ( kjw ) of kth node 

of output layer to jth node of hidden layer. The sum of the modified signal is then modified by 

sigmoidal transfer function and output is collected at output layer. 



  

Let 1 2( , ,....... ), 1, 2....p p p plI I I I p N= =  be the pth pattern among N input patterns. Where. jiW  and 

kjW are connection weights between ith input neuron to jth hidden neuron, and jth hidden neuron to 

kth output neuron, respectively. 

Output from a neuron in the input layer is, 
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Output from a neuron in the output layer is, 
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2.2 Learning or training in back propagation neural network 
Batch mode type of supervised learning has been used in the present case, where, interconnection 

weights are adjusted using delta rule algorithm after sending the entire training sample to the 

network. During training, the predicted output is compared with the desired output, and the mean 

square error is calculated. If the mean square error is more than a prescribed limiting value, it is 

back propagated from output to input, and weights are further modified till the error or number 

of iterations is within a prescribed limit. 

Mean square error, pE  for pattern p is defined as 

2
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where, piD is the target output, and piO  is the computed output for the ith pattern. 

Weight change at any time t, is given by 

( ) ( ) ( 1)pW t E t W tη αΔ = − + ×Δ −          (5)                                                                                 

where,η  is learning rate, andα  momentum parameter. 

2.3 Testing and validation of back propagation neural network 
Entire experimental data set is divided into training set, testing set and validation set. The error 

on the testing set is monitored during the training process. The testing error will normally 



  

decrease during the initial phase of training, as does the training set error. However, when the 

network begins to over fit the data, the error on the testing set will typically begin to rise. When 

the testing error starts increasing for a specified number of iterations, the training is stopped; and 

the weights and biases at the minimum value of the testing error are returned. The unseen data 

(validation set) is then fed to the trained network to check the percentage variation of predicted 

output (flank wear) in comparison to the actual wear.  

3 Radial basis function network 

3.1 Architecture of radial basis function network 

Basically radial basis function network is composed of large number of simple and highly 

interconnected artificial neurons and can be organized into several layer, i.e input layer, hidden 

layer, and output layer [18] as shown in Fig. 2. 

Input layer: 

An input pattern enters the input layer and is subjected to direct transfer function and output from 

input layer is same as input pattern. Number of nodes in the input layer is equal to the dimension 

of input vector L .  

Output from input layer with element ( 1 )i i to LI = is iI . 

Hidden layer: 

The hidden layer does all the important process and these nodes satisfy a unique property being 

radially symmetry. Being radially symmetry it must have the following 

a. A center vector jv  in the input space, made up of cluster center with element ( 1 )ji j to Mv = .’ 

M P≤ ’ where M is the number of center vectors and P  is number of training patterns. 

The vector typically is stored as weight factors from input layer to hidden layer.  

b. A distance measure to determine how far an input pattern with element iI  is from cluster 

center jiv . We have used Euclidean distance norm for this purpose. 

Euclidean distance 2

1
( )

L

j j i ji
i

ed I v I v
=

= − = −∑    (6) 

c. A transfer function which transfers Euclidean distance to give output for each node. In 

our case we used the gaussian function for this purpose. 



  

2 2exp( )j joutput ed σ= ÷       (7) 

where σ  is the spread parameter determined from  

max( ) /ed Mσ =        (8) 

and max( )ed is maximum Euclidean distance between selected centers and M is the 

number of centers.   

Output layer: 

There are weight factor ( 1 , 1 )kj k to N j to Mw = = between kth nodes of output layer and jth nodes of hidden 

layer.’ N ’is the dimension of output vector. Output from output layer transferred through a 

transfer function like log sigmoid or tan sigmoid. 

Output from the output layer is given by 

1
( )

N

k kj j
k

output f w output
=

= ×∑        (9) 

3.2 Training of radial basis function network  
In the present case training based on self-organized selection of centers has been considered as 

described in the following section. 

3.2.1 Self-Organized selection of centers 

1. It is a self-organizing network known as ‘SOM’ in which initial centers vector jv  was 

chosen randomly. The only restriction is that these initial values must be different. 

2. Training samples are read and Euclidean distance was calculated for the initial center 

vector as per eqn (6) 

3. The corresponding center vector was modified closest to the training sample as  

( )

. 0 1

new old old
j j pi jv v I v

P training sample
j no of centre vector
i input node

learning rate i e

η
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= + × −

=
=
=
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    (10) 



  

4. This process was continued for fixed number of iteration until no noticeable change was 

observed for the center vector jv . This is known as k-means clustering algorithm [18], a 

special case of competitive (winners takes all) learning process. 

