
On Deep Annotation

Siegfried Handschuh
�
, Steffen Staab

��� �
, Raphael Volz

�
�
Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany�

sha, sst, rvo � @aifb.uni-karlsruhe.de
http://www.aifb.uni-karlsruhe.de/WBS�

Ontoprise GmbH, 76131 Karlsruhe, Germany
http://www.ontoprise.com/

ABSTRACT
The success of the Semantic Web crucially depends on the easy
creation, integration and use of semantic data. For this purpose,
we consider an integration scenario that defies core assumptions of
current metadata construction methods. We describe a framework
of metadata creation when web pages are generated from a data-
base and the database owner is cooperatively participating in the
Semantic Web. This leads us to the definition of ontology mapping
rules by manual semantic annotation and the usage of the mapping
rules and of web services for semantic queries. In order to create
metadata, the framework combines the presentation layer with the
data description layer — in contrast to “conventional” annotation,
which remains at the presentation layer. Therefore, we refer to the
framework as deep annotation.1

We consider deep annotation as particularly valid because, (i),
web pages generated from databases outnumber static web pages,
(ii), annotation of web pages may be a very intuitive way to create
semantic data from a database and, (iii), data from databases should
not be materialized as RDF files, it should remain where it can be
handled most efficiently — in its databases.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing—Indexing methods; I.7.1 [Document and Text Pro-
cessing]:

General Terms
Design, Human Factors

Keywords
Annotation, Metadata, Semantic Web, Information Integration, Wrap-
ping, Mapping and Merging

1. INTRODUCTION
One of the core challenges of the Semantic Web is the creation

of metadata by mass collaboration, i.e. by combining semantic con-
tent created by a large number of people. To attain this objective
several approaches have been conceived (e.g. CREAM, MnM, or
Mindswap [8, 26, 7]) that deal with the manual and/or the semi-
automatic creation of metadata from existing information. These

1The term “deep annotation” was coined by Carole Goble in the
Semantic Web Workshop of WWW 2002.

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005..

approaches, however, as well as older ones that provide metadata,
e.g. for search on digital libraries, build on the assumption that the
information sources under consideration are static, e.g. given as
static HTML pages or given as books in a library.

Nowadays, however, a large percentage of Web pages are not
static documents. On the contrary, the majority of Web pages are
dynamic.2 For dynamic web pages (e.g. ones that are generated
from the database that contains a catalogue of books) it does not
seem to be useful to manually annotate every single page. Rather
one wants to “annotate the database” in order to reuse it for one’s
own Semantic Web purposes.

For this objective, approaches have been conceived that allow
for the construction of wrappers by explicit definition of HTML or
XML queries [20] or by learning such definitions from examples
[11, 2]. Thus, it has been possible to manually create metadata for
a set of structurally similar Web pages. The wrapper approaches
come with the advantage that they do not require cooperation by
the owner of the database. However, their shortcoming is that the
correct scraping of metadata is dependent to a large extent on data
layout rather than on the structures underlying the data.

While for many web sites, the assumption of non-cooperativity
may remain valid, we assume that many web sites will in fact par-
ticipate in the Semantic Web and will support the sharing of infor-
mation. Such web sites may present their information as HTML
pages for viewing by the user, but they may also be willing to
describe the structure of their information on the very same web
pages. Thus, they give their users the possibility to utilize

1. information proper,

2. information structures, and

3. information context.

A user may then exploit these three in order to create mappings into
his own information structures (e.g., his ontology) — which may
be a lot easier than if the information a user receives is restricted to
information structures [16] and/or information proper alone [5].

We define “deep annotation” as an annotation process that uti-
lizes information proper, information structures and information
context in order to derive mappings between information structures.
The mappings may then be exploited by the same or another user to
query the database underlying a web site in order to retrieve seman-
tic data — combining the capabilities of conventional annotation
and databases.
2It is not possible to give a percentage of dynamic to static web
pages in general, because a single Web site may use a simple al-
gorithm to produce an infinite number of, probably not very in-
teresting, web pages. Estimations, however, based on web pages
actually crawled by existing search engines estimate that dynamic
web pages outnumber static ones by 100 to 1.

