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An Analysis of Constant Modulus Receivers
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Abstract—This paper investigates connections between (non-
blind) Wiener receivers and blind receivers designed by minimiz-
ing the constant modulus (CM) cost. Applicable to both T-spaced
and fractionally spaced FIR equalization, the main results include

1) a test for the existence of CM local minima near Wiener
receivers;

2) an analytical description of CM receivers in the neighbor-
hood of Wiener receivers;

3) mean square error (MSE) bounds for CM receivers.
When the channel matrix is invertible, we also show that the CM
receiver is approximately colinear with the Wiener receiver and
provide a quantitative measure of the size of neighborhoods that
contain the CM receivers and the accuracy of the MSE bounds.

Index Terms—Blind equalization, CMA, MSE.

I. INTRODUCTION

BLIND equalization of intersymbol interference (ISI) in
communication channels and blind separation of multiple

users are promising signal processing techniques in certain
communication system designs. One of the earliest blind
receiver designs, and perhaps the most widely used in practice,
is the Godard or the constant modulus algorithm (CMA) [8],
[11], [18]. In his original paper, Godard observed in simulation
that receivers designed by minimizing the constant modulus
cost have similar MSE performance to the nonblind Wiener
receivers. This striking observation provides strong support
for using CM blind receivers because they not only do not
require the cooperation of the transmitter but also achieve near
optimal performance (in the sense of minimizing mean square
error of the estimation). Similar observations was also made
by Treichler and Agee [18].

Most early analyses of CMA exclude additive channel noise.
It has been shown that CM receiver converges globally to the
channel inverse when the channel matrix is full column rank,
which includes doubly infinite T-spaced equalizers [7] and
finite-length fractionally spaced equalizers [14]. In such cases,
the channel inverse is the Wiener receiver when channel noise
is not present. For finite-length T-spaced CMA equalization,
however, the existence of local minima has been shown by
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Ding et al. [1]–[4], [13] and has been summarized by Liet
al. [15].

When noise cannot be ignored, analysis based on small noise
perturbation has been obtained in several ways [5], [6], [15],
[17]. Although this perturbation analysis does not quantify
specific conditions under which the analysis is valid, it has
been observed in simulation examples that the near optimal
performance of CMA holds well for a wide range of signal-
to-noise ratios. The first exact analysis that establishes the
connection between CM and Wiener receivers appeared in was
obtained recently [19], [21] for the special case that the channel
matrix has full column rank. The application of this result is,
unfortunately, limited because the full rank condition, satisfied
in beam forming and certain fractionally spaced equalization
problems, is not valid for T-spaced or fractionally spaced
equalization with insufficient equalizer length.

The main contribution of this paper is the development of a
systematic procedure for the analysis of CM receivers. Unlike
the perturbation analysis, our approach does not involve ap-
proximations. As a generalization to the geometrical approach
presented in [19] and [21], our approach can be applied to
cases when the channel matrix is singular. Such generalization
enables us to treat both T-spaced and fractionally spaced
equalization within the same theoretical framework. While the
approach used in this paper is similar in spirit to that presented
in [19] and [21], the generalization is nontrivial because certain
subspace constraints must be imposed on the CM optimization.
Further, the analysis presented in this paper can also be applied
to arbitrary real sources. Only binary source was considered in
[19], [21]. A comparison between the results obtained for the
general case and that for channels with an invertible channel
matrix provides interesting insight into how the rank condition
affects the behavior of CM algorithms. The main results of
the analysis include

1) a test for the existence of CM local minima near Wiener
receivers;

2) an analytical description of CM receivers in the neigh-
borhood of Wiener receivers;

3) mean square error (MSE) bounds for CM receivers.

As demonstrated in [20], the theory developed in this paper
can be of value in addressing several design issues in blind
equalization. For example, the analytical procedure presented
in this paper allows us to analyze the effects of noise,
signal constellation, equalizer length, channel diversity, local
minima, and model mismatch.

The rest of the paper is organized as follows. Section II
presents a general system model and the constant modulus
receiver. Section III derives the MSE bound for constant
modulus receivers. Finally, a conclusion is given in Section V,
and all the proofs are relegated to the Appendix.
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Fig. 1. Data model.