5. Spread parameter was calculated as per eqn (8) 

6. Weights of output layer are initialized to small random values, and output from output 

layer was calculated as per eqn (9). 

7. Mean square error (MSE) of training sample was calculated. If the MSE training does not 

reach the goal specified then weight is updated based on gradient descent method. The 

weight was updated in the present case in batch mode. 

8. The process was carried out for a definite number of iteration. 

4 Experimental Set-up 
In the present work, a radial drilling machine (Batliboi Limited, BR618 model) is used for the 

drilling operation. High-speed steel (HSS) drills with different diameters have been used for 

drilling in cast iron work piece at different cutting conditions. Different sensory devices such as 

dynamometer, vibration analyzer are used for conducting the experiments as shown in Fig. 3. 

High-speed steel (HSS) drill of four different diameters (chemical composition and geometrical 

specification are listed in Tables 1 (a) and (b)) have been used to drill holes on cast iron (refer 

Tables 2 (a) and (b) for specification and compositions) specimen at different cutting conditions. 

In all the drilling operations performed in the present work, no coolant has been used.  Root 

mean square (RMS) values of thrust force and torque signal are recorded through a piezo-electric 

dynamometer (Kistler, 9272). Signals from the dynamometer were passed through low pass 

filter, amplified through charge amplifier (Kistler, type 5015 model), and stored in the computer 

through a data acquisition system (Advantech, PCL 818 HG, 100 KHz span length). Two 

numbers of piezo electric accelerometer has been used to capture vibration signals. One 

accelerometer has been attached on the top surface of the cast iron specimen to extract feed 

vibration and other on the side surface of the cast iron specimen to extract radial vibration. 

Signals from accelerometer were passed through vibration analyzer (Bruel & Kjaer, type 3560 

D) in the frequency range 7 Hz-25.6 kHz. RMS of maximum amplitude of vibration both in feed 

and radial direction are collected through Bruel & Kjaer pulse software version 7 and is stored in 



  

the computer through data acquisition system through data recorder type (Bruel & Kjaer, Type 

7701) with sampling rate of 266.9 sample per second. 1.966 Mega sample are collected through 

data recorder type of span length of 25.6 kHz. The digital microscope along with Carl-Zeiss 

software interfacing has been used to measure flank wear. The maximum flank wear is used as 

the criterion to characterize the drill condition, and is obtained by measuring the wear at different 

points on either of the cutting edges. Photographs of gradual wear build-up process in the drill of 

9 mm diameter for two different feed rates as observed under microscope are shown in Fig. 4(a)-

4(b). 

5 Results and Discussion 
Drilling operations have been conducted over a wide a range of cutting condition. Spindle speed 

has been varied in the range 250 rpm to 500 rpm in four steps. Feed rate has been varied from 

0.13 to 0.36 mm/rev in four steps. High-speed steel (HSS) drills of four different diameters of 

(9mm, 10mm, 11mm and 12mm) have been used for drilling through holes of 15mm thickness in 

cast iron plates Different combinations of three design variables viz. spindle speed, feed rate and 

drill diameter have been used to perform 64 different drilling operations on cast iron plate. For 

each of these conditions, thrust force and torque have been measured using dynamometer and the 

data are stored in the computer. Similarly for each cutting condition, feed vibration and radial 

vibrations have been measured using accelerometer, and the data are stored in the computer 

through the LabView (Version7) software. Corresponding to each cutting condition, maximum 

flank wear has also been measured using digital microscope. The results of the experiment are 

tabulated in Table 3, which shows the thrust force, torque, amplitude of vibrations and the flank 

wear corresponding to 64 different cutting conditions.  

5.1 Effect of important process parameters on sensor signal 

Signals (thrust force, torque and vibration components) collected at different cutting conditions 

definitely have some dependence on the process parameters like (feed rate, drill diameter and 

spindle speed) as listed in Table 3. Hence effect of individual process parameter on sensor 

signals has been analyzed in the following section.   

