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ABSTRACT
Recommender systems have been subject to an enormous
rise in popularity and research interest over the last ten years.
At the same time, very large taxonomies for product classi-
fication are becoming increasingly prominent among e-com-
merce systems for diverse domains, rendering detailed ma-
chine-readable content descriptions feasible. Amazon.com
makes use of an entire plethora of hand-crafted taxonomies
classifying books, movies, apparel, and various other goods.
We exploit such taxonomic background knowledge for the
computation of personalized recommendations. Hereby, re-
lationships between super-concepts and sub-concepts consti-
tute an important cornerstone of our novel approach, pro-
viding powerful inference opportunities for profile genera-
tion based upon the classification of products that customers
have chosen. Ample empirical analysis, both offline and on-
line, demonstrates our proposal’s superiority over common
existing approaches when user information is sparse and im-
plicit ratings prevail.

Categories and Subject Descriptors
H3.3 [Information Storage and Retrieval]: Information Re-
trieval and Search—Information Filtering; I.2.6 [Artificial In-
telligence]: Learning—Knowledge Acquisition

General Terms
Algorithms, Experimentation, Performance, Human Factors

Keywords
Recommender systems, machine learning, taxonomies

1. INTRODUCTION
Recommendation systems [22] are becoming increasingly

popular thanks to their great utility in providing people with
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recommendations of goods they might appreciate and thus
purchase. Many electronic commerce sites already benefit
from novel opportunities of personalized marketing leverage
offered by these information systems [26].

Recommender systems learn from customers and recom-
mend products they are expected to find most valuable from
among all available goods. Hereby, common approaches are
classified into two major categories, namely content-based
and collaborative filtering. Purely content-based filtering sys-
tems compute personalized recommendations by comparing
content representations of previously liked items with con-
tent descriptions of goods still unknown to the active user.
Many of its ideas stem from information retrieval techniques.

Collaborative filtering works by collecting ratings about
products pertaining to some given domain and matching to-
gether people with similar interests. Hereby, interest simi-
larity implies having rated many items in common and hav-
ing assigned similar ratings to each of them. Its huge ad-
vantage over content-based filtering lies in its ability to oper-
ate in environments where the extraction of relevant features
cannot be accomplished easily by automated processes. For
instance, Jester [9] recommends jokes to its users.

Hybrid approaches exploit both content-based and collab-
orative filtering facilities.

However, most systems of either type only work effectively
when situated in those environments where information den-
sity is high [24], i.e., large numbers of users voting for small
numbers of items and issuing large numbers of explicit rat-
ings each. Small, decentralized and open Web communities,
where ratings are mainly derived implicitly from user be-
havior and interaction patterns, therefore poorly qualify for
blessings provided by recommender systems.

We propose a novel, hybrid filtering approach that exploits
bulk taxonomic information designed for exact product clas-
sification. These large, domain-dependent corpora are made
available through diverse electronic commerce sites and stan-
dardization organizations. For instance, Amazon.com pro-
vides comprehensive and detailed classification information
for books published in most common languages, like En-
glish, Spanish, French, and German, relating content to some
fine-grained taxonomy of more than 13, 500 hierarchically ar-
ranged topics.

Our approach permits properly inferring profile similar-
ity between two given users even when both agents do not
have any products rated in common. Making use of the “col-
laboration via content” paradigm [20], high quality recom-
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mendations become feasible in communities suffering from
information sparsity, too. Hereby, besides taxonomy-driven
profile generation, topic diversification constitutes the sec-
ond core contribution of our work.

We mined data from one such community, All Consuming
(http://www.allconsuming.net), and conducted various experi-
ments demonstrating the superior performance over bench-
mark approaches.

2. RELATED WORK
Recommender systems started attracting major research

interest during the early nineties [8]. Resnick et al. [21] in-
troduced Pearson correlation, still largely in use, to compute
similarity between users of their GroupLens news recom-
mender system. Along with Ringo [27], the latter system
counts among the first “classical” collaborative filtering sys-
tems.

Purely content-based recommender systems are less com-
mon. Notable sample approaches are described by Middle-
ton [16], Alspector [1], Ferman [7], and Mukherjee [18]. The
effectiveness of the content-based information filtering para-
digm has been proven for applications locating textual docu-
ments relevant to a topic, using techniques like vector-space
queries.