In the remainder of the paper, we will describe the building blocks
for deep annotation. First, we elaborate on the use cases of deep
annotation in order to illustrate its possible scope (Section 2). We
continue with a description of the overall process in Section 3. Sec-
tion 4 details the architecture that supports the process, where we
find three major requirements that must be provided:

1. A server-side web page markup that defines the relationship
between the database and the web page content (cf. Sec-
tion 5)

2. An annotation tool to actually let the user utilize informa-
tion proper, information structures and information context
for creating mappings (cf. Section 6).

3. Components that let the user investigate the constructed map-
pings (cf. Section 7), and query the serving database.

Before we conclude with future work, we relate our work to other
communities that have contributed to the overall goal of metadata
creation and exploitation.

2. USE CASES FOR DEEP ANNOTATION
Deep annotation is relevant for a large and fast growing number

of web sites that aim at cooperation, for instance:
Scientific databases. They are frequently built to foster cooper-

ation among researchers. Medline, Swissprot, or EMBL are just a
few examples that can be found on the Web. In the bioinformatics
community alone current estimations are that 500+ large databases
are freely accessible.

Such databases are frequently hard to understand and it is often
difficult to evaluate whether a database table named “species” is
equivalent to a table named “organism” in another database. Ex-
ploiting the information proper found in concrete tuples may help.
But whether the “leech” considered as entry to an “organism” is
actually the animal or the plant may be much easier to tell from
the context in which it is presented than from the concrete database
entry, which may resolve to “plant” or “animal” only via several
joins.3

Syndication. Besides direct access to HTML pages of news
stories or market research reports, etc., commercial information
providers frequently offer syndication services. The integration of
such syndication services into the portal of a customer is typically
expensive manual programming effort that could be reduced by a
deep annotation process that defines the content mappings.

For the remainder of the paper we will focus on the following
use case :

Community Web Portal (cf., [21]). This serves the information
needs of a community on the Web with possibilities for contributing
and accessing information by community members. A recent ex-
ample that is also based on Semantic Web technology is4 [24]. The
interesting aspect to such portals lies in the sharing of information,
and some of them are even designed to deliver semantic informa-
tion back to their community as well as to the outside world.5

The primary objective of a community setting up a portal will
continue to be the opportunity of access for human viewers. How-
ever, given the appropriate tools they could easily provide infor-
mation content, information structures and information context to
their members for deep annotation. The way that this process runs
is described in the following.
3Concrete examples are typically not so easy to understand as the
leech example!
4http://www.ontoweb.org
5Cf., e.g., [23] for an example producing RDF from database con-
tent.

3. THE PROCESS OF DEEP ANNOTATION
The process of deep annotation consists of the following four

steps (depicted in Figure 1):

Input: A Web site6 driven by an underlying relational database.

Step 1: The database owner produces server-side web page markup
according to the information structures of the database (de-
scribed in detail in Section 5).

Result: Web site with server-side markup.

Step 2: The annotator produces client-side annotations conform-
ing to the client ontology and the server-side markup (Sec-
tion 6).

Result: Mapping rules between database and client ontology.

Step 3: The annotator publishes the client ontology (if not already
done before) and the mapping rules derived from annotations
(Section 7).

Result: The annotator’s ontology and mapping rules are available
on the Web.

Step 4: The querying party loads second party’s ontology and map-
ping rules and uses them to query the database via the web
service API (Section 7.1 and 7.2).

Result: Results retrieved from database by querying party.

Obviously, in this process one single person may be the database
owner and/or the annotator and/or the querying party.

To align this with our running example of the community Web
portal, the annotator might annotate an organization entry from on-
toweb.org according to his own ontology. Then, he may use the
ontology and mapping to instantiate his own syndication services
by regularly querying for all recent entries the titles of which match
his list of topics.

4. ARCHITECTURE
Our architecture for deep annotation consists of three major pil-

lars corresponding to the three different roles (database owner, an-
notator, querying party) as described in the process.

Database and Web Site Provider. At the web site, we assume
that there is an underlying database (cf. Figure 2) and a server-
side scripting environment, like Zope, JSP or ASP, used to create
dynamic Web pages. Furthermore, the web site may also provide
a Web service API to third parties who want to query the database
directly.

Annotator. The annotator uses an extended version of OntoMat-
Annotizer in order to manually create relational metadata, which
correspond to a given client ontology, for some Web pages. The
extended OntoMat-Annotizer takes into account problems that may
arise from generic annotations required by deep annotation (see
Section 6). With the help of OntoMat-Annotizer, we create map-
ping rules from such annotations that are later exploited by an in-
ference engine.

