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are discussed. The issues of the operation of various architectures used to solve vision
problems, from the pipeline of dedicated operators to general purpose MIMD machines,
passing through specialized SIMD machines and processors with extended instruction sets,
and parallelization tools, from parallel library to parallel programming languages, are
reviewed. In this context, a discussion of open issues and directions for future research
is provided.
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1. Introduction

In this paper, a generic framework of the parallel image and video processing is introduced to practitioners both in terms
of architectural and programming points of view (Section 2). The idea is to provide a brief review of some key hints and dis-
cuss specific related issues, also through the papers reported in this issue (Section 3), highlighting current trends and open
issues (Section 4).
2. Framework

Without doubt recent years have seen the emergence of image processing and multimedia as a key technology for mod-
ern computing. Besides traditional applications of image processing (robotics, surveillance, visual inspection), many new do-
mains have emerged (video conferencing, video-on-demand, image databases) while others took an important rise (medical
imaging, data visualization).

Although an image already consists of a large set of information, many present applications require to process high
dimensional image data: time sequences for video application, large datasets for image archiving and retrieval, volumetric
slices for 3D medical imaging applications [3]. This gives rise to several progresses in digital signal processing algorithms,
while the need of performing complex image analysis in several domain tends to increase the computational requirements
for image manipulation. The combination of the important computational effort that is required and the need of fast re-
sponse time, combined to the inherently data parallel organization of images lead to the use of parallel computation in image
processing applications.
. All rights reserved.
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2.1. The architectural side

For many years, computer scientists have studied parallel architectures for solving image processing problems.
During the 1950s, some proposals for massively parallel architectures appeared [49]. But during the Seventies, it was soon

realized that many identical local computations were required, so that it seemed natural to think about replicating the
instruction executors, one for each pixel or for each instruction (SIMD and MIMD respectively). This led to the first SIMD
architectures (e.g. ILLIAC IV[1], MPP [4], CLIP4 [14]), CLIP7 [15] and the MIMD class (e.g. Cytocomputer [30], ZMOB [42]).
At those time (beginning of the1980s) programming was still a hard task for multiprocessor architectures even when using
commercial microprocessors like the Z80. The real problem to be solved involved different issues: economical, technological,
structural (pipeline/array/reconfigurable) and usability [7]. Moreover, the passage to more sophisticated algorithms of image
analysis led to the need for enriching the mechanisms of communication between the elementary processors. Thus, during
the Eighties, the researchers considered the use of various topologies allowing to enrich the communications between nodes
by a parallel machine: pyramid, hypercube, etc. The most outstanding results in image processing relate to the use of pyr-
amid topologies, whose interconnection reflects the data movements present in many algorithms of image processing, in
particular the multiresolution processing. Various projects and achievements were thus carried out [5,32,6].

Probably there have been more specialized architectures proposed for images than for any other application, leading to
the introduction of specific SIMD instructions in microprocessors, subject to image processing constraints. Most of micropro-
cessors have their multimedia extension now: INTEL with MMX (Multimedia extension)[41] and the second generation
Streaming SIMD extensions [22], Sun with SCREW (Visual Instruction Set) [48], HP with MAX (Media ACCelerator) [29], DIG-
ITAL with MVI (Video Motion Instructions) [12], Motorola with AltiVec[38], etc. They differ by the type of authorized data (8/
16/32 bits, even floating), by the existence of more or less specialized particular instructions and some details in the instruc-
tion set.

On the other side, general purpose architectures and programming concepts have been developed and are presently
widely used around the world, becoming an everyday tool for a large number of users. Symmetric shared memory multicom-
puters are quite common for applications ranging from e-commerce servers to database manipulation. Processor clusters are
present in most computer science laboratories and in a growing number of industries.