Balabanović’s Fab [3] counts among the first hybrid sys-
tems, which are becoming increasingly popular today. More
recent approaches are depicted in [14], proposing a graph-
based recommender system, and [15]. Ontological user pro-
filing was explored by Middleton [17]. To the best of our
knowledge, this approach is the only one bearing traits sim-
ilar to taxonomy-driven recommendation generation. How-
ever, Middleton uses clustering techniques for categorization
and does not exploit hand-crafted, large-scale product classi-
fication taxonomies.

Appropriate evaluation methods for measuring the perfor-
mance of recommender systems are still in their infancy and
subject to ample discussion. Herlocker et al. [13, 11] and
Breese [5] offer in-depth information about diverse “in vitro”
evaluation frameworks for recommender systems. Cosley
[6] proposes an open framework for online, “in situ” bench-
marking and comparison of filtering performance, positing
that “accuracy does not tell the whole story”.

3. PROPOSED APPROACH
Sticking to the “collaboration via content” paradigm [20],

our approach computes content-based user profiles which
are then used to discover like-minded peers. Once the active1

agent’s neighborhood of most similar peers has been formed,
the recommender focuses on products rated by those neigh-
bors and generates top-N recommendation lists. The rank
assigned to a product hereby depends on the proximity of
agents voting for the latter, and its content description with
respect to the active user’s interest profile. Hence the hybrid
nature of our approach.

3.1 Information Model
Before delving into algorithmic details, we introduce the

formal information model supposed:

1The term active identifies the agent for which to perform rec-
ommendation computation.

• Set of agents A = {a1, a2, . . . , an}. Set A contains all
users part of the community.

• Set of products B = {b1, b2, . . . , bm}. All domain-rel-
evant products are comprised in set B. Hereby, unique
identifiers may refer to proprietary product codes from
an online store, such as Amazon.com’s ASINs, or rep-
resent globally accepted standard codes, like ISBNs.

• User ratings R1, R2, . . . , Rn. Every agent ai is assigned a
set Ri ⊆ B which contains its implicit product ratings.
Implicit ratings, such as purchase data, product men-
tions, etc., are far more common in electronic commerce
systems and online communities than explicit ratings
[2], but more difficult to cope with when trying to com-
pute personalized recommendations [19].

• Taxonomy C over set D = {d1, d2, . . . , dl}. Set D con-
tains categories for product classification. Each cate-
gory de ∈ D represents one specific topic that products
bk ∈ B may fall into. Topics express broad or narrow
categories. The partial taxonomic order C : D → 2D re-
trieves all immediate sub-categories C(de) ⊆ D for top-
ics de ∈ D. Hereby, we require that C(de) ∩ C(dh) = ∅
holds for all de, dh ∈ D, e 6= h, hence imposing tree-like
structuring, similar to single-inheritance class hierar-
chies known from object-oriented languages. Leaf top-
ics de are topics with zero outdegree, formally C(de) =
⊥, i.e., most specific categories. Furthermore, taxon-
omy C has exactly one top element>, which represents
the most general topic and has zero indegree.

• Descriptor assignment function f : B → 2D. Func-
tion f assigns a set Dk ⊆ D of product topics to every
product bk ∈ B. Note that products may possess several
descriptors, for classification into one single category
generally entails loss of precision.

3.2 Taxonomy-driven Profile Generation
The computation of user profiles by exploiting taxonomies

as powerful background knowledge represents our recom-
mender system’s most important cornerstone. Its applicabil-
ity especially addresses very large product sets, e.g., the set
of all published English books, etc.

Common collaborative filtering techniques represent user
profiles by vectors ~vi ∈ R|B|, where vik

indicates the user’s
rating for product bk ∈ B. Similarity between agents ai and aj
is computed by applying Pearson correlation [27, 21] to their
respective profile vectors. Clearly, for very large |B| and com-
paratively small |A|, this representation fails by virtue of in-
sufficient overlap of rating vectors. Even more advanced ap-
proaches, e.g., Sarwar’s singular value decomposition [24],
cannot reduce dimensionality satisfactorily for suchlike do-
mains.

We propose another, more informed approach which does
not represent users by their respective product-rating vectors
of dimensionality |B|, but by vectors of interest scores as-
signed to topics taken from taxonomy C over product cate-
gories d ∈ D.

