
ENERGYDENSITY FUNCTIONS FOR PROTEIN
STRUCTURES

byNGAMTA THAMWATTANA †, JAMES A. MCCOY andJAMES M. HILL

(School of Mathematics and Applied Statistics, University of Wollongong,
Wollongong, NSW2522, Australia)

[Received 27 March 2008. Accepted 18 April 2008]

Summary

In this paper, we adopt the calculus of variations to study the structure of protein with an
energy functionalF(κ, τ, κ ′, τ ′) dependenton the curvature, torsion and their derivatives with
respect to the arc length of the protein backbone. Minimising this energy among smooth normal
variations yields two Euler–Lagrange equations, which can be reduced to a single equation.
This equation is identically satisfied for the special case when the free-energy density satisfies
a certain linear condition on the partial derivatives. In the case when the energy depends only
on the curvature and torsion, it can be shown that this condition is satisfied if the free-energy
density is a homogeneous function of degree one. Another simple special solution for this case
is shown to coincide with an energy density linear in curvature, which has been examined
in detail by previous authors. The Euler–Lagrange equations are illustrated with reference to
certain simple special cases of the energy density function, and a family of conical helices is
examined in some detail.

1. Introduction

The folding of proteins presents one of the most challenging research problems in molecular physics,
biochemistry and biology. Difficulties in modelling this problem arise for several reasons, including
the complicated molecular structure of proteins and their interactions with other molecules (such
as molecular chaperones) and their environment. As misfolding of proteins has been established as
the major cause of many illnesses, such as Alzheimer’s, mad cow and Creutzfeldt–Jacob diseases
(1, 2), understanding the basic mechanisms of folding could lead to new approaches for prevent-
ing such diseases. Experimental, theoretical and computational studies of protein structure are all
currently very active research areas. Various models have been proposed, including lattice models,
statistical mechanical models, random energy models and molecular dynamics simulations. For de-
tails of these and other models, see (3 to 11) and the references contained therein. Although widely
different techniques are employed, all these researchers and others (12,13) agree that proteins fold
into minimum-energy structures. In order to minimise the energy, here we use the approach of the
classical calculus of variations and we extend the work of Feoliet al. (14), who assume that the
energy density depends only on the curvature of the protein backbone. In particular, for helical pro-
teins, they examine an energy density function that is linear in curvature, namelyF(κ) = A + Bκ,
whereκ denotes the curvature andA andB denote arbitrary constants. The study of Feoliet al.(14)
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432 N. THAMWATTANA et al.

maybe appropriate for the secondary structuresα-helix that admit a near-perfect helical shape or
the tertiary structures that comprise all theα-helix classes. However, in general, the tertiary or na-
tive structures of proteins are of a much more complicated configuration. In order to generalise the
basic idea used in (14) for more complicated protein structures, the present paper considers those
energy density functions that are dependent on the curvatureκ, the torsionτ and the derivatives of
the curvature and torsion,κ ′ andτ ′, of the protein backbone curve. It should be noted that the cur-
vature and torsion encode all geometric information about a curve in three-dimensional (3D) space,
up to rotations and translations. While the curvature dependence of the energy is the most signif-
icant, in many situations the torsion of the protein backbone may also play an important role. We
comment here that particular energy density functions involving both curvature and torsion that are
related to elasticity theory, and the ensuing Euler–Lagrange equations, are examined from a purely
mathematical perspective in (15 to 18), for example.

Further, we note that the study of Feoliet al. (14) has been extended by Zhanget al. (19), who
consider energy density functions depending on the curvature, torsion and the derivative of the
curvature for polymer chains. However, the resulting Euler–Lagrange equations (see (2.31) and
(2.32) in (19)) are incorrect. Here, we give the correct Euler–Lagrange equations by extending
the analysis to the case whenF = F(κ, τ, κ ′, τ ′) andby further simplifying these equations we
show that they can be reduced to a single equation (see (2.7) below). This equation constitutes
the critical identification of the formal underlying mathematical structure of the two complicated
Euler–Lagrange equations. No such identification is given by Zhanget al.(19) for the corresponding
equations.

In this paper, we model the protein backbone or polymer chain as a smooth curveC in Euclidean
3D space. Letr(s) = (x(s), y(s), z(s)) denote the position vector of points onC, wheres ∈ [a, b]
is a parameter. In general, the curvature and torsion ofC are given respectively by

κ =
|r ′ × r ′′|

|r ′|3
, τ =

det(r ′, r ′′, r ′′′)

|r ′ × r ′′|2
. (1.1)

Hereand throughout this paper, we use primes to denote differentiation with respect to the parame-
ters.

We denote a moving orthonormal frame along the curveC by {T(s),N(s),B(s)}, whereT, N and
B are, respectively, the unit tangent, normal and binormal vectors at positionr(s). If s denotes the
arc length of the protein curve, then the parametrisation is of unit speed, that is,|r ′(s)| ≡ 1, and we
have the usual 3D Frenet formulae relating derivatives of the moving frame vectors, namely

T′ = κN, N′ = −κT + τB, B′ = −τN. (1.2)

The above formulae forκ andτ obviously simplify in the case of the unit-speed parametrisation.
However, in computing variations, we will require the above general formulation. For more details
of the above equations, see (20) or (21).

We consider a variation to the curve by setting

r̃(s) = r(s)+ ε1ψ1(s)T(s)+ ε2ψ2(s)N(s)+ ε3ψ3(s)B(s),

whereε1, ε2 andε3 aresmall parameters andψ1, ψ2 andψ3 arearbitrary smooth functions which
we assume to have compact support within(a, b), that is, both they and all their derivatives vanish
smoothly at the end points of the curve. One may then easily compute the corresponding variation
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ENERGYDENSITY FUNCTIONS FOR PROTEIN STRUCTURES 433

of various quantities associated with the curve including velocity, curvature, torsion and so on. We
are interested in energy functionals defined for our space curves by

E[r] : =
∫

C
F(κ, τ, κ ′, τ ′)dL =

∫ b

a
F(κ(s), τ (s), κ ′(s), τ ′(s))|r ′(s)|ds,

where the energy densityF is a suitably differentiable function depending on curvatureκ, torsion
τ and their derivatives with respect to the arc length,κ ′ andτ ′, of the curve. Under the variation to
the curve, defined above, we find the Euler–Lagrange equations corresponding to extremisingE by
setting

∂

∂εi
E[ r̃]

∣
∣
∣
∣
ε1=ε2=ε3=0

= 0, for eachi = 1,2,3. (1.3)

In section , we present the Euler–Lagrange equations resulting from (1.3) for the free-energy
density depending on the curvature, torsion and the derivatives of both the curvature and the torsion.
The detailed mathematical derivations of these equations are provided in Appendices A and B. We
again note that the case ofF depending only upon the curvature has been previously examined
in Feoli et al. (14) and the case ofF depending on the curvature, torsion and the derivative of the
curvature has also been previously considered by Zhanget al.(19). Again, we comment that the two
Euler–Lagrange equations shown in (19) are incorrect. Further, we show that the Euler–Lagrange
equations derived here dramatically simplify when expressed in terms of the ‘generalised’ Legendre
transform

w(κ, τ, κ ′, τ ′) = κ

{
∂F

∂κ
−

d

ds

(
∂F

∂κ ′

)}

+ τ

{
∂F

∂τ
−

d

ds

(
∂F

∂τ ′

)}

+ κ ′ ∂F

∂κ ′ + τ ′ ∂F

∂τ ′ −F , (1.4)

and indeed, we deduce a single equation forw(κ, τ, κ ′, τ ′) (see(2.7) or (2.8) below). From this
single equation, it is clear thatw ≡ 0 andw ≡ constant (assumed non-zero) constitute two special
cases. As shown in section3, when the free-energy density depends only on the curvature and
torsion, it can be shown that the casew ≡ 0 gives rise toF being a homogenous function of degree
one, namelyF(κ, τ ) = κ f (τ/κ) for any f , whilew ≡ constant can be shown to collapse on the
previously mentioned caseF(κ, τ ) = A + Bκ, whereA andB denote constants. In section4, we
examine certain special cases of the energy densities, including a particular homogeneous function
of degree one, and in section5, we examine a family of conical helices that admit simple expressions
for the curvature and torsion and for which we investigate implications of the resulting Euler–
Lagrange equations. We note that the conical helix protein structures can be seen in GvpA protein
that forms the ribbed gas vesicles in many aquatic bacteria (see, for example, (22, 23, 24)). In
section6, conclusions are presented, and finally in Appendix C, an alternative derivation to that
described by Feoliet al.(14) is presented for solving the Euler–Lagrange equations when the energy
function depends only on the curvature.

