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An Analysis of Constant Modulus Recelvers

Hanks H. ZengMember, IEEE Lang Tong,Member, IEEEand C. Richard Johnson, JFellow, IEEE

Abstract—This paper investigates connections between (non- Ding et al. [1]-[4], [13] and has been summarized by ¢i
blind) Wiener receivers and blind receivers designed by minimiz- g, [15].
ing the constant modulus (CM) cost. Applicable to both T-spaced  \yhen nojse cannot be ignored, analysis based on small noise
and fractionally spaced FIR equalization, the main results include . . .
1) a test for the existence of CM local minima near Wiener perturbation has been obtained in several ways [5], [6], [15],
[17]. Although this perturbation analysis does not quantify

receivers; - " . o L
2) an analytical description of CM receivers in the neighbor- SPecific conditions under which the analysis is valid, it has
hood of Wiener receivers; been observed in simulation examples that the near optimal
3) mean square error (MSE) bounds for CM receivers. performance of CMA holds well for a wide range of signal-

When the channel matrix is invertible, we also show that the CM  tg-noise ratios. The first exact analysis that establishes the
receiver is approximately colinear with the Wiener receiver and . naction between CM and Wiener receivers appeared in was
provide a quantitative measure of the size of neighborhoods that btained | 211 for th ial hat the ch |
contain the CM receivers and the accuracy of the MSE bounds. 0 ta!ne recently [19], [21] for the speqla (.:aset aFt ec ar'me
) o matrix has full column rank. The application of this result is,
Index Terms—8lind equalization, CMA, MSE. unfortunately, limited because the full rank condition, satisfied
in beam forming and certain fractionally spaced equalization
|. INTRODUCTION problems, is not valid for T-spaced or fractionally spaced

LIND equalization of intersymbol interference (I1SI) rnqusllzathn W'tT .|r;13tl.1ff|C|efntth.equaI|zer Ifrr:gtg. | t of
communication channels and blind separation of multiple € main contribution ot thiS paper is the development of a

users are promising signal processing techniques in cert }/r,?tematlc pr.ocedure fqr the analysis of CM FECEIVETS. Unlike
communication system designs. One of the earliest in|I\ perturbation analysis, our approach does not involve ap-

receiver designs, and perhaps the most widely used in practﬁré)ximations. As a generalization to the geometrical approach

is the Godard or the constant modulus algorithm (CMA) [8 ,resented in [19] and [21], our approach can be appli_ed .to
ases when the channel matrix is singular. Such generalization

Sgables us to treat both T-spaced and fractionally spaced
cost have similar MSE performance to the nonblind Wrengrqualization within the same theoretical framework. While the
proach used in this paper is similar in spirit to that presented

receivers. This striking observation provides strong supp 191 and 1211, th lization i vial b .
for using CM blind receivers because they not only do nb'i'[ ]and [21], the generalization is nontrivial because certain

require the cooperation of the transmitter but also achieve négpspace constraints must be imposed on the CM optimization.

optimal performance (in the sense of minimizing mean squzﬁgrth?r' the analysis presented ?n this paper can also t?e appli.ed
error of the estimation). Similar observations was also ma arbitrary real sources. Only binary source was considered in
by Treichler and Agee [18] 19], [21]. A comparison between the results obtained for the

Most early analyses of CMA exclude additive channel nc)rsgeneral case and that for channels with an invertible channel

It has been shown that CM receiver converges globally to t trix provides int.eresting insight.into how the rapk condition
channel inverse when the channel matrix is full column ranf ects the behavior of CM algorithms. The main results of

which includes doubly infinite T-spaced equalizers [7] anti€ analysis include

finite-length fractionally spaced equalizers [14]. In such cases,1) a test for the existence of CM local minima near Wiener
the channel inverse is the Wiener receiver when channel noise €CEIVErS;

is not present. For finite-length T-spaced CMA equalization, 2) an analytical description of CM receivers in the neigh-

however, the existence of local minima has been shown by borhood of Wiener receivers;
3) mean square error (MSE) bounds for CM receivers.
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Noise 1), -+, s(k — m + 1)]*. The outputy of the receiver is
therefore an estimate of(k — v + 1), which is the input
with delay » + 1. Note that the receiver delay can be spec-
ified in nonblind equalization problems. In contrast, in blind
equalization algorithms such as CMA, the delay can only be
controlled through algorithm initialization. Thus far, there is no
systematic method of initialization that ensures convergence to
the appropriate delay. The detailed derivationtbffor both
T-spaced and fractionally spaced equalization can be found in
Source —F—- Channel —)'(— Receiver the Appendix.
We consider the rather general case when no restriction is
X a imposed on the channel matri. For the signals, we assume
—3 H ftof the following.
S AQ) All signals are real.
W Al) w is zero mean Gaussian with covariancd.
| q | A2: Entries of s are independent random variables with
E{s,} =0, B{s?} =1andE{s*} =7 (0 <7 < 3).