5.1.1 Effect of speed, feed rate and drill diameter on thrust force 



  

Fig. 5 shows variation of thrust force with feed rate for different spindle speeds for a 9 mm 

diameter drill. It could be observed that thrust force increases with increase in feed rate for a 

given spindle speed and this is due to the already established facts that increase in feed rate 

increase the chip load action thus thrust force increases. It could also be observed that the 

increasing trend of thrust force with feed rate is more pronounced at lower range of spindle 

speeds (at 250rpm and 315rpm). Similarly it could be observed that thrust force decreases with 

increase in spindle speed and this is due to fact that increase in spindle speed increase the 

temperature generation during shearing action of cutting tool, and hence it soften the material of 

the work piece which results in the reduction of the thrust force.  

Fig. 6 shows the variation of the thrust force with drill diameter at constant spindle speed of 500 

rpm. It could be observed that thrust force increases with increase in drill diameter and this is due 

to facts that increase in drill diameter increases chip load action and thus thrust force increases. It 

can also be observed from Fig. 6 that thrust force is more sensitive to feed rate compared to drill 

diameter. This may be due to the fact that an increase in feed rate along the axial direction 

imparts more chip load than that due to of an increase in diameter along the circumferential 

direction. 

5.1.2 Effect of speed, feed rate and drill diameter on torque         
Fig. 7 shows variation of torque with feed rate for different spindle speeds for a 9 mm diameter 

drill. It could be observed that torque increases with   increase in feed rate for a given spindle 

speed due to the same reason as explained in the case of thrust force.  

Fig. 8 shows the variation of the torque with drill diameter at constant spindle speed of 500 rpm. 

It could be observed that torque increases with increase in drill diameter due to same reason as 

explained in case of thrust force. 

5.1.3 Effect of speed, feed rate and drill diameter on vibration signal 
Fig. 9 shows variation of feed vibration with feed rate for different spindle speeds for a 9 mm 

diameter drill. It could be observed that increase in feed rate reduces the vibration spectra, which 

may be due to fact that mass of the material, removed in terms of chip act as constraint, which 

prevents it (tool) to deflect from its location. Another reason may be with increase in feed rate, 

tool engagement with work piece increases and hence the stiffness of the whole system (tool-
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work piece engagement) increases, thus deflection of the cutting tool along feed direction 

reduces. Similarly it could also be observed that feed vibration increases with increase in spindle 

speed and this is due to fact that increases in spindle speed (RPM) increases surface speed of 

drill thus centrifugal force increases which will try to deflect the end point of drill which acts as 

cantilever. 

Fig. 10 shows the variation of the feed vibration with drill diameter at constant spindle speed of 

500 rpm. It could be observed that feed vibration amplitude increases with increase in drill 

diameter and this is due to the fact that increase in drill diameter increases surface speed of drill 

thus increasing the centrifugal force which will deflect the end point of drill. Though increase in 

drill diameter increases stiffness of the system, leading to reduction in vibration spectra, but it is 

dominated by the surface speed of the drill and the combined effect lead to increase in vibration 

spectra. 

Fig. 11 shows the variation of the both components of vibration spectra with spindle speed at 

constant feed rate of 0.13 mm/rev and constant drill diameter of 9 mm. It could be observed that 

radial vibration is more predominate than feed vibration which may be due to the fact that the 

drill acts as cantilever has sufficient freedom to move along radial direction rather then feed 

direction. 

5.2 Wear prediction by back propagation neural network 
Back propagation neural network architectures, prepared using various combination of input 

parameter such as spindle speed, feed rate, drill diameter, thrust force, torque, feed vibration, and 

radial vibration. Neural network architectures with and without vibration signals have been tried 

in an attempt to improve the efficacy of the network. In all the cases, the output of the network 

has been flank wear only. 

Out of the 64 data sets, 37 data sets (training set) are selected at random and have been used for 

training the network and 17 data set (testing set) are used to evaluate the testing error to be used 

as stopping criteria for the network. The remaining 10 data set (validation set) are used to 

evaluate the validation error of the network. The normalized data sets are used for training the 

network. The data sets are normalized in the range of 0.1 to 0.9 using  

min

max min

0.1 0.8 x xy
x x

⎛ ⎞−
= + ⎜ ⎟−⎝ ⎠

                                      (11) 
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where, 

x = Actual value, 

maxx = Maximum value of x , 

minx = Minimum value of x ,                                         

y = Normalized value corresponding to x .  

Best network architecture (i.e., number of hidden layers, number of neurons in the hidden layers, 

learning rate and momentum coefficient) has been obtained by trial and error based on mean 

square error MSE in training, MSE in testing, and the number of iterations. Large number of runs 

were given for selecting the best architecture and table 4 shows only some of them along with 

the number of neuron in the hidden layer, MSE for training, MSE for testing, number of iteration 

and corresponding percentage of error while validating the sample.  

