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Summary

In this paper, we adopt the calculus of variations to study the structure of protein with an
energy functionalF(x, z, x’, /) dependentn the curvature, torsion and their derivatives with
respect to the arc length of the protein backbone. Minimising this energy among smooth normal
variations yields two Euler-Lagrange equations, which can be reduced to a single equation.
This equation is identically satisfied for the special case when the free-energy density satisfies
a certain linear condition on the partial derivatives. In the case when the energy depends only
on the curvature and torsion, it can be shown that this condition is satisfied if the free-energy
density is a homogeneous function of degree one. Another simple special solution for this case
is shown to coincide with an energy density linear in curvature, which has been examined
in detail by previous authors. The Euler-Lagrange equations are illustrated with reference to
certain simple special cases of the energy density function, and a family of conical helices is
examined in some detail.

1. Introduction

The folding of proteins presents one of the most challenging research problems in molecular physics,
biochemistry and biology. Difficulties in modelling this problem arise for several reasons, including
the complicated molecular structure of proteins and their interactions with other molecules (such
as molecular chaperones) and their environment. As misfolding of proteins has been established as
the major cause of many illnesses, such as Alzheimer’s, mad cow and Creutzfeldt—Jacob diseases
(1, 2), understanding the basic mechanisms of folding could lead to new approaches for prevent-
ing such diseases. Experimental, theoretical and computational studies of protein structure are all
currently very active research areas. Various models have been proposed, including lattice models,
statistical mechanical models, random energy models and molecular dynamics simulations. For de-
tails of these and other models, s8¢q 11) and the references contained therein. Although widely
different techniques are employed, all these researchers and dtBgt8) agree that proteins fold

into minimum-energy structures. In order to minimise the energy, here we use the approach of the
classical calculus of variations and we extend the work of Fetodil. (14), who assume that the
energy density depends only on the curvature of the protein backbone. In particular, for helical pro-
teins, they examine an energy density function that is linear in curvature, nénge)y= A + Bk,

wherex denotes the curvature adand B denote arbitrary constants. The study of Febhl. (14)
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may be appropriate for the secondary structureselix that admit a near-perfect helical shape or

the tertiary structures that comprise all tiidnelix classes. However, in general, the tertiary or na-
tive structures of proteins are of a much more complicated configuration. In order to generalise the
basic idea used inl@) for more complicated protein structures, the present paper considers those
energy density functions that are dependent on the curvatuhe torsionr and the derivatives of

the curvature and torsior, andz’, of the protein backbone curve. It should be noted that the cur-
vature and torsion encode all geometric information about a curve in three-dimensional (3D) space,
up to rotations and translations. While the curvature dependence of the energy is the most signif-
icant, in many situations the torsion of the protein backbone may also play an important role. We
comment here that particular energy density functions involving both curvature and torsion that are
related to elasticity theory, and the ensuing Euler-Lagrange equations, are examined from a purely
mathematical perspective iifto 18), for example.

Further, we note that the study of Feetial. (14) has been extended by Zhaetwal. (19), who
consider energy density functions depending on the curvature, torsion and the derivative of the
curvature for polymer chains. However, the resulting Euler-Lagrange equations (see (2.31) and
(2.32) in (19)) are incorrect. Here, we give the correct Euler—Lagrange equations by extending
the analysis to the case whéh = F(x, z, x’, t') andby further simplifying these equations we
show that they can be reduced to a single equation &&¢ kelow). This equation constitutes
the critical identification of the formal underlying mathematical structure of the two complicated
Euler-Lagrange equations. No such identification is given by Zkaaly(19) for the corresponding
equations.

In this paper, we model the protein backbone or polymer chain as a smoothZumEuclidean
3D space. Let(s) = (X(s), Y(s), z(s)) denote the position vector of points @) wheres € [a, b]
is a parameter. In general, the curvature and torsidb afe given respectively by

. [r" xr”| _ det@’, r”,r'")

, T = 1.1
|r/|3 |I” x r//|2 ( )

Hereand throughout this paper, we use primes to denote differentiation with respect to the parame-
ters.
We denote a moving orthonormal frame along the c@\wy {T(s), N(s), B(s)}, whereT, N and
B are, respectively, the unit tangent, normal and binormal vectors at pogiprif s denotes the
arc length of the protein curve, then the parametrisation is of unit speed, thiatsg,= 1, and we
have the usual 3D Frenet formulae relating derivatives of the moving frame vectors, namely

T =xN, N =-«T+1:B, B =—tN. (1.2)

The above formulae fot andt obviously simplify in the case of the unit-speed parametrisation.
However, in computing variations, we will require the above general formulation. For more details
of the above equations, se2j or 21).