The restriction to the real case is not a fundamental one in
the sense that the basic approach also applies to the complex

Most notation in this paper is standard with uppercasmse. However, most formulae and their interpretation may be
and lowercase bold letters denoting matrices and vectogeme different in complex case. The transmitted signpais

wh

N,
N>

m-input
n-output

H . Wn

- D
N

Fig. 1. Data model.

respectively. Special notations are listed as follows. an arbitrary real signal, such as a symbol from binary phase-
Ok Transpose. shift keying (BPSK) or multilevel pulse amplitude modulation
() Moore—Penrose inverse [12, p. 434]. (PAM) constellationss is also referred to as the dispersion
E{-} Expectation operator. constant [8].
l|l,  p-norm defined byg/>" «7.
llz|la 2-norm defined byw/ztAz. B. The Constant Modulus Receiver and CMA
I, n X n identity matrix. In communication systems (see Fig. 1), the transmitted
2 Unit column vector with 1 at theith entry and signal does not take on arbitrary values. For example, if
zero elsewhere. the signal has a phase-shift-keying (PSK) modulatiep,
R"™  n-dimensional real vector space. is on the unit circle. Godard [8] and Treichlet al. [18]
R Set of alln x m real matrices. proposed the constant modulus (CM) criterion that minimizes
Ra  Range ofAA' [12, p. 430]. the dispersion of the receiver output about the dispersion
Ra- Range off — AA". constantr = E{|s|*}/E{|s|?}
aB Boundary of setB.
A t, .2 N2
Il. THE MODEL J(f) = E (|if/| ) ¢ ®3)
Constant modulus receivers can be applied to a broad class Y

of applications such as blind equalization and beamforming.|n our discussion, the local minima dt.(f) are referred to
In this section, a general linear transmission model is give®y constant modulus (CM) receivers.

first followed by a generic CM receiver. In practical applications, a CM receiver is usually obtained
from the stochastic gradient algorithm. The gradienydff)
A. Data Model is given by
We consider the estimation problem in the following linear 7] ‘12
model shown in Fig. 1. The system equation is given by a_f']c(f) = 2B{(|f"z]” - r)y=} (4)
z=Hs+w, (1) wherez(k), y(k), and f(k) be the channel output vector, the
y=Ff'z=q's+ flw (2) receiver output, and the receiver coefﬂaent_vector at time
k, respectively. The constant modulus algorithm (CMA) is
wheres = [s1, - -+, s,,|" € R™ is a vector of the transmitted the stochastic gradient update of the receiver coefficients by

signal, w € R™ is the additive noiseH € R"*™ is the removing the expectation operator in (4) and correctinigy

unknown channel matrixx € R"™ is the received signal, a small amount in the opposite direction

f € R™ is the receiver parameter vectgris the output of the >

receiver, an@g 2 H'f ¢ R™ is the combined channel-receiver ke +1) = F(k) = wlly(B) = ry(k)z(k). ®)

response vector. According to the averaging analysis of [9], the mean CM
For equalization applications, vecter is composed of cost function (3) describes the average performance of CMA

consecutive samples of the input, i.&, = [s(k), s(k — in (5).
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™

Ill. M EAN SQUARE ERROR OF
CONSTANT MODULUS RECEIVERS

In this section, we develop a systematic procedure to locate
the CM local minima and evaluate their mean square erfgrCol(H
(MSE) performance. Specifically, givdi, the signal-to-noise
ratio, and signal constellation, we present an algorithm that
enables us to test the existence of a CM receiferin
the neighborhood of the Wiener receiver to approximate its
location to evaluate the upper bound of its MSE defined by

Fig. 2. Equivalent cost function.

£ = MSE(y.) = E{|ftz — 5,[%}. 6)

To achieve this goal, we establish several key properties
including the signal space property and the lower bound of the
CM cost function in the neighborhood of the Wiener receiver.

A. Signal Space Property and Equivalent Cost Function

. . o : Row(H)
Under Al) and A2), the CM cost function has the following P ; -

form, as shown in [10] and [21]: — /

A " OB

Jo(f) = E{(ly* = )%}

=3Ik — 2rlf% — B=IH Fl3++*  (7) q

where
R A E {:c:ct} _ HH' " OQI,,,. (8) Fig. 3. Geometrical approach with subspace constraint.