5.2.1 Network architecture without vibration 
In this case, the network has five input nodes corresponding to five input parameters (drill 

diameter, spindle speed, feed rate, thrust force and torque) and one output node corresponding to 

one output parameter (flank wear of drill). The optimum architecture has been attained by hit and 

trial after trying large number of different network architectures some of which has been shown 

in Table 4. Based on these observation the optimum network obtained in the present case is 5-7-1 

with η =0.3 and α =0.9.  

Fig. 12 shows the variation of MSE in training and testing with number of iterations for network 

of 5-7-1 with η =0.3 and α =0.9. It could be observed that network could be trained till 3495 

iterations after which it starts over fitting and at this point MSE for testing as 0.000347 and MSE 

for training as 0.000221. After the network has been trained, it has been validated with unknown 

data sample. Fig. 13 shows percentage of error between actual value and the predicted value and 

it could be observed that the predicted values from the neural network are within 7.03± % of the 

actual values. 

5.2.2 Network architecture with feed vibration 
Next, attempt has been made in preparing network architecture considering an extra input node 

(feed vibration). In this case, the network has six input nodes corresponding to six input 
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parameters (drill diameter, spindle speed, feed rate, thrust force, torque and feed vibration) and 

one output node corresponding to one output parameter (flank wear of drill). The optimum 

architecture has been attained by hit and trial after trying large number of different network 

architecture, some of which are tabulated in Table 4. Based on these observation the optimum 

network obtained in the present case is 6-3-1 with η =0.3 and α =0.6 

Fig. 14 shows the variation of mean square error in training and testing with number of iteration 

for network 6-3-1 with η =0.3 and α =0.6. It could be observed that network could be trained till 

1991 iterations with MSE for testing as 0.000451 and MSE for training as 0.000673. After the 

network has been trained, it has been validated with unknown data sample. Fig. 15 shows 

percentage of error between actual value and the predicted value and it can be observed that the 

predicted values are within 6.25± % of the actual values. 

5.2.3 Network architecture with both feed vibration and radial vibration 

Here an attempt has been made in preparing network architecture considering both components 

of vibration spectra i.e feed vibration and radial vibration. In this case network has seven input 

nodes corresponding to seven input parameters (drill diameter, spindle speed, feed rate, thrust 

force, torque, feed vibration and radial vibration) and one output node corresponding to one 

output parameter (flank wear of drill). The optimum architecture has been attained by hit and 

trial after trying large number of different network architecture, some of these architectures 

corresponding to their number of neuron in hidden layer, mean square error of testing and 

number of iterations have been tabulated in Table 4. Based on these observation the optimum 

network obtained in the present case is 7-10-1 with η =0.6 and α =0.9.  

Fig. 16 shows the variation of MSE in training and MSE in testing with number of iteration for 

network 7-10-1 with η =0.6 and α =0.9. It could be observed that network could be trained till 

5404 iterations with MSE for testing as 0.000356 and MSE for training as 0.000201. After the 

network has been trained, it has been validated with unknown data samples. Fig. 17 shows 

percentage of error between actual value and the predicted value and it could be observed 

that  the predicted values are within 6.17± %.  

5.3 Wear predictions by self-organizing network 
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In this section an attempt has been made in selecting the methodology of the network. As seen 

from back propagation neural network that increase in number of input node increases the 

accuracy of prediction. Hence in the present method all input parameters (drill diameter, spindle 

speed, feed rate, thrust force, torque, feed vibration and radial vibration) have been considered 

with one output parameter (flank wear). Network architectures, have been prepared using various 

combination of number of centre vector in hidden layer, learning rateη  and momentum 

coefficientα . 

Out of the 64 data set, the network has been trained in batch mode using randomly selected 45 

data set and rest 19 data set are used to evaluate the testing error to be used as stopping criterion 

for the network. The data sets are normalized in the range of 0.1 to 0.9 using equation (11). 

Best network architecture (i.e., number of centre vector in the hidden layers, learning rate and 

momentum coefficient) has been obtained by trial and error based on mean square error in 

training, testing, and the number of iterations. Large numbers of runs were given for selecting the 

best architecture and Table 5 shows some of them along with number of centre vectors, mean 

square error for training, mean square error for testing, and number of iteration and 

corresponding percentage of error of testing sample. Number of centre vectors varies from 10 to 

40 in 4 steps and range of η and α  varies from 0.1 to 0.9. 