We consider a variation to the curve by setting

F(S) =r(S) + e1y1(9) T(S) + e2w2(S)N(S) + e3w3(S)B(S),

whereeq, e2 andez aresmall parameters angs, w» and w3 arearbitrary smooth functions which
we assume to have compact support witfgnb), that is, both they and all their derivatives vanish
smoothly at the end points of the curve. One may then easily compute the corresponding variation
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of various quantities associated with the curve including velocity, curvature, torsion and so on. We
are interested in energy functionals defined for our space curves by

b
E[r]::/C]-'(x, T, K’,r’)dﬁ:/ Fx(s), t(s), x'(s), 7/(s))|r'(s)|ds,

where the energy densit¥ is a suitably differentiable function depending on curvatrérsion

r and their derivatives with respect to the arc lengthandz’, of the curve. Under the variation to
the curve, defined above, we find the Euler—Lagrange equations corresponding to extré&nfiging
setting

0
P E[f]
In section , we present the Euler—Lagrange equations resulting ftdh for the free-energy

density depending on the curvature, torsion and the derivatives of both the curvature and the torsion.
The detailed mathematical derivations of these equations are provided in Appendices A and B. We
again note that the case 6f depending only upon the curvature has been previously examined
in Feoliet al. (14) and the case of depending on the curvature, torsion and the derivative of the
curvature has also been previously considered by Zbtaaly(19). Again, we comment that the two
Euler-Lagrange equations shown 9] are incorrect. Further, we show that the Euler-Lagrange
equations derived here dramatically simplify when expressed in terms of the ‘generalised’ Legendre
transform

o oF d [oF oF d [oF OF  ,0F
= —_— - — e — —-F, (14
wle, 7, k7, 7) =K { ok ds \ ok’ tr ot ds \ ot/ tK ok’ T ot’ > (14)

=0, foreachi=1,2,3. (1.3)

e1=¢62=e3=0

andindeed, we deduce a single equation fafx, 7, x’, t) (see(2.7) or @.8) below). From this

single equation, it is clear that = 0 andw = constant (assumed non-zero) constitute two special
cases. As shown in sectid@) when the free-energy density depends only on the curvature and
torsion, it can be shown that the case= 0 gives rise taF being a homogenous function of degree
one, namelyF(x, t) = xf (z/x) for any f, while w = constant can be shown to collapse on the
previously mentioned casE(x, t) = A+ Bk, whereA and B denote constants. In sectidhwe
examine certain special cases of the energy densities, including a particular homogeneous function
of degree one, and in sectidnwe examine a family of conical helices that admit simple expressions
for the curvature and torsion and for which we investigate implications of the resulting Euler—
Lagrange equations. We note that the conical helix protein structures can be seen in GvpA protein
that forms the ribbed gas vesicles in many aquatic bacteria (see, for exa@hl@3(24)). In
section6, conclusions are presented, and finally in Appendix C, an alternative derivation to that
described by Feoét al.(14) is presented for solving the Euler—Lagrange equations when the energy
function depends only on the curvature.

2. Euler—Lagrange equations

As shown in Appendices A and B, we find that the variation in the tangential dire@ij@z1)

E[F]| 5=0 doesnot result in any information for determining(x, z, ', t'). Geometrically, tan-

gential variation corresponds to reparametrising the curve and such variations do not change the
energy.
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Thevariations(d/0¢2) E[f]| =0 and (6/0e3) E[F]| :=0 in the normal and the binormal directions
give rise to

o (54 a5y a0 or_d (o

ds?2 | ox  ds x ds? | ot ds \ o7/
+ i_& i a]: d 6;7: +(2_ 2) g_i i
K k2 )ds|or ds \ar/ T e T ds \ o

oF d [oF oF o0F
2kt |— ' 4 - =0 21
+ Kr{ﬁr dS( >}+K(K K/+T61/ f) 2.1)

L1 [eF _d (oF\], 2 @ [oF _d (oF
x dsd | o7 ds \ oz’ k2 ds2 | oz ds \ o7’
Tds o ds \ ok’ K K2 K3 * ds | ot ds \ ot/

[oF d [oF JJoF d (aF\]
o hemw (0)) - [ -w (5)) =0 @2

respectiely. We refer the reader to Appendices A and B for details of the derivation of (2.1) and
(2.2) and the alternative boundary conditions. We recognise in particular the structure of the square-
bracketed terms in2(1) and 2.2) and expect a similar pattern if higher derivativescodind ¢
are included in the energy. We note that a general pure mathematical formulation of these equations
involving exterior differential systems exists in the literatu2g, (pp. 50-5626) but does not include
any explicit equations such as (2.1) a2d?) derived here. Starostin and van der Heijd&r) Use
the general approach to determine thétis strip. The Mbius strip is also studied by Hangdlbj
and Hangan and Mure&8), who adopt the specific Sadowsky’s functioffal= x2(1 + 72/x?)?
andderive the two Euler-Lagrange equations that are entirely consistent with our results.

For the case when the energy function depends only on the curvatmamely F (x(s)), the
Euler-Lagrange equation2.{) and 2.2) reduce to

d? [dF() 2 20F(x)
dsZ( dr )“" ")

and

—kF(x) =0, (2.3)

,dF () _2d [ df(zc)] _o, (2.4)

dx ds dx
respectrely. EquationsZ.3) and 2.4) are precisely those derived by Featlial. (14). We note that
in the context of modelling a relativistic particle with maximal acceleration, Nestereinddo(29)

also derive precisely2(4); however, in their context, the first Euler-Lagrange equation is slightly
different and is given by

42 (df(@) RN a) (K)+ F ) — 0

ds? d

In Appendix C, we show that the integration @3) and 2.4) can be effected in general terms for
any givenF(x). The same result can also be found in Felal. (14), but the procedure given
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in Appendix C is far more direct and formal. We note that for a curve in two dimensions, where
the free-energy function depends only on the curvature, the Euler-Lagrange equation is given by
Giaquintoa and Hildebrandt (21).
Next, we introduce the transformatiohs= p — P’ andk = q — Q/, wherep = 6F/éx,
q =0F/ot, P =0F/ox’ andQ = 6F/ot’. Upon substitutindh andk into (2.1) and 2.2), we
obtain
' 2kt