Querying Party. The querying party uses a corresponding tool
to visualize the client ontology, to compile a query from the client
ontology and to investigate the mapping. In our case, we use On-
toEdit [25] for those three purposes. In particular, OntoEdit also
allows for the investigation, debugging and change of given map-
ping rules. To that extend, OntoEdit integrates and exploits the
Ontobroker [6] inference engine (see Figure 2).
6Cf. Section 9 on other information sources.

42 3

DB DB DB

Mapping

Rules

DB

Mapping

Rules

Web site
Server-side
markup

Client-side
semantic annotation

Published
ontology and
mapping rules Database query

11

Client

Ontology

Ontology-based

Query resultsHTML HTML HTML

Client

Ontology
Client

Ontology

Figure 1: The Process of Deep Annotation

Figure 2: An Architecture for Deep Annotation

5. SERVER-SIDE WEB PAGE MARKUP
The goal of the mapping process is to allow interested parties to

gain access to the source data. Hence, the content of the underly-
ing database is not materialized, as proposed in [22]. Instead, we
provide pointers to the underlying data sources in the annotations,
e.g. we specify which database columns provide the data for cer-
tain attributes of instances. Thus, the capabilities of conventional
annotation and databases are combined.

5.1 Requirements
All required information has to be published, so that an inter-

ested party can use this information to retrieve the data from the
underlying database. The information which must be provided is
as follows: (i) which database is used as a data source and how this
database can be accessed, (ii) which query is used to retrieve data
from the database, and (iii) which elements of the query result are
used to create the dynamic web page. Those three components are
detailed in the remainder of this section.

5.2 Database Representation
The database representation is specified using a dedicated deep

annotation ontology, which is instantiated to describe the physi-
cal structure of the part of the database which may facilitate the
understanding of the query results. Thereby, the structure of all ta-
bles/views involved in a query can be published. For example the
following representation is part of the HTML head of the web page
presented in Figure 3.

<!--

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:da="http://annotation.semanticweb.org#deepanno">
<da:DB rdf:ID="OntoSQL">

<da:accessService
rdf:resource="www.ontoweb.org/database_access.wsdl"/>

</da:DB>
<da:Table rdf:ID="Person">

<da:name>Person</da:sqlName>
<da:inDatabase rdf:resource="#OntoSQL" />
<da:hasColumns rdf:parseType="Collection">

<da:PrimaryKey rdf:ID="Person.ID"
da:name="ID" da:type="int" />

<da:Column da:name="FIRSTNAME" da:type="varchar"/>
<da:Column da:name="LASTNAME" da:type="varchar"/>

</da:hasColumns>
</da:Table>
<da:Table rdf:ID="Organization">

<da:name>Organization</da:name>
<da:inDatabase rdf:resource="#OntoSQL" />
<da:hasColumns rdf:parseType="Collection" />

<da:PrimaryKey rdf:ID="Organization.ID"
da:name="ID" da:type="int" />

<da:Column da:name="ORGNAME" da:type="varchar"/>
<da:Column da:name="LOCATION" da:type="varchar"/>
...

</da:hasColumns>
</da:Table>
<da:Table rdf:ID="PersonOrg">

<da:name>Person_Org<da:name>
<da:inDatabase rdf:resource="#OntoSQL" />
<da:hasColumns rdf:parseType="Collection" />

<da:PrimaryKey da:name="PERSONID" da:type="int">
<references rdf:resource="#Person.ID"/>

</da:PrimaryKey>
<da:PrimaryKey da:name="ORGID" da:type="int">

<references rdf:resource="#Organization.ID"/>
</da:PrimaryKey>

</da:hasColumns>
</da:Table>

</rdf:RDF>
-->

The property accessService of the � DB � class represents the
link to a service which allows anonymous database access, con-
sequently additional security measures can be implemented in the
service. Usually, anonymous users should only have read-access
to public information. As we rely on a web service to host the
database access we avoid protocol issues (database connections are
usually made via sockets on proprietary ports).

5.3 Query Representation
Additionally, the query itself, which is used to retrieve the data

from a particular source is placed in the header of the page. It
contains the intended SQL-query and is associated with a name as
a means to distinguish between queries and operates on a particular
data source.