User profile vectors are thus made up of |D| entries, which
corresponds to the number of distinct classification topics.
Moreover, making use of profile vectors representing interest
in topics rather than product instances, we can exploit the hi-
erarchical structure of taxonomy C in order to generate over-
lap and render the similarity computation more meaningful:
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for every topic dke ∈ f (bk) of products bk that agent ai has
implicitly rated, we also infer an interest score for all super-
topics of dke in user ai’s profile vector. However, score as-
signed to super-topics decays with increasing distance from
leaf node dke . We furthermore normalize profile vectors with
respect to the amount of score assigned, according the arbi-
trarily fixed overall score s.

Hence, suppose that ~vi = (vi1 , vi2 , . . . , vi|D| )
T represents the

profile vector for user ai, where vik
gives the score for topic

dk ∈ D. Then we require the following equation to hold:

∀ai ∈ A :
|D|

∑
k=1

vik
= s (1)

By virtue of agent-wise normalization for ai’s profile, score
for each product bk ∈ Ri amounts to s / |Ri|, inversely pro-
portional to the number of distinct products that ai has rated.
Likewise, for each topic descriptor dke ∈ f (bk) categorizing
product bk, we accord topic score sc(dke ) = s / (|Ri| · | f (bk)|).
Hence, topic score for bk is distributed evenly among its topic
descriptors.

Let (p0, p1, . . . , pq) denote the path from top element p0 =
> to descendant pq = dke within the tree-structured taxon-
omy C for some given dke ∈ f (bk). Hence, topic descrip-
tor dke has q super-topics. Score normalization and inference
of fractional interest for super-topics imply that descriptor
topic score sc(dke ) may not become fully assigned to dke , but
in part to all its ancestors pq−1, . . . p0, likewise. We therefore
introduce another score function sco(pm) that represents the
eventual assignment of score to topics pm along the taxon-
omy path leading from pq = dke to p0:

q

∑
m=0

sco(pm) = sc(dke ) (2)

In addition, we require that interest score sco(pm) accorded
to pm, which is super-topic to pm+1, depends on the num-
ber of siblings, denoted sib(pm+1), of pm+1. The less sib-
lings pm+1 possesses, the more interest score is accorded to
its super-topic node pm:

sco(pm) = κ · sco(pm+1)
sib(pm+1) + 1

(3)

We hereby assume that sub-topics have equal shares in their
super-topic within taxonomy C. Clearly, this assumption may
imply several issues and raise concerns, e.g., when certain
sub-taxonomies are considerably denser than others [23].

Propagation factor κ permits fine-tuning for the profile gen-
eration process, depending on the underlying taxonomy’s
depth and granularity. For instance, we apply κ = 0.75 for
Amazon.com’s book taxonomy.

Computed scores sco(pm) are used to build a profile vector
~vi of user ai, adding scores for topics in ~vi. The procedure is
repeated for every product bk ∈ Ri and every dke ∈ f (bk).

Example 1 (Profile assembly) Suppose taxonomy C as de-
picted in Figure 1, and propagation factor κ = 1. Let ai
have implicitly rated four books, namely Matrix Analysis,
Fermat’s Enigma, Snow Crash, and Neuromancer. For Ma-
trix Analysis, five topic descriptors are given, one of them
pointing to leaf topic Algebra within our small taxonomy.

Suppose that s = 1000 defines the overall accorded profile
score. Then the score assigned to descriptor Algebra amounts
to s / (4 · 5) = 50. Ancestors of leaf Algebra are Pure, Mathe-
matics, Science, and top element Books. Score 50 hence must
be distributed among these topics according to Equation 2
and 3. Result computation yields score 29.087 for topic Alge-
bra. Likewise, applying Equation 3, we get 14.543 for topic
Pure, 4.848 for Mathematics, 1.212 for Science, and 0.303 for
top element Books. These values are then used to build pro-
file vector ~vi of ai.

3.3 Neighborhood Formation
Taxonomy-driven profile generation computes flat profile

vectors ~vi ∈ [0, s]|D| for agents ai, assigning score values be-
tween 0 and maximum score s to every topic d from the set of
product categories D. In order to generate neighborhoods of
like-minded peers for the active user ai, a proximity measure
is required.

3.3.1 Measuring Proximity
Sarwar names Pearson correlation [27, 21] and cosine simi-

larity, widely known from information retrieval, as most pop-
ular approaches for measuring profile similarity. We have
opted for Pearson correlation for its ability to discover nega-
tive correlation, too, which is not the case for cosine similar-
ity.

