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Development of scattered radiation in the geometry of a double phase-conjugate mirror is investigated
numerically in the framework of a two-dimensional model that accounts for both diffraction and noncollinearity
of the interacting beams. The large-scale structure of the scattered beams is found to be distorted because
of the convective flow of energy out of the interaction region. We show that the output characteristics of the
double phase-conjugate mirror depend strongly on the level of seed radiation in the direction of the scattered
beams. The seed radiation may be due to incoherent scattering of the pumping beams inside the medium or
to self-broadening of the pumping beams’ spectra because of nonlinear self-interaction.

1. INTRODUCTION

The double phase-conjugate mirror (DPCM) is a self-
pumped four-wave mixing geometry in which two mu-
tually incoherent noncollinear pump beams intersect in
a photorefractive nonlinear medium (Fig. 1). Two scat-
tered beams are generated that are counterpropagating
to the pumps and are their phase-conjugate replicas. A
one-dimensional analysis!? indicates that the DPCM is an
oscillator. This means that, once the gain—length prod-
uct yl exceeds its threshold value yly,, scattered beams
start to grow exponentially in time from arbitrarily small
values of boundary and/or initial values of seeds. The
growth is eventually saturated because of depletion of the
pumping beams. The characteristics of the final steady
state are determined by the value of yl, and they do
not depend on the values of the seeds unless the seeds
are very large. This is why the nonlinear characteris-
tics of the DPCM are calculated in the framework of a
one-dimensional model'? with the seeds set to zero. The
physics of these results stem from the fact that in a one-
dimensional model all interacting beams are assumed to
be plane waves of infinite transverse extent (along coor-
dinate y in Fig. 1). The interaction region also has infi-
nite transverse extent, and any physical effects connected
with the y coordinate are by definition absent. Under
these conditions equations for the scattered beams de-
scribe a pair of parametrically coupled waves effectively
counterpropagating along the only remaining coordinate
x across the nonlinear medium. As is well known (see,
e.g., Ref. 3), such a system exhibits an absolute (oscilla-
tion) instability.

In reality, all interacting beams have finite diam-
eters, and the interaction region is bounded in all di-
rections. The two-dimensional geometry, combined with
noncollinearity of the beams, results in a completely
different physics.*” The noncollinear scattered beams
have both opposite and common components of group
velocities. Convective transport of the energy of the
scattered beams in the direction of this common compo-
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nent (along y in Fig. 1) creates a channel of losses out of
the finite-sized interaction region. This loss mechanism
is absent in the one-dimensional model because nothing
is assumed to change along the transverse coordinate.
There is therefore no coordinate-dependent transverse
flow responsible for energy loss in the one-dimensional
model. In a two-dimensional model the only mechanism
that can potentially counterbalance the convective loss of
energy is diffraction, returning part of the energy of the
beams to the interaction region (down along y in Fig. 1).
The relative strength of diffraction is determined by the
characteristic diffraction divergence 66 of the pumping
beams, whereas the magnitude of convective losses is de-
termined by the magnitude of the angle 6 between the
pumping beams and their respective copropagating scat-
tered beams (the noncollinearity angle). Experimental
realizations of the DPCM correspond to the situation in
which |8] > 86, such that convection is stronger than
diffraction. The opposite situation in which |0| < §6 has
not been experimentally demonstrated because in this
case the spectra of the pumping and the scattered beams
are strongly overlapped, which renders the beams not
easily separable. When |6 > 86 the convective losses
quench the absolute (oscillation) instability, and the
DPCM is an amplifier. Consequently the steady-state
level of scattering is directly dependent on the level of the
seeds and goes to zero when the seeds are switched off.
In this case the DPCM is similar to stimulated Brillouin
scattering, for example, or to incoherent photorefractive
scattering (fanning). The analogy, however, ends here.
The output level of scattered radiation for both stimu-
lated and Brillouin scattering fanning is proportional to
the input level of seeds € times a one-pass amplification
coefficient: € exp(2yl). In the case of the DPCM the
output level has a different dependence on the level of
nonlinearity. Its functional form is slightly different for
two limiting cases corresponding to the pumping-beam
overlap region lying either fully inside the medium or
mostly outside it.*® For example, analysis of the spatial
structure of the scattered beams in the above-mentioned
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Fig. 1. Geometry of the DPCM.

case of quasi-one-dimensional geometry in which the
relative displacement of the beams over the length of
the nonlinear medium is small, §//d = 1 (I is the length
of the nonlinear medium and d is the characteristic trans-
verse size of the beams) shows that when the gain—length
product yl exceeds its one-dimensional threshold value
vl the scattered beams start to grow in space in the
direction of the common component of their group veloci-
ties. In other words, in the two-dimensional model of
the DPCM, yli, is the threshold of the transverse con-
vective instability. Below, for convenience, we refer to
the direction of this common component by the coordi-
nate y, simply because under typical conditions all the
angles of incidence of the beams on the nonlinear medium
are small. One should remember, however, that the di-
rection of convective growth of the scattered radiation
is determined not by the boundaries of the medium but
by the group velocities of the beams. This effect is es-
pecially clear in the case in which the pumping-beam
overlap region (interaction region) lies fully inside the
medium because in this case the position of the medium
boundaries does not matter at all. For the simplest case
of constant-intensity pumping beams the intensities of
the scattered beams in the undepleted-pump approxima-
tion are proportional to € exp(2py), where the growth
rate p is a root of the equation®

(y — pf)tanh(Ql/2) = Q. (1)

Here @ = [(y — p#)? — 4y%q(1 + q)"2]"2, where q is the
pumping-beam intensity ratio.