Most notation in this paper is standard with uppercase
and lowercase bold letters denoting matrices and vectors,
respectively. Special notations are listed as follows.

Transpose.
Moore–Penrose inverse [12, p. 434].
Expectation operator.
-norm defined by .

2-norm defined by .
identity matrix.

Unit column vector with 1 at the th entry and
zero elsewhere.

-dimensional real vector space.
Set of all real matrices.
Range of [12, p. 430].
Range of .
Boundary of set .

II. THE MODEL

Constant modulus receivers can be applied to a broad class
of applications such as blind equalization and beamforming.
In this section, a general linear transmission model is given
first followed by a generic CM receiver.

A. Data Model

We consider the estimation problem in the following linear
model shown in Fig. 1. The system equation is given by

(1)

(2)

where is a vector of the transmitted
signal, is the additive noise, is the
unknown channel matrix, is the received signal,

is the receiver parameter vector,is the output of the
receiver, and is the combined channel-receiver
response vector.

For equalization applications, vector is composed of
consecutive samples of the input, i.e.,

. The output of the receiver is
therefore an estimate of , which is the input
with delay . Note that the receiver delay can be spec-
ified in nonblind equalization problems. In contrast, in blind
equalization algorithms such as CMA, the delay can only be
controlled through algorithm initialization. Thus far, there is no
systematic method of initialization that ensures convergence to
the appropriate delay. The detailed derivation offor both
T-spaced and fractionally spaced equalization can be found in
the Appendix.

We consider the rather general case when no restriction is
imposed on the channel matrix. For the signals, we assume
the following.

A0) All signals are real.
A1) is zero mean Gaussian with covariance .
A2: Entries of are independent random variables with

, and ( ).

The restriction to the real case is not a fundamental one in
the sense that the basic approach also applies to the complex
case. However, most formulae and their interpretation may be
some different in complex case. The transmitted signalis
an arbitrary real signal, such as a symbol from binary phase-
shift keying (BPSK) or multilevel pulse amplitude modulation
(PAM) constellations. is also referred to as the dispersion
constant [8].

B. The Constant Modulus Receiver and CMA

In communication systems (see Fig. 1), the transmitted
signal does not take on arbitrary values. For example, if
the signal has a phase-shift-keying (PSK) modulation,
is on the unit circle. Godard [8] and Treichleret al. [18]
proposed the constant modulus (CM) criterion that minimizes
the dispersion of the receiver output about the dispersion
constant

(3)

In our discussion, the local minima of are referred to
as constant modulus (CM) receivers.

In practical applications, a CM receiver is usually obtained
from the stochastic gradient algorithm. The gradient of
is given by

(4)

where , , and be the channel output vector, the
receiver output, and the receiver coefficient vector at time
, respectively. The constant modulus algorithm (CMA) is

the stochastic gradient update of the receiver coefficients by
removing the expectation operator in (4) and correctingby
a small amount in the opposite direction

(5)

According to the averaging analysis of [9], the mean CM
cost function (3) describes the average performance of CMA
in (5).
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III. M EAN SQUARE ERROR OF

CONSTANT MODULUS RECEIVERS

In this section, we develop a systematic procedure to locate
the CM local minima and evaluate their mean square error
(MSE) performance. Specifically, given, the signal-to-noise
ratio, and signal constellation, we present an algorithm that
enables us to test the existence of a CM receiverin
the neighborhood of the Wiener receiver to approximate its
location to evaluate the upper bound of its MSE defined by

MSE (6)

To achieve this goal, we establish several key properties
including the signal space property and the lower bound of the
CM cost function in the neighborhood of the Wiener receiver.

A. Signal Space Property and Equivalent Cost Function

Under A1) and A2), the CM cost function has the following
form, as shown in [10] and [21]:

(7)

where

(8)

CM receivers are defined as the local minima of the CM
cost function .

One of the important properties of CM receivers is that
they all must be in the “signal” subspace spanned by the
columns of (see also [21]), which implies that a CM receiver
automatically has the matched filter front end.