2. Euler–Lagrange equations

As shown in Appendices A and B, we find that the variation in the tangential direction(∂/∂ε1)
E[ r̃]| ε̄=0 doesnot result in any information for determiningF(κ, τ, κ ′, τ ′). Geometrically, tan-
gential variation corresponds to reparametrising the curve and such variations do not change the
energy.
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434 N. THAMWATTANA et al.

Thevariations(∂/∂ε2)E[ r̃]| ε̄=0 and(∂/∂ε3)E[ r̃]| ε̄=0 in the normal and the binormal directions
give rise to

d2

ds2

[
∂F

∂κ
−

d

ds

(
∂F

∂κ ′

)]

+
2τ

κ

d2

ds2

[
∂F

∂τ
−

d

ds

(
∂F

∂τ ′

)]

+

(
τ ′

κ
−

2κ′τ

κ2

)
d

ds

[
∂F

∂τ
−

d

ds

(
∂F

∂τ ′

)]

+ (κ2 − τ2)

[
∂F

∂κ
−

d

ds

(
∂F

∂κ ′

)]

+ 2κτ

[
∂F

∂τ
−

d

ds

(
∂F

∂τ ′

)]

+ κ

(

κ ′ ∂F

∂κ ′ + τ ′ ∂F

∂τ ′ − F

)

= 0 (2.1)

and

−
1

κ

d3

ds3

[
∂F

∂τ
−

d

ds

(
∂F

∂τ ′

)]

+
2κ′

κ2

d2

ds2

[
∂F

∂τ
−

d

ds

(
∂F

∂τ ′

)]

+ 2τ
d

ds

[
∂F

∂κ
−

d

ds

(
∂F

∂κ ′

)]

+

(
τ2

κ
+
κ ′′

κ2 −
2κ′2

κ3 − κ

)
d

ds

[
∂F

∂τ
−

d

ds

(
∂F

∂τ ′

)]

+ τ ′
[
∂F

∂κ
−

d

ds

(
∂F

∂κ ′

)]

− κ ′
[
∂F

∂τ
−

d

ds

(
∂F

∂τ ′

)]

= 0, (2.2)

respectively. We refer the reader to Appendices A and B for details of the derivation of (2.1) and
(2.2) and the alternative boundary conditions. We recognise in particular the structure of the square-
bracketed terms in (2.1) and (2.2) and expect a similar pattern if higher derivatives ofκ and τ
are included in the energy. We note that a general pure mathematical formulation of these equations
involving exterior differential systems exists in the literature (25, pp. 50–56,26) but does not include
any explicit equations such as (2.1) and (2.2) derived here. Starostin and van der Heijden (27) use
the general approach to determine the Möbius strip. The M̈obius strip is also studied by Hangan (15)
and Hangan and Murea (28), who adopt the specific Sadowsky’s functionalF = κ2(1 + τ2/κ2)2

andderive the two Euler–Lagrange equations that are entirely consistent with our results.
For the case when the energy function depends only on the curvatureκ, namelyF(κ(s)), the

Euler–Lagrange equations (2.1) and (2.2) reduce to

d2

ds2

(
dF(κ)

dκ

)

+ (κ2 − τ2)
dF(κ)

dκ
− κF(κ) = 0, (2.3)

τ ′ dF(κ)

dκ
− 2

d

ds

[

τ
dF(κ)

dκ

]

= 0, (2.4)

respectively. Equations (2.3) and (2.4) are precisely those derived by Feoliet al. (14). We note that
in the context of modelling a relativistic particle with maximal acceleration, Nesterenkoet al. (29)
also derive precisely (2.4); however, in their context, the first Euler–Lagrange equation is slightly
different and is given by

d2

ds2

(
dF(κ)

dκ

)

− (κ2 + τ2)
dF(κ)

dκ
+ κF(κ) = 0.

In Appendix C, we show that the integration of (2.3) and (2.4) can be effected in general terms for
any givenF(κ). The same result can also be found in Feoliet al. (14), but the procedure given
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ENERGYDENSITY FUNCTIONS FOR PROTEIN STRUCTURES 435

in Appendix C is far more direct and formal. We note that for a curve in two dimensions, where
the free-energy function depends only on the curvature, the Euler–Lagrange equation is given by
Giaquintoa and Hildebrandt (21).

Next, we introduce the transformationsh = p − P′ and k = q − Q′, where p = ∂F/∂κ ,
q = ∂F/∂τ , P = ∂F/∂κ ′ and Q = ∂F/∂τ ′. Upon substitutingh andk into (2.1) and (2.2), we
obtain

h′′ +
2τ

κ
k′′ +

[
τ ′

κ
−

2κ′τ

κ2

]

k′ + [κ 2 − τ2]h + 2κτk + κ(κ ′ P + τ ′Q − F) = 0,

−
1

κ
k′′′ +

2κ′

κ2 k′′ + 2τh′ +

[
τ2

κ
+
κ ′′

κ2 −
2κ′2

κ3 − κ

]

k′ + τ ′h − κ ′k = 0,

for which further simplification gives

(κ−1[κh + τk + κ ′ P + τ ′Q − F ]′)′ + τ(k′/κ)′

+ κ(κh + τk + κ ′ P + τ ′Q − F)+ τ(κk − τh) = 0,

(k′/κ)′′ + (κk − τh)′ − (τ/κ)(κh + τk + κ ′ P + τ ′Q − F)′ = 0.

By introducingv = κk − τh andw = κh + τk + κ ′ P + τ ′Q − F , we obtain

1

τ

(
w′

κ

)′

+
κ

τ
w +

(
k′

κ

)′

+ v = 0, (2.5)

[(
k′

κ

)′

+ v

]′

=
τ

κ
w′. (2.6)

Thus,by substituting (2.6) into (2.5), we deduce
[

1

τ

(
w′

κ

)′

+
κ

τ
w

]′

+
τ

κ
w′ = 0 (2.7)

as the basic equation for determining the curvatureκ and the torsionτ . We note that upon introduc-
ing ξ = τ/κ and a new parameterλ such thatdλ = κds, (2.7) can be written as

d

dλ

[
1

ξ

(
d2w

dλ2 + w

)]

+ ξ
dw

dλ
= 0. (2.8)

We note here that (2.7) or (2.8) is satisfied identically whenw = 0, giving rise to

F = κ

{
∂F

∂κ
−

d

ds

(
∂F

∂κ ′

)}

+ τ

{
∂F

∂τ
−

d

ds

(
∂F

∂τ ′

)}

+ κ ′ ∂F

∂κ ′ + τ ′ ∂F

∂τ ′ .