Asymptotic solutions of Eq. (1) for equal-intensity
pumps ¢ = 1 in the limit |yl — 2| << y!l yield p = (yl —
2)/601 and in the limit vyl >> 1yield p = (2yl — 272/y1)/61.
Equation (1) indicates that the output intensity distribu-
tions of the scattered beams are shifted with respect
to the intensity distributions of the counterpropagating
pumps in the direction of the convective flow of energy.
When the pumping beams bear images this effect man-
ifests itself in large-scale distortions of the envelopes of
the interacting beams, whereas the small-scale structure
in the pumping beams is reproduced.

Output powers of the scattered beams in the one-
dimensional model are uniquely determined by the value
of the nonlinearity y/. In the two-dimensional model ac-
cording to Eq. (1) they depend on the level of seeds e,
the nonlinearity y/, the angle between the beams 6, and
their diameters d. Define the characteristic diameter
d«(yl, 0, €) = In(1/€)/2p. If the diameters of the pump
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beams d are such that d < dx, the output powers of the
scattered beams according to Eq. (1) are proportional to
€ exp(2pd). In the case of wide beams and/or large seeds
d > dx and, consequently, € exp(2pd) >> 1, the intensi-
ties of the scattered beams first grow with the transverse
coordinate moving in the direction of the convective flow
of energy, starting from the edge of the interaction region
(y =0). The growth then saturates because of pumping-
beam depletion at the distance y = d«x. For y > d« the
local values of intensities will more or less coincide with
those given by the one-dimensional model. Note that de-
spite this fact the physics of the appearance of scattered
radiation remains quite different in the framework of one-
and two-dimensional models. Even the possibility of a
limiting transition between the two models is based on
keeping the value of d« (and, consequently, the level of
seeds) in the two-dimensional model finite.

Another consequence of Eq. (1) may be seen in the de-
pendence of the nonlinear transmissivities on the value
of yl. In the one-dimensional model larger values of yl
correspond to larger output. The coupling constant y
in a photorefractive medium is dependent on the angle
0 between the pumping beams and has a maximum for
some value of § = 0p. It means that in the frame-
work of a one-dimensional model the transmissivities of
the DPCM are maximum when the pumping beams are
aligned such that the magnitude of the angle 6 is equal
to p. The two-dimensional model*® predicts that this
optimum angle is less than 6p or, in other words, that
the maximum transmissivities do not correspond to maxi-
mum values of y(6)I. Indeed, according to Eq. (1) the
maximum transmissivities (at least for their low levels
near the observable threshold of scattering) correspond
not to the maximum of the coupling constant y(6)/ but
to the maximum of the transverse growth rate p that is
attained for 0 < 6p.

The two-dimensional model of Refs. 4—6 neglects
diffraction. This paper is devoted to numerical inves-
tigation of the physics of development of scattered radi-
ation in the geometry of the DPCM, including the effect
of finite transverse size, noncollinearity of the interacting
beams, and diffraction. The structure of the paper is as
follows: Section 2 deals with the mathematical formula-
tion of the problem, and Section 3 contains a discussion of
the numerical results. Section 4 summarizes the results
of this study and comments on other recent papers®'? on
the same topic.

2. MATHEMATICAL FORMULATION
OF THE PROBLEM

The paraxial equations governing propagation of optical
beams in the geometry of the DPCM have the form

d i 02 .
ax 2k ay2 ) A T 2ivevAr, (2a)
d 02 .

<—£ - ﬁ _ayZ)Ab = Zl’}/()VAb, (2b)

where %k is the wave number of radiation inside the
medium; Ay = A; + A, and A, = Ay + Aj; are forward-
and backward-propagating beams, respectively (the
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angles of incidence of all beams on the medium are as-
sumed to be small); y, is the nonlinearity constant; and
v is the normalized amplitude of the grating obeying the
equation!?-1°

11+ L oov)o 1 %
B I
kOp 9y ) ot (kOp)? oy?

Here 0p = kp/k, where kp is the Debye wave number,
determined by the material parameters of the photore-
fractive medium,'® and I = |A7|? + |Ap|? + I, is the sum
of intensities of the beams plus a (possible) erasure in-
tensity. The latter term may also be thought of as the
equivalent intensity connected with dark conductivity.
Equation (3) is based on the assumption that the grat-
ing varies most rapidly along the y axis because of the
small angles of incidence of all beams on the medium.

When the medium is illuminated by two plane waves
A; and Ay (JA;] << |A4]) propagating at an angle 0 to
each other, the weak wave A; grows exponentially in
space {A; ~ exp[y(0)x]} from its boundary value, with the
growth rate!?