2
b+ 25K+ [ -= ] K +[k? —t%lh+ 2tk + k(c'P +7/Q — F) = 0,
K K K

‘L'2 N i 2K/2
K K2 K3

1 2’
—7k”/+ik//+2fh/+
K K

3 kK+7h—-x'k=0,

— K

for which further simplification gives
kch+ tk+'P+7'Q = FI'Y + (K /i)
+x(kh+tk+x'P+7Q—F)+t(kk—1h)=0,
K'/K)" + (kk — th)’ = (zr/k)(kh + tk+ k'P +7'Q — F)' = 0.
By introducingy = kk — th andw = xh + tk + «’P + /Q — F, we obtain

17wy K/
= (w) + 5w+ () +0=0, (2.5)
T K T K

K\
l() ol =lw'. (2.6)
K K
Thus,by substituting 2.6) into @.5), we deduce
1w\ « | ¢ ,
- — ] +-w| +-w' =0 (2.7)
T K T K

as the basic equation for determining the curvaiuaad the torsion. We note that upon introduc-
ing ¢ = 7/x and a new parametérsuch thatlA = xds, (2.7) can be written as

dj1(dw
di e\ a2 ™"

We note here tha®(7) or .8) is satisfied identically whew = 0, giving rise to
“ "\ ar  ds \ox “Lor ~ds\or S T o

3. Energy density functions depending only on curvature and torsion

dw
+ «fa =0. (2.8)

For the remainder of this paper, we deal with the case when the free-energy density depends only
on the curvature and torsion, naméty= F(«x, ). For this case, it can be seen that (2.7) or (2.8) is
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satisfieddentically if w = O or in the other words ifF (x, 7) is a homogeneous function of degree
one, namely

0F(k, 1) 0F (k, 1)
+7
oK ot
for which the functionF («, 7) is given byF(«x, t) = «f (z/x) for an arbitrary functionf . In this
special caseF(x, 7) = xf(¢), where¢ = 7/x, we havep = f — ¢fs andg = f¢, noting that
fe = df (¢)/d¢. Thus, we may obtain

F, 1) =K

>

v =r{(14 ) f: —EF) (3.1)
With w = 0, we find from @.5) that(q’/x)’ = —v, and by combining this with (3.1), we deduce
(@' /i) = —rc{(L+ &) f — £1), (3.2)
whichfrom g = fz we may rewrite (3.2) as
(fi/k) = —r((Q+ 2 fe = £f). (33)
Further by introducing a parameter, whered1 = xds, we find that 8.2) reduces to
32; = —{A+)fe = ¢f). (3.4)

Now, we introduce a Legendre transformation= ¢f: — f, wheredp = dgandg = f:. As a
result, (3.4) becomes

d2

e (3.5)
By multiplying both sides of3.5) withdq/d A and using® = dp/dq, (3.5) may be readily integrated
to give

da\?, ,
(di) +p°+09°=Cy, (3.6)

whereC; denotesan arbitrary constant. Equation (3.6) can be traced back to the original variables
as

2+ k(A + %) 12— 280 e + £2) = Cax?, S

rememberinghat f/ = df/ds.
Finally, in this section, we note fron2(8) that there is also a special casawt C, whereC
is an arbitrary constant. This case correspond$te, 1) = —C + «f (&), whereé = 7/k, and

reduces to
d /C
a(2)=o

for which we may obtair = xC4, whereC, denotesan arbitrary constant. Accordingly, in this
case (forC # 0), the free-energy density becomes

F(x,7) = —C +xf(Cp), (3.8)

andtherefore coincides with the case of a free-energy density that is linear in curvature and exam-
ined in some detail by Feodt al. (14). Note, however, that no such simple situation applies when
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theconstanC is zero, that is, whetF (x, 7) is a homogeneous function of degree one. We observe
that forw = C, we have from (2.5)

C "\

— 4 <q> +0 = 0’

C1 K

whichis entirely consistent withX.6). But from @.8), we have formally) = 0 ando = —7f(Cy)
sothatr = C/[C; f (C1)] which is a constant and corresponds to the case of circular helices studied
by Feoliet al. (14).

In section 4, we give some simple illustrative examples.

4. Some simple special cases

For F(x, ) completely general and(s) andz (s) as yet unspecified, the Euler—Lagrange equations
(2.5) and 2.6) (or @.7)) still constitute a formidable system for further analysis, and progress can
only be made either by an examination of a specific simple form of the energy density or by as-
suming a prescribed curve for the protein, so that precise forms of the curvature and torsion may be
deduced from (1.1). In this section, we examine some simple forng&@oyz) and in section 5, we
consider a family of conical helices.

41 Fk,t)=a+pfrx+yr

A simple candidate for an energy with a torsion dependence is a density that is linear in both
curvature and torsion, namefy(x, t) = a + fx +y t, wherea, f andy denote arbitrary constants.
In this case, the Euler—Lagrange equations (2.1) ar?) (educe to

—ax+ykt —1?f=0, B’ —yx' =0,
which are easily solved to give
—C32p aCo
K=—"T—, T=—7o—.
a + Coy a + Coy

The corresponding curves are circular helices and these are the only solutions for this particular
energy density. Note in particular the different behaviours of the curvature and torsion with respect
to the parameters,  andy . Such a three-parameter model may be useful in practice for adjusting
circular helix shapes in practical protein models.