In this case, the network has seven input nodes and one output node. The optimum network 

architecture has been attained by hit and trial after trying large number of different network 

architectures. Some of these architectures corresponding to their number of centre vector, mean 

square error of testing and number of iterations have been tabulated in Table 5. Based on these 

observations, the optimum network obtained in the present case is 7-40-1 with 

0.3η = and 0.9α = . 

Fig. 18 shows the variation of mean square error in training and testing with number of iteration 

for network 7-40-1 with 0.3η = and 0.9α = . It could be observed that network has been trained 

till 435 iteration in which MSE for testing is 0.000393 and MSE for training is 0.001827. It can 

also be observed from the Fig. 18 that mean square error of training and testing sample rapidly 

reduces within 100 iterations and thereafter reduces slowly till the network over fits. 
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After the network has been trained, it has been verified with testing sample. Fig. 19 shows 

percentage of error between actual value and the predicted value and it can be observed 

that the present 7-40-1 self organizing network with 0.3η = and 0.9α =  predicts the result within 

8.2± %.  

Fig. 20 shows variation of Euclidian distance with number of iterations for the optimum network 

of 7-40-1 with 0.3η = and 0.9α = . In the self organizing network, center vector which is farthest 

away from the clustered of training sample, is iteratively modified closest to training sample or 

in other words the stored weights between input and hidden layer are changed. It can be observed 

for a training sample that there was no noticeable change of center vector after about 200 

iterations. So during simulation, a sufficient number of iteration of near by 200 has been given in 

order to achieve the stability of centre vector or input layer weights. 

6  Conclusions 

Process parameters such as drill diameter, spindle speed, feed are supplemented with sensors 

signals such as thrust force, torque and vibration signals for training a back propagation neural 

network as well as a radial basis function network for predicting flank wear in drill. It has been 

observed from the present study that both BPNN and RBFN can predict the drill flank wear 

reasonably well. From the present work, the following specific conclusions have been drawn. 

1. Inclusion of vibration signals as input to train neural network results in a better-trained 

network, which can predict the wear with more accuracy. 

2. BPNN can predict the wear more accurately compared to RBFN. 

3. While the error in prediction is more in RBFN compared to that in the case of BPNN, 

RBFN can learn the pattern much faster compared to BPNN and could be used 

advantageously in on-line tool wear monitoring. 
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Fig. 2 Architecture of self organizing network 
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Fig. 3 Schematic diagram of the experimental set-up 
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Fig. 4(a) Flank wear of 10 mm diameter at spindle speed 400 rpm and feed rate 0.13 mm/rev. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 4(b) Flank wear of 10 mm diameter at spindle speed 400 rpm and feed rate 0.36 mm/rev. 
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Fig. 5 Effect of feed rate on thrust force 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Effect of drill diameter on 

thrust force 
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Fig. 7 Effect of feed rate on torque 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 Effect of drill diameter 

on torque 
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Fig. 9 Effect of feed rate on feed vibration 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. 10 Effect of drill diameter 

on feed vibration 
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Fig. 11 Variation of feed and radial vibration with drill diameter 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12  Variation of mean square error 
with number of iteration for 5-7-1 
architecture  

with η =0.3 and α =0.9 
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Fig. 13 Comparison of Predicted value with actual value for 5-7-1 architecture with η =0.3 and α =0.9 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 Variation of mean square error with number of iteration for 6-3-1 architecture with η =0.3 and 
α =0.6 
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Fig. 15 Comparison of predicted values with actual values for 6-3-1 architecture with η =0.3 and α =0.6 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16 Variation of mean square error with number of iteration for 7-10-1 architecture with η =0.6 and 
α =0.9 
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Fig. 17 Comparison of predicted value with actual value for 7-10-1 architecture with η =0.6 and α =0.9 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18 Variation of mean square error with number of iteration for 7-40-1 architecture with 

0.3η = and 0.9α =  
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Fig. 19 Comparison of predicted value with actual value for 7-40-1 architecture with 0.3η = and 0.9α =  

 

 

 

 

 

 

 

 

 

Fig. 20 Steady state condition of Euclidean distance for 7-40-1 architecture with 0.3η = and 0.9α =  
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Table 1 HSS drill geometry and chemical composition 

(a) Geometry of HSS drill bit (long series) 

Tool diameter (mm) Flute length (mm) Total length  (mm) Point angle(degree) Helix angle(degree) 