<!--

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:da="http://annotation.semanticweb.org#deepanno">

<da:Query rdf:ID="Q1">
<da:source rdf:resource="#OntoSQL" />
<da:hasResultColumns rdf:parseType="Collection">
<ColumnGroup rdf:about="#g1" />
<ColumnGroup rdf:about="#g2" />

</da:hasResultColumns>
<da:sql>
SELECT Person.*, Person_Org.Orgid, Organization.*
FROM Person, Organization, Projekt_Org
WHERE Person.ID = Projekt_Org.PERSONID

AND Organization.ID = Projekt_Org.ORGID
</da:sql>

</da:Query>
<da:Columngroup rdf:ID="#g1">

<da:prefix
rdf:resource="http://www.ontoweb.org/person/">

<da:hasColumns rdf:parseType="Collection">
<Identifier da:name="Id" />
<Column da:name="Firstname" />
<Column da:name="Lastname" />

</da:hasColumns>
</da:Columngroup>
<da:Columngroup rdf:ID="#g2">

<da:prefix
rdf:resource="http://www.ontoweb.org/org/">

<da:hasColumns rdf:parseType="Collection">
<Identifier da:name="OrganizationId" />
<Column da:name="Orgname" />
<Column da:name="Location" />

</da:hasColumns>
</da:Columngroup>

</rdf:RDF>
-->

The structure of the query result must be published by means of col-
umn groups. Each column group must have at least one identifier,
which is used in the annotation process to distinguish individual in-
stances and detect their equivalence. Since database keys are only
local to the respective table, but the Semantic Web has a global
space of identifiers, appropriate prefixes have to established. The
prefix also ensures that the equality of instance data generated from
multiple queries can be detected, if the web application maintainer
chooses the same prefix for each occurrence of that id in a query.
Eventually, database keys are translated to instance identifiers (cf.
Section 7.2) via the following pattern:

�������	��

����� ��������������������� �!�����#"$� %'&(�*)
For example: http://www.ontoweb.org/person/id=1

5.4 Result Representation
Whenever parts of the query results are used in the dynamically

generated web page, the generated content is surrounded by a tag,
which carries information about which column of the result tuple
delivered by a query represents the used value. In order to stay
compatible with HTML, we used the � span � tag as an informa-
tion carrier. The actual information is represented in attributes of
� span � :

<table>
<tr>
<td>
AIFB
</td>
<td>
Karlsruhe
</td>
...
<td>
Steffen
</td>
...
</tr>
</table>

Such span tags are then interpreted by the annotation tool and
are used in the mapping process.

6. ANNOTATION
An annotation in our context is a set of instantiations related to

an ontology and referring to an HTML document. We distinguish
(i) instantiations of DAML+OIL classes, (ii) instantiated proper-
ties from one class instance to a datatype instance — henceforth
called attribute instance (of the class instance), and (iii) instanti-
ated properties from one class instance to another class instance —
henceforth called relationship instance.

In addition, for the deep annotation one must distinguish be-
tween a generic annotation and a literal annotation. In a literal
annotation, the piece of text may stand for itself. In a generic an-
notation, a piece of text that corresponds to a database field and that
is annotated is only considered to be a place holder, i.e. a variable
must be generated for such an annotation and the variable may have
multiple relationships allowing for the description of general map-
ping rules. For example, a concept Institute in the client ontology

may correspond to one generic annotation for the Organization
identifier in the database.

Consequential to the above terminology, we will refer to generic
annotation in detail as generic class instances, generic attribute
instances, and generic relationship instances.

6.1 Annotation Process
An annotation process of server-side markup (generic annota-

tion) is supported by the user interface as follows:

1. In the browser the user opens a server-side marked up web
page.

2. The server-side markup is handled individually by the browser,
e.g. it provides graphical icons on the page wherever a markup
is present, so that the user can easily identify values which
come from a database.

3. The user can select one of the server-side markups to either
create a new generic instance and map its database field to
a generic attribute, or map a database field to a generic at-
tribute of an existing generic instance.

4. The database information necessary to query the database in
a later step is stored along with the generic instance.

The reader may note that literal annotation is still performed
when the user drags a marked-up piece of content that is not a
server-side markup.

6.2 Creating Generic Instances of Classes
When the user drags a server-side markup onto a particular con-

cept of the ontology, a new generic class instance is generated (cf.
arrow #1 in Figure 3). The application displays a dialog for the
selection of the instance name and the attributes to which the data-
base value is to be mapped. Attributes which resemble the column
name are preselected (cf. dialog #1a in Figure 3). If the user clicks
“OK”, database concept and instance checks are performed and the
new generic instance is created. Generic instances will appear with
a database symbol in their icon.