Lemma 1: The output energy of any CMA receiver
satisfies

(9)

Furthermore, all CMA local minima are identical to the local
minima of the CMA cost function constrained in the signal
subspace, i.e.,

Col (10)

The energy constraint was first obtained for the noiseless case
by Johnson and Anderson in [10]. The proofs of Lemma 1
and all subsequent lemmas, and theorems in this paper are all
given in the Appendix.

Because of the signal space property, there is a 1 : 1 mapping
between the receiver vector in Col and the combined

channel-receiver in Row , as shown in Fig. 2.
Therefore, the minimization of in Col is equivalent
to the minimization of

(11)

(12)

where, using the fact that Row and the property of
pseudo-inverse , we have

(13)

Fig. 2. Equivalent cost function.

Fig. 3. Geometrical approach with subspace constraint.

According to Lemma 1, CM receivers can be analyzed using
the equivalent cost function in Row , i.e.,

Row (14)

In contrast to the analysis given in [21], where it is assumed
that has full column rank [hence Row ], the
constrained optimization is more general and somewhat more
challenging.

1) Geometrical Approach to Locating Minima:Since the
evaluation of the gradient and Hessian of the CM cost function
is complicated, a geometrical approach is used in this paper to
locate CM local minima. The basic idea is to obtain a region,
as small as possible, that contains CM receivers defined as
local minima of the CM cost function. Suppose that CM
receivers are constrained in the linear subspace Row
shown in Fig. 3. Suppose that there is a bounded open set

with boundary , and is an interior reference point in
Row . If the cost on Row is greater

than that of the reference , then there exists at least one
CM receiver in Row . The principle of this approach
is based on the following two points: i) According to the
Weierstrass theorem [16, p. 40], there exists a minimum in
the compact set ( Row , and ii) if the CM costs
on the boundary are greater than that of the interior reference,
there is a minimum inside the region Row .

When the channel is nonsingular (Row ), this
approach is identical to that in [19] and [21]. When the
channel is singular (Row ), the difficulty is the
constrained optimization of (14). The analyzes based on the
nonsingularity of the channel matrix [14], [19], [21] cannot be
applied directly. Note that a similar idea of geometric proof
has been used by Liet al. [15] in a special case. For an
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Fig. 4. NeighborhoodBo in the Hilbert space of the observations.

autoregressive channel model, Li shows that there exist CMA
local minima for a finite-length T-spaced equalizer [15]. In
comparison with existing results, the main difference is that the
approach presented in this paper applies to arbitrary channel
models with additive Gaussian noise.

B. Location and MSE Bound of CM Receivers

Our main theorems about the location of CM receivers
and their MSE are derived following the three steps in the
geometrical approach:

1) Select a neighborhood.
2) Select a reference .
3) Compare on with .

These steps are described separately below.
1) The Neighborhood:The neighborhood is defined ac-

cording to the receiver gain and its extra unbiased mean
square error (UMSE). For a receiver that estimates ,
the receiver gain and the (conditionally) unbiased MSE
(UMSE) are given by

UMSE (15)

Note that is a conditionally unbiased estimate of
in the sense that

(16)

The geometry involving the linear estimation of based
on is shown in Fig. 4. The output of any linear estimator
must be on the plane spanned by the components of. The
output of the Wiener receiver is obtained by projecting
on . If we scale to such that the projection of in
the direction of is , we obtain the so-called (conditionally)
unbiased minimum mean square error (U-MMSE) estimate of

. Indeed, is conditionally unbiased, i.e.,

. Further, it is recognizable from Fig. 4 that has the
shortest distance (and hence the minimum MSE) among all
conditionally unbiased estimates. Note that the output of a
conditionally unbiased estimator must be on line due to
the orthogonality among sources and noise.

A neighborhood of estimates whose receiver gains (obtained
by projecting the estimate in the direction of) are bounded
in is shown in the shaded area in Fig. 4, and their
corresponding conditionally unbiased estimates ofhave

mean square error no greater thanover that of . In other
words, these estimates have extra (conditionally) unbiased
MSE (UMSE) upper bounded by . In this figure, is the
output of the reference receiver described later in Section II-
B2.