3. Energy density functions depending only on curvature and torsion

For the remainder of this paper, we deal with the case when the free-energy density depends only
on the curvature and torsion, namelyF = F(κ, τ ). For this case, it can be seen that (2.7) or (2.8) is
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436 N. THAMWATTANA et al.

satisfiedidentically ifw = 0 or in the other words ifF(κ, τ ) is a homogeneous function of degree
one, namely

F(κ, τ ) = κ
∂F(κ, τ )

∂κ
+ τ

∂F(κ, τ )

∂τ
,

for which the functionF(κ, τ ) is given byF(κ, τ ) = κ f (τ/κ) for an arbitrary functionf . In this
special caseF(κ, τ ) = κ f (ξ), whereξ = τ/κ, we havep = f − ξ fξ andq = fξ , noting that
fξ = df (ξ)/dξ . Thus, we may obtain

v = κ{(1 + ξ2) fξ − ξ f }. (3.1)

With w = 0, we find from (2.5) that(q′/κ)′ = −v, and by combining this with (3.1), we deduce

(q′/κ)′ = −κ{(1 + ξ2) fξ − ξ f }, (3.2)

which from q = fξ wemay rewrite (3.2) as

( f ′
ξ /κ)

′ = −κ{(1 + ξ2) fξ − ξ f }. (3.3)

Further, by introducing a parameterλ, wheredλ = κds, we find that (3.2) reduces to

d2q

dλ2 = −{(1 + ξ2) fξ − ξ f }. (3.4)

Now, we introduce a Legendre transformationρ = ξ fξ − f , wheredρ = ξdq andq = fξ . As a
result, (3.4) becomes

d2q

dλ2 = −q − ξρ. (3.5)

By multiplying both sides of (3.5) withdq/dλ and usingξ = dρ/dq, (3.5) may be readily integrated
to give

(
dq

dλ

)2

+ ρ2 + q2 = C1, (3.6)

whereC1 denotesan arbitrary constant. Equation (3.6) can be traced back to the original variables
as

f ′2
ξ + κ2{(1 + ξ2) f 2

ξ − 2ξ f fξ + f 2} = C1κ
2, (3.7)

rememberingthat f ′
ξ = dfξ /ds.

Finally, in this section, we note from (2.8) that there is also a special case ofw = C, whereC
is an arbitrary constant. This case corresponds toF(κ, τ ) = −C + κ f (ξ), whereξ = τ/κ, and
reduces to

d

dλ

(
C

ξ

)

= 0,

for which we may obtainτ = κC1, whereC1 denotesan arbitrary constant. Accordingly, in this
case (forC 6= 0), the free-energy density becomes

F(κ, τ ) = −C + κ f (C1), (3.8)

andtherefore coincides with the case of a free-energy density that is linear in curvature and exam-
ined in some detail by Feoliet al. (14). Note, however, that no such simple situation applies when
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theconstantC is zero, that is, whenF(κ, τ ) is a homogeneous function of degree one. We observe
that forw = C, we have from (2.5)

C

C1
+

(
q′

κ

)′

+ v = 0,

which is entirely consistent with (2.6). But from (3.8), we have formallyq ≡ 0 andv = −τ f (C1)
sothatτ = C/[C1 f (C1)] which is a constant and corresponds to the case of circular helices studied
by Feoliet al. (14).

In section 4, we give some simple illustrative examples.

4. Some simple special cases

ForF(κ, τ ) completely general andκ(s) andτ(s) as yet unspecified, the Euler–Lagrange equations
(2.5) and (2.6) (or (2.7)) still constitute a formidable system for further analysis, and progress can
only be made either by an examination of a specific simple form of the energy density or by as-
suming a prescribed curve for the protein, so that precise forms of the curvature and torsion may be
deduced from (1.1). In this section, we examine some simple forms forF(κ, τ ) and in section 5, we
consider a family of conical helices.

4.1 F(κ, τ ) = α + βκ + γ τ

A simple candidate for an energy with a torsion dependence is a density that is linear in both
curvature and torsion, namelyF(κ, τ ) = α+βκ+γ τ , whereα, β andγ denote arbitrary constants.
In this case, the Euler–Lagrange equations (2.1) and (2.2) reduce to

−ακ + γ κτ − τ2β = 0, βτ ′ − γ κ ′ = 0,

whichare easily solved to give

κ =
−C2

0β

α + C0γ
, τ =

αC0

α + C0γ
.

The corresponding curves are circular helices and these are the only solutions for this particular
energy density. Note in particular the different behaviours of the curvature and torsion with respect
to the parametersα, β andγ . Such a three-parameter model may be useful in practice for adjusting
circular helix shapes in practical protein models.

4.2 F(κ, τ ) =
√
κ2 + τ2

In the special case of bothv = w = 0, we have thatF(κ, τ ) is a homogeneous function of degree
one, which is given byF(κ, τ ) = κ f (ξ), whereξ = τ/κ , and that

κ
∂F(κ, τ )

∂τ
= τ

∂F(κ, τ )

∂κ
. (4.1)

By substitutingF(κ, τ ) into (4.1), we obtain an ordinary differential equation(1 + ξ2) fξ = ξ f,
whichcan be integrated to givef =

√
1 + ξ2 orF(κ, τ ) =

√
κ2 + τ2.
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Uponsubstituting f =
√

1 + ξ2 into (3.3) or (3.7), we find that this equation reduces tof ′
ξ =

Cκ, whereC is an arbitrary constant. Thus, we deduce an equation for determiningκ andτ , namely

d

ds

(
τ

√
κ2 + τ2

)

= Cκ, (4.2)

and this is the sole consequence of the Euler–Lagrange equations whenF(κ, τ ) =
√
κ2 + τ2.

4.3 F(κ, τ ) = g(κ) f (τ )

Here, we look at the two special cases whenF(κ, τ ) = κ f (τ ) andF(κ, τ ) = τg(κ). Thus, we have
w = κτ fτ andw = κτgκ , respectively. ForF(κ, τ ) = κ f (τ ), we find that (2.1) and (2.2) become,
respectively,

2ττ ′2 fτττ +

[

2τ ′2 +
2τ

κ
κ ′τ ′ + 2ττ ′′

]

fττ +

[

τ ′′ +
2τ

κ
κ ′′ +

τ ′κ ′

κ
−

2κ′2τ

κ2 + 2τκ2

]

fτ − τ2 f = 0,

τ ′3 fττττ +

[
κ ′τ ′2

κ
+ 3ττ ′′

]

fτττ +

[

τ ′′′ + (κ2 − τ2)τ ′ −
2κ′2τ ′

κ2 +
κ ′τ ′′ + 2κ′′τ ′

κ

]

fττ

+

[

2κκ ′ − 2ττ ′ +
2κ′3

κ3 −
3κ′κ ′′

κ2 +
κ ′′′ − κ ′τ2

κ

]

fτ − τ ′ f = 0.

Similarly, for F(κ, τ ) = τg(κ), (2.1) and (2.2) reduce to

τκ ′2gκκκ +

[

2τ ′κ ′ + τκ ′′ +
2τ

κ
κ ′2
]

gκκ +

[

τ ′′ +
2τ

κ
κ ′′ +

τ ′κ ′

κ
−

2τκ ′2

κ2 + κ2τ − τ3

]

gκ

+τκg = 0,

−κ ′3gκκκ +

[

2τ2κκ ′ − 3κ′κ ′′ +
2κ′3

κ

]

gκκ +

[

3κττ ′ − κ ′′′ + (τ2 − κ2)κ ′ −
2κ′3

κ2 +
3κ′κ ′′

κ

]

gκ

−κκ ′g = 0.

Clearly, without assuming a particular family of curves, further analytical progress in general terms
is difficult.