Each generic instance stores the information about the database
query and the unique identifier pattern. This information is re-
solved from the markup. A server-side markup contains the ref-
erence to the query, the column, and the value. The identifier pat-
tern is obtained from the reference to the query description and
the according column group (cf. Section 5.3). The markup used
to create the instance, defines the identifier pattern for the generic
instance. The identifier pattern will be used when instances are
generated from the database (cf. Section 7.2). For example, one
selects the server-side markup “AIFB” and drops it on the con-
cept Institute. The content of the markup is ‘ � span qresult=“q1”
column=“Orgname” � AIFB � /span � ’. This creates a new generic
instance with a reference to the query q1 (cf. Section 5.3). The
dialog-based choice for the instance name “AIFB” assigns the ge-
neric attribute name with the database column “Orgname”. This de-
fines the identifier pattern of the generic instance as “http://www.on
toweb.org/org/OrganizationID=$OrganizationID”. OrganizationID
is the name of the database column in query q1 that holds the data-
base key.

6.3 Creating Generic Attribute Instances
In order to create a generic attribute instance the user simply

drops the server-side markup into the corresponding table entry (cf.
arrow #2 in Figure 3). Generic attributes which are mapped to data-
base table columns will also show a special icon and their value

will appear in italics. Such generic attributes cannot be modified,
but their value can be deleted.

When the generic attribute is filled the following steps are per-
formed by the system:

1. Database definition integrity is checked.

2. All attributes of the selected generic instance (except the ge-
neric attribute to be pasted to) are examined. The following
conditions apply to each attribute:

� The attribute is empty or
� The attribute does not hold server-side markup or
� The attribute holds markup, the database name and the

query id of the content on the current selection must
be the same. This must be checked to ensure that result
fields come from the same database and the same query.
If this is not checked, non-matching information (e.g.
publication titles and countries) could be queried.

3. The generic attribute contains the information given by the
markup, i.e. which column of the result tuple delivered by a
query represents the value.

6.4 Creating Generic Relationship Instances
In order to create a generic relationship instance the user simply

drops the selected server-side markup onto the relation of a pre-
selected instance (cf. arrow #3 in Figure 3). As in Section 6.2
a new generic instance is generated. In addition, the new generic
instance is connected with the pre-selected generic instance.

7. MAPPING AND QUERYING
The results of the annotation are mapping rules between the data-

base and the client ontology. The annotator publishes7 the client
ontology and the mapping rules derived from annotations. This en-
ables third parties (querying party) to access and query the database
on the basis of the semantic that is defined in the ontology. The user
of this mapping description might be a software agent or a human
user.

7.1 Investigating Mappings
The querying party uses a corresponding tool to visualize the

client ontology, to investigate the mapping and to compile a query
from the client ontology. In our case, we used the OntoEdit plugins
OntoMap and OntoQuery.

OntoMap visualizes the database query, the structure of the client
ontology, and the mapping between them (cf. figure 4). The user
can control and change the mapping and also create additional map-
pings.

7.2 Querying the Database
OntoQuery is a Query-by-Example user interface. One creates a

query by clicking on a concept and selecting the relevant attributes
and relationships. The underlying Ontobroker system transforms
the ontological query into a corresponding SQL query. Ontobroker
uses the mapping descriptions, which are internally represented as
F-Logic Axioms, to transform the query. The SQL query will be
sent as an RPC call to the web service, where it will be answered in
the form of a set of records. These records are changed back into
an ontological representation. This task will be executed automati-
cally, so that no interaction with the user is necessary.
7Here, we used the Ontobroker OXML format to publish the map-
ping rules.

Figure 3: Screenshot of Providing Deep Annotation with OntoMat-Annotizer

Figure 4: Mapping between Server Database (left window) and
Client Ontology (right window)

The data migration will be executed in two separate steps. In
the first step, all the required concept instances are created with-
out considering relationships or attributes. The instances are stored
together with their identifier. The identifier is translated from the
database keys using the identifier pattern (see Section 5.2). For ex-
ample, the instance with the name “AIFB” of the concept Institute,
which is a subconcept of Organization, has the identifier:
http://www.ontoweb.org/org/OrganizationID=3.