2(0/6p)

1+ (0/6p)? @

y(6) = vo

The angle 60p is thus the angle between plane-wave pump
and signal beams corresponding to the maximum coupling
between them, and v, is the value of this coupling. The
boundary conditions for the system of Egs. (2) and (3) cor-
respond to specification of input amplitude distributions
of the pump beams Ay in(y), A2in(y) plus random noise
at some small level serving as seeds for the appearance
of scattered beams. We tried several types of random
seeding, including Gaussian, parabolic, and uniform ran-
dom seeding in Fourier space. All these gave essentially
the same results, provided that the noise was sufficiently
broadband. The calculations presented below use ran-
dom uniform seeding in Fourier space covering the whole
calculation window. We used both speckled beams and
beams with regular structure as input pumping beams.
The general form of the input pumping beams corre-
sponded to a form factor B;;,(y) multiplied by a Gaussian
envelope plus an exponent giving the mean direction of
propagation of the beam:

Auin(y) = Biin(y)exp[—ibiky — 4(y — y)?/d*].  (5)

Here 6, is the signed angle of incidence of the /th pump
beam (I = 2, 4), a positive value of 6; corresponds to a
pumping beam with a negative component of group ve-
locity in the y direction, d is the characteristic diameter
of the beam, and y; is the nominal position of its cen-
ter. The angle between each pump and its copropagating
signal 6 is given by 6 = 0, + 6,. For beams with regu-
lar structure we used By (y) < @ + B cos(8y + ¢), with
different values of parameters «, B8, §, and ¢ (periodi-
cally modulated Gaussian beams). For speckled beams
the form factor B;;,(y) was chosen to be a statistically
uniform speckled field with a randomly generated Fourier
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spectrum of compact support, corresponding to a given
angular divergence 6.

The integral output characteristics of the geometry un-
der consideration are characterized by the transmissivi-
ties from right to left (T) and from left to right (7';)
according to the relations Ty, = Pjout/Psin and Ty =
Ps o4t/ Poin, Wwhere Pjinout are input/output powers of the
Jth beam, and by the conjugation fidelities H, and H; de-
termined by the relations

[ av4sua(»400(»
H, = ’ (6a)

[ f dy|A3,out<y>|2H f dy|A4,m(y>|2}

2

[ avts a9z

H, - :
[ f dy|A1,out<y>|2H f dy|A2,m(y>|2}

Equations (2) treat pairs of copropagating pumping
and scattered beams as single fields without separat-
ing them. Below we are interested mainly in conditions
for which the pumping-beam overlap region is not com-
pletely immersed inside the medium but has a diamond-
shaped form (see Fig. 1) and lies partially inside and
partially outside the medium. In this case the output
scattered beams are spatially overlapped with copropa-
gating pumps at the faces of the nonlinear medium. Re-
trieval of spatial profiles of the beams was made on the
basis of their far-field distributions (Fourier spectra). In
the calculations below, the characteristic angular diver-
gences 56 of the input pumping beams are less than
the angle 6 between them. This result implies that the
Fourier spectra of the scattered beams and the copropa-
gating pumps are separated in Fourier space, provided
that the scattered beams turn out to be more-or-less faith-
ful phase-conjugate replicas of the pumps. To separate
the scattered beams from the copropagating pumps we
used a window in Fourier space centered at the spatial fre-
quency corresponding to the nominal direction of propa-
gation of the respective scattered or pumping beam (see
Fig. 1), with the width of the window being either equal
to or several times the largest characteristic angular di-
vergence of either input pump. All the radiation inside
this window is considered to be a scattered (or a pump-
ing) beam. The coordinate distributions of the beams are
obtained by calculation of the inverse transform of the
spectrum inside the window.

Equations (2) and (3) were solved either by a
finite-difference Crank—Nicholson-type scheme'® with
absorption—refraction layers at the boundaries of the
computation region in the y direction'? or by a fast Fourier
transform (FFT). Double-precision (64-bit) arithmetic
was used for all the numerical calculations. The
Crank—Nicholson scheme was used to solve Eq. (3) both
in accounting for the nonlinear term [1 + (k6p) t9v/dy]
and in a linearized version in which this term is replaced
by unity. Runs both with and without the nonlinear
term indicated that it did not result in any significant
changes in the behavior of the DPCM. The FFT method
was applied only to the linearized form of Eq. (3). The

(6b)
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Crank—Nicholson- and FFT-based numerical results
were in good agreement. To keep numerical demands
at a reasonably low level the calculations were carried
out with scaled-down values of typical experimental
parameters. Thus Figs. 2—4, discussed below, were
obtained with the following parameters: [ = 0.5 mm,
d = 0.14 mm, 6, = 4.0 deg, 6, = 5.0 deg, 6p = 12 deg,
I, = 0.01, radiation wavelength A = 0.514 um, and
refractive index n = 2.4. Typical runs were conducted
on a 3000 (along y) X 300 (along x) grid, with the width of
the calculation region along the y coordinate being given
by I, = (2.5 — 4)d. The penalty for using a scaled-down
length [ is that the effects of diffraction are exaggerated.
In particular, the diffraction of a pumping beam having
several separated strong Fourier harmonics into higher
orders is larger than it would be for larger values of /.