4.4 F(κ, τ ) = F(τ )

In this case, we havep = ∂F/∂κ = 0 and as such we find that (2.5) gives rise to

2τ

κ
q′′ +

(
τ ′

κ
−

2κ′τ

κ2

)

q′ + 2κτq − κF = 0, (4.3)

noting thatq = ∂F/∂τ . Equation (4.3) can be rewritten as
(√

τ

κ
q′
)′

+ κτ
d

dτ

(
F
√
τ

)

= 0. (4.4)
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For the simple special case ofF(τ ) =
√
τ , we obtain from (4.4) that
√
τ

κ
q′ = −

C1

4
, (4.5)

whereC1 denotesan arbitrary constant. Sinceq = 1/(2
√
τ) andq′ = −τ ′/(4τ3/2), from (4.5) we

haveτ ′ = C1κτ . We note that forp = 0, (2.6) reduces to
(

q′

κ

)′′

+ (κq)′ −
τ2

κ
q′ = 0,

whichupon substituting our expressions forq andq′ andsimplifying, we may arrive at
(

C2
1

4
+ 1

)(
κ

√
τ

)′

+
C1

2
τ3/2 = 0,

whichcan be further simplified as(α2+1)(κ′ −ακ2)+ατ2 = 0,whereα = C1/2,and from which
we may deduceκ ′ = α(κ2 − βτ2), whereβ = 1/(1 + α2). Thus, we require to solve

τ ′ = 2ακτ, κ ′ = α(κ2 − βτ2).

By division, we have

dτ

dκ
=

2κτ

κ2 − βτ2 . (4.6)

By introducingV = τ/κ or τ = κV , we may integrate this equation to deduceV = C2κ(1+βV2),
whereC2 denotesa further arbitrary constant, and this gives rise to an explicit relation betweenκ
andτ asτ = C2(κ

2 + βτ2).

5. Family of conical helices

In the context of protein folding, helical-shaped curves tend to arise most often (13). The circular
helix given by

x(t) = a cost, y(t) = a sint, z(t) = bt,

for constantsa andb, gives rise to constant curvature and torsion, and has been studied in detail
by Feoliet al. (14) within the present context. However, there are many different forms of helices
that might also be of considerable interest for protein folding, including elliptical, spherical and
conical (30). Here as a simple illustrative example, we consider a particular conical helix given by
the parametric equations

x(t) = αt cos( βlog t), y(t) = αt sin( β log t), z(t) = γ t, (5.1)

for certain constantsα, β andγ . In a cylindrical polar coordinate system(r, θ, z), this curve is given
by

r (t) = αt, θ(t) = β log t, z(t) = γ t, (5.2)

and therefore, the curve represents a helix on the the surface of the coner = (α/γ )z (see Fig.1).
We comment that the conical helix given above has not previously appeared in the literature, and
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Fig. 1 Conical helix

the logarithm is purposely chosen so that the arc-length parameters is simply the parametert which
is rescaled by a constant. Further, we note that the presence of conical helix protein structures in the
form of ribbed end caps of gas vesicle proteins in aquatic bacteria is mentioned in (22,23,24).

From (1.1) and (5.1), we find that the curvature and torsion are given, respectively, by

κ(s) = κ0/s, τ (s) = τ0/s, (5.3)

whereκ0 andτ0 are constants defined by

κ0 = αβ(1 + β2)1/2/δ, τ0 = γβ/δ, (5.4)

andδ is a new constant defined byδ = [α2(1 + β2)+ γ 2]1/2 which is such that the arc lengths is
related to the parametert in (5.1) by the equations = δt (namelyds = δdt). We observe that both
κ(s) andτ(s) are singular ats = 0 and that from (5.3) it is clear that

ξ = τ(s)/κ(s) = ξ0, (5.5)

whereξ0 = τ0/κ0 is a constant, and we now examine the implications of the Euler–Lagrange
equations in the case when (5.3) and (5.5) are assumed to hold.

First suppose thatF(κ, τ ) is homogeneous of degree one, then from both (3.2) and (3.7), since
d fξ /ds is zero, we conclude thatf (ξ) = C1/2

1 (1 + ξ2)1/2; see section4.2.
Next, supposeF(κ, τ ) is unrestricted, then in the eventξ = ξ0, a constant, (2.8) becomes

d3w

dλ3 + (1 + ξ2
0 )

dw

dλ
= 0,

which on integration yields

w(λ) = −w0 − w1 sin[(1 + ξ2
0 )

1/2λ] − w2 cos[(1 + ξ2
0 )

1/2λ],
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wherew0, w1 andw2 denotethree arbitrary constants, which in the present context could be func-
tions ofξ = ξ0. Now, from (5.3) and the relationdλ = κ(s)ds, we may deduceλ = κ0 logs and
from (5.4) we find thatκ0(1 + ξ2

0 )
1/2 = β, and therefore from the definition (1.4) ofw(κ, τ), we

may deduce

F −

(

κ
∂F

∂κ
+ τ

∂F

∂τ

)

= w0 + w1 sin(β logs)+ w2 cos(β logs). (5.6)

However, on noting the relations (5.3), we have

d

ds
F(κ(s), τ (s)) = −

(
κ0

s2

∂F

∂κ
+
τ0

s2

∂F

∂τ

)

= −
1

s

(

κ
∂F

∂κ
+ τ

∂F

∂τ

)

,

and (5.6) becomes simply

d

ds
(sF) = w0 + w1 sin(β logs)+ w2 cos(β logs),

which may be readily integrated to yield

F(κ(s), τ (s)) = w0 +
(w1 + βw2)

(1 + β2)
sin(β logs)+

(w2 − βw1)

(1 + β2)
cos(β logs)+

w3

s
, (5.7)

wherew3 denotesan additional constant, which could also be a function ofξ = ξ0. Thus, we might
conclude that the conical helix (5.1) applies for any energy density functionF(κ, τ ) which has the
general form

F(κ, τ ) = f0(ξ)+ f1(ξ) sin( β logκ)+ f2(ξ) cos( βlogκ)+ κ f3(ξ), (5.8)

where fi (ξ) (i = 0,1,2,3) denote functions ofξ = τ/κ only, and are suitably redefined from
(5.7). We note that essentially the same result arises if we formally replaces by τ instead ofκ since
logτ = log(τ/κ) + logκ and on expanding the trigonometric functions, the terms arising from
logξ can be absorbed into a redefinition of the four functionsfi (ξ) (i = 0,1,2,3). We also observe
that the previously mentioned homogeneous function of degree one is embodied in the final term of
(5.8), noting that the specific formf3(ξ) = C1/2

1 (1 + ξ2)1/2 arisesas a consequence of (3.2) and
the integral (3.7), while the general form (5.8) is merely a consequence of (2.8).

6. Conclusions

In this paper, we have extended the model of Feoliet al. (14) for the problem of determining
protein structures by including curvature, torsion and their derivatives with respect to the arc-length
parameter in the free-energy density functionF . Even though the caseF = F(κ, τ, κ ′) hasbeen
previously studied by Zhanget al. (19), their two resultant Euler–Lagrange equations are incorrect
(see (2.31) and (2.32) in (19)). The correct equations are given by (B.13) and (B.17) in this paper,
which, as shown in section 2, can be further simplified to (2.1) and (2.2), respectively. We have
shown that the equations obtained simplify to those given in Feoliet al.(14) for the case whenF is
a function of curvature only. Further, we have shown that the two Euler–Lagrange equations can be
dramatically simplified to a single equation (see (2.7)) when expressed in terms of a ‘generalised’
Legendre transformw of F (see (1.4)). This equation has the solutionsw ≡ 0 andw ≡ constant in
the case whenτ/κ = constant. In the case thatF depends only on the curvature and torsion, the first
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w = 0 arises whenF(κ, τ ) is a homogeneous function of degree one, namelyF(κ, τ ) = κ f (τ/κ),
and for any f (τ/κ) by introducing a new parameterλ such thatdλ = κds, we may reduce the
Euler–Lagrange equations to a single first-order relation (see (3.7)). The question is, to what extent
do the homogeneous functions of degree one arise in any experimental determinations of the free-
energy density? To date, the authors are not aware of any explicit experimental data of this nature
that might be used to answer this question. For the second solutionw = C, whereC is a non-zero
constant, we may show thatτ = C1κ, whereC1 is a further constant, so thatF(κ, τ ) = A + Bκ,
which coincides with the linear curvature case examined in detail by Feoliet al. (14). A closer
analysis of the individual equations (2.5) and (2.6) reveals that bothκ andτ must be constants, as
is the case for the circular helices examined by Feoliet al. (14). These authors claim that the linear
curvature case for the free-energy density uniquely determines these helical proteins. Our analysis
does not conflict with this statement, except that we show helical proteins could also arise from a
more general free energyF(κ, τ ) = −C + κ f (τ/κ), noting that both constantsκ andτ arise as
a consequence of the Euler–Lagrange equations. Finally, in this paper, we examine some simple
special forms ofF(κ, τ ) to determine the resulting Euler–Lagrange constraints and we examine in
some detail a particular conical helix and we derive the general form (5.8) of the energy density
functionF(κ, τ ) resulting from the Euler–Lagrange equations.
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APPENDIX A