4.2 F(k,t)=+x2+12
In the special case of both= w = 0, we have thaf# («, t) is a homogeneous function of degree
one, which is given byF(x, t) = «f (¢), wheref = 7/k, and that
0F (k, 1) 0F(k, 1)
K =7 .
ot oK

(4.1)

By substitutingF (x, ) into (4.1), we obtain an ordinary differential equatith+ ¢2) f: = &f,
which can be integrated to give = /1 + &2 or F(k, 1) = V/k2 + 12,
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Uponsubstitutingf = /1 + &2 into (3.3) or (3.7), we find that this equation reducesf;to:
Cxk, whereC is an arbitrary constant. Thus, we deduce an equation for determir@ndz, namely

d T

— | —== ) =C 4.2

e (4.2
and this is the sole consequence of the Euler—Lagrange equationsAther) = k2 + 2.

4.3 Fx,t) =9x)f(r)

Here, we look at the two special cases wifér, t) = «f (r) andF(x, ) = 7g(x). Thus, we have
w = xtf, andw = kg, respectively. FolF («, t) = xf (z), we find that 2.1) and 2.2) become,
respectively,

1ot 2
, Tkl 2Kt P

2
T”—i——rx + -— + 27k fr—rzf=0,
K K K

2
217 frpr + [21/2 + e ZT‘[N:l fre +
K

/.12

z_/3 f”” + _}_31_,[// frrr + ‘L'W—i— (KZ_ TZ)T/ _

2%t Kt + 2"
+ fTT

K K2 K

i 2/3 3’k " _
+ |2k’ — 200" + = AL .

K3 K2 K

Similarly, for F(x, ) = tg(x), (2.1) and 2.2) reduce to

2 7 2 /] 2 22
Tklzgmm + |:2‘L'/K/ + — + lK/Z Dere + " + lk// + K _ T’; —i—KZT _ ‘L’3‘| O
K| K K K
+7xg =0,
/3 2 /3 3k
— G + |27%kK’ — 3K'k" + " Oex + |3xt7 — k" + (12 — KP)K — :2 + KKK ] O

—xx'g=0.

Clearly, without assuming a particular family of curves, further analytical progress in general terms
is difficult.

44 F(x,t) = F(1r)

In this case, we havp = 0F/dx = 0 and as such we find tha2.6) gives rise to

2 2w
g+ (T - = ’) o' +2«tq —xF =0, (4.3)

K K K2

noting thatgy = 6.5 /8. Equation (4.3) can be rewritten as

TN L d(FN
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For the simple special case &%(z) = /7, we obtain from 4.4) that

Vig- S (@5)
K 4

whereC; denotesan arbitrary constant. Since= 1/(2/7) andq’ = —z’/(47%/?), from (4.5) we
haver’ = Cixt. We note that folp = 0, (2.6) reduces to

"\ / 12 /
(q) 0y - T =0,
K K

which upon substituting our expressions fpandq’ andsimplifying, we may arrive at

c2 k\ Ci g
Pt SR T [ Z1:32_0
<4+><ﬁ>+2T )

whichcan be further simplified a@&2 + 1)(x’ — ax?) +ar? = 0,wherea = C1/2, and from which
we may deduce’ = a(x2 — f72), wherep = 1/(1 + a?). Thus, we require to solve

v =2axt, K =a(k®—prd).

By division, we have

dr 2kt

— = . 4.6

de  x2 - pr? (4.6)
By introducingV = 7/x orr = xV, we may integrate this equation to dedite= Cox (1+ SV?),
whereC, denotesa further arbitrary constant, and this gives rise to an explicit relation between
andr ast = Co(x? + f72).

5. Family of conical helices

In the context of protein folding, helical-shaped curves tend to arise most dfsgnThe circular
helix given by

Xx(t) = acost, y(t)=asint, 2z(t)=bt,
for constantsa andb, gives rise to constant curvature and torsion, and has been studied in detalil
by Feoliet al. (14) within the present context. However, there are many different forms of helices
that might also be of considerable interest for protein folding, including elliptical, spherical and

conical (30). Here as a simple illustrative example, we consider a particular conical helix given by
the parametric equations

X(t) = atcos(plogt), y(t) =atsin(plogt), z()=yt, (5.1)

for certain constantg, £ andy . In a cylindrical polar coordinate system @, z), this curve is given
by
rt) =at, 6()=plogt, z(t)=ryt, (5.2)

and therefore, the curve represents a helix on the the surface of the eoerie/y )z (see Fig.1).
We comment that the conical helix given above has not previously appeared in the literature, and
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Fig. 1 Conical helix

the logarithm is purposely chosen so that the arc-length parasistsimply the parametérwhich

is rescaled by a constant. Further, we note that the presence of conical helix protein structures in the

form of ribbed end caps of gas vesicle proteins in aquatic bacteria is mentior] #8(24).
From (L.1) and §.1), we find that the curvature and torsion are given, respectively, by

k(S) = ko/S, 1(S) = 10/S, (5.3)
wherexg andzg are constants defined by
xo=ap(L+ p)Y?/5, wo=yB/5, (5.4)

ando is a new constant defined By= [a2(1 + ) + y ?]*/? which is such that the arc lenggs
related to the parametein (5.1) by the equatios = 6t (namelyds = ddt). We observe that both
k(S) andz (s) are singular at = 0 and that from (5.3) it is clear that

¢ =1(8)/x(s) = o, (5.5)

where = 10/kp iS a constant, and we now examine the implications of the Euler—Lagrange
equations in the case whef8) and §.5) are assumed to hold.