CM receivers are defined as the local minima of the CM According to Lemma 1, CM receivers can be analyzed using
cost function.J.(f). the equivalent cost functiot(g) in Row(H), i.e.,

One of the important properties of CM receivers is that | " )
they all must be in the “signal” subspace spanned by the ™" J(f), f€ R" & min J(q), g€ RowH). (14)

columns ofH (see also [21]), which implies that a CM receiveln contrast to the analysis given in [21], where it is assumed

automatically has the matched filter front end. that H has full column rank [hence Ra) = R™], the
Lemma 1: The output energy of any CMA receivef. constrained optimization is more general and somewhat more
satisfies challenging.
T < E{|ly|?} < L. ©) 1) Geometrical Approach to Locating MinimeSince  the
3 evaluation of the gradient and Hessian of the CM cost function

Furthermore, all CMA local minima are identical to the locals complicated, a geometrical approach is used in this paper to

minima of the CMA cost function constrained in the signdPcate CM local minima. The basic idea is to obtain a region,
subspace, i.e., as small as possible, that contains CM receivers defined as

_ _ local minima of the CM cost function. Suppose that CM
min J.(f), f € R* < min J.(f), f € Col(H).  (10) receivers are constrained in the linear subspace (ROw

The energy constraint was first obtained for the noiseless C%hgwn In Fig. 3. Suppose that there is a bounded open set

by Johnson and Anderson in [10]. The proofs of Lemma with boundaryd3, andg,. is an interior reference point in

o Row(H). If the cost.J(g) on OB \Row(H) is greater
and all subsequent lemmas, and theorems in this paper ar%ha&({ﬂn th\iav'E 02 the referencg(q)then tth e\ili(sts) at I%ast e
given in the Appendix. o

Because of the signal space property, thereisal:1 mappjcr:lM receiver inB(")RoW(H). The principle of this approach

. . : 18%ased on the following two points: i) According to the
between the receiver vectgr in Col(H) and the combined Weierstrass theorem [16, p. 40], there exists a minimum in

. JAN . .
channel-receivey = H'f in Row(H), as shown in Fig. 2. the compact setd|JaB) (\Row(H), and ii) if the CM costs
Therefore, the minimization of.(f) in Col(H) is equivalent 4, the houndary are greater than that of the interior reference,
to the minimization of there is a minimum inside the regidf( Row(H).
a , When the channel is nonsingular (RG#) = R™), this
/@) Jc(f)|f=(H Y 1) approach is identical to that in [19] :Smd) [21]. When the
=3lgllz — 2rllallz — B —nllali+7*  (12) channel is singular (Ro@H) # R™), the difficulty is the
constrained optimization of (14). The analyzes based on the
nonsingularity of the channel matrix [14], [19], [21] cannot be
applied directly. Note that a similar idea of geometric proof
®=1,+’H (H). (13) has been used by Lét al. [15] in a special case. For an

where, using the fact that € Row(H) and the property of
pseudo-inversé ' (H')fq = ¢q, we have
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51 mean square error no greater trﬁ%nover that ofu,,,. In other

words, these estimates have extra (conditionally) unbiased
\ MSE (UMSE) upper bounded b§? . In this figure,y, is the
output of the reference receiver described later in Section II-

B2.
AT N L To define this neighborhood mathematically, let the com-
0 bined channel-receivey = H' f have the following param-
Sy eterization:

¢ =q 1@t Gm)
A A
9 =4y = eyt/qv q; = [Q1 o Qu—1Gp41 (_Zrn]/QV- (17)

observation space X

Fig. 4. Neighborhood3, in the Hilbert space of the observations.
The receiver outpuy can be expressed by

autoregressive channel model, Li shows that there exist CMA y=_0 s,+ Z s + ffw (18)
local minima for a finite-length T-spaced equalizer [15]. In ;ﬁ iy ~

comparison with existing results, the main difference is that the ime e

approach presented in this paper applies to arbitrary channel

models with additive Gaussian noise. where 8 is the receiver gain. Scaling by 1/6, we have the

(conditionally) unbiased estimate ef
B. Location and MSE Bound of CM Receivers

A 1
Our main theorems about the location of CM receivers w= % =Sty Z @isi+ flw . (19)
and their MSE are derived following the three steps in the o\
geometrical approach: w': equivalentnoise
1) Select a neighborhood. Therefore, the receiver gain and UMSE ¢fis given by ¢
2) Select a referencg,.. and MSEu), respectively. Hence, the shaded neighborhood
3) CompareJ(g) on 9B with J(g,). in Fig. 4 is defined by