More recently, the emerging grid technology [39] promises to connect altogether all these resources to provide virtually
unlimited computing power. Typically, computing nodes, storage nodes and fast network connections represent the hard-
ware. Two levels of middleware could be considered: the low-level middleware services provide homogeneous access to
the underlying heterogeneous components; the upper level middleware provides a user interface for deploying grid-enabled
applications with data sharing and distributed computation capabilities. The main aim of grid technologies is to offer a un-
ique environment for sharing data and computing or storage resources through very generic services for deploying large
scale applications such as users authorization, authentication and accounting, data replication and fast transfer, and trans-
parent access to computing resources. One of the research advances consist in the development of specialized higher-level
layers which take into account the image and video processing specific requirements. Some recent successful experiences in
biomedical image processing could be found in [31,34].

Also wireless microsensor networks have been identified as one of the most important technologies for the 21st century,
with applications such as infrastructure security, habitat monitoring, and traffic control. Technical challenges in sensor net-
work development include network discovery, control and routing, collaborative signal and information processing, tasking
and querying, and security [9].

It is not surprising in these conditions that the image processing community, who has been relying for years on special
purpose computers to accelerate their computations, turns towards a mature technology of parallel processing. They can
benefit simultaneously from reliable and fast hardware, solid software concepts and programming tools that allow to imple-
ment the more and more complex applications required for image and multimedia applications.

Apart from its design and capabilities, the (commercial) success of any computer architecture significantly depends on
the availability of tools that simplify software development. As an example, for many users it is often desirable to be able
to develop programs in a high-level language such as C or Java. Unfortunately, for many of the architectures so far referred,
available high-level language compilers often have great difficulties in generating assembly code that makes effectively use
of the capabilities of a parallel machine. To obtain truly efficient code the programmer often must optimize the critical sec-
tions of a program by hand. Whereas assembly coding or hand-optimization may be reasonable for a small group of experts,
most users prefer to dedicate their time to describing what a computer should do rather than how it should do. Consequently,
many different programming tools have been developed that attempt to alleviate the problem of low-level software design
for parallel and distributed computers. In all cases such tools are provided with a programming model that to a certain ex-
tent abstracts from the idiosyncrasies of the underlying parallel hardware. However, the small user base of parallel comput-
ing within the image processing research community indicates that (as of yet) no parallelization tool has been provided that
has a truly familiar programming model.

Because many different image operations incorporate similar data access patterns, a relatively small number of alterna-
tive parallelization strategies often need to be considered. These observations have led to the creation of software develop-
ment tools that are specifically tailored to image processing applications. Such tools may provide more higher-level
abstractions to the user than general purpose tools, and are potentially much more efficient as important domain-specific
assumptions often can be incorporated.
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2.2. The programming tools side

One approach to integrating domain-specific knowledge is to design a specific programming language for parallel image
processing specifically, like Apply [20] and Adapt [50].

Apply and Adapt exploit this idea by requiring the programmer to write only the innermost per pixel portion of the com-
putation. The iteration is then implicit and can be easily made parallel; the compiler needs only to divide the images among
processors and then iterate the Apply program over the image sections allocated to each processor. Despite the fact that the
language was capable of providing significant speedups for many applications, the programming model proved to be too re-
stricted for practical use. To overcome this problem, in Adapt the basic principles of Apply were extended to incorporate glo-
bal operations as well. In such operations an output pixel can depend on many or all pixels in the input image. Adapt’s
programming model, however, was not ideal as the programmer is made responsible for data partitioning and merging, al-
beit at quite a high-level.

An alternative approach was taken in a language named IAL (Image Algebra SIMD Programming Language [37]), based on
the abstractions of Image Algebra [43], a mathematical framework for operations and operands able to provide the capability
of expressing all image-to-image transformations, without accessing to individual pixels. Operands are basic language oper-
ands, images and template.

Typical operations comprise (a) unary over images (sum, product, maximum, minimum, pseudo-inverse, transpose), (b)
binary point-to-point (sum, subtraction, multiplication, division, maximum, minimum), (c) binary image-template (convo-
lution, multiplicative maximum, multiplicative minimum, additive maximum, additive minimum), (d) binary template–
template (sum, subtraction, multiplication, division, maximum, minimum). The notational adaptability to programming lan-
guages allows the substitution of extremely short and concise image algebra expressions for equivalent blocks of code, and
therefore increases programmer productivity.