3. NUMERICAL RESULTS

Figures 2(a)—2(c) depict the transmissivities 7" and the
conjugation fidelities H in the geometry of the DPCM as
functions of the nonlinearity yol for different values of
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random seeds € equal to 1074, 1075, and 0, respectively
(the last case denotes no random seeding). Figure 2(d)
shows the time evolution of the transmissivities and the
conjugation fidelities for e = 10™* and y,/ = 8. The pa-
rameter € is defined as the ratio of the average inten-
sity of noise in Fourier space to the maximum intensity
of the Fourier spectrum of the copropagating pump. The
forward-propagating pump beam A, is a cosine-modulated
Gaussian beam propagating at an angle 6, = 5 deg with
the form factor Byp(y) o< cos[20v2 (y — 4)/d], corre-
sponding to an angular divergence §6 =~ 0.8 deg. The
backward-propagating pumping beam A, is a speckle
beam propagating at an angle 6, = 4 deg with a diver-
gence 660 = 2.3 deg. Both beams have the same powers.
Figure 2(d) shows the temporal dynamics of the reflectivi-
ties and the conjugation fidelities for e = 1074,

Figure 2 shows that the reflectivity and the conjuga-
tion fidelity in the geometry of the DPCM are directly de-
pendent on the level of seeding. The reflectivity and the
conjugation fidelity both increase as the level of seeding
is increased. In general, they also grow with an increase
in nonlinearity, as expected. We also performed calcula-
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Fig. 2. Transmissivities (T}, T1r) and conjugation fidelities (H,, H;) as functions of nonlinearity for levels of random seeding noise (a)
e=10"%, (b) 1078, and (c) 0. (d) Time evolution of the transmissivities and the conjugation fidelities for e = 10~% and ol = 8.
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tions for cases in which both beams had regular structure
or were speckle beams. The results were similar to those
presented in Fig. 2.

The peculiarities in the behavior of the conjugation fi-
delities at low values of reflectivities in Figs. 2(b) and
2(c) are a physical effect resulting from restructuring of
the spatial distributions of the scattered beams. The re-
structuring is due to different gratings written by the
pumping beams and the noise, competing for the energy
of the pumps, when the scattered beams grow. However,
the particular values of H, and H; in this region should
not be taken too literally because both absolute and
relative values of the conjugation fidelities for small levels
of transmissivity are dependent on the particular realiza-
tion of the seeding noise, the spatial distributions of the
pumping beams, and the width of the window in Fourier
space chosen to select the pumping and the scattered
beams. One should also keep in mind that the nonlin-
ear transmissivities shown in these figures were obtained
by integration of all radiation within a certain solid angle
around the nominal directions of propagation of the scat-
tered beams and thus include contributions from both con-
jugate and nonconjugate parts. Low values of fidelity
mean that most of this radiation is amplified noise. A
good estimate of the conjugate part is given by the prod-
uct of the transmissivity and the corresponding fidelity.

Figures 3 and 4 depict distributions of the pumping
and the scattered beams in both Fourier and coordinate
space for yol = 7 and € = 107¢, with all the other param-
eters as in Fig. 2. Figure 3(a) shows the spectral inten-
sity of the input signal beam Az (noise, dotted—dashed
curve), the output spectral intensity of the same signal
beam (solid curve), and the input spectral intensity of
the counterpropagating Gaussian-cosine pump beam A,
(dashed curve). The divergence of the input pump beam
A, (the separation between the two maxima in the spec-
trum) is equal to =0.8 deg. Figure 3(b) shows spectral
distributions of the output signal beam A; and the coun-
terpropagating input speckle pump beam A;. In Fig. 3
the spectra of the input pumps are inverted to facilitate
direct comparison with the spectra of the scattered beams.
The width of the Fourier window in both Figs. 3(a) and
3(b) is equal to the input divergence of the speckle pump,
~2.3 deg.

These figures demonstrate that the small-scale struc-
ture of the pumps is accurately reproduced. The physical
reason for this is diffraction, which allows the nonlinear
interaction selectively to amplify those spectral compo-
nents of the input noise distribution that correspond to the
spectral components of the counterpropagating pumping
beams. Without diffraction nonconjugate spectral com-
ponents of the input noise distribution would also be
amplified, resulting in lower conjugation fidelity. Notice
that there are large-scale distortions in the Fourier spec-
tra of the output scattered beams. The physical meaning
of these distortions can be seen best in coordinate space.