These steps are described separately below. A 5
1) The NeighborhoodThe neighborhood is defined ac- Bo = 14 0 <0 <6y, MSE(u) — MSE(w,,) < 6} (20)

cording to the receiver gain and its extra unbiased me@{this definition,§;, (61) specifies the lower (upper) bound

square error (UMSE). For a receivgf that estimatess;, of the CM receiver gain, and? is the upper bound of extra
the receiver gaind and the (conditionally) unbiased MSEyMSE (see Fig. 4).

(UMSE) are given by Although the neighborhood defined above is specified by
1 2 particular characteristics of a receiver (UMSE and bias), its
o= f'He;, UMSE = E<§ftz— $1> . (15) relation with the receiver coefficient vector, or equivalently

g, is not given explicitly. To locate the CM receiver using
Note that(1/6)f'z is a conditionally unbiased estimate ofthis neighborhood, it is necessary to translate the above

s, in the sense that neighborhood to one that is specified by the channel/equalizer
. parameter space. For this purpose, we introduce the following
E<—ft:c|sl> =5 (16) lemma. o
¢ Lemma 2: Let 8, ¢g;, ansu be the gain, interference, and

The geometry involving the linear estimation ef based the unbiased receiver output of the receigeBimilar notation
on z is shown in Fig. 4. The output of any linear estimatofith subscriptm is defined for the MMSE receivey,,,. Let
must be on the plan& spanned by the componentsafThe C be the submatrix ofp defined in (13) by deleting theth
outputy,, of the Wiener receiver is obtained by projecting c°lumn and row

on X. If we scaley,,, to u,, such that the projection af,, in Cu b Cp

the direction ofs; is s1, we obtain the so-called (conditionally) P=| b a b

unbiased minimum mean square error (U-MMSE) estimate of Ciz b Cx

s1. Indeed,w,, is conditionally unbiased, i.e E(u,,|s.) = A (b

s,. Further, it is recognizable from Fig. 4 that, has the b= <b2>

shortest distance (and hence the minimum MSE) among all A [Ci Cis

conditionally unbiased estimates. Note that the output of a C= <C12 C22>' (21)

conditionally unbiased estimator must be on liA& due to

the orthogonality among sources and noise. Then, in RowWH)
A ne_ighporhood of_estimz_ites wh(_)se r_eceiver gains (obtained {q: 01, < 6 < 6, MSE(w) — MSE(u,,) < 62}

by projecting the estimate in the direction ©f) are bounded

in (6, 6) is shown in the shaded area in Fig. 4, and their ={g: 01 <0 <0, llar = gpsllc < bv}

corresponding conditionally unbiased estimatessofhave 2 B(q,,, bu, Or, Ou). (22)
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/ 1
c(8) 2 —2r <52 + 9—) (31)
A 2 1 2
— (B =)+ (8 + lgorlla)h) (32
0L 0,- Hm HU 1 0 g, = — C—lb (33)
Fig. 5. Cone-type regioifs. 1
= ————. 34
a—b'C'b 4

The equivalence of the two neighborhoods enables us to
locate the CM receiver coefficiegt in the combined channel- According to this lemma, the CM cost functiokig) can be
receiver space. In Fig. 5, we show ti(y,,,, 6, 01, 6y ) isa '

. Iy g reduced to a function in terms of gathand extra UMSE.
slice of a cone specified by the extra UMSE and receiver 93thus, the cone-type region clarifies the CM cost evaluation.
2) The ReferenceAs shown in Fig. 5, the referenag. is Fr(;m Lemma 3, it can be seen that théq) — J(g,)

defined by the vector that is colinear with the MMSE receiver : q 4

and has the minimum CM cost. Specifically, in estimatipg 'S Ic;fyvgr tt)ounged bg a szcondilor(:erhpot:ynon}lal9?_fW|th f
the MSE of receiver outpuj = f'z is given by coefficientsea(6), ¢1(6), andey, all of which are functions o