5 44.4 76.2 118 30 

7.5 60.3 95.2 118 30 

10 73 114.3 118 30 

Flute   2 flutes 

Flute type  parabolic 

Shank type  straight cylindrical 

Coating any  No 
 

(b) Chemical Composition of HSS drill materials (wt%) 
 

Tungston Cromium Vanadium Cobalt Molybdenum Carbon Hardness 

18 4.3 1.1 5 0.65 0.75 290 BHN 

 
Table 2 Cast iron properties and chemical composition 

(a) Chemical composition 
 
Fe C Si 
94 3.5 2.5 
 
(b) Mechanical properties 
 

Ultimate tensile stress 

(MN/m2) 

Yield stress 

(MN/m2) 

Density 

 (Kg/m3) 

Elongation (%) Brinell  

Hardness 

200-830 82-690 7000 5 262 
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Table 3 Experimental data of cast iron work-piece 
 

Sl No Diameter 
(mm) 

Speed 
(rpm) 

Feed 
(mm/rev) 

Thrust 
Force 

(N) 

Torque 
(Nm) 

Feed 
vibration 

(m/s2) 

Radial 
vibration 

(m/s2) 

Flank 
wear 
(mm) 

1 9 500 0.13 1088.1 10.67 37.36 39.28 0.1 
2 9 500 0.18 1435.1 14.66 35.48 36.75 0.13 
3 9 500 0.25 1588.3 16.04 33.72 35.52 0.06 
4 9 500 0.36 1669.8 17.12 30.93 31.11 0.09 
5 9 400 0.13 1150.9 11.22 31.24 33.22 0.12 
6 9 400 0.18 1486.4 15.01 29.32 30.48 0.15 
7 9 400 0.25 1642.8 16.36 27.21 27.86 0.1 
8 9 400 0.36 1721.3 17.64 24.18 25.14 0.11 
9 9 315 0.13 1185.2 11.43 24.52 25.12 0.15 

10 9 315 0.18 1707.8 16.97 21.24 22.26 0.16 
11 9 315 0.25 2025.8 20.06 19.14 21.32 0.11 
12 9 315 0.36 2778 27.82 17.63 18.40 0.12 
13 9 250 0.13 1212.4 11.47 20.06 21.16 0.16 
14 9 250 0.18 1752.6 17.23 18.85 19.52 0.18 
15 9 250 0.25 2077.1 20.35 17.21 18.10 0.13 
16 9 250 0.36 2816.7 28.22 15.46 16.21 0.14 
17 10 500 0.13 1188.3 11.06 43.21 45.30 0.07 
18 10 500 0.18 1504.8 15.11 41.12 42.24 0.12 
19 10 500 0.25 1668.9 16.85 39.54 40.44 0.11 
20 10 500 0.36 1754.8 17.69 37.24 38.65 0.08 
21 10 400 0.13 1215.6 11.18 39.54 41.26 0.08 
22 10 400 0.18 1547.7 15.71 36.28 37.72 0.15 
23 10 400 0.25 1715.2 17.08 35.44 36.42 0.14 
24 10 400 0.36 1782.6 17.95 31.22 33.46 0.12 
25 10 315 0.13 1627.3 15.8 33.27 35.52 0.11 
26 10 315 0.18 1827.6 18.27 30.41 31.10 0.16 
27 10 315 0.25 2786.7 27.84 28.26 29.67 0.16 
28 10 315 0.36 3284.2 32.95 25.37 26.30 0.15 
29 10 250 0.13 1677.3 16.01 27.30 28.69 0.12 
30 10 250 0.18 1869.7 18.64 22.51 24.24 0.18 
31 10 250 0.25 2824.2 28.11 20.52 22.60 0.17 
32 10 250 0.36 3323.1 33.08 18.63 20.23 0.14 
33 11 500 0.13 1254.9 12.54 47.26 49.32 0.1 
34 11 500 0.18 1556.8 18.32 45.92 47.24 0.13 
35 11 500 0.25 1724.3 23.41 44.66 45.54 0.14 
36 11 500 0.36 1869.4 24.65 41.25 43.21 0.09 
37 11 400 0.13 1318.6 13.04 43.22 44.62 0.11 
38 11 400 0.18 2067 20.71 40.29 42.10 0.14 
39 11 400 0.25 2538.9 25.42 38.23 39.28 0.15 
40 11 400 0.36 2752.7 27.66 35.45 37.68 0.12 
41 11 315 0.13 1342.9 13.61 36.03 37.41 0.13 
42 11 315 0.18 2097 21.03 34.27 35.80 0.16 
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43 11 315 0.25 2753.8 27.68 31.58 33.41 0.16 
44 11 315 0.36 2860.1 28.55 28.66 29.67 0.15 
45 11 250 0.13 1394.6 13.88 31.24 33.14 0.17 
46 11 250 0.18 2156.8 21.72 28.67 29.88 0.17 
47 11 250 0.25 2885.6 28.04 27.49 28.62 0.18 
48 11 250 0.36 3001.4 29.14 25.33 27.26 0.17 
49 12 500 0.13 1277.8 13.28 61.51 62.36 0.14 
50 12 500 0.18 1624.3 18.51 57.11 59.49 0.11 
51 12 500 0.25 1856.3 23.51 54.62 56.24 0.1 
52 12 500 0.36 2005.4 24.78 50.26 52.27 0.1 
53 12 400 0.13 1464.3 14.39 56.58 58.12 0.16 
54 12 400 0.18 2114.6 18.64 55.46 57.43 0.13 
55 12 400 0.25 2558.6 23.58 51.12 53.22 0.17 
56 12 400 0.36 2924.3 24.92 48.88 49.62 0.15 
57 12 315 0.13 1524.6 15.28 48.26 49.24 0.17 
58 12 315 0.18 2121.8 21.17 44.69 45.56 0.14 
59 12 315 0.25 2612.6 26.21 41.52 43.37 0.21 
60 12 315 0.36 3270 32.99 38.26 40.11 0.17 
61 12 250 0.13 1578.2 15.62 41.72 43.76 0.2 
62 12 250 0.18 2163.4 21.41 38.25 39.58 0.17 
63 12 250 0.25 2672.6 26.52 35.68 37.20 0.24 
64 12 250 0.36 3311.2 33.11 33.28 35.26 0.19 
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Table 4 Network Architecture for back propagation network 
 