Figure 4(a) shows the output distribution of the scat-
tered beam Aj (solid curve) and the input distribution
of the counterpropagating pump beam A, (dashed curve)
in coordinate space. It demonstrates reproduction of the
fine structure of pump Ay ;, by the scattered beam, accom-
panied by large-scale distortions of the envelope. These
distortions are a clear signature of the effects of the non-
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collinearity of the interacting beams and are in full agree-
ment with predictions stated in previous papers.>® The
distortions are due to the convective flow of energy out of
the interaction region in the direction of the common com-
ponent of the group velocities of the scattered beams (from
bottom to top of Fig. 1). Figure 4(b) shows the output
intensity distribution of the scattered beam A; together
with the input distribution of the counterpropagating
pump A, and again clearly demonstrates large-scale dis-
tortions that are due to convection. Figure 4(c) shows
input (dashed curve) and output (solid curve) inten-
sity distributions of the Gaussian-cosine pump beam
A,. Figure 4(d) shows input and output distributions of
the speckle pump beam A;. When the pumping beams
propagate at angles #; with respect to the x axis they ex-
perience a transverse displacement 0;/. We removed this
transverse displacement from Figs. 4(c) and 4(d) by shift-
ing the output intensity distributions by the amount —6;..
Note that no adjustments were necessary in Figs. 4(a) and
4(b) because each of these figures depicts pairs of beams
on the same side of the nonlinear medium. Figures 4(c)
and 4(d) show that the output profiles of the pumping

SPECTRAL INTENSITY (A.U.)

SPECTRAL INTENSITY (A.U.)

SPATIAL FREQUENCY (A.U.)

(b)
Fig. 3. Fourier power spectra of the interacting fields: (a) in-
put and output scattered beam A3 and counterpropagating input
pump beam Ay, (b) output scattered beam A; and input counter-
propagating pump beam Ag. The width of the depicted region
corresponds to an angular window covering 2.3 deg.
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INTENSITY (A.U.)
T

(b)
Fig. 4. Intensity distributions of the interacting fields: (a) output scattered beam A3 and counterpropagating input pump beam
Ay, (b) output scattered beam A; and input counterpropagating pump beam Ag, (¢) input and output pump beam Ay4, (d) input
and output pump beam As.

beams emerging from the nonlinear medium after inter-
action are predominantly depleted on the side where the
intensities of the output scattered beams [see Figs. 4(a)
and 4(b)] are larger. The width of the region depicted
in Figs. 4(a)—4(d) is equal to ~70% of the total computa-
tional window along the y coordinate.

To prove the point that the direction of convective flow
of the scattered beams is determined by that of the com-
mon component of their group velocities and not by the
boundaries of the medium, we conducted several runs
with pumping beams whose wave-vector y components
had different signs. In these runs one of the pumps had a
negative y component of its group velocity (positive value
of the incidence angle 6,), and the other one had a positive
component (negative value of #;). All the runs demon-
strated characteristic spatial shifts of the intensity distri-
butions of the scattered beams with respect to those of the
counterpropagating pumps because of convection effects.
The direction of this shift was always determined by the
sign of 3 + 64, i.e., by the sign of the sum of the group
velocities of the scattered beams.

Figure 2 shows strong dependence of both the trans-
missivities and the congugation fidelities in the geometry
of the DPCM on the level of seeds. It is instructive to
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consider Fig. 2(c) (e = 0) in more detail because in this
case the seeds (not random) are supplied by the pumping
beams themselves. First, the Fourier spectrum of any
pumping beam in general contains all spatial frequencies,
including those corresponding to the direction of propaga-
tion of the copropagating scattered beam. The second,
and more important, point is that a beam propagating
through a nonlinear medium generates new spatial fre-
quencies because of self-interaction. The level of the gen-
erated spatial frequencies increases as the nonlinearity
increases. This second source of seeds cannot be elimi-
nated because, even if spatial frequencies corresponding
to the direction of propagation of the scattered beams are
artificially cleared out at the input, they appear at the
output.

To illustrate the above points we propagate a single
Gaussian-cosine pump beam A, with everything else
switched off (no random seeds, no pump beam A,) through
the photorefractive medium at the level of nonlinear-
ity yol = 8 and with all the other parameters being the
same as for Figs. 2—4. The input and the output Fourier
spectra of the beam on a logarithmic scale are given in
Fig. 5. Figure 5(a), representing the input spectrum of
pump beam A4, shows that even without external seeding
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the input level of seeds in the direction of the scattered
beam is approximately 107?. This level is much higher
than the one that would follow from analytical Fourier
transformation of this pump field and is determined
mainly by the width of the calculation region /,. Thus
changing this width from /, = 2.5d to [, = 3.6d, for ex-
ample, lowers the level of seeds in the direction of the
scattered beam A; to =107 '%. The reason is that the
discrete Fourier transform implies that a function being
transformed is periodic in y with the period [,, so the
wings of the pumping beam in coordinate space are trun-
cated. The analytical Fourier spectrum is recovered in
the limit of infinitely large [,. Figure 5(b) represents
the output spectrum of the same beam, showing the ap-
pearance of a broad low-intensity pedestal that is due to
distorted replication of the two-humped Fourier spectrum
of the input beam shown in Fig. 5(a). The level of seeds
in the direction of the scattered beam A; has grown from
~107% to almost ~1072. Cutting off the low-intensity
wings in the input spectral distribution of the pump
beam A, did not result in noticeable changes in the out-
put spectrum. The effective level of seeds in the presence
of the second pumping beam is much smaller, but Fig. 5

logll, (9]