Two extended versions, I-BOL [2] and Tulip [46], provide a more flexible and powerful notation. They treat an image as a
tuple of sets. These languages allow access to data at either the pixel or neighborhood level, without being architecture-spe-
cific; a number of low-level and intermediate-level vision tasks have been implemented using user-defined neighbourhood
functions.

An alternative to the language approach is to provide an extensive set of parallel image processing operations in library
form. In principle, this approach allows the programmer to write applications in a familiar sequential language, and make
use of the abstractions as provided by the library [47,23,28].

One particularly interesting data parallel library implementation is described by Taniguchi et al. [47], applicable to both
SIMD- and MIMD-style architectures, and incorporates a data structure abstraction named DID (Distributed Image Data). The
DID abstraction is to be intended as an image data type declaration, without exposing the details of the actual distribution of
data.

Although a DID declaration is simple, and easy to understand for programmers unfamiliar to parallel computing, it has the
major disadvantage of making the user responsible for the data distribution type.

The alternative library-based environment described by Jamieson et al. [23], provides a fully sequential interface to the
user. The main feature is the presence of a set of algorithm libraries, along with abstract information about the performance
characteristics of each library routine.

The environment incorporates simple performance models to ensure efficiency of execution of complete applications, but
it is too limited in functionality to constitute a true solution, as it supports point operations and a small set of window oper-
ations. Two environments that follow a similar approach, but are both much more extensive in functionality, are presented
in [25,27].

User transparency environments are described in [36,35].
The main feature of the environment proposed in [36] is its so-called self-optimizing class library, which is extended

automatically with optimized parallel operations. During program execution, a syntax graph is constructed for each state-
ment in the program, and evaluated only when an assignment operator is met.

Any syntax graph for combinations of primitive instructions (i.e., those incorporated as a single routine within the library)
is written out for later consideration by an off-line optimizer. On subsequent runs of the program a check is made to decide if
an optimized routine is available for a given sequence of library calls. An important drawback of this approach, however, is
that it may guarantee optimal performance of sequences of library routines, but not necessarily of complete programs.

In MIRTIS [35], programs are parallelized automatically by partitioning sequential data flows into computational blocks,
which are decomposed in either a spatial or a temporal manner. All issues related to data decomposition, communication
routing, and scheduling are dealt with by using simple domain-specific performance models.

Although, from a programmer perspective, MIRTIS constitutes an ideal solution, its implementation suffers from poor
maintainability and extensibility. Also, the provided MIRTIS implementation suffers from reduced portability as the applied
communication kernels are too architecture specific.

Surely in this context more successful approaches include skeleton-based parallel programming environments, like SKIP-
PER-o, SKIPPER-i, SKIPPER-ii and SKIPPER-d [18,8,45]. The main SKIPPER components are: a library of skeletons, a compile-
time system (CTS) for generating the parallel C code and a run-time system (RTS) providing support for executing this parallel
code on the target platform. The CTS can be further decomposed into a front-end, whose goal is to generate a target-indepen-
dent intermediate representation of the parallel program, and a back-end system, in charge of mapping this intermediate
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representation onto the target architecture. The SKIPPER library of skeletons was built bottom-up, from a careful analysis of a
large corpus of existing low-to-mid level vision applications hand-coded in parallel C. An alternative approach is proposed in
[24]; it adopts both algorithmic skeletons and an Image Application Task Graph (IATG) whose nodes are associated to image
processing functions and executed on sets of processors from an available pool of processors, while edges represent commu-
nication channels. The IATG is determined starting from the source code, where the required data parallel operations are ex-
pressed by skeletons, by a Syntactic and Dependency analyzer, while on the extracted IATG, Mapping and Scheduling
algorithms, like those reported in [17], are applied to find the minimum execution time of the application. The skeleton library
contains skeletons for low-level, intermediate-level and high-level image processing, adopting distributed bucket processing
which allows that only subsets of the initial data is dynamically processed. The underlying idea of the use of the buckets is that
to bridge the gap between SIMD architectures, naturally devoted to low-level processing, and MIMD architectures, naturally
devoted to intermediate- or high-level processing, while maintaining the heterogeneous way of processing. Typically, during
each image scan the data of interest to the specific algorithm is collected in one or more buckets, data structures that store the
data subsets. During the subsequent bucket processing, data elements are drawn from a bucket, processed in a data parallel
mode and, when new data is generated, put into a bucket again.