To define this neighborhood mathematically, let the com-
bined channel-receiver have the following param-
eterization:

(17)

The receiver output can be expressed by

(18)

where is the receiver gain. Scaling by , we have the
(conditionally) unbiased estimate of

(19)

Therefore, the receiver gain and UMSE ofis given by
and MSE , respectively. Hence, the shaded neighborhood
in Fig. 4 is defined by

MSE MSE (20)

In this definition, ( ) specifies the lower (upper) bound
of the CM receiver gain, and is the upper bound of extra
UMSE (see Fig. 4).

Although the neighborhood defined above is specified by
particular characteristics of a receiver (UMSE and bias), its
relation with the receiver coefficient vector, or equivalently
, is not given explicitly. To locate the CM receiver using

this neighborhood, it is necessary to translate the above
neighborhood to one that is specified by the channel/equalizer
parameter space. For this purpose, we introduce the following
lemma.

Lemma 2: Let , , ans be the gain, interference, and
the unbiased receiver output of the receiver. Similar notation
with subscript is defined for the MMSE receiver . Let

be the submatrix of defined in (13) by deleting theth
column and row

(21)

Then, in Row

MSE MSE

(22)
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Fig. 5. Cone-type regionB.

The equivalence of the two neighborhoods enables us to
locate the CM receiver coefficient in the combined channel-
receiver space. In Fig. 5, we show that is a
slice of a cone specified by the extra UMSE and receiver gain.

2) The Reference:As shown in Fig. 5, the reference is
defined by the vector that is colinear with the MMSE receiver
and has the minimum CM cost. Specifically, in estimating,
the MSE of receiver output is given by

MSE

(23)

The MMSE receiver is then given by

MSE (24)

(25)

Define the reference , where minimizes the
CM cost function (12)

(26)

The reference should be inside . This imposes the
condition that .

3) Location of CM Receivers:As mentioned earlier, the
key of our approach is to find the neighborhood such that
the CM cost on the boundary is uniformly greater than the
CM cost at the reference. Having defined the neighborhood

and the reference , we are now ready
to locate CM receivers by selecting the range of the receiver
gains and the upper bound of extra UMSE so that
we can prove the necessary inequality. We begin by giving
the following lemma, which plays a key role in our approach.

Lemma 3: Let and be defined in (21). For all

(equality holds iff (27)

where

(28)

(29)

(30)

(31)

(32)

(33)

(34)

According to this lemma, the CM cost function can be
reduced to a function in terms of gainand extra UMSE .
Thus, the cone-type region clarifies the CM cost evaluation.

From Lemma 3, it can be seen that the
is lower bounded by a second-order polynomial of with
coefficients , and , all of which are functions of

but not of . The region is obtained by
choosing , and such that for all

Row . If such , and exist, then there
exists at least one CMA local minimum.

Theorem 1: Given and with parameters defined

in (29)–(32), let . If

1) has real roots in , the smallest of which
is ;

2) ;
3) ;

then there exists a CM local minimum in

MSE MSE

where

Given the channel matrix , the above theorem enables
us i) to test the existence of CM local minima and ii) to
obtain the neighborhood containing CM local minima. Further,
it provides the bound of extra UMSE and the range of the CM
receiver gain.

4) The MSE of CM Receivers:Once are ob-
tained from Theorem 1, we can derive the MSE upper bound of
CM receivers in this region. We shall see further that because
the size of the neighborhood is minimized, the reference

turns out to be an accurate approximation of the local
minimum in the neighborhood. Therefore, the MSE of the
reference is a good estimate of the MSE of the CM receiver.
We summarize the MSE bounds and the approximate MSE
for the CM receiver in .
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Fig. 6. Algorithm to compute MSE upper bound of CM receivers.

Theorem 2: The MSE of CM receivers in is upper
bounded by and is approximated by

(35)

(36)

To assess the quality of the MSE bound, we consider a
special case when has full column rank, and . We are
particularly interested in relating the MSE and the extra UMSE
bounds to the interference and MSE of the Wiener receiver.