§ but not ofé. The regionB(q,,,, 6, 61, ) is obtained by

MSE(y) = E{(y — 5,)*} = E{(f'z — 5,)*} choosingéy,, 67, and §;; such that/(q) — J(g,) > 0 for all
— f'Rf — 2 Hf + 1. (23) ¢ € OB(YRow(H). If such 8y, 6;;, and é;; exist, then there
exists at least one CMA local minimum.
The MMSE receiver is then given by Theorem 1: Given H, r, o2 andr with parameters defined

in (29)~(32), letD(8) 2 2(6) — 4ca(8)co. If

— - : t _ p—1
fr = arg min MSE(f'z) = R™ He, (24) 1) D(6) has real roots ir(s, oc), the smallest of which
g, =H'f, = HR ‘*He,. (25) IS 8
2) D(6y) = 0,
Define the reference, = «,q,,, wherea, minimizes the  3) V& € [bo, 6.], c2(6) > 0;
CM cost function (12) then there exists a CM local minimum in
a, = arg min J(ag,,) B(g,,, v, 01, 6v)
5 ={q: 01 < 0 < 6y, MSE(u) — MSE(u,,,) < 6%}
_ T”qan‘P . (26)
3||qnl||§> - (3 - 7)||qnl||i where

The referenceg, should be insideB. This imposes the §2 =62 82

condition thatf; < 6, < 0.
3) Location of CM ReceiversAs mentioned earlier, the 0 — o \/—cl(é) —/E(6) — dea(6)co
L=

key of our approach is to find the neighborhood such that 50<6<65, 2¢2(8)

the CM cost on the boundary is uniformly greater than the

CM cost at the reference. Having defined the neighborhood —c1(8) + /3 (8) — 4ea(S)eo
B(q.., 6u, 01, 6r) and the reference,., we are now ready bu = 50202, 2¢4(6) '

to locate CM receivers by selecting the range of the receiver

gains(6z, 6v) and the upper bounél. of extra UMSE so that  Gjyen the channel matrif, the above theorem enables
we can prove the necessary inequality. We begin by giving ) 1o test the existence of CM local minima and ii) to

the foIIowing Iemma,c\j/vhict:)h %'afYS Zkey role in our approachyain the neighborhood containing CM local minima. Further,
Lemma 3: Let b andC be defined in (21). For alj € 5 it provides the bound of extra UMSE and the range of the CM
receiver gain.

J(g) = J(g,) Z ()8 + 1 (6)6 + co 4) The MSE of CM Receiver®nce &, 0;,, 8 are ob-

(equality holds iffé = 0) (27)  tained from Theorem 1, we can derive the MSE upper bound of
CM receivers in this region. We shall see further that because

where the size of the neighborhood is minimized, the reference
g, turns out to be an accurate approximation of the local

§ é\/Hq, —qille+ 83 (28) minimum in the neighborhood. Therefore, the MSE of the

A reference is a good estimate of the MSE of the CM receiver.
b0 = lams — torlle (29)  \We summarize the MSE bounds and the approximate MSE

co 2% — J(q. or the receiver inB(q,,,, év, 01, 0v).
202 J(q,) (30) for the CM nB(q,,,. v, 01, bu)
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Given Hyxm, 7, 02, v, MSE upper bound of CM receivers is computed as following:

Covariance matriz. R = HH' + 021,

% =1, +*(HH)!
a= ®(v,v)
b= ®(,v)

C s the part of ® by removing v-th column and row

Reference: a» = H'R'He,
- el
"=\ Sllanllly G~ Dl
qr = Gy Qpm

J(ar) = 3llarlll — 2rllalp — 3 = rllall +
1
— 1 _
o1 = C b: 90 (L*bLCAlb
8o = ||tm1 — dallc
Condition 1: {81 < -++ < &} = real roots {c?(8) — 4ca(S)co}
b, :gln>1£{61 <es < G}
If §, = 0, can’t determine local minima, stop.
Condition 2: If D(6o) > 0 and () > 0 Vé € [dy, ], local minimum exists.

Otherwise, can’t determine local minima.

\/ —a(8) — /E@) — 4a@)e

Guins: 0= 2, %0
. —01(6) + C%(é) - 4C2(6)CO
HU - 150126&2% \/ 2(,2((5)
Oy —0,)? , (81 —0,)?
MSE: Ey = mu{% + (0y6.)%, % +(008.)%} + 1 -6,

Fig. 6. Algorithm to compute MSE upper bound of CM receivers.