In this appendix, we derive the variational quantities that are used for the determination of the Euler–Lagrange
equations shown in Appendix B. The variation ofr(s) is given by

r̃(s) = r(s)+ ε1ψ1(s)T + ε2ψ2(s)N + ε3ψ3(s)B, (A.1)

whereεi aresmall andψi (s) arearbitrary functions. By using the Frenet equations andr ′ = T, we have

r̃ ′ = [1 + ε1ψ
′
1 − ε2κψ2]T + [ε1κψ1 + ε2ψ

′
2 − ε3τψ3]N + [ε2ψ2τ + ε3ψ

′
3]B (A.2)

and

|r̃ ′|2 = [1 + ε1ψ
′
1 − ε2κψ2]2 + [ε1κψ1 + ε2ψ

′
2 − ε3τψ3]2 + [ε2ψ2τ + ε3ψ

′
3]2. (A.3)
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Further, from (1.2) and (A.2), we find that

r̃ ′′ = [ε1(ψ
′′
1 − ψ1κ

2)− ε2(2κψ
′
2 + κ ′ψ2)+ ε3ψ3κτ ]T

+ [κ + ε1(2κψ
′
1 + ψ1κ

′)+ ε2(ψ
′′
2 − ψ2κ

2 − ψ2τ
2)− ε3(2ψ

′
3τ + ψ3τ

′)]N

+ [ε1κτψ1 + ε2(2ψ
′
2τ + ψ2τ

′)+ ε3(ψ
′′
3 − τ2ψ3)]B. (A.4)

Next, from (A.2) and (A.4), we obtain

r̃ ′ × r̃ ′′ = [−κ(ε2ψ2τ + ε3ψ
′
3)+ O(ε2

i )]T

− [ε1κτψ1 + ε2(2ψ
′
2τ + ψ2τ

′)+ ε3(ψ
′′
3 − τ2ψ3)+ O(ε2

i )]N

+ [κ + ε1(3κψ
′
1 + ψ1κ

′)+ ε2(ψ
′′
2 − 2κ2ψ2 − τ2ψ2)− ε3(2τψ

′
3 + τ ′ψ3)+ O(ε2

i )]B (A.5)

sothat we have

|r̃ ′ × r̃ ′′|2 = [−κ(ε2ψ2τ + ε3ψ
′
3)+ O(ε2

i )]
2

+ [ε1κτψ1 + ε2(2ψ
′
2τ + ψ2τ

′)+ ε3(ψ
′′
3 − τ2ψ3)+ O(ε2

i )]
2

+ [κ + ε1(3κψ
′
1 + ψ1κ

′)+ ε2(ψ
′′
2 − 2κ2ψ2 − τ2ψ2)− ε3(2τψ

′
3 + τ ′ψ3)+ O(ε2

i )]
2. (A.6)

From(A.3) and (A.6), we note the following relations:

∂|r̃ ′|2

∂ε1

∣
∣
∣
∣
∣
ε̄=0

=2ψ′
1,

∂|r̃ ′ × r̃ ′′|2

∂ε1

∣
∣
∣
∣
∣
ε̄=0

= 2κ(3κψ′
1 + ψ1κ

′),

∂|r̃ ′|2

∂ε2

∣
∣
∣
∣
∣
ε̄=0

= − 2κψ2,
∂|r̃ ′ × r̃ ′′|2

∂ε2

∣
∣
∣
∣
∣
ε̄=0

= 2κ(ψ ′′
2 − 2κ2ψ2 − τ2ψ2),

∂|r̃ ′|2

∂ε3

∣
∣
∣
∣
∣
ε̄=0

=0,
∂|r̃ ′ × r̃ ′′|2

∂ε3

∣
∣
∣
∣
∣
ε̄=0

= −2κ(2τψ′
3 + ψ3τ

′),

whereε̄ = 0 denotes evaluation atε1 = ε2 = ε3 = 0. From|r̃ ′|2|ε̄=0 = 1, |r̃ ′ × r̃ ′′|2|ε̄=0 = κ2 and

∂|r̃ ′|

∂εi
=

1

2|r̃ ′|

∂|r̃ ′|2

∂εi
,

weobtain

∂|r̃ ′|

∂ε1

∣
∣
∣
∣
ε̄=0

=ψ ′
1,

∂|r̃ ′ × r̃ ′′|

∂ε1

∣
∣
∣
∣
ε̄=0

= 3κψ ′
1 + ψ1κ

′,

∂|r̃ ′|

∂ε2

∣
∣
∣
∣
ε̄=0

= − κψ2,
∂|r̃ ′ × r̃ ′′|

∂ε2

∣
∣
∣
∣
ε̄=0

= ψ ′′
2 − 2κ2ψ2 − τ2ψ2, (A.7)

∂|r̃ ′|

∂ε3

∣
∣
∣
∣
ε̄=0

=0,
∂|r̃ ′ × r̃ ′′|

∂ε3

∣
∣
∣
∣
ε̄=0

= −2τψ′
3 − ψ3τ

′.
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Next, we need to determine det(r̃ ′, r̃ ′′, r̃ ′′′) notingthat r̃ ′′′ is given by

r̃ ′′′ = [−κ2 + ε1(−3κ2ψ ′
1 − 3κκ ′ψ1 + ψ ′′′

1 )− ε2(3κψ
′′
2 + 3κ′ψ ′

2 + κ ′′ψ2 − κ3ψ2 − τ2κψ2)

+ ε3(κ
′τψ3 + 2κτ ′ψ3 + 3κτψ ′

3)]T + [κ ′ + ε1(3κψ
′′
1 + 3κ′ψ ′

1 − ψ1κ
3 − ψ1κτ

2 + κ ′′ψ1)

+ ε2(ψ
′′′
2 − 3τ2ψ ′

2 − 3κ2ψ ′
2 − 3κκ ′ψ2 − 3ττ ′ψ2)

+ ε3(−3τψ ′′
3 − 3τ′ψ ′

3 + κ2τψ3 + τ3ψ3 − τ ′′ψ3)]N

+ [κτ + ε1(3κτψ
′
1 + 2κ′τψ1 + κτ ′ψ1)+ ε2(3ψ

′′
2 τ − τκ2ψ2 − τ3ψ2 + 3τ′ψ ′

2 + τ ′′ψ2)

+ ε3(ψ
′′′
3 − 3τ2ψ ′

3 − 3ττ ′ψ3)]B. (A.8)

Thusfrom (A.2), (A.4) and (A.8), we can find that det(r̃ ′, r̃ ′′, r̃ ′′′) is given by

det(r̃ ′, r̃ ′′, r̃ ′′′) =

∣
∣
∣
∣
∣
∣
∣
∣

M11 M12 M13

M21 M22 M23

M31 M32 M33

∣
∣
∣
∣
∣
∣
∣
∣

, (A.9)

whereMi j (i, j = 1,2,3) represent the coefficients of vectorsT, N andB in r̃ ′, r̃ ′′ and r̃ ′′′. As a result, we
have

det(r̃ ′, r̃ ′′, r̃ ′′′) = [1 + ε1ψ
′
1 − ε2κψ2]M1 − [ε1κψ1 + ε2ψ

′
2 − ε3τψ3]M2 + [ε2ψ2τ + ε3ψ

′
3]M3, (A.10)

whereM1 = M22M33− M23M32, M2 = M21M33− M23M31 andM3 = M21M32− M22M31. From (A.10),
we may deduce