L=Number of neurons at input layer 
M= Number of neurons at hidden layer 
N=Number of neurons at output layer 
 
η  α  MSE 

training 
MSE 
testing 

Iteration Max % 
error of 
validation 

Mim % 
error of 
validation 

Architecture 
L-M-N  

.3 .2 0.000759 0.000458 3066 9.213052 -0.588035 5-5-1 

.3 .5 0.000752 0.000455 2029 9.318743 -0.473577 5-5-1 

.3 .9 0.000492 0.00044 3200 11.321773 0.764639 5-5-1 

.8 .9 0.000104 0.000331 1709 -9.883300 0.007625 5-5-1 

.3 .9 0.000221 0.000347 3495 -7.035090 -0.192109 5-7-1 

.5 .9 0.000103 0.000335 6489 -7.388125 0.299454 5-7-1 

.8 .9 0.000057 0.000213 14254 -8.660548 -0.105009 5-7-1 

.3 .9 0.000267 0.000524 8478 -12.65958 -0.716748 5-10-1 

.3 .9 0.000282 0.000477 2431 9.098277 -0.279041 5-13-1 

.5 .8 0.000303 0.000807 7368 -11.07535 0.887593 5-13-1 

.3 .2 .000946 .000424 1143 -10.57 -0.88 5-3-1 

.3 .9 0.00054 0.000503 3762 9.54 -0.32 5-3-1 

.6 .6 0.003813 0.004748 318 15.65 0.38 5-1-1 

.1 .1 0.003817 0.004748 2124 15.66 0.48 5-1-1 

W
ithout vibration 

.1 .1 0.001202 0.000477 317 -8.42 0.19 6-3-1 

.1 .3 0.001204 0.000478 246 -9.86 -0.24 6-3-1 

.1 .9 0.000657 0.000481 1665 -11.95 -0.03 6-3-1 

.3 .1 0.000675 0.000446 4510 -6.84 -1.39 6-3-1 

.3 .3 0.0007 0.000456 2954 -7.75 1.37 6-3-1 

.3 .6 0.000673 0.000451 1991 -6.25 2.16 6-3-1 

.3 .9 0.000665 0.000493 718 -13.74 1.1 6-3-1 

.6 .3 0.000672 0.000446 1776 -11.6 -1.24 6-3-1 

.6 .6 0.000671 0.000456 997 12.99 -0.52 6-3-1 

.6 .9 0.000295 0.000402 3561 10.1 0.01 6-3-1 

.9 .1 0.000692 0.000435 1379 -11.11 0.25 6-3-1 

.9 .6 0.000668 0.00046 672 -7.66 1.18 6-3-1 

.1 .1 0.001164 0.000349 237 -8.02 -0.43 6-6-1 

.1 .9 0.000471 0.00047 6552 9.66 -0.2 6-6-1 

.3 .6 0.000082 0.00035 5631 -9.63 -0.45 6-6-1 

.6 .3 0.000504 0.000414 8066 9.25 0.53 6-6-1 

.6 .6 0.000482 0.000469 4094 8.61 -1.32 6-6-1 

.6 .9 0.000179 0.000344 3955 -7.46 -1.56 6-6-1 

.9 .1 0.00057 0.000444 6782 10.14 -0.61 6-6-1 

.9 .3 0.000543 0.000438 5417 9.77 1.06 6-6-1 

.9 .6 0.000491 0.000407 4051 11.05 -0.22 6-6-1 

W
ith feed vibration 

   

.3 .2 0.000373 0.000404 21637 -10.09311 -1.032831 7-5-1 

.3 .5 0.000373 0.000402 13164 -10.04577 -1.059604 7-5-1 