Theorem 2: The MSE of CM receivers inB3 is upper From (37), becausé&; is the radius of the cone that specified
bounded by&;; and is approximated bﬁ' the CM neighborhood, we conclude that for those Wiener
(B — 6,)? (01 — 6,)?2 receivers with small interference, the CM equalizer is roughly
&y = max{TO +(0p6,)?, L 4 (eLé*)Q} colinear to the MMSE equalizer. This is further demonstrated

% in (40). The colinear property provides support for using the
+1-6, (35) referencey,. to approximate the true CM receiver becaygsés
&= (6, —6,)° F(8,60)2 +1— 6,. (36) obtained by minimizing the CM cost in the direction of Wiener
0, ! ¢ receiver. Furthermore, this also implies that the CM receiver

To assess the quality of the MSE bound, we consider"‘é{II hgve similar BER performance as that of the MMS_E
special case wheH has full column rank, and = 1. We are gquahzer. qua‘uon (38) shows thgt the upper bound obt.alned
particularly interested in relating the MSE and the extra UMSE Theorem 2 is rather tight, especially for those CM receivers
bounds to the interference and MSE of the Wiener receivefV0S€ corresponding Wiener receiver has small MSE.

Property 1: Suppose tha#l is full column rank and that " inally, we summarize in Fig. 6 an algorithm that can be
A used to test the existence of CM receivers and evaluate their
r = 1. Let I,, = ||q,,,/|l+« be the parameter that measures t

e .
residual interference. Then Ocations and MSE performances.

by =213, (37) IV. CONCLUSION
Eu =€+ O(EL) (38)  In this paper, a MSE upper bound on constant modulus
E. =&, + % grzn +O( 531) (39) (CM) receiver performance has been derived for an arbitrary

channel matrix and Gaussian channel noise. A sufficient con-
q. =aq,, +O(I3) «ois a scale factor (40) dition was given for the existence of a CM receiver in the
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neighborhood of a Wiener receiver. If such a CM receiver
exists and the channel matrix is nonsingular, the extra MSE of
the CM receiver has been shown to be the order of the MMSE
squared, which implies that the blind receiver design based
on the CM criterion achieves almost the same performance
as the optimal linear receiver designed for modest amounts
of noise. In addition, it has been shown that the unbiased
CM receiver vector is almost colinear to the unbiased MMSE
receiver vector, which implies that the minimum probability
of detection error for linear receivers can be nearly achieved
by the CM criterion. Fig. 7. Hilbert space of the observations.
The analysis in this paper is for the static behavior of the
CM criterion, which describes the asymptotic achievable per‘Thus,@Jc(f)/av — 0iffy v =0 or |3 = r/3. There-

formance. An interesting complementary effort would be the > stationary point satisfies conditiahé.(f)/ou = 0
study of the dynamic behavior of a CM receiver, focusing, e.g., !
=0, or 3J.(f)/ou =0, ||f||} = /3. For the latter case,

on the convergence rate and efficient initialization methods’
9J(f) _ 0

— Y3 MH U] =
APPENDIX ou au[ (3 = nIIH Uull3] =0 (49)
Proof of Lemma 1:First, we prove the energy constrainimplies thatu = 0. It can be seen that the stationary point
on CM receiver output. For ang such that|f||r = 1, define satisfyingu = 0 and IfI% = /3 is a saddle point.
/ Finally, we show the equivalence of the local minima. Since
A . t rl14) 1.2 . 2 '
¢k, f) = Je (\/Ef) = (3= B=nIH fID)F* = 2rk+7". 31 cM local minima satisfy the condition = 0, they are in the
o . . (41) signal subspace. Therefore, all CM local minima [the minima
The minimum of¢(k, f) is achieved at of J.(f), f € R"] are local minima ofJ,(Ux) [minima
7 of J.(f), f € Col(H)]. Conversely, ifu, is a minimum of
3—GB-r|H I (42) J(Uwn), by. thg result of energy constraintlu,||3 > /3.
By the definition of local minimum3s > 0, V||Au|2 < 6,
Since0 < ||[H f||3 < ||H' f]|5 < ||j‘||3*LZ =1,7/3 < kmin < 1. ||U(u, +Aw)||% > r/3, and J.(U(u, + Au)) > J.(Un,). Let
Therefores/3 < ||f.||% < 1. Furthermore, ifH'f, # 0, then f, = Uto, andVAf = UAu + VAv such thatf| Af||> < 6,
r/3 < |Ifllx < 1. ; Af - (U A -
Second, we derive the CM cost function from a subspace o(fo+ Af) =Jo(Uu, + Au)) + 3|V A0k