∂ det(̃r ′, r̃ ′′, r̃ ′′′)

∂ε1

∣
∣
∣
∣
ε̄=0

=
∂M1

∂ε1

∣
∣
∣
∣
ε̄=0

+ ψ ′
1M1|ε̄=0 − κψ1M2|ε̄=0,

∂ det(̃r ′, r̃ ′′, r̃ ′′′)

∂ε2

∣
∣
∣
∣
ε̄=0

=
∂M1

∂ε2

∣
∣
∣
∣
ε̄=0

− κψ2M1|ε̄=0 − ψ ′
2M2|ε̄=0 + ψ2τM3|ε̄=0, (A.11)

∂ det(̃r ′, r̃ ′′, r̃ ′′′)

∂ε3

∣
∣
∣
∣
ε̄=0

=
∂M1

∂ε3

∣
∣
∣
∣
ε̄=0

+ τψ3M2|ε̄=0 + ψ ′
3M3|ε̄=0,

thus,from (A.2), (A.4) and (A.8), we finally obtain

∂ det(̃r ′, r̃ ′′, r̃ ′′′)

∂ε1

∣
∣
∣
∣
ε̄=0

= 6κ2τψ ′
1 + (2τκκ ′ + κ2τ ′)ψ1,

∂ det(̃r ′, r̃ ′′, r̃ ′′′)

∂ε2

∣
∣
∣
∣
ε̄=0

= 4κτψ ′′
2 + (3κτ ′ − 2τκ ′)ψ ′

2 + (κτ ′′ − 2κ3τ − 2κτ3 − κ ′τ ′)ψ2, (A.12)

∂ det(̃r ′, r̃ ′′, r̃ ′′′)

∂ε3

∣
∣
∣
∣
ε̄=0

= κψ ′′′
3 − κ ′ψ ′′

3 + (κ3 − 5κτ2)ψ ′
3 + (κ ′τ2 − 4κττ ′)ψ3.

We note that̃r ′|ε̄=0 = T, r̃ ′′|ε̄=0 = κN and r̃ ′′′|ε̄=0 = −κ2T + κ ′N + κτB as such it can be shown that
det(̃r ′, r̃ ′′, r̃ ′′′)|ε̄=0 = κ2τ .
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APPENDIXB

Here,we derive the Euler–Lagrange equations (2.1) and (2.2) and the alternative boundary conditions. In the
case when the energy depends on the curvature, the torsion and the derivatives of curvature and torsion, the
total variation becomes

∂

∂εi

∫
F(κ, τ, κ ′, τ ′)|r̃ ′|ds

∣
∣
∣
∣
ε̄=0

= 0 (i = 1,2,3). (B.1)

Equation(B.1) can be expanded as

∫
∂F

∂κ

∂κ

∂εi
|r̃ ′|

∣
∣
∣
∣
ε̄=0

ds +
∫
∂F

∂τ

∂τ

∂εi
|r̃ ′|

∣
∣
∣
∣
ε̄=0

ds +
∫
∂F

∂κ ′
∂κ ′

∂εi
|r̃ ′|

∣
∣
∣
∣
ε̄=0

ds

+
∫
∂F

∂τ ′
∂τ ′

∂εi
|r̃ ′|

∣
∣
∣
∣
ε̄=0

ds +
∫
F
∂|r̃ ′|

∂εi

∣
∣
∣
∣
ε̄=0

ds = 0. (B.2)

Since the curvatureκ and the torsionτ are given, respectively, byκ = |r̃ ′ × r̃ ′′|/|r̃ ′|3 andτ = det(̃r ′, r̃ ′′, r̃ ′′′)/
|r̃ ′ × r̃ ′′|2, we may deduce

∂κ

∂εi
=

1

|r̃ ′|6

[

|r̃ ′|3
∂|r̃ ′ × r̃ ′′|

∂εi
− 3|r̃ ′|2|r̃ ′ × r̃ ′′|

∂|r̃ ′|

∂εi

]

, (B.3)

∂τ

∂εi
=

1

|r̃ ′ × r̃ ′′|4

[

|r̃ ′ × r̃ ′′|2
∂ det(̃r ′, r̃ ′′, r̃ ′′′)

∂εi
− 2|r̃ ′ × r̃ ′′| det(̃r ′, r̃ ′′, r̃ ′′′)

∂|r̃ ′ × r̃ ′′|

∂εi

]

.

From|r̃ ′|2|ε̄=0 = 1, |r̃ ′ × r̃ ′′|2|ε̄=0 = κ2 anddet(̃r ′, r̃ ′′, r̃ ′′′)|ε̄=0 = κ2τ , we then derive

∂κ

∂εi

∣
∣
∣
∣
ε̄=0

=
∂|r̃ ′ × r̃ ′′|

∂εi

∣
∣
∣
∣
ε̄=0

− 3κ
∂|r̃ ′|

∂εi

∣
∣
∣
∣
ε̄=0

, (B.4)

∂τ

∂εi

∣
∣
∣
∣
ε̄=0

=
1

κ2
∂ det(̃r ′, r̃ ′′, r̃ ′′′)

∂εi

∣
∣
∣
∣
ε̄=0

−
2τ

κ

∂|r̃ ′ × r̃ ′′|

∂εi

∣
∣
∣
∣
ε̄=0

.

As a result, using (A.7), (A.12) and (B.4), we obtain

∂κ

∂ε1

∣
∣
∣
∣
ε̄=0

= κ ′ψ1,
∂κ

∂ε2

∣
∣
∣
∣
ε̄=0

= ψ ′′
2 + (κ2 − τ2)ψ2,

∂κ

∂ε3

∣
∣
∣
∣
ε̄=0

= −2τψ′
3 − τ ′ψ3 (B.5)

and

∂τ

∂ε1

∣
∣
∣
∣
ε̄=0

= τ ′ψ1,
∂τ

∂ε2

∣
∣
∣
∣
ε̄=0

=
2τ

κ
ψ ′′

2 +

(
3τ′

κ
−

2τκ ′

κ2

)

ψ ′
2 +

(

2κτ +
τ ′′

κ
−
κ ′τ ′

κ2

)

ψ2,

∂τ

∂ε3

∣
∣
∣
∣
ε̄=0

=
1

κ
ψ ′′′

3 −
κ ′

κ2
ψ ′′

3 +

(

κ −
τ2

κ

)

ψ ′
3 +

(

−
2ττ ′

κ
+
κ ′τ2

κ2

)

ψ3. (B.6)

 at Pennsylvania State U
niversity on Septem

ber 17, 2016
http://qjm

am
.oxfordjournals.org/

D
ow

nloaded from
 

http://qjmam.oxfordjournals.org/


ENERGYDENSITY FUNCTIONS FOR PROTEIN STRUCTURES 447

While formulae (1.1) are valid in any parametrisation, it is essential to note that

κ ′ =
dκ

ds

ds

ds̃
, τ ′ =

dτ

ds

ds

ds̃
,

whered/ds̃ is the intrinsic derivative of the varied curve. Here,s̃, the arc length of the varied curve, is related
to s via s̃ =

∫
|r̃ ′(s)|ds. In particular,ds/ds̃ = 1/|r̃ ′(s)|. Consequently, we have

∂κ ′

∂εi
=

dκ

ds

∂

∂εi

(
1

|r̃ ′|

)

+
1

|r̃ ′|

∂

∂εi

(
dκ

ds

)