First suppose thaF(x, 7) is homogeneous of degree one, then from batR)(and 8.7), since
df:/dsis zero, we conclude tht(¢) = C1/%(1+ £2)1/2; see section. 2.

Next, supposeF(k, ) is unrestricted, then in the eveht= &, a constant, (2.8) becomes

d3w

dw
- a 27:
T T A+ DG =0,

which on integration yields

w(l) = —wo — w1 Sin[(L + E&)1/22] — wo cos[A + £5)1/21],

9702 ‘LT Jequisides uo A1sieAlun aeis eiueA|Asuuad e /61o0'seulnolployxo wew by :dny wouy papeojumoq


http://qjmam.oxfordjournals.org/

ENERGYDENSITY FUNCTIONS FOR PROTEIN STRUCTURES 441

wherewog, w1 andw, denotethree arbitrary constants, which in the present context could be func-
tions of¢ = &. Now, from (6.3) and the relatiodA = x(s)ds, we may deducé = xglogs and
from (5.4) we find thateo(1 + ¢2)1/2 = p, and therefore from the definitiorl @) of w (x, 7), we

may deduce

F - (Ka]-' + ra}—> = wo + w1 sin(Blogs) + wz cos(B logs). (5.6)
T

However, on noting the relations.@), we have

ko OF 10 8.7:) 1< oF 6.7)
= — K .

2ok 2ot B

d
G F ). 7(s) =~ (
and (5.6) becomes simply
%(s}‘) = wo + w1 Sin(B logs) + w cos(f logs),

which may be readily integrated to yield

(w14 pw2) _. (w2 — fw1)
T M9 Tare

wherews denotesan additional constant, which could also be a functioé ef &. Thus, we might
conclude that the conical helix (5.1) applies for any energy density funéiianz) which has the
general form

Flr, 1) = fo() + fa(&) sin(Blogx) + f2(&) cos(flogrk) + « f3(L), (5.8)

where fi (&) (i = 0,1,2,3) denote functions of = 7/« only, and are suitably redefined from
(5.7). We note that essentially the same result arises if we formally replace instead ofc since

logr = log(z/x) + logx and on expanding the trigonometric functions, the terms arising from
log¢ can be absorbed into a redefinition of the four functiéng) (i = 0, 1, 2, 3). We also observe

that the previously mentioned homogeneous function of degree one is embodied in the final term of
(5.8), noting that the specific fornfg(¢) = Ci/z(l + £2)1/2 arisesas a consequence &.2) and

the integral 8.7), while the general fornb(8) is merely a consequence afg).

F(x(s), () = wo + cos(f logs) + % (5.7)

6. Conclusions

In this paper, we have extended the model of Fetlal. (14) for the problem of determining
protein structures by including curvature, torsion and their derivatives with respect to the arc-length
parameter in the free-energy density functiBnEven though the casé = F(x, r, k') hasbeen
previously studied by Zhanet al. (19), their two resultant Euler—-Lagrange equations are incorrect
(see (2.31) and (2.32) ir19)). The correct equations are given B¢A3) and B.17) in this paper,
which, as shown in section 2, can be further simplified2d ) and 2.2), respectively. We have
shown that the equations obtained simplify to those given in [tali. (14) for the case wheft is

a function of curvature only. Further, we have shown that the two Euler—Lagrange equations can be
dramatically simplified to a single equation (s@e7()) when expressed in terms of a ‘generalised’
Legendre transform of F (see (.4)). This equation has the solutions= 0 andw = constant in

the case when/x = constant. In the case thatdepends only on the curvature and torsion, the first
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w = 0 arises wherf (x, 7) is a homogeneous function of degree one, namidly, ) = «f (z/k),

and for anyf (z/x) by introducing a new parameteérsuch thatdA = xds, we may reduce the
Euler-Lagrange equations to a single first-order relation (see (3.7)). The question is, to what extent
do the homogeneous functions of degree one arise in any experimental determinations of the free-
energy density? To date, the authors are not aware of any explicit experimental data of this nature
that might be used to answer this question. For the second solutierC, whereC is a non-zero
constant, we may show that= C1x, whereC; is a further constant, so thd(x, ) = A + Bk,

which coincides with the linear curvature case examined in detail by Eeall. (14). A closer
analysis of the individual equations (2.5) ardf) reveals that both andz must be constants, as

is the case for the circular helices examined by Febdil. (14). These authors claim that the linear
curvature case for the free-energy density uniquely determines these helical proteins. Our analysis
does not conflict with this statement, except that we show helical proteins could also arise from a
more general free enerd¥(x, 1) = —C + «f (z/x), noting that both constanisandr arise as

a consequence of the Euler—Lagrange equations. Finally, in this paper, we examine some simple
special forms ofF («x, 7) to determine the resulting Euler—Lagrange constraints and we examine in
some detail a particular conical helix and we derive the general f6r8) of the energy density
function F (x, 7) resulting from the Euler—Lagrange equations.
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APPENDIX A

In this appendix, we derive the variational quantities that are used for the determination of the Euler—Lagrange
equations shown in Appendix B. The variationrg$) is given by

wh

i(s) =r(s) + e1p1(S)T + e2y2(SN + e3y3()B, (A1)
eregj aresmall andy; (s) arearbitrary functions. By using the Frenet equations gng T, we have