5k i
a P T S
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) L , 1 . L, | ! . ,
5-5 0 5 10
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Fig. 5. Fourier power spectra of (a) input and (b) output single
pump beam A4 in the absence of the second pump and no random
seeding for yol/ = 8.0. The downward-pointing arrows indicate
the direction of propagation of the corresponding scattered beam.
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Fig. 6. Transmissivities (T, T1y) and conjugation fidelities

(H,, Hy) as a function of the angle between the pumping beams.
The dashed—dotted curve is the local coupling coefficient y(0)L.

illustrates the fact that the appearance of these seeds is
unavoidable. There are two reasons for the appearance
of the repetitive spectral structure in Fig. 5(b). First, the
nonlinear material equation (3) generates higher spatial
harmonics of the grating formed by the two maxima in
the input Fourier spectrum of pump beam A;. Second,
the Bragg-mismatch parameter for multiple scattering
off this grating is equal to Akl = EI(60)> = 2.7, so the
grating is thin. Note that the transition to larger val-
ues of [ will increase the Bragg-mismatch parameter and
will suppress generation of higher orders of diffraction.
Because all beams have finite spectral widths, it matters
little whether a maximum or a minimum of the spectrum
shown in Fig. 5(b) coincides exactly with the direction of
propagation of the scattered beam. Because the Bragg-
mismatch parameter corresponding to a transition from
one maximum of the Fourier spectrum to an adjacent
one is small, the system draws seeds from the closest
maximum.

Note that the above two reasons for the generation of
seeds pertain to the physics of the DPCM. One cannot
exclude the further possibility that some part of the scat-
tering shown in Fig. 2(c) for high values of y,l is due to
numerical noise. For high-amplification coefficients pd
[Eq. (1)] in the transverse direction it is increasingly dif-
ficult to guarantee that all possible sources of parasitic
seeding resulting from the finite width of the calculation
window are eliminated.

Figure 6 shows transmissivities (solid curves) and con-
jugation fidelities (dashed curves) in the geometry of the
DPCM as functions of the angle between the pump beams;
the dashed—dotted curve is the coupling coefficient
v(0)l defined by Eq. (4). Both pumps are equal-power
speckled beams with d = 0.14 mm and randomly gen-
erated input spectra of compact support corresponding
to equal angular divergencies 86 = 2.3 deg, nonlinearity
parameter yol = 6.5, 6, = 10 deg, and € = 107¢. The
angle of incidence of pump beam A, was held equal to
0, = 4 deg, whereas that of pump beam A, was changed
from 6, = —1 deg for 6, = 6 deg. Figure 6 shows that
nonlinear scattering for small angles between the pump-
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ing beams is characterized by low values of conjugation
fidelity combined with relatively large values of trans-
missivity. This result indicates that the effective seeds
in this region considerably exceed € and are supplied
predominantly by the nonlinearly widened spectra of the
pumps. These seeds are too large and cannot be trans-
formed into conjugate radiation by the relatively moder-
ate nonlinearity [y(0)] =~ 3.5 for # = 3 deg]. Increasing
the value of 6 increases both the transmissivities and
the fidelities, which pass through a shallow maximum
and then remain at relatively high levels. Note, in con-
trast, that the nonlinear coupling coefficient y(6)! grows
monotonically with increasing # in Fig. 6. Turning the
random seeds off (e = 0) has a more pronounced effect,
the larger the angle between the pumps. Thus, for ex-
ample, both transmissivities and conjugation fidelities
show almost no change for # = 3 deg and drop down
approximately 2—2.5 times for § = 10 deg. There are
two reasons for the shallow maximum shown in Fig. 6.
First, as we have discussed in Section 1 in connection
with Eq. (1), the two-dimensional model of the DPCM**
predicts that maximum values of transmissivities take
place for # < 0p. Figure 6 provides numerical confir-
mation of this prediction in the presence of diffraction.
Second, the total level of seeds in the directions of the
scattered beams (random plus those from pump spectra)
is larger for smaller angles between the pumping beams.
In principle, there is a third reason for the shallow maxi-
mum: the effective overlap region of the beams gets
smaller for larger values of 6, but for the parameters of
Fig. 6 this effect is not important.