Differently, in [44] a programming model for the development of time-constrained image processing applications on cur-
rently available parallel hardware architectures is reported. The approach is based on the definition of a software architec-
ture that allows transparent sequential implementation of data parallel imaging applications for execution on homogeneous
distributed memory MIMD-style multicomputers.

A different approach is reported in [13], consisting in a parallel computing library called ANET, designed for shared mem-
ory multiprocessors. The idea is to adopt graph-based representations to cope uniformly with different features that are used
in image analysis. This model can efficiently exploit structured information within an image by representing it by means of a
subgraph of the mesh that interconnects subsets of adjacent pixels. It can also be hierarchically defined (thanks to the so-
called virtual nets), and this way describe higher-level features in an image. The computing model [33] treats the irregular
structures, such as contours or regions of the images, as connected sets of nodes, called snet, where only the links that con-
nect the nodes of these connected sets are conserved. Operations over the graph include some specific computing primitives
that gather information along the edges of the graph. The specificity of the model resides on (a) global operations over the
graph, performed over any subgraph of the mesh, like connected components, contours, etc. and (b) asynchronous local com-
putations by relaxing the data-dependent constraints, managing only the termination detection, instead of using synchroni-
zation barriers between the synchronous computations. The model allows real-time execution for a number of complex
image processing algorithms, including split and merge segmentation, watershed segmentation and motion detection [11].

3. Papers in this issue

This issue is quite representative of the reported evolution, and the large majority of papers covers the topic of general
purpose parallel computing for image processing applications.

The first paper is dedicated to the parallel content-based image retrieval (CBIR) systems. This application aims to retrieve
images based on the similarity of their content and is a major issue to deal with huge present and future image archives; the
demand of parallel implementation, mainly distributed memory implementations, by adopting a cluster of PCs, is highly re-
quired. With this aim, the paper On Parallel Image Retrieval with Dynamically Extracted Features by Kao [26], reports wavelet
and Gabor-based methods for extracting image features. Techniques for the partitioning of the image formation, parallel exe-
cution of the queries, and strategies for workload balancing are explained by considering the parallel image database CAIRO
as example.

In Large-Scale Image Sensing by a Group of Smart Image Sensors by Oh and Aizawa, [40], an experimental large-scale image
sensing system is reported; it uses random accessible spatially-variant sampling (SVS) smart image sensors to reduce the
data volume at image acquisition level by spatial/temporal resolution reduction schemes, considering the importance of
the regions in the scenes. Specifically, the whole traffic of the system is dynamically controlled by sub-sampling an inactive
region (IR), i.e. the region without a significant change, at image acquisition level and transmitting IR with lower temporal
rate than the active region (AR), the changed region detected by frame difference. The system, implemented in real environ-
ment, is shown to preserve system and network resources.

The paper A Real-Time Full-Body Tracking and Humanoid Animation System, by Colombo et al. [10] presents a non-intrusive
human body motion tracking and its use for avatar animation. The authors propose and describe a system for vision-based
tracking of body posture, which relies on network interconnected asymmetric workstations that are in charge of specific
tasks in the tracking system. The selected tasks include (a) low-level image processing and user body tracking on both left
and right images; (b) stereo analysis and occlusion handling; (c) body pose reconstruction from stereo data via inverse kine-
matics and (d) virtual character update based on computer graphics. The system is shown to be able to animate a virtual 3D
puppet through body movements and to be efficient both in terms of processing time, precision of the 3D reconstruction,
tracking and matching in the presence of occlusions and graphic rendering.