P =[1+e1yq — eox 2T + [e1cy1 + e2wh — eary3N + [eay21 + e3y5]B (A.2)

and

IF12 = [1 + e1y} — eoxyal® + [e1k w1 + e2wh — e3twal? + [e2w2t + e3phl%. (A.3)
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Further from (1.2) and A.2), we find that
i = [el(q/i/ - l//]_KZ) - 82(2K'//é + ' y2) + ezwart]T
+ [k +e1QRryq + vax') + ea(yy — par? — yor?) — e3(2ya + y3r))IN
+ [e1xT 1 + 22T + wot') + e3(yf — t2y3)IB. (A.4)
Next, from (A.2) and A.4), we obtain
P x " =[—x(eapot +e3y3) + O(Eiz)]T
— [e1rTya + e2Qubt + wot') + e3(yh — 12p3) + O(D)IN
+ [ + 1By + yix’) + ea(yy — 2K2'/’2 - 1'2‘//2) —e3(ryg +7'ya) + O(Siz)]B (A.5)
sothat we have
[’ x 12 = [k (eqwar + e3y3) + o(«?iz)]2
+ [eakT w1 + 2Ryt + wor') + e3(ys — 2y3) + C)(‘9i2)]2
+ [k + e1Bry) + wix') + 2wy — 267y — 12y) — e3(2eyh + 7 y3) + O(eD)]2. (A6)

From(A.3) and @A.6), we note the following relations:

Kl f:/ 2 o f:/ X f:// 2
£=0 £=0
oIF'? oI x 7|2
ng =— 2Ky, 6752 =2K(Wé’ —2K2V/2—72‘//2),
=0 =0
olF’ 2 olIF x i’ 2
LA AXTE 2oy + var),
3 |z=0 %3 |;_o

wherez = 0 denotes evaluation a§ = &5 = e3 = 0. From|F'|2|;—g = 1, [’ x F”||;—0 = x2 and

Bl 1 |2

0¢&j - 2| osj
we obtain
olr’| / ol x | / /
=y, —_— =3y + yix’,
oe1 |z % oc1  |z=0 !
ol oIF" x i
T - —kya, G S vy — 2ys — 12y, (A7)
882 =0 682 £=
ol o x i
Il =0, |7 = -2t l//é — yar’.
923 |z=0 923 |z=0
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Next, we need to determine dét, i/, ¥"”’) notingthati’” is given by

F” = [—12 + e1(=32y] — 3’ w1 + ") — 2Byl + 3K yh + k" yo — 13y — 2k y2)

+ e3(’ T3+ 26t w3 + kT YT + [ + e1(Bryf + 3’y — w1 — yirr? + k" yr)

+ ez(y/é” — 312wé — 3K2l//é — 3w’ yo — 317’ yo)

+ e3(—3tyg —37'ys + K2tys+ 33 — 1" w3)IN

+ [kt +e1(Brryy + 26 ty1 + k7' y1) + e2(B3y T — tk%yp — 3yp + 37'yy +7"po)

+ e3(yy — 3c2yh — 3ct/y3)IB. (A.8)
Thusfrom (A.2), (A.4) and @A.8), we can find that dét’, 7/, i) is given by

M11 M1z Miz
det(, 7", 7"”) = [Ma1 Mz Mog, (A.9)
M3z1 M3z M3z

whereM;j (i, j = 1,2,3) represent the coefficients of vectdrsN andB in ¥, 7 andf””. As a result, we
have

det(’, i, F") = [1 + eqy] — eaxyo]l M1 — [e1ky1 + e2wp — e3ty3]Mo + [t + e3y3]M3,  (A.10)

whereM = M2oMs3 — M23Ms2, M2 = M21M33 — Ma3Mgg andM3 = M1 M3z — M2aoMs;. From (A.10),
we may deduce

odetf’, ", 7") oM

T e |ig @ + w1M1lz—0 — k1 M2lz—0,
€1 =0 €1 =0

odet®, ", 7") oMy

| = e, |~ kv2Milz=o = waMalz=o + 2t M3lz=o. (A.11)
&2 =0 €2 |z=0

o det@’, 7", ") oMy

87 = de + ty3Molz—0 + l//éM3|5=0,
€3 =0 €3 [5=0

thus,from (A.2), (A.4) and @.8), we finally obtain

odet@, ", "
¥ = 6Kk%r ‘/’:/I. + Qerx’ + KZT/) 1,
381 =0
odet’, ", "
% =4kt (//é’ + Bkt — 211(’)(;/& + (k7" = 2k37 — 2x78 — K'Yy, (A.12)
€2 =0
odet’, ", "
odetq, 7. T7) =Kl//é”—K/(//g+(K‘3—5K12)l//é+(K/12—4KTT/)l//3.
de3 #=0
We note that’|;_g = T, P’|;—0 = «N andi”’|;_g = —«2T + «’N + x7B as such it can be shown that
det@’, i, 7" |z—0 = x°r.
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APPENDIXB

Here,we derive the Euler-Lagrange equatiofslj and (2.2) and the alternative boundary conditions. In the
case when the energy depends on the curvature, the torsion and the derivatives of curvature and torsion, the
total variation becomes

/f(krk r)|r|ds =0 (i=1,2,3). (B.1)

68|

Equation(B.1) can be expanded as

oF o oF o oF o
/ al — ds + ‘ |7 ds + /—Ll”’ ds
oK 68| =0 6 6| =0 =0
oF 0
+ /iim ds + ds=0. (B.2)
61” 0 &j =0 =0

Since the curvature and the torsion are given, respectively, by = |f’ x ¥”|/|f'|® andr = detf, 7", ")/