After the creation of all instances the system starts computing
the values of the instance relationships and attributes. The way

the values are assigned is determined by the mapping rules. Since
the values of an attribute or a relationship have to be computed
from both the relational database and the ontology, we generate
two queries per attribute/relationship, one SQL query and one On-
tobroker query. Each query is invoked with an instance key value
(corresponding database key in SQL-queries) as a parameter and
returns the value of the attribute/relationship.

Note that the database communication takes place through bind
variables. The corresponding SQL query is generated, and if this
is the first call, it is cached. A second call would try to use the
same database cursor if still available, without parsing the respec-
tive SQL statement. Otherwise, it would find an unused cursor and
retrieve the results. In this way efficient access methods for rela-
tions and database rules can be maintained throughout the session.

8. RELATED WORK
Deep annotation as we have presented it here is a cross-sectional

enterprise.8 Therefore there are a number of communities that
have contributed towards reaching the objective of deep annota-
tion. So far, we have identified communities for information inte-
gration (Section 8.1), mapping frameworks (Section 8.2), wrapper
construction (Section 8.3), and annotation (Section 8.4).

8.1 Information Integration
The core idea of information integration lies in providing an al-

gebra that may be used to translate information proper between dif-

8Just like the Semantic Web overall!

ferent information structures. Underlying algebras are used to pro-
vide compositionality of translations as well as a sound basis for
query optimization (cf., e.g., a commercial system as described in
[17] with many references to previous work — much of the latter
based on principal ideas issued in [27].

Unlike [17], our objective has not been the provisioning of a flex-
ible, scalable integration platform per se. Rather, the purpose of
deep annotation lies in providing a flexible framework for creat-
ing the translation descriptions that may then be exploited by an
integration platform like EXIP (or Nimble, Tsimmis, Infomaster,
Garlic, etc.). Thus, we have more in common with the approaches
for creating mappings with the purpose of information integration
described next.

8.2 Mapping and Merging Frameworks
Approaches for mapping and/or merging ontologies and/or data-

base schemata may be distinguished mainly along the following
three categories: discovery, [19, 3, 5, 1, 16, 14], mapping represen-
tation [12, 1, 15, 18] and execution [4, 15].

In the overall area, closest to our own approach is [13], as it
handles — like we do — the complete mapping process involving
the three process steps just listed (in fact it also takes care of some
more issues like evolution).

What makes deep annotation different from all these approaches
is that for the initial discovery of overlaps between different on-
tologies/schemata they all depend on lexical agreement of part of
the two ontologies/database schemata. Deep annotation only de-
pends on the user understanding the presentation — the informa-
tion within an information context — developed for him anyway.
Concerning the mapping representation and execution, we follow a
standard approach exploiting Datalog giving us many possibilities
for investigating, adapting and executing mappings as described in
Section 7.

8.3 Wrapper Construction
Methods for wrapper construction achieve many objectives that

we pursue with our approach of deep annotation. They have been
designed to allow for the construction of wrappers by explicit def-
inition of HTML or XML queries [20] or by learning such defini-
tions from examples [11, 2]. Thus, it has been possible to manually
create metadata for a set of structurally similar Web pages. The
wrapper approaches come with the advantage that they do not re-
quire cooperation by the owner of the database. However, their
shortcoming is that the correct scraping of metadata is dependent
to a large extent on data layout rather than on the structures under-
lying the data.

Furthermore, when definitions are given explicitly [20], the user
must cope directly with querying by layout constraints and when
definitions are learned, the user must annotate multiple web pages
in order to derive correct definitions. Also, these approaches do
not map to ontologies. They typically map to lower level represen-
tations, e.g. nested string lists in [20], from which the conceptual
descriptions must be extracted, which is a non-trivial task. In fact,
we have integrated a wrapper learning method, viz. Amilcare [2],
into our OntoMat-Annotizer. How to bridge between wrapper con-
struction and annotation is described in detail in [9].

8.4 Annotation
Finally, we need to consider annotation proper as part of deep an-

notation. There, we “inherit” the principal annotation mechanism
for creating relational metadata as elaborated in [8]. The interested
reader finds an elaborate comparison of annotation techniques there
as well as in a forthcoming book on annotation [10].

9. CONCLUSION
In this paper we have described deep annotation, an original

framework to provide semantic annotation for large sets of data.
Deep annotation leaves semantic data where it can be handled best,
viz. in database systems. Thus, deep annotation provides a means
for mapping and re-using dynamic data in the Semantic Web with
tools that are comparatively simple and intuitive to use.