Property 1: Suppose that is full column rank and that
. Let be the parameter that measures the

residual interference. Then

(37)

(38)

(39)

is a scale factor (40)

From (37), because is the radius of the cone that specified
the CM neighborhood, we conclude that for those Wiener
receivers with small interference, the CM equalizer is roughly
colinear to the MMSE equalizer. This is further demonstrated
in (40). The colinear property provides support for using the
reference to approximate the true CM receiver becauseis
obtained by minimizing the CM cost in the direction of Wiener
receiver. Furthermore, this also implies that the CM receiver
will have similar BER performance as that of the MMSE
equalizer. Equation (38) shows that the upper bound obtained
in Theorem 2 is rather tight, especially for those CM receivers
whose corresponding Wiener receiver has small MSE.

Finally, we summarize in Fig. 6 an algorithm that can be
used to test the existence of CM receivers and evaluate their
locations and MSE performances.

IV. CONCLUSION

In this paper, a MSE upper bound on constant modulus
(CM) receiver performance has been derived for an arbitrary
channel matrix and Gaussian channel noise. A sufficient con-
dition was given for the existence of a CM receiver in the
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neighborhood of a Wiener receiver. If such a CM receiver
exists and the channel matrix is nonsingular, the extra MSE of
the CM receiver has been shown to be the order of the MMSE
squared, which implies that the blind receiver design based
on the CM criterion achieves almost the same performance
as the optimal linear receiver designed for modest amounts
of noise. In addition, it has been shown that the unbiased
CM receiver vector is almost colinear to the unbiased MMSE
receiver vector, which implies that the minimum probability
of detection error for linear receivers can be nearly achieved
by the CM criterion.

The analysis in this paper is for the static behavior of the
CM criterion, which describes the asymptotic achievable per-
formance. An interesting complementary effort would be the
study of the dynamic behavior of a CM receiver, focusing, e.g.,
on the convergence rate and efficient initialization methods.

APPENDIX

Proof of Lemma 1:First, we prove the energy constraint
on CM receiver output. For any such that , define

(41)
The minimum of is achieved at

(42)

Since , .
Therefore, . Furthermore, if , then

.
Second, we derive the CM cost function from a subspace

representation. Let and be the orthonormal bases of the
column space and its complementary subspace, respec-
tively. Thus, for all , we have . The
cost function can be written as

(43)

(44)

(45)

(46)

If is a stationary point of ,
then , and . Note that

(47)

(48)

Fig. 7. Hilbert space of the observations.

Thus, iffy or . There-
fore,. the stationary point satisfies conditions ,

, or , . For the latter case,

(49)

implies that . It can be seen that the stationary point
satisfying and is a saddle point.

Finally, we show the equivalence of the local minima. Since
all CM local minima satisfy the condition , they are in the
signal subspace. Therefore, all CM local minima [the minima
of ] are local minima of [minima
of Col ]. Conversely, if is a minimum of

, by the result of energy constraint, .
By the definition of local minimum, , ,

, and . Let
, and such that ,

(50)

(51)

Hence, is a minimum of .
Proof of Lemma 2:First, the relationship betweenand
is depicted in Fig. 7. It will be shown that is

orthogonal to and . Since is orthogonal
to the subspace of observations, then

(52)

From the definition of the unbiased estimator, ,
and then

(53)

From (52) and (53), . Since is the scaled
, therefore

(54)

(55)

Based on the above orthogonal properties,
, i.e., MSE MSE
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. For Row

MSE MSE

(56)

Proof of Lemma 3:For CM cost function (12), there are
two terms and that need to be derived. From Fig. 7
and the orthogonal properties (54) and (55)

(57)
Note that

(58)

(59)

Since and , then
, and

(60)

For the second term , we have

(61)

Substituting above two terms into (12), we have

(62)

Proof of Theorem 1:According to (22), is given by

The boundary consists of

or

Next, will be proven for all each sub-
boundary.

1) According to the conditions of the theorem,
and . Thus, for
all . Since , from Lemma 3, for
all points in .