.3 .9 0.000314 0.00044 2908 10.268342 0.366341 7-5-1 

.5 .5 0.000369 0.000395 8437 -10.03361 -1.239933 7-5-1 

.4 .6 0.00037 0.000394 8370 -9.998882 -1.182722 7-5-1 

.3 .3 0.000416 0.000315 7671 -10.10526 -0.874644 7-7-1 

.3 .5 0.000414 0.000315 5568 -10.14343 -0.826739 7-7-1 

W
ith both 

vibration 
spectra 
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.3 .9 0.000095 0.000281 6324 -9.673208 0.127836 7-7-1 

.4 .7 0.000417 0.000317 2485 -9.961436 -0.807868 7-7-1 

.3 .3 0.000676 0.000392 957 7.999867 0.552616 7-10-1 

.3 .9 0.000267 0.0004 4208 -7.165553 -0.488983 7-10-1 

.5 .9 0.000308 0.000442 1697 10.10424 -0.002049 7-10-1 

.2 .9 0.000367 0.000488 1381 9.454712 0.337459 7-13-1 

.5 .9 0.000253 0.000454 2142 9.751565 0.575089 7-13-1 

.6 .9 0.000201 0.000356 5404 -6.177035 -1.259286 7-10-1 

.8 .9 0.00028 0.000408 2623 10.339206 1.038324 7-5-1 

.7 .8 0.000031 0.000226 20097 16.473956 0.345249 7-5-1 

.1 .9 0.000379 0.000366 14299 10.938917 -0.376683 7-5-1 

.6 .9 0.000314 0.000299 351 -6.675638 -1.053119 7-8-1 

.7 .9 0.000082 0.000324 2061 -7.867673 0.518129 7-8-1 
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Table 5 Network Architecture for SOM 
L=Number of neurons at input layer 
M= Number of centre vectors 
N=Number of neurons at output layer 
 
η  α  MSE 

training 
MSE 

testing Iteration 
Max % 
error 

Mim % 
error 

Architecture 
L-M-N 

.1 .6 0.003791 0.000439 4426 -16.51 0.07 7-20-1 

.1 .9 0.001786 0.000486 1956 -15.68 -0.21 7-20-1 

.3 .6 0.003791 0.000439 1478 -16.51 0.06 7-20-1 

.3 .9 0.001786 0.000486 659 -15.68 -0.32 7-20-1 

.6 .6 0.003789 0.000439 741 -16.50 0.05 7-20-1 

.6 .9 0.001793 0.000487 289 -15.72 -0.47 7-20-1 

.9 .6 0.003788 0.000439 495 -16.5 0.04 7-20-1 

.1 .6 0.005128 0.000767 5509 15.89 0.45 7-30-1 

.1 .9 0.003544 0.000843 102 -14.53 1.12 7-30-1 

.3 .6 0.005122 0.000767 1843 15.89 -0.46 7-30-1 

.6 .6 0.005112 0.000767 927 15.88 -0.49 7-30-1 

.9 .6 0.005101 0.000767 622 15.87 -0.51 7-30-1 

.1 .1 0.021258 0.006935 604 -41.61 -0.86 7-40-1 

.1 .9 0.001812 0.000392 1374 -8.75 0.07 7-40-1 

.3 .9 0.001827 0.000393 435 8.20 -0.01 7-40-1 

.6 .9 0.001825 0.000393 220 -8.83 0.008 7-40-1 
 

 

 