= −
1

|r̃ ′|2
∂|r̃ ′|

∂εi

dκ

ds
+

1

|r̃ ′|

∂

∂εi

(
dκ

ds

)

,

∂τ ′

∂εi
=

dτ

ds

∂

∂εi

(
1

|r̃ ′|

)

+
1

|r̃ ′|

∂

∂εi

(
dτ

ds

)

= −
1

|r̃ ′|2
∂|r̃ ′|

∂εi

dτ

ds
+

1

|r̃ ′|

∂

∂εi

(
dτ

ds

)

,

and hence,

∂κ ′

∂εi

∣
∣
∣
∣
ε̄=0

= −κ ′ ∂|r̃
′|

∂εi

∣
∣
∣
∣
ε̄=0

+
∂κ ′

∂εi

∣
∣
∣
∣
ε̄=0

,
∂τ ′

∂εi

∣
∣
∣
∣
ε̄=0

= −τ ′ ∂|r̃
′|

∂εi

∣
∣
∣
∣
ε̄=0

+
∂τ ′

∂εi

∣
∣
∣
∣
ε̄=0

. (B.7)

We also note that

∂κ ′

∂εi

∣
∣
∣
∣
ε̄=0

=
d

ds

(
∂κ

∂εi

∣
∣
∣
∣
ε̄=0

)

,
∂τ ′

∂εi

∣
∣
∣
∣
ε̄=0

=
d

ds

(
∂τ

∂εi

∣
∣
∣
∣
ε̄=0

)

. (B.8)

From(B.2), (B.5), (B.6), (B.7) and (B.8), the variation(∂/∂ε1)
∫
F(κ, τ, κ ′, τ ′)|r̃ ′|ds

∣
∣
ε̄=0 = 0 in the tan-

gential direction gives rise to

∫
∂F

∂κ
κ ′ψ1ds +

∫
∂F

∂τ
τ ′ψ1ds +

∫
∂F

∂κ ′ κ
′′ψ1ds +

∫
∂F

∂τ ′ τ
′′ψ1ds +

∫
Fψ ′

1ds = 0. (B.9)

By integrating by parts the fifth integral in (B.9) and imposing the conditionFψ1 = 0 at the boundary, we find
that the variation in the tangential direction is identically satisfied.

Further, the variation(∂/∂ε2)
∫
F(κ, τ, κ ′, τ ′)|r̃ ′|ds

∣
∣
ε̄=0 = 0 in the normal direction becomes, after using

(B.2), (B.5), (B.6), (B.7) and (B.8),

∫
∂F

∂κ
[ψ ′′

2 + (κ2 − τ2)ψ2]ds +
∫
∂F

∂τ

[
2τ

κ
ψ ′′

2 +

(
3τ′

κ
−

2κ′τ

κ2

)

ψ ′
2 +

(

2κτ +
τ ′′

κ
−
κ ′τ ′

κ2

)

ψ2

]

ds

+
∫
∂F

∂κ ′ [ψ
′′′
2 + (κ2 − τ2)ψ ′

2 + (3κκ ′ − 2ττ ′)ψ2]ds

+
∫
∂F

∂τ ′

[
2τ

κ
ψ ′′′

2 +

(
5τ′

κ
−

4τκ ′

κ2

)

ψ ′′
2 +

(

2κτ +
4τ′′

κ
−

6κ′τ ′

κ2
−

2τκ ′′

κ2
+

4τκ ′2

κ3

)

ψ ′
2

+

(

2κ′τ + 3τ′κ +
τ ′′′

κ
−

2κ′τ ′′

κ2
−
κ ′′τ ′

κ2
+

2τ′κ ′2

κ3

)

ψ2

]

ds −
∫
Fκψ2ds = 0. (B.10)
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Integrating by parts those terms in (B.10) involvingψ ′
2, ψ ′′

2 andψ ′′′
2 gives

∫ {
d2

ds2

(
∂F

∂κ
+

2τ

κ

∂F

∂τ

)

+
d

ds

(
2κ′τ

κ2
∂F

∂τ
−

3τ′

κ

∂F

∂τ

)

+ [κ2 − τ2]
∂F

∂κ

+

[

2κτ +
τ ′′

κ
−
κ ′τ ′

κ2

]
∂F

∂τ
+ [3κκ ′ − 2ττ ′]

∂F

∂κ ′ −
d

ds

(

[κ2 − τ2]
∂F

∂κ ′

)

−
d3

ds3

(
∂F

∂κ ′

)

+

[

2κ′τ + 3τ′κ +
τ ′′′

κ
−

2κ′τ ′′

κ2
−
κ ′′τ ′

κ2
+

2τ′κ ′2

κ3

]
∂F

∂τ ′

−
d

ds

([

2κτ +
4τ′′

κ
−

6κ′τ ′

κ2
−

2τκ ′′

κ2
+

4τκ ′2

κ3

]
∂F

∂τ ′

)

+
d2

ds2

([
5τ′

κ
−

4τκ ′

κ2

]
∂F

∂τ ′

)

−
d3

ds3

(
2τ

κ

∂F

∂τ ′

)

− κF

}

ψ2ds = 0, (B.11)

which is obtained assuming that the following boundary condition is satisfied:
{

d2

ds2

(
∂F

∂κ ′ +
2τ

κ

∂F

∂τ ′

)

−
d

ds

(
∂F

∂κ
+

2τ

κ

∂F

∂τ
+

[
5τ′

κ
−

4τκ ′

κ2

]
∂F

∂τ ′

)

+

[
3τ′

κ
−

2τκ ′

κ2

]
∂F

∂τ
+ [κ2 − τ2]

∂F

∂κ ′ +

[

2κτ +
4τ′′

κ
−

6κ′τ ′

κ2
−

2τκ ′′

κ2
+

4τκ ′2

κ3

]
∂F

∂τ ′

}

ψ2

+

{

−
d

ds

(
∂F

∂κ ′ +
2τ

κ

∂F

∂τ ′

)

+
∂F

∂κ
+

2τ

κ

∂F

∂τ
+

[
5τ′

κ
−

4τκ ′

κ2

]
∂F

∂τ ′

}

ψ ′
2

+

{
∂F

∂κ ′ +
2τ

κ

∂F

∂τ ′

}

ψ ′′
2 = 0. (B.12)

Equation(B.11) holds for arbitraryψ2 if

d2

ds2

(
∂F

∂κ
+

2τ

κ

∂F

∂τ

)

+
d

ds

(
2κ′τ

κ2
∂F

∂τ
−

3τ′

κ

∂F

∂τ

)

+ [κ2 − τ2]
∂F

∂κ

+

[

2κτ +
τ ′′

κ
−
κ ′τ ′

κ2

]
∂F

∂τ
+ [3κκ ′ − 2ττ ′]

∂F

∂κ ′ −
d

ds

(

[κ2 − τ2]
∂F

∂κ ′

)

−
d3

ds3

(
∂F

∂κ ′

)

+

[

2κ′τ + 3τ′κ +
τ ′′′

κ
−

2κ′τ ′′

κ2
−
κ ′′τ ′

κ2
+

2τ′κ ′2

κ3

]
∂F

∂τ ′

−
d

ds

([

2κτ +
4τ′′

κ
−

6κ′τ ′

κ2
−

2τκ ′′

κ2
+

4τκ ′2

κ3

]
∂F

∂τ ′

)

+
d2

ds2

([
5τ′

κ
−

4τκ ′

κ2

]
∂F

∂τ ′

)

−
d3

ds3

(
2τ

κ

∂F

∂τ ′

)

− κF = 0. (B.13)
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Uponsimplifying, (B.13) may be written as shown in (2.1). We note here that the boundary condition (B.12)
is satisfied ifψ2 = ψ ′

2 = ψ ′′
2 = 0 or the alternative boundary conditions may be obtained if the coefficients of

ψ2, ψ ′
2 andψ ′′

2 areequal to zero at the boundary.
Finally, the variation(∂/∂ε3)