2) For all points in Row
. Thus, Row is equivalent to
or . For all points in this

set, . Thus, if is not in the interval

(63)

then the polynomial .
According to the definition of and in the theorem,

for all points in Row .
3) Finally, we verify that the reference is in the region

, i.e., . According to
Lemma 3, . Therefore

(64)

Therefore, , is in the region .

Proof of Theorem 2:From (23) and (60), the MSE of
receiver is given by

(65)

From Theorem 1, for all points in Row , and
. Therefore

(66)
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If we use the reference to approximate a CM receiver in
Row , we have

(67)

Proof of Property 1: At high SNR, the second-order ap-
proximation of is given by

Thus, . Since , then

(68)

For the MSE bound, we need to approximateand first.
Since ,
we have

(69)

(70)

(71)

Thus, , and . Therefore, we can
justify the accuracy of the MSE bound by

(72)

(73)

Since , then

(74)

To show (39), we approximate the CMA solution by the
reference

(75)

According to (26)

(76)

Since

(77)

and thus

(78)

Therefore

(79)

ACKNOWLEDGMENT

The authors would like to thank D. R. Brown for his detailed
comments on this paper.



ZENG et al.: ANALYSIS OF CONSTANT MODULUS RECEIVERS 2999

REFERENCES

[1] Z. Ding and C. R. Johnson, Jr., “On the nonvanishing stability of
undesirable equilibria for FIR Godard blind equalizers,”IEEE Trans.
Signal Processing,vol. 41, pp. 1940–1944, May 1993.

[2] Z. Ding, C. R. Johnson, Jr., and R. A. Kennedy, “On the (non)existence
of undesirable equilibria of Godard blind equalizers,”IEEE Trans. Signal
Processing,vol. 40, pp. 2425–2432, Oct. 1992.

[3] Z. Ding, R. A. Kennedy, B. D. O. Anderson, and C. R. Johnson,
Jr., “Ill-convergence of Godard blind equalizers in data communication
systems,”IEEE Trans. Commun.,vol. 39, pp. 1313–1327, Sept. 1991.

[4] , “Local convergence of the Sato blind equalizer and generaliza-
tions under practical constraints,”IEEE Trans. Inform. Theory,vol. 39,
pp. 129–144, Jan. 1993.

[5] I. Fijalkow, A. Touzni, and J. R. Treichler, “Fractionally-spaced equal-
ization by CMA: Robustness to channel noise and lack of disparity,”
IEEE Trans. Signal Processing,vol. 45, pp. 56–66, Jan. 1997.

[6] I. Fijalkow, J. R. Treichler, and C. R. Johnson, Jr., “Fractionally spaced
blind equalization: Loss of channel disparity,” inProc. IEEE Int. Conf.
Acoust. Speech, Signal Process.,Detroit, MI, May 1995, vol. 3, pp.
1988–1991.

[7] G. J. Foschini, “Equalizing without altering or detecting data,”Bell Syst.
Tech. J.,pp. 64, 1885–1911, Oct. 1985.

[8] D. N. Godard, “Self-recovering equalization and carrier tracking in two-
dimensional data communication systems,”IEEE Trans. Commun.,vol.
COMM-28, pp. 1867–1875, Nov. 1980.

[9] C. R. Johnson Jr., S. Dasgupta, and W. A. Sethares, “Averaging analysis
of local stability of a real constant modulus algorithm adaptive filter,”
IEEE Trans. Acoust., Speech, Signal Processing,vol. 36, pp. 900–910,
June 1988.

[10] C. R. Johnson, Jr. and B. D. O. Anderson, “Godard blind equalizer error
surface characteristics: White, zero-mean, binary source case,”Int. J.
Adaptive Contr. Signal Processing,pp. 301–324, 1995.

[11] C. R. Johnsonet al., “Blind equalization using the constant modulus
criterion: A review,”Proc. IEEE,vol. 86, pp. 1927–1950, Oct., 1998.

[12] P. Lancaster and M. Tismenetsky,The Theory of Matrices. New York:
Academic, 1984.