observations

kmin =

representation. Let/ and V' be the orthonormal bases of the + 6||[VAv||% (||U(u0 + Ak — i)
column spaceH and its complementary subspace, respec- N ~ 3
tively. Thus, for all f € R", we havef = Uu + Vw. The >0
cost function can be written as (50)
) 2 ‘a 22 > Jo(Uu,) = Jo(f,)- (51)
1) =3(Iflk - 5) - G-mIH'fIi+ = @3) -
T, 0,2 Hence,f, is a minimum ofJ.(f), f € R™. OOo
:3(||f||§.i — 7_) — (3 —7)||H'Uu|} + - (44) Proof of Lemma 2:First, the relationship betweenand
3 ) ) 3 u,, IS depicted in Fig. 7. It will be shown that,, — u is
23((||U'u,||%3 _ 7_) + ||VU||33> orthogonal tow,, ands, — u,,. Sinces, — y,, is orthogonal
3 0,2 to the subspace of observations, then
— (3= 7)|[H'Un|* + = 45
(3 = IHVull} + = (45) oo L 52)
= Jo(Uu) + 3|[V||g
9 s T From the definition of the unbiased estimatar-s, ) L s,,
+6|Velli(lUul% - 3)- (46) o thon
If f = Uu+Vwis a stationary point of/.(f), f € R", sy Lu—nu,, (53)
thendJ.(f)/0u = 0, andadJ.(f)/dv = 0. Note that
aJ.(f) From (52) and (53)y — uy, L ym. Sincew,, is the scaled
51] =12||Vu| 3t TVHEV ym, therefore
n 12vHvHv(||Uu||§-,, . %) (47) U=ty L, (54)
=120 |Vl + Ul - ) Tt s 9

4o, H 2 T Based on the above orthogonal propertiB$(u — s,,)?} =
=12v (”f”R 3)- G8) ot — )2} + E{(t— )2}, 1.6., MSE1) — MSE{tty) =
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E{(u — u,)*}. Forq € RowH)

MSE(u) — MSE(w,0) = E{(u — 1,,)?}
| q 4, The
Cf,q ef/qu L]
=llg; — @l (56)
oo

Proof of Lemma 3:For CM cost function (12), there are
two terms||g||2 and||g||« that need to be derived. From Fig.
and the orthogonal properties (54) and (55) 1)

¢'®q = E{y’} = 0’ B{u’} = 0°(B{(u — um)*} + E{u}, }).

B(qnu 6Ua eLa QU) =

2997

Proof of Theorem 1:According to (22),5 is given by
{q; 9L <0< QU’ ||q1_qrnf||c < 6U}'

boundaryd consists of
aBl = {q ||QI - qrnI”C = 6U}

9By :{q: 0=0;0r0 =0y qr

- qrnIHC S 6U}'

Next, J(¢) — J(g,) > 0 will be proven for all each sub-
oundary.

According to the conditions of the theore®(4.) = 0
andca(6,) > 0. Thus,ca(6,)0% + ¢1(6,)6% 4+ co > 0 for
all . Sinceé, > 0, from Lemma 3,J(q) > .J(g,) for

(57) all points in B;.
Note that 2) For all points in RoWH), & 2 Viar — @msll: + 62 >
2 8p. Thus, B> (MRow(H) is equivalent to{q: 8 =
E{u2,} :‘ A fLorf = 6y, 6 < 6 < 6.} For all points in this
vm || 2 set,c2(6) > 0. Thus, if 62 is not in the interval
(42 t t
- (a + 2b 91 + qrnIqunI) (58) _Cl( ) c (6) 402( )CO
= (qrnl + Cilb)tc(qnll + Cilb) 262(6)
trv—1
+(a—b'C'b). (59) —c1(8) + /E(6) — 4ea(8)co 63)
Sincegq,;, = —C~'b and 6, = 1/(a — b'C™'b), then 2¢2(8)
Blup,} = amr — o1llE + (1/6,), and then the polynomialcy(8)6* + c1(6)6% + co > O.
According to the definition of;; andéy, in the theorem,
. ) ) ) 2 J(g) > J(q,) for all points in B, (| Row(H).
9 ®9=0"|lla; — anillc + lamr —a./llc | + A 3) Finally, we verify that the referenag. is in the region
S— o . .
52 B,(q,,, 6u, b, 6y), i.e., 0 < 6, < 6y. According to
R 52 Lemma 3,¢2(80)0% + c1(80)6? + co < 0. Therefore
_pn2 2 2 _n2¢2
=0 SHQI - qngnc "‘50)"‘9_0 =676+ 0. (60) —e1(60) — \/e1(80)2 — 4ea(80)co
62 202(60)
For the second ternlig;||«, we have <o, < —c1(60) + \/e1(60)2 — dea(b0)co (64)
o _ 262(60)
||q1||4_||q1 qu+qu||4 .. .
Therefore,f;, < 6, < 8y, g, is in the regionB.
<llar — @orlla + gl _—
<llar = gorlic + ligorlls Proof of Theorem 2:From (23) and (60), the MSE of
=6+ [lg,rl4- (61) receiverg is given by
Substituting above two terms into (12), we have Jm(q) =q'Pq—2e,,q+1
92
_ 2¢2 e
J(q) - J(g,) —<96 +90> 2041
=3(¢'®q)’ — 2r(¢"®q) — 3 —7)llalli +7° — J(a,) 6 — 6,)>
92 2 92 :9262 + % + (1 — 90) (65)
> 3(9252 + —) g* —2r <9262 + —)92 0
O, O, From Theorem 1, for all points its(YRow(H), § < 6., and
— (3= + (6 + g fll0)*) + 72 — J(g,.) 61, < 6 < 6. Therefore
=[3(6° LY’ . 4 4 20 (6—160)°
= tg ) — G-+ +laslla)”) | @ Im(q) <6 6*+T+(1_9°)
N -~ . 2
c2(8) < 1H&X9<9263 + %) + (1 — 90)
1 0
—2r 62+—> 0% +r2—J ) - 62 L — 02 — 62
(#+5) 70 -sa) & o { P g B
CI(é) 0 2 0 0
+(0rds +1-6,. 66
. 0102} (©6)
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If we use the reference to approximate a CM receiver
B(1Row(H), we have