To attain this objective we have defined a deep annotation pro-
cess and the appropriate architecture. We have incorporated the
means for server-side markup that allows the user to define seman-
tic mappings by using OntoMat-Annotizer9 . An ontology and map-
ping editor and an inference engine are then used to investigate and
exploit the resulting descriptions. Thus, we have provided a com-
plete framework and its prototype implementation for deep annota-
tion.

For the future, there is a long list of open issues concerning deep
annotation — from the more mundane, though important, ones
(top) to far-reaching ones (bottom):

1. Granularity: So far we have only considered atomic data-
base fields. For instance, one may find a string “Proceedings
of the Eleventh International World Wide Web Conference,
WWW2002, Honolulu, Hawaii, USA, 7-11 May 2002.” as
the title of a book whereas one might rather be interested in
separating this field into title, location and date.

2. Automatic derivation of server-side web page markup: A
content management system like Zope could provide the means
for automatically deriving server-side web page markup for
deep annotation. Thus, the database provider could be freed
from any workload, while allowing for participation in the
Semantic Web. Some steps in this direction are currently be-
ing pursued in the KAON CMS, which is based on Zope10.

3. Other information structures: For now, we have built our
deep annotation process on SQL and relational databases.
Future schemes could exploit XQuery11 or an ontology-based
query language.

4. Interlinkage: In the future deep annotations may even link to
each other, creating a dynamic interconnected Semantic Web
that allows translation between different servers.

5. Opening the possibility to directly query the database, cer-
tainly creates problems such as new possibilities for denial
of service attacks. In fact, queries, e.g. ones that involve too
many joins over large tables, may prove hazardous. Nev-
ertheless, we see this rather as a challenge to be solved by
clever schemes for CPU processing time (with the possibil-
ity that queries are not answered because the time allotted for
one query to one user is up) than for a complete “no go”.

We believe that these options make deep annotation a rather in-
triguing scheme on which a considerable part of the Semantic Web
might be built.

9The methodology “CREAM” and its implementa-
tion “OntoMat-Annotizer” have been intensively tested
by authors of ISWC-2002 when annotating the sum-
mary pages of their papers with RDF metadata; see
http://annotation.semanticweb.org/iswc/documents.html.

10see http://kaon.aifb.uni-karlsruhe.de/Members/rvo/kaon portal
11http://www.w3.org/TR/xquery/

Acknowledgements.
Research for this paper has been funded by the projects DARPA
DAML OntoAgents, EU IST Bizon, and EU IST WonderWeb. We
gratefully thank Leo Meyer and Dirk Wenke, Ontoprise, for imple-
mentations that contributed toward the deep annotation prototype
described in this paper.

10. REFERENCES
[1] S. Bergamaschi, S. Castano, D. Beneventano, and

M. Vincini. Semantic Integration of Heterogeneous
Information Sources. In Special Issue on Intelligent
Information Integration, Data & Knowledge Engineering,
volume 36, pages 215–249. Elsevier Science B.V., 2001.

[2] F. Ciravegna. Adaptive Information Extraction from Text by
Rule Induction and Generalisation. In Bernhard Nebel,
editor, Proceedings of the Seventeenth International
Conference on Artificial Intelligence (IJCAI-01), pages
1251–1256, San Francisco, CA, August 2001. Morgan
Kaufmann Publishers, Inc.

[3] W. Cohen. The WHIRL Approach to Data Integration. IEEE
Intelligent Systems, pages 1320–1324, 1998.

[4] T. Critchlow, M. Ganesh, and R. Musick. Automatic
Generation of Warehouse Mediators Using an Ontology
Engine. In Proceedings of the 5th International Workshop on
Knowledge Representation Meets Databases (KRDB’98),
pages 8.1–8.8, 1998.

[5] A. Doan, J. Madhavan, P. Domingos, and A. Halevy.
Learning to map between ontologies on the semantic web. In
Proceedings of the World-Wide Web Conference
(WWW-2002), pages 662–673. ACM Press, 2002.

[6] D. Fensel, J. Angele, S. Decker, M. Erdmann, H.-P. Schnurr,
S. Staab, R. Studer, and Andreas Witt. On2broker:
Semantic-based access to information sources at the WWW.
In Proceedings of the World Conference on the WWW and
Internet (WebNet 99), Honolulu, Hawaii, USA, pages
366–371, 1999.