For users ai and aj with profiles ~vi and ~vj ∈ [0, s]|D|, re-
spectively, Pearson correlation is defined as below:

c(ai, aj) =
∑
|D|
k=0 (vik

− vi) · (vjk − vj)√
∑
|D|
k=0 (vik

− vi)2 ·∑|D|k=0 (vjk − vj)2
(4)

Hereby, vi and vj give mean values for vectors ~vi and ~vj.
In our case, because of profile score normalization, both are
identical, i.e., vi = vj = s / |D|. Values for c(ai, aj) range
from −1 to +1, where negative values indicate negative cor-
relation, and positive values positive correlation, respectively.

Clearly, people who have implicitly rated many products
in common also have high similarity. For generic collabo-
rative filtering approaches, the proposition’s inversion also
holds, i.e., people who have not rated many products in com-
mon have low similarity.

On the other hand, applying taxonomy-driven profile gen-
eration, high similarity values can be derived even for pairs
of agents that have little or even no products in common.
Common sense hereby tells that the measure’s quality sub-
stantially depends on the taxonomy’s design and level of
nesting. According to our scheme, the more score two pro-
files ~vi and ~vj have accumulated in same branches, the higher
their measured similarity.

Example 2 (Interest correlation) Suppose the active user ai
has rated only one single book bm, bearing exactly one topic
descriptor that classifies bm into Algebra. User aj has read
a different book bn whose topic descriptors point to diverse
leaf nodes2 of History, denoting history of mathematics. Then
c(ai, aj) will still be reasonably high, for both profiles have
significant overlap in categories Mathematics and Science.

Negative correlation occurs when users have completely
diverging interests. For instance, in our information base
2Leaf nodes of History are not shown in Figure 1.
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Figure 1: Fragment from the Amazon book taxonomy

mined from All Consuming, we had one user reading books
mainly from the genres of Sci-Fi, Fantasy, and Artificial Intel-
ligence. The person in question was negatively correlated to
another one reading books about American History, Politics,
and Conspiracy Theories.

3.3.2 Selecting Neighbors
Neighborhood formation is followed by computing prox-

imity weights c(ai, aj) for the active user ai and agents aj ∈
A \ {ai}. Agent ai’s neighborhood, denoted by clique(ai),
hereby contains most similar peers for use in computing rec-
ommendation lists [27].

Herlocker [11] names two techniques for neighborhood se-
lection, namely correlation-thresholding and best-M-neigh-
bors. Correlation-thresholding puts users aj with similar-
ities c(ai, aj) above some given threshold t into clique(ai),
whereas best-M-neighbors picks the M best correlates for ai’s
neighborhood.

We opted for best-M-neighbors, since correlation-thresh-
olding implies diverse unwanted effects when sparsity pre-
vails [11].

3.4 Recommendation Generation
Candidate products for ai’s personalized recommendation

list are taken from its neighborhood’s implicit ratings, avoid-
ing products that ai already knows:

Bi =
⋃
{Rj | aj ∈ clique(ai)} \ Ri (5)

Candidate products bk ∈ Bi are then weighted according
to their relevance for ai. Hereby, the relevance of products
bk ∈ Bi for ai, denoted wi(bk), depends on various factors.
Most important, however, are two aspects:

• User proximity. Similarity measures c(ai, aj) of all those
agents aj that “recommend” product bk to the active
agent ai are of special concern. The closer these agents
to ai’s interest profile, the higher the relevance of bk for
ai. We borrowed the latter intuition from common col-
laborative filtering techniques [12].

• Product proximity. Second, measures cb(ai, bk) of prod-
uct bk’s closeness with respect to ai’s interest profile are
equally significant. Being purely content-based, this

measure supplements the overall recommendation gen-
eration process with more fine-grained filtering facili-
ties: mind that even highly correlating agents may ap-
preciate items beyond the active user’s specific inter-
ests. Otherwise, these agents would have identical in-
terest profiles, not just similar ones.
The computation of cb(ai, bk) follows from user similar-
ity detection. For this purpose, we create a “dummy”
user aθ with Rθ = {bk} and define cb(ai, bk) := c(ai, aθ).