[P’ x |2, we may deduce
ox 1 [, 30lF x| | ’|
— = || = 3" , B.3
PP {| | oe1 312 | (8.3)
0 _, ., o0det@, ", " ~ o OIF x T
ot _ - ¥’ //|2 ¢ ) —2F x P| det’, ", F") | |
Osj [F/ x F//|4 osj ogj

From|i/|2z—0 = 1, |F x I/|%|z—0 = x2 anddet’, i, F"")|;_0 = x2, we then derive

0 ol x Gl
k| _aFxE gl (B.4)
68i =0 aSi =0 6€i =0
ot 1 odet, ", ") 2t o|F x |
08j |5—0 K2 0¢j =0 K o¢j =0 '
As a result, using4.7), (A.12) and B.4), we obtain
oK ’ /" 2 2 oK / /
_ =K s - + KS—1 , _— = —2T — T BS
derleo =YY el T V2 ( w2 P I Y3 — T Y3 (B.5)
and
ot , ot 2r , + 37 2wk’ + (200 + " K7
— =Ty, — = — — = KT + — — — ,
0¢€1 |5=0 " 082 |50 K V2 K K2 ‘//2 K K2 v
ot 1, « , 2\ 2tt’ k72
— ="yl — Syl + k- — + -+ ) B.6
0€3 |30 ng K2 Vs K V3 K K2 V3 (B:6)
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While formulae (1.1) are valid in any parametrisation, it is essential to note that

dr ds

, drxds ,_ drds
* ~ dsds’

T dsds’

whered/ds is the intrinsic derivative of the varied curve. Hegethe arc length of the varied curve, is related
tosvias = [ |f’(s)|ds. In particulards/d3 = 1/|f’(s)|. Consequently, we have

Ok dx 0

! 1
a=£a(ﬁ)*

1 0

dx
17| dei (E) B

1 6|I”|dk
T2 0g ds

or’ dr o 1 + 1 0 (de 1 9|f|dz
dej  dsoag \ || [/l og \ds) — |2 o ds
and hence,
ox’ , ol ox’ or’ el
o - _ . = - !
0&j |3=0 0&i |3=0 68, 5=0 0&j |50 ogj
We also note that
ox’ _d [k ot’ _d [or
8(‘| =0 - ds 6&, =0 ’ 61‘4 =0 - ds 6(‘|

A
[l g \ds /)’
L Lo (de
[l og \ds /)’

(B.7)

(B.8)

From(B.2), (B.5), (B.6), (B.7) and (B.8), the variatidd/d¢1) [ F(x, 7, x’, r’)|F’|ds|§:0 = 0in the tan-

gential direction gives rise to

/—K w1 ds+/ w1 dS+/ —«"y1 dS—{—/—T wlds—i—/}'wlds—

(B.9)

By integrating by parts the fifth integral i8(9) and imposing the conditiafiy1 = 0 at the boundary, we find

that the variation in the tangential direction is identically satisfied.

Further, the variationté/d¢y) [ F(x, 7, x’, r/)|f’|ds|§:0 = 0in the normal direction becomes, after using

(B.2), B.5), B.6), B.7) and B.8),

oF . P /6]—" 2r , 37 2t
- —_ ds - | = - _
/ p w5 + (k°— %) yolds+ ol o vy + . 2 wo +

oF
+ / ?[ Y+ (% — e yh + Bk’ — 227" )yolds

14

+ / oF |2« ,, + 57 4rx! Dt 4 47" 6k't’ 2w«
e il > KT+ —— — -
o | % 12 K K2 K2 K

m 21’ " "1 2//2
@m+&x+f..ﬁz_K;+f>W4%_/fwﬂ&_
K K K }C

>+

(B.10)
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"

Integrating by parts those terms iB.(L0) involving «;/2, and wy' gives
/ d? oF 200F\  d (2€coF 3 oF 2 %F
o2 er P bl
ds2 \ ox K 01 ds \ x¥2 ot K 0t ‘ Ok
" 0 d 0
+ ok 4+ L £+[3ICK —2”]——— [kz—rz]—}—
K K2

ot ds ok’
_& (oF
ds3 \ ox’

2Kr+3rk+——7——
2 K2 %3

ot/

I O 21’K’2:| oF

g e+ 47" 6Kt 2wk Arx'? E di2 iﬂ 47k’ E
ds e K2 K2 k3 | ot/ ds? K ot/
d3 /2co0F

which is obtained assuming that the following boundary condition is satisfied:
2 g+2raf d af+2ig+ 5¢/ 4m oF
ds?2 \ox’ = « or’ ds K 0T K or’

{31’ 21k’ } o0F
+

— +[x? 2]—+

2kt
fok4 +

47" GK’T’ 2tk 4ex'?| oF
K3 V2

K K2 K2 K2

/

+ _d 6.7: 2t 0F +6;7-'+27r£+ 50 41.'K oF ,
ds x ot/ ok K Ot K ot V2

oF 2t0F\ ,
— =0. B.12
+{6k/+kar}wz ( )

Equation(B.11) holds for arbitraryy> if
d? 6]-‘ 2t0F\ | d (2dtoF 3 oF 2 2 0F
+ [ -] —

ds? kot ) ds\ k2 otk ot ox

)

" oF oF d [, o 0F
=+ |:2K'T+7 7] o7 +[3K'}C —2‘[7.']7—& ([K' - T ]ﬁ)
d3 (a;f)
ds®

d 47" 6k't’  2tk" 4w | oF d2 /[5¢ 4w’ oF
—— | |2rkt+ — — - + — |+ = |— ==
ds K x3 K K2

K2 K2 ot/ ds? ot/
d® [2roF

2Kt+31k+——7—
K K2 K2 K3

I W 2T/K/2:| oF

x ot
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Uponsimplifying, (B.13) may be written as shown i.(). We note here that the boundary conditiBril@)
is satisfied ift;/z =yp= l;/z = 0 or the alternative boundary conditions may be obtained if the coefficients of
w2, a,uz and z// / areequal to zero at the boundary.