A Distributed Genetic Algorithm for Restoration of Vertical Line Scratches by Isgrò and Tegolo [21] faces a typical problem of
digital video restoration, i.e. the restoration of vertical line scratches. The problem, computationally intensive over a video of
some hours, is solved over a distributed memory system, specifically a network of workstations supporting heterogoneous
operating systems. The authors design a distributed algorithm to solve the problem, by adopting an ad hoc Genetic Algo-
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rithm. The achieved experimental results show that the algorithm reports reasonably good results in terms of speedups,
accelerating the proposed time expensive optimization method.

Concerning with parallel programming environment, the paper by Jonker et al. Distributed Bucket Processing: a Paradigm
Embedded in a Framework for the Parallel Processing of Pixel Sets [24] reports a programming framework that could allow to
consider simultaneously pixel and object based parallelism. They correspond to fundamental mechanisms in parallel pro-
cessing (data and task parallelism) and both are important for an efficient use of parallel hardware.

The last papers are concerned with multimedia and attentive vision issues.
The paper by Grover et al. [19], reports studies, thanks to a specific simulator, about the data layout schemes that can

improve data delivery in a video server. Specifically, it describes the design and performance of the SAM (Storage Area net-
work Multimedia server) which manages a set of parallel storage devices connected by a SAN with the aim to provide multi-
ple concurrent services such as interactive VOD and video games. The goals of SAM are to support for a heterogenous client
population with varying buffer sizes, support for both HDTV and low bit-rate videos, support for interactive control opera-
tions such as fast forward, rewind, frame advance and slow play, and deterministic or statistic QoS guarantees.

The paper by Gamba et al. [16] reports foveated solutions that could lead to the implementation of efficient vision hard-
ware. Such approach is based on the foveal/multiresolution search guided both by low-level detection, alerting, and tracking
schemes and by high-level interpretation processes. It leads to the use of variable resolution grids, according to the image
detail required each time, so exploiting the capabilities of multi-resolution and pyramid computer vision systems. The selec-
tion of relevant areas typically consists of a parallel activity of simple operators, on the complete field of view, at a low res-
olution. This pre-attentive phase is implemented on specialized and massively parallel hardware, while at the most
sophisticated levels of detail a sequential analysis of selected image segments or ROIs is required to interpret the scene
and track its evolution.
4. Conclusions and open issues

There are a number of open issues related to the applications of parallel processing techniques in image and video
processing.

The tendency is to require increasingly sophisticated applications, in increasingly small systems. The microprocessors
cannot answer simply this double requirement, and their consumption, their volume and their cost are prohibitive for cer-
tain applications (videophone on cellular telephone, distributed monitoring, delocalized visual monitoring in robotics, etc).
Usually, relatively simple systems, offering performances coarsely comparable with those of the microprocessors, but with
an electric consumption and an obstruction compatible with the applications, are required. They will be probably based on
pipeline (possibly reconfigurable) operators, or SIMD meshes of small size.

For a certain number of particular applications, the computing power of microprocessors is currently too low. It is, as in-
stance, the case of the vision of the autonomous vehicles, but also of the exploitation of the new methods of video compression
in real time. For these applications, the programmability aspect is essential and will guide architectures mainly. These are able
to adopt MIMD structures, or SIMD processing with massive parallelism, even operators specialized for certain operations.

In the longer term, the technological development will allow to integrate these functionalities in all the microprocessors.
The current processors integrate already a level of significant parallelism, which it is of pipeline, superscalar, of SIMD exten-
sion, etc. With the aid of the applications, the structures of parallel processing that we evoked thus probably will be found
within the processors. It is not easy to know today which will be the dominating model: MIMD, SIMD, computation struc-
tures with circuit or reconfigurable connections, etc., but there is not any doubt that the future of the applications of vision is
in parallelism.

In conclusion, we emphasize that image and video processing represent an important practical domain for parallel com-
putation methods. This special issue provides a systematic view of this field, and hopefully, will lead to further advances and
concentrated research efforts along the issues outlined above.
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