Relevance wi(bk) of product bk for the active user ai is then
defined as follows:

wi(bk) =
q · cb(ai, bk) ·∑aj∈Ai(bk) c(ai, aj)

|Ai(bk)|+ ΥR
, (6)

where

Ai(bk) = {aj ∈ clique(ai) | bk ∈ Rj}
and

q = (1.0 + | f (bk)| · ΓT)

Hereby, variables ΥR and ΓT represent fine-tuning parame-
ters that allow for customizing the recommendation process.
Parameter ΥR penalizes products occurring infrequently in
rating profiles of neighbors aj ∈ clique(ai). Hence, large
ΥR makes popular items acquire higher relevance weight,
which may be suitable for users wishing to be recommended
well-approved and common products instead of rarities. On
the other hand, low ΥR treats popular and uncommon, new
products in exactly the same manner, helping to alleviate the
latency problem [29]. For experimental analysis, we tried
values between 0 and 2.5.

Parameter ΓT rewards products bk with extensive content
descriptions, i.e., large | f (bk)|. Variable ΓT proves useful be-
cause profile score normalization and super-topic score infer-
ence may penalize products bk containing several, detailed
descriptors d ∈ f (bk), and favor products having few, more
general topic descriptors indicating their content. Reward
through ΓT is assigned linearly by virtue of (| f (bk)| · ΓT).
The implementation of exponential decay appears likewise
reasonable, therefore reducing ΥR’s gain in influence when
| f (bk)| becomes larger. However, we have not tried this ex-
tension yet.
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Eventually, product relevance weights wi(bk) computed for
every bk ∈ Bi are used to produce the active user ai’s recom-
mendation list. The injective function Pwi : {1, 2, . . . , |Bi|} →
B reflects recommendation ranking in descending order, i.e.,
Pwi (1) = bh ⇒ ∀bk ∈ Bi : wi(bh) ≥ wi(bk). For top-N recom-
mendations, all entries Pwi (k), k > N are discarded.

3.5 Topic Diversification
An approach we call “topic diversification” constitutes an-

other major contribution of our work. This technique rep-
resents an optional procedure to supplement recommenda-
tion generation and to enhance the computed list’s utility for
agent ai.

To our best knowledge, no similar approaches exist or have
been documented in literature affiliated with recommender
systems. The underlying idea of topic diversification hereby
refers to providing an active user ai with recommendations
from all major topics that ai has declared specific interest in.
The following example intends to motivate our method:

Example 3 (Topic overfitting) Suppose that ai’s profile con-
tains books from Medieval Romance, Industrial Design, and
Travel. Suppose Medieval Romance has a 60% share in ai’s
profile, Industrial Design and Travel have 20% each. Con-
sequently, Medieval Romance’s predominance will result in
most recommendations originating from this super-catego-
ry, giving way for Industrial Design and Travel not before all
books from like-minded neighbors fitting well into the Me-
dieval Romance shape have been inserted into ai’s recom-
mendations.

We observe the above issue with many recommender sys-
tems relying upon content-based and hybrid filtering facili-
ties. For purely collaborative approaches, recommendation
diversification according to the active user ai’s topics of in-
terest becomes even less controllable. Remember that collab-
orative filtering does not consider the content of products but
only ratings assigned. Hence, diversification and collabora-
tive filtering intrinsically exclude each other.

3.5.1 Recommendation Dependency
In order to implement topic diversification, we assume that

recommended products Pwi (o) and Pwi (p), o, p ∈ N, along
with their content descriptions, effectively do exert an impact
on each other, which is commonly ignored by existing ap-
proaches: usually, only relevance weight ordering o < p ⇒
wi(Pwi (o)) ≥ wi(Pwi (p)) must hold for recommendation list
items, no other dependencies are assumed.

To our best knowledge, Brafman et al. [4] count among the
only researchers recognizing the dependence between rec-
ommendations. Their approach considers recommendation
generation as inherently sequential and uses Markov Deci-
sion Processes (MDP) in order to model interdependencies
between recommendations. However, apart from the idea
of dependence between items Pwi (o), Pwi (p), Brafman’s fo-
cus significantly differs from our own, emphasizing the eco-
nomic utility of recommendations with respect to past and
future purchases.

In case of our topic diversification technique, recommen-
dation interdependence signifies that an item b’s current “dis-
similarity” with respect to preceding recommendations plays
an important role and may influence the “new” ranking or-
der. Algorithm 1 depicts the entire procedure, a brief textual
sketch is given in the next few paragraphs.