[7] J. Golbeck, M. Grove, B. Parsia, A. Kalyanpur, and
J. Hendler. New Tools for the Semantic Web. In Proceedings
of EKAW 2002, LNCS 2473, pages 392–400. Springer, 2002.

[8] S. Handschuh and S. Staab. Authoring and Annotation of
Web Pages in CREAM. In Proceedings of the 11th
International World Wide Web Conference, WWW 2002,
Honolulu, Hawaii, May 7-11, 2002, pages 462–473. ACM
Press, 2002.

[9] S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM –
Semi-automatic CREAtion of Metadata. In Proceedings of
EKAW 2002, LNCS, pages 358–372, 2002.

[10] Siegfried Handschuh and Steffen Staab, editors. Annotation
in the Semantic Web. IOS Press, 2003.

[11] Nicholas Kushmerick. Wrapper Induction: Efficiency and
Expressiveness. Artificial Intelligence, 118(1-2):15–68,
2000.

[12] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic Schema
Matching with Cupid. In Proceedings of the 27th
International Conferences on Very Large Databases, pages
49–58, 2001.

[13] A. Maedche, B. Motik, N. Silva, and R. Volz. MAFRA - A
Mapping Framework for Distributed Ontologies. In
Proceedings of EKAW 2002, LNCS 2473, pages 235–250.
Springer, 2002.

[14] D. McGuinness, R. Fikes, J. Rice, and S. Wilder. The
Chimaera Ontology Environment. In Proc. of AAAI-2000,
pages 1123–1124, 2000.

[15] P. Mitra, G. Wiederhold, and M. Kersten. A graph-oriented
model for articulation of ontology interdependencies. In
Proceedings of Conference on Extending Database
Technology (EDBT 2000). Konstanz, Germany, 2000.

[16] N. F. Noy and M. A. Musen. PROMPT: Algorithm and Tool
for Automated Ontology Merging and Alignment. In Proc. of
AAAI-2000, pages 450–455, 2000.

[17] Y. Papakonstantinou and V. Vassalos. Architecture and
Implementation of an XQuery-based Information Integration
Platform. IEEE Data Engineering Bulletin, 25(1):18–26,
2002.

[18] J. Y. Park, J. H. Gennari, and M. A. Musen. Mappings for
Reuse in Knowledge-based Systems. In Technical Report,
SMI-97-0697, Stanford University, 1997.

[19] E. Rahm and P. Bernstein. A survey of approaches to
automatic schema matching. VLDB Journal, 10(4):334–350,
2001.

[20] A. Sahuguet and F. Azavant. Building intelligent Web
applications using lightweight wrappers. Data and
Knowledge Engineering, 3(36):283–316, 2001.

[21] S. Staab, J. Angele, S. Decker, M. Erdmann, A. Hotho,
A. Maedche, H.-P. Schnurr, R. Studer, and Y. Sure. Semantic
Community Web Portals. Proceedings of WWW9 / Computer
Networks, 33(1-6):473–491, 2000.

[22] L. Stojanovic, N. Stojanovic, and R. Volz. Migrating
data-intensive Web Sites into the Semantic Web. In
Proceedings of the ACM Symposium on Applied Computing
SAC-02, Madrid, 2002, pages 1100–1107. ACM Press, 2002.

[23] N. Stojanovic, A. Maedche, S. Staab, R. Studer, and Y. Sure.
SEAL: a framework for developing SEmantic PortALs. In
Proceedings of K-CAP 2001, pages 155–162. ACM Press,
2001.

[24] R. Studer, Y. Sure, and R. Volz. Managing User Focused
Access to Distributed Knowledge. Journal of Universal
Computer Science (J.UCS), 8(6):662–672, 2002.

[25] Y. Sure, J. Angele, and S. Staab. Guiding Ontology
Developement by Methodology and Inferencing. In
K. Aberer and L. Liu, editors, ODBASE-2002 – Ontologies,
Databases and Applications of SEmantics. Irvine, CA, USA,
Oct. 29-31, 2002, LNCS, pages 1025–1222. Springer, 2002.

[26] M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni,
A. Stutt, and F. Ciravegna. MnM: Ontology Driven
Semi-automatic and Automatic Support for Semantic
Markup. In Proceedings of EKAW 2002, LNCS 2473, pages
379–391. Springer, 2002.

[27] G. Wiederhold. Intelligent integration of information.
Proceedings of the ACMSIGMOD International Conference
on Management of Data, pages 434–437, 1993.