∫
F(κ, τ, κ ′, τ ′)|r̃ ′|ds

∣
∣
ε̄=0 = 0 in the binormal direction, using (B.2), (B.5),

(B.6), (B.7) and (B.8), gives rise to

−
∫
∂F

∂κ
[2τψ ′

3 + τ ′ψ3]ds +
∫
∂F

∂τ

[
1

κ
ψ ′′′

3 −
κ ′

κ2
ψ ′′

3 +

(

κ −
τ2

κ

)

ψ ′
3 +

(
κ ′τ2

κ2
−

2ττ ′

κ

)

ψ3

]

ds

−
∫
∂F

∂κ ′ [2τψ
′′
3 + 3τ′ψ ′

3 + τ ′′ψ3]ds

+
∫
∂F

∂τ ′

[
1

κ
ψ ′′′′

3 −
2κ′

κ2
ψ ′′′

3 +

(

κ −
τ2

κ
−
κ ′′

κ2
+

2κ′2

κ3

)

ψ ′′
3 +

(

κ ′ −
4ττ ′

κ
+

2κ′τ2

κ2

)

ψ ′
3

+

(

−
2τ′2

κ
−

2ττ ′′

κ
+

4ττ ′κ ′

κ2
+
κ ′′τ2

κ2
−

2τ2κ ′2

κ3

)

ψ3

]

ds = 0. (B.14)

Similarly to the above, we may integrate by parts the terms involvingψ ′
3, ψ ′′

3 , ψ ′′′
3 andψ ′′′′

3 . As such, (B.14)
becomes

∫ {

−
d3

ds3

(
1

κ

∂F

∂τ

)

−
d2

ds2

(
κ ′

κ2
∂F

∂τ

)

+
d

ds

(

2τ
∂F

∂κ
+
τ2

κ

∂F

∂τ
− κ

∂F

∂τ

)

− τ ′ ∂F

∂κ
+

[
κ ′τ2

κ2
−

2ττ ′

κ

]
∂F

∂τ
− τ ′′ ∂F

∂κ ′ +
d

ds

(

3τ′
∂F

∂κ ′

)

−
d2

ds2

(

2τ
∂F

∂κ ′

)

+

[

−
2τ′2

κ
−

2ττ ′′

κ
+

4ττ ′κ ′

κ2
+
κ ′′τ2

κ2
−

2τ2κ ′2

κ3

]
∂F

∂τ ′ −
d

ds

([

κ ′ −
4ττ ′

κ
+

2κ′τ2

κ2

]
∂F

∂τ ′

)

+
d2

ds2

([

κ −
τ2

κ
−
κ ′′

κ2
+

2κ′2

κ3

]
∂F

∂τ ′

)

−
d3

ds3

(

−
2κ′

κ2
∂F

∂τ ′

)

+
d4

ds4

(
1

κ

∂F

∂τ ′

)}

ψ3ds = 0, (B.15)

where we assume that the condition

1

κ

∂F

∂τ ′ψ
′′′
3 +

{

−
d

ds

(
1

κ

∂F

∂τ ′

)

+
1

κ

∂F

∂τ
−

2κ′

κ2
∂F

∂τ ′

}

ψ ′′
3

+

{
d2

ds2

(
1

κ

∂F

∂τ ′

)

−
d

ds

(
1

κ

∂F

∂τ
−

2κ′

κ2
∂F

∂τ ′

)

−
κ ′

κ2
∂F

∂τ
− 2τ

∂F

∂κ ′ +

[

κ −
τ2

κ
−
κ ′′

κ2
+

2κ′2

κ3

]
∂F

∂τ ′

}

ψ ′
3
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+

{

−
d3

ds3

(
1

κ

∂F

∂τ ′

)

+
d2

ds2

(
1

κ

∂F

∂τ
−

2κ′

κ2
∂F

∂τ ′

)

+
d

ds

(
κ ′

κ2
∂F

∂τ
+ 2τ

∂F

∂κ ′ −

[

κ −
τ2

κ
−
κ ′′

κ2
+

2κ′2

κ3

]
∂F

∂τ ′

)

− 2τ
∂F

∂κ
+

[

κ −
τ2

κ

]
∂F

∂τ
− 3τ′

∂F

∂κ ′ +

[

κ ′ −
4ττ ′

κ
+

2τ2κ ′

κ2

]
∂F

∂τ ′

}

ψ3 = 0 (B.16)

is satisfied at the boundary. Equation (B.15) is satisfied for arbitrary functionsψ3 when

−
d3

ds3

(
1

κ

∂F

∂τ

)

−
d2

ds2

(
κ ′

κ2
∂F

∂τ

)

+
d

ds

(

2τ
∂F

∂κ
+
τ2

κ

∂F

∂τ
− κ

∂F

∂τ

)

− τ ′ ∂F

∂κ
+

[
κ ′τ2

κ2
−

2ττ ′

κ

]
∂F

∂τ
− τ ′′ ∂F

∂κ ′ +
d

ds

(

3τ′
∂F

∂κ ′

)

−
d2

ds2

(

2τ
∂F

∂κ ′

)

+

[

−
2τ′2

κ
−

2ττ ′′

κ
+

4ττ ′κ ′

κ2
+
κ ′′τ2

κ2
−

2τ2κ ′2

κ3

]
∂F

∂τ ′ −
d

ds

([

κ ′ −
4ττ ′

κ
+

2κ′τ2

κ2

]
∂F

∂τ ′

)

+
d2

ds2

([

κ −
τ2

κ
−
κ ′′

κ2
+

2κ′2

κ3

]
∂F

∂τ ′

)

−
d3

ds3

(

−
2κ′

κ2
∂F

∂τ ′

)

+
d4

ds4

(
1

κ

∂F

∂τ ′

)

= 0. (B.17)

Equation(B.17) can be simplified giving rise to (2.2). Again, we note that the boundary condition (B.16) is
satisfied either ifψ3 = ψ ′

3 = ψ ′′
3 = ψ ′′′

3 = 0 or if the coefficients ofψ3, ψ ′
3, ψ

′′
3 andψ ′′′

3 areequal to zero at
the boundary, giving rise to the alternative boundary conditions.

APPENDIXC

For the case of the energy density depending only on the curvature, we show here that the integration of (2.3)
and (2.4) can be resulted in general terms for any givenF(κ). We note that the same result can also be found
in Feoliet al.(14), but the procedure given here is far more direct and formal. To solve (2.3) and (2.4), we first
simplify (2.4) as

dτ

ds

dF(κ)

dκ
+ 2τ

d2F(κ)

dκ2
dκ

ds
= 0

so that if we denoteFκ = dF(κ)/dκ, then the above equation can be rearranged as−(1/τ)dτ = 2[Fκκ/
Fκ ]dκ, which can be integrated to give an equation for determiningτ , namely

τ =
C1

F2
κ
, (C.1)
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whereC1 is a constant of integration. Upon substituting (C.1) into (2.3) and simplifying, we deduce

d2Fκ
ds2

+ κ[κFκ − F ] =
C2

1
F3
κ
. (C.2)

By introducingp = Fκ andω = κFκ −F , we findκ = dω/dp and with these substitutions, (C.2) reduces to

d2p

ds2
+ ω

dω

dp
=

C2
1

p3
. (C.3)

With further substitution ofu = dp/ds, (C.3) becomes

u
du

dp
+ ω

dω

dp
=

C2
1

p3
, (C.4)

whichmay readily be integrated to giveu = ±{C2−ω2−C2
1 p−2}1/2, whereC2 denotesan arbitrary constant.

Sinceu = dp/ds, we are left with the following formal integration:
∫

pdp
√

p2(C2 − ω2)− C2
1

+ C3 = ±s, (C.5)

whereC3 denotesa further arbitrary constant,p = Fκ andω = κFκ − F .
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