(0, — 6o)? + (1= 6p).

Jnl(qr) = 91263 +
fo

(67)

[/

Proof of Property 1: At high SNR, the second-order ap-

proximation of D(6) is given by

D(8) =4<62 + %)2

3<62 + %)2 —2(14+ (6 + L)%
4

m

3262 — 262 1%

mom

_omrh
3262, — 262 1%
2 6/6,, — 1212
4 = — = m__ )52 4 062
* <9m 3 - 297271 - 297271];4n> * ( )
4

(3 - 297271 - 297271];471)97"
. (813197716 + (2(3) - 297271 - 297271];471)
— (6 — 1217,0,,))6%) + O(6)

4

3 402 £2
T (3—202, — 202, 1% )6, (81,06 — 46:,67).

Thus, §y ~ 213, /0,, ~ 2I,,. Since||q.; — g,./||2 < év, then

QC = Oéq,,n + O(I'rgn) (68)

For the MSE bound, we need to approximégeandé, first.
Sincec; (6) = ¢1(0)+0(6%) = —2/0,m, c2(8) = c2(0)+0(8),
we have

O

\/ —e1(8) + /D(®)

262((5)

\/ —c1(0) + /D(3)

262

max
0<6<byr

(0)
max —a(0) 1-- D(8)
oo\ 2¢2(0) | c1(0)
g
1
- VP
Jmax 6.1+ %\/ 32136 — 1662

=0,.(1+6,,1°) =~ 06,(1+1I2).

(69)

~
~

max 6,

0<6<bys (70)

~
~

(71)

Thus, 8y + 61, ~ 26,, anddy — 6, ~ 2I3,. Therefore, we can
justify the accuracy of the MSE bound by

Ev — T.(q.) = max J,.(q) — J..(q.
v (g.) e (9) (g.)
< max J,,(g) — min J,,(g) (72)
qcB qenB
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6—6,,)°%
= max {u + (96)2}
0L <O<by,6<by O
6 —0,,)>
— min {u + (96)2}
0L <O<by,6<by Om
o 2 _ 2
< |(96 em) ; (eL em) |

in

+ (Budu)?

2 91’ - ern
~ %(QU —_ eL) + (9[;(5[})2
=O0(£,)0(13,) + (O(1;)OI;)%. (73)
Since I2, < &, then
gU - Jrn(qc) < 0(872715) (74)

To show (39), we approximate the CMA solutign by the
referenceg,.

Ee—En = E{(yr — ym)Q}
0, — 0m)?

O,

0,
(v

(75)

2
).
According to (26)

6, _
== (1420167, (L + [l 1)) /2

=1-(1-07, 1+l D) +0(1 ~

(76)
Since
1- 97271(1 + ||qrnf||i) = (1 + 9777)(1 - 9771) - 97271,||q7nl||2iL
= 2Jnl(qrn) + O(J"l(qrn)) (77)
and thus
a, /e
97’77/
= [1 - 2Jnl(qrn)] - [1 - %Jnl(qnl)] + O(Jnl(qnl))'
(78)
Therefore
E—&En = %8,2” + O(Sg,/). (79)
[
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