As has been discussed above, the two-dimensional
physics of the DPCM is due to the finite size of the inter-
action region in the transverse dimension. The failure
to account properly for this circumstance leads to wrong
results. To illustrate this point we conducted parallel
calculations with two sorts of pump. The first choice
corresponded to the modulated Gaussian beams:

Agin(y) =[1 + cos(107y/d)]exp[—ifsky — 4(y — ya)?/d?],
(7a)

Asin(y) =[1 — cos(14my/d)lexp[—ib2ky — 4(y — y2)*/d?].
(7b)

The second choice corresponded to the same modulation
but without the Gaussian envelopes:

Agin(y) = [1 + cos(107y/d)]exp(—ifsky), (8a)
Agin(y) =[1 — cos(14my/d)]exp(—ibs2ky). (8b)

The steady-state transmissivities T and the conjugation
fidelities H as functions of the nonlinearity vyql for the
modulated Gaussian pumps [Eqgs. (7)] are presented in
Fig. 7. The parameters for this figure are /[ = 1.5 mm,
d = 0.3 mm, 6, = 4.5deg, 0; = 3.5 deg, 6p = 10 deg,
A =0.514 um, I, = 0.01, and n = 2.3. The calculations
were conducted by the FFT method on a 4000 (along
y) X 200 (along x) grid, with the width of the calculation
region along the y coordinate being given by [, = 3d. The
two sets of curves correspond to the values of the random
seeds € equal to 107® and 1072, The transmissivities
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T\, T),1 and the conjugation fidelities H,, H; are near each
other, so only one pair is shown.

The values of the transmissivities and the conjugation
fidelities for the pumping beams [Eqgs. (7)] look similar to
those shown in Fig. 2. They exhibit a strong dependence
on the level of seeds, consistent with the convective na-
ture of the instability in the geometry of the DPCM. The
transverse distributions of the scattered beams demon-
strate the same reproduction of the small-scale structure
and the large distortions of the envelopes that are due
to convection effects, as in Fig. 4. The value of the rela-
tive transverse displacement of the beams (0s + 64)I/d is
larger for the parameters of Fig. 7 than for those of Fig. 2.
In other words, a larger part of the rhombus-shaped beam-
overlap region lies inside the nonlinear medium. This
is why the nonlinearity necessary for reaching a certain
value of the transmissivities is higher in Fig. 7 than in
Fig. 2.

Calculations with the transversely unbounded pumps
[Egs. (8)] with the same parameters as in Fig. 7 resulted
in the onset of scattering near vyl = 3 for both values
of seeding and in the loss of stability of the stationary
solutions near yol = 4. The value of the nonlinearity
corresponding to the loss of stability was found to depend
on the ratio /,/! of the width of the calculation window
to the length of the medium. A twofold reduction in [,
increased the region of existence of stationary solutions up
to yol = 5.5; a fourfold reduction, to yo/ = 8.5. Figure 8
shows the transmissivities T and the conjugation fidelities
H as functions of the nonlinearity y,/ for the transversely
unbounded pumps [Egs. (8)] carried out for /, = 3d/4 (four
times less than in Fig. 7). The number of transverse
points was also decreased four times to preserve the same
spatial resolution.

The behavior of the transmissivities and the conjuga-
tion fidelities for pumps [Eqgs. (8)] is completely different
from that shown in Fig. 7. Thus the output character-
istics are weakly dependent on the level of seeds, there
exists a well-defined threshold of scattering (vl = 3 for
the chosen pumps), and the output transmissivities re-
main nonzero above this threshold even when the seeds

1 LA L L B B T T
08
06 |
04 -
02
0 I -
0 1 2

Fig. 7. Transmissivities T}, and conjugation fidelities H, as
functions of the nonlinearity for the transversely bounded pump-
ing beams described by Egs. (7) and for levels of random seeding
€ = 107%, 10712, The length of the nonlinear medium equals
1.5 mm.
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Fig. 8. Same as in Fig. 7 but for the transversely unbounded
pump beams described by Egs. (8).

are essentially switched off. All these features are in-
dicative of an absolute (oscillation) instability. Note also
that the transmissivities and the conjugation fidelities
shown in Fig. 8 for e = 107® start to grow slightly earlier
than do those for e = 107!2, but for large coupling con-
stants the situation changes. Both the transmissivities
and the conjugation fidelities for € = 1072 lie higher than
those for e = 1075. This degradation in the performance
of the DPCM for a higher level of seeds (increased fan-
ning) was predicted in Ref. 18 (see Fig. 3 therein) during
consideration of the influence of fanning on the character-
istics of the DPCM in the framework of a one-dimensional
model. Figure 8 thus demonstrates that the physics of
the DPCM for the pumps [Eqgs. (8)] is well described by
the one-dimensional model.

The reason for the differences between the character-
istics of the DPCM for pumps [Egs. (7) and (8)] is that
the pumps [Eqs. (7)] are real beams, whereas Egs. (8)
describe structures that are unbounded in the transverse
dimension. All the two-dimensional effects discussed
above that are due to the finite size of the interaction
region in the transverse dimension are lost for such
structures.

All numerical calculations are carried out with a finite
number of transverse points and a calculation window
of finite size in the transverse dimension. To describe
properly the two-dimensional physics of the DPCM in
numerical calculations care should be taken that the
electromagnetic fields are confined within the calculation
window throughout the interaction region (for any value
of the longitudinal coordinate) and do not touch the
boundaries both in coordinate and in Fourier space.
When this condition is violated, as is the case for pumps
[Egs. (8)], the boundary conditions impart a strong par-
asitic influence and completely change the physics com-
pared with that describing the behavior of real beams.