[13] Y. Li and Z. Ding, “Convergence analysis of finite length blind adaptive
equalizers,”IEEE Trans. Signal Processing,vol. 43, pp. 2120–2129,
Sept. 1995.

[14] , “Global convergence of fractionally spaced Godard (CMA)
adaptive equalizers,”IEEE Trans. Signal Processing,vol. 44, pp.
818–826, Apr. 1996.

[15] Y. Li, J. R. Liu, and Z. Ding, “Length and cost dependent local
minima of unconstrained blind channel equalizers,”IEEE Trans. Signal
Processing,vol. 44, pp. 2726–2735, Nov. 1996.

[16] D. G. Luenberger,Optimization by Vector Space Methods.New York:
Wiley, 1969.

[17] A. Touzni, I. Fijalkow, and J. R. Treichler, “Fractionally-spaced CMA
under channel noise,” inProc. IEEE Int. Conf. Acoust. Speech, Signal
Process.,Atlanta, GA, May 1996, vol. 5, pp. 2674–2677.

[18] J. R. Treichler and B. G. Agee, “A new approach to multipath correction
of constant modulus signals,”IEEE Trans. Acoust., Speech, Signal
Processing,vol. ASSP-31, pp. 459–472, Apr. 1983.

[19] H. Zeng and L. Tong. “On the performance of CMA in the presence
of noise some new results on blind channel estimation: Performance
and algorithms,” inProc. 27th Conf. Inform. Sci., Syst.,Baltimore, MD,
Mar. 1996, pp. 890–894.

[20] H. Zeng, L. Tong, and C. R. Johnson, “Behavior of fractionally-spaced
constant modulus algorithm: Mean square error, robustness and local
minima,” in Proc. 30th Asilomar Conf. Signals, Syst., Comput.,Nov.
1996, vol. II, pp. 305–309.

[21] , “Relationships between CMA and wiener receivers,”IEEE
Trans. Inform. Theory,vol. IT-44, Apr. 1998.

Hanks H. Zeng (M’98) was born in Beijing, China, in 1965. He received the
B.E. degree in electrical engineering in applied mathematics from Tsinghua
University, Beijing, in 1989, the M.S. degree in acoustics from the Chinese
Academy of Science, Nanjing, in 1992, and the Ph.D. degree in electrical
engineering from the University of Connecticut, Storrs, in 1997, respectively.

From 1997 to 1999, he worked for Philips Consumer Communications,
Piscataway, NJ. Since March 1999, he has been with AT&T Laborato-
ries—Research, Red Bank, NJ. His research interests include equalization
techniques, estimation theory, and performance analysis.

Lang Tong (S’87–M’91) received the B.E. degree
from Tsinghua University, Beijing, China, in 1985
and the M.S. and Ph.D. degrees in electrical engi-
neering in 1987 and 1990, respectively, from the
University of Notre Dame, Notre Dame, IN.

After being a Postdoctoral Research Affiliate at
the Information Systems Laboratory, Stanford Uni-
versity, Stanford, CA, he joined the Department of
Electrical and Computer Engineering, West Virginia
University, Morgantown, and was also with the Uni-
versity of Connecticut, Storrs. Since the fall of 1998,

he has been with the School of Electrical Engineering, Cornell University,
where he is an Associate Professor. He also held a Visiting Assistant Professor
position at Stanford University in the summer of 1992. His research interests
include statistical signal processing, wireless communication, and system
theory.

Dr. Tong received the Young Investigator Award from the Office of Naval
Research in 1996 and the Outstanding Young Author Award from the IEEE
Circuits and Systems Society.

C. Richard Johnson, Jr.(F’89) was born in Macon,
GA, in 1950. He received the Ph.D. degree in
electrical engineering, with minors in engineering-
economic systems and art history, from Stanford
University, Stanford, CA, in 1977.

He is currently a Professor of Electrical Engineer-
ing and a Member of the Graduate Field of Applied
Mathematics at Cornell University, Ithaca, NY. His
current research interest is in adaptive parameter
estimation theory, which is useful in applications
of digital signal processing to telecommunication

systems. His recent principal focus for has been blind equalization.