Finally, the variation(d/de3) [ F(x, 7, x’, t/)|F |ds]g:0 = 0in the binormal direction, usindg(2), (B.5),
(B.6), B.7) and B.8), gives rise to

oF oF |1 K’/ 72 x't2 2t
- [ Selrvi e [ 5 [ng’— 2't ("‘ ) vt ( Z ) el
- [2‘:1// +37 l//3+ " y3lds
oF w26, A ” , A 2’72 /
+/61 [vas ?W3+ k_7_p+ x3 - K + K2 V3

2¢2 2t drdlk! K'i? 20272
+ (— - + + = 3| ds=o. (B.14)

K K K2 K2 K3

Similarly to the above, we may integrate by parts the terms involvifgy?, 3" andy3”. As such, B.14)
becomes

/ AN oF t20F  oF
- - — | 21— 4+ —— —k—
ds3 \x o7 ds? \ x2 ot ds or K Ot ot
2
3.[/% d 21-8;7:
s ox' ) ds? ok’

202 27" N 4e7'! 4 K"t 2042 oF d , A’ " 2¢'t2 | oF
- 2|k = =
0 or’

LOF [ 2 211]6}" oF
+ 55

O_‘Q_

ds K K2

d?2 2 k" 22| oF ds3 2k 0F d4 /1oF
IR A G AN N AA T ds=0, (B.15
+ ds2 ([K x  x2 + 3 | ot/ ds3 ( K2 ar’) + ds? (;c ot’ ) v3as ( )

where we assume that the condition

108 ,, d (1aF\  1oF 2K oF\
K 0t k2 ot

x ot/ PR _£ x o1’ Y3

N d? /10F d (10F 2 0F\ « oF 2.7 72 Ic”+21c’2 oF|
ds?2 \ x ot/ ds \ «x ot k2 ot! k2 ot Tﬁ}c/ * K K2 k3 | ot/ £
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Ll 1ery @ (1oF 2doF
ds3 \ x ot/ ds?2 \ x or x2 ot
+ d [« 6}—+2 oF 2 + 22| 6 F
ds \ x2 o7 Tax/ * K %2 k3 | ot/

, At 27% | oF
+ |k — +— | s7¢ws=0
K K ot

is satisfied at the boundary. Equation (B.15) is satisfied for arbitrary funcgignghen

d® /10F d2 [« oF d oF t20F  oF
- (=) -= (55— +—=|2te—+ —— —k—
ds3 \« ot ds? \ x2 or ds ok K Ot ot

OF | [K’rz zn’] oF _ ,0F _d (3 ,g) d? <2 af)

2| oF JOF
3t —
ot ok’

- — -t — 4+ — (37 - — (21—
K2 K ot ok’ ds ok’ ds? oK’

K B K K2 K'Z B K3 ﬁ_g K

202 277" Ao’k k12 212K/2:| oF d <|: , A4t/
K —

N d2 2 K" N 22| oF d3 2k 0F N d4 /18F
e . o A I M A D R
ds? K K2 k3 | ot/ ds3 k2 ot/ ds? \ « o7/

(B.16)

L 272 | oF
K2 ot/

) =0. (B.17)

Equation(B.17) can be simplified giving rise t@2). Again, we note that the boundary conditi@16) is

satisfied either ify3 = y3 = y4 = y3’ = Oor if the coefficients ofy3, y3, w3 andyg

the boundary, giving rise to the alternative boundary conditions.

APPENDIXC

For the case of the energy density depending only on the curvature, we show here that the integratg)n of (
and (2.4) can be resulted in general terms for any gi¥én). We note that the same result can also be found
in Feoliet al. (14), but the procedure given here is far more direct and formal. To s®I8gdnd 2.4), we first

simplify (2.4) as

dr dF(x) d2F (k) dic 0
ds dr T2 ds

areequal to zero at

so that if we denoteF, = dF(x)/dx, then the above equation can be rearranged @sz)dr = 2[Fyr/

Fi]dx, which can be integrated to give an equation for determiningamely

C1

T=—,
7z

(C.1
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whereC; is a constant of integration. Upon substitutir@ 1) into .3) and simplifying, we deduce

2 2
Fi Ci
42 +r[kFx —F] = T__g. (C2)

By introducingp = F andw = «F, — F, we findx = dw/dp and with these substitutions, (C.2) reduces to

d?p  do C?

— — = —. C.3
ds? +wdp p3 €3
With further substitution ofi = dp/ds, (C.3) becomes
du  dw C2
— — = —= (ox)
udp + wdp 03 (C.4)

whichmay readily be integrated to give= +{C, —w? — C?p~2}1/2, whereC, denotesn arbitrary constant.
Sinceu = dp/ds, we are left with the following formal integration:

/ pdp +C3 =ds, (C.5)
p?(C2 — ?) — Cf

whereC3 denotesa further arbitrary constanp = F,. andw = «F, — F.
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