4. CONCLUSIONS

We analyzed numerically the geometry of the double
phase-conjugate mirror in the framework of a two-
dimensional model. The model is based on parabolic
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equations for the electromagnetic radiation and on non-
linear material equations that are exact within the parax-
ial approximation. It takes into account diffraction and
noncollinearity of the interacting beams and their finite
size. We investigated the geometry of the DPCM in the
cases of pumping beams with regular structure and of
speckled beams. We confirmed the predictions of Refs. 5
and 6 that the DPCM is an amplifier, with the output level
of the scattered beams being directly dependent on the
level of their input seeds. We investigated the depend-
ence of the nonlinear transmissivities and the con-
jugation fidelities on the level of these seeds. In the
absence of random seeding the seeds are supplied by the
spectra of the pumps, which are nonlinearly broadened
because of self-interaction for large values of the nonlin-
earity. The physical reason that turns the geometry of
the DPCM into an amplifier is the noncollinearity of the
interacting beams and the finite size of the interaction
region in all directions. Convective transport of energy
in the direction of the common component of the group
velocity of the noncollinear scattered beams creates a
channel of losses out of the finite-sized interaction region.
The only mechanism that can potentially counterbalance
these losses is diffraction. When the angle between the
pumps and the copropagating scattered beams is larger
than the characteristic diffraction divergence angle of
the interacting beams the convective mechanism domi-
nates, quenching the oscillation instability. A clear sig-
nature of convective effects is large-scale distortions of
the amplitudes of the interacting beams. These distor-
tions correspond to the displacement of the transverse
intensity distributions of the output scattered beams in
the direction of the common component of their group ve-
locity. These distortions are more pronounced for rela-
tively moderate values of the nonlinearity and become
less noticeable when the pumping beams are completely
depleted for large nonlinearities. The small-scale struc-
ture of the pumping beams is reproduced.

In conclusion, we direct the reader’s attention to several
recent papers®'? that claim to analyze the geometry of the
DPCM in the framework of two-dimensional models. In
our opinion these papers missed the essence of the two-
dimensional nature of the DPCM.

Inspection of Refs. 8—10 immediately reveals that the
pumping beams in these papers are taken as plane waves.
The ensuing equations for scattered beams are linear, are
decomposable into a set of completely decoupled equa-
tions for Fourier harmonics, and contain none of the
two-dimensional effects that are due to the finite size
of the interaction region, discussed in Refs. 4—-6. An
additional claim made in Refs. 8—10 is that abandon-
ing the slowly varying envelope approximation (SVEA)
qualitatively changes the behavior of the DPCM com-
pared with that from SVEA-based approaches. To exam-
ine this claim in more detail consider Egs. (16) of Ref. 10:

L oin LA, =20 Y (ALAS + AT ADA
dx? lxdx 1 lxI 1434 2 413)A4,

(9a)

& i 3 ) 4, = 20 Y (AAS + AR A9A
dx2 *qx )3 « 7 \A1de 2 A3)Az.

(9b)
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These equations describe evolution of the scattered
plane waves A; and Ajz in the field of undepleted pumps
A, and Ay in the TE case; A; exactly counterpropagates
A, and As counterpropagates A;. We obtain the SVEA
equations from Egs. (9) by dropping the second deriva-
tives. According to Refs. 8—10, Egs. (9) do not have so-
lutions corresponding to an absolute instability, i.e., so-
lutions that have poles in the complex-frequency plane
corresponding to an exponential growth of perturbations.
This conclusion is incorrect. Indeed, if we restrict our-
selves to the consideration of a transmission grating,
we must consider A;(x = 0), Asz(x = 1), 0A1(0)/9x, and
dA3(l)/9x as independent boundary conditions. Solution
of Egs. (9) then results in the dispersion equation

k1(k3 — K9)BeBs + ko(k1 — k3)B1Bs + k3(ke — k1)B1By

=0, (10a)
Bl = —Zlkx‘}/ K] + ZkaKl 1+ q exp(;ql) + \/a,
(10b)

where «; are the roots of the equation «°® + (4k,2 —
2ik.y)k — 4k2y(1 — q)/(1 + q) = 0. Dispersion equa-
tion (10) reduces to the familiar equation q exp[yl(1 —
q)/(1 + q)] = 1, determining the threshold of the DPCM
in the one-dimensional SVEA case. The corrections to
this equation that are due to the inclusion of non-SVEA
terms are of the order of yl/k. . << 1.

Inspection of Refs. 11 and 12 reveals that the pump
beams in these papers were chosen to be unbounded
infinite-extent periodic structures of the form

Agyin ~ explikbay][1 + asw cos2my/ls)
+ baw cos(dmy/l,)], 11

where 654 are the angles of incidence, a and b are coeffi-
cients of the order of unity, and /. is some scaling length.
The conclusions of Refs. 11 and 12 are that the DPCM
is an oscillator “since there is a well-defined thresh-
old equal to 2,” and above this threshold “one can turn
off the noise ... and the DPCM remains essentially un-
changed.” These conclusions are correct for the pumps
described by relation (11). Equally correct is the fact
that relation (11) has nothing to do with real, bounded
beams. The relevant physics was discussed above in con-
nection with Fig. 8.
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