3.5.2 Topic Diversification Algorithm
Function Pwi∗ denotes the new recommendation list, re-

sulting from applying topic diversification. For every list en-
try z ∈ [2, N], we collect those products b from the candidate
products set Bi that do not occur in positions o < z in Pwi∗
and compute their similarity with set {Pwi∗(k) | k ∈ [1, z[ },
which contains all new recommendations preceding rank z.
We hereby compute this similarity, denoted c∗(b), by apply-
ing our scheme for taxonomy-driven profile generation and
proximity measuring presented in sections 3.2 and 3.3.1.

procedure diversify (Pwi , ΘF) {
Bi ← {Pwi (k) | k ∈ [1, N] }; Pwi∗(1)← Pwi (1);

for z← 2 to N do

set B′i ← Bi \ {Pwi∗(k) | k ∈ [1, z[ };
∀b ∈ B′: compute c∗(b, {Pwi∗(k) | k ∈ [1, z[ });

compute Pc∗ : {1, 2, . . . , |B′i |} → B′i using c∗;

for all b ∈ B′i do

P rev−1

c∗ (b)← |B′i | − P−1
c∗ (b);

w∗i (b)← P−1
wi

(b) · (1−ΘF) + P rev−1

c∗ (b) ·ΘF;

end do

Pwi∗(z)← min{w∗i (b) | b ∈ B′i};
end do

return Pwi∗;
}

Algorithm 1: Sequential topic diversification

Sorting all products b according to c∗(b) in reverse order,
we hence obtain dissimilarity rank P rev

c∗ . This rank is then
merged with the original recommendation rank Pwi accord-
ing to diversification factor ΘF, yielding final rank Pwi∗. Fac-
tor ΘF defines the impact that dissimilarity rank P rev

c∗ exerts
on the eventual overall output. Large ΘF ∈ [0.5, 1] favors
diversification over ai’s original relevance order, while low
ΘF ∈ [0, 0.5[ produces recommendation lists closer to the
original rank Pwi . For experimental analysis, we used pa-
rameterizations ΘF ∈ [0.2, 0.4].

The effect of dissimilarity bears traits similar to that of “os-
motic pressure” known from molecular biology [30]: steady
insertion of products taken from one specific area of inter-
est into the recommendation list increases the “pressure” for
items from other domains. When pressure gets sufficiently
high for one of these domains d, its best products b may “dif-
fuse” into the recommendation list, even though their orig-
inal rank P−1

wi
(b) might be inferior to candidates from the

prevailing domain. Consequently, pressure for d decreases,
paving the way for another domain whose pressure is about
to reach its peak.

4. EXPERIMENTS AND EVALUATION
The following sections present empirical results obtained

from evaluating our approach. Core engine parts of our sys-
tem, along with vaious other tools for data collection and
screen scraping, were implemented in Java, small portions in
Perl. PHP frontends enable remote access via Web interfaces.
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Besides our own, taxonomy-based approach, we also im-
plemented three other recommender algorithms for compar-
ison.

4.1 Data Acquisition
Experimentation, parameterization and algorithmic fine-

tuning were conducted on “real-world” data, obtained from
All Consuming3, an open community addressing people in-
terested in reading books. We extracted additional, taxo-
nomic background knowledge, along with content descrip-
tions of those books, from Amazon.com.

The entire dataset comprises 2, 783 users, representing ei-
ther “real”, registered members of All Consuming or per-
sonal weblogs collected by the community’s crawlers, and
14, 591 ratings addressing 9, 237 diverse book titles. All rat-
ings are implicit, i.e., non-quantifiable with respect to the ex-
tent of appreciation of respective books. On average, users
provided 5.24 book ratings.

Amazon.com’s book classification taxonomy, which is tree-
structured and thus limited to “single inheritance” of con-
cepts, contained 13, 525 distinct topics after application of
various data cleansing procedures and duplicate removal.
Moreover, our crawling tools collected 27, 202 topic descrip-
tors from Amazon.com, relating 8, 641 books to this taxon-
omy. Consequently, for 596 of those 9, 237 books mentioned
by All Consuming’s users, no content information was ob-
tained from Amazon.com, signifying only 6.45% defection.
We eliminated these books from our dataset.

On average, 3.15 topic descriptors were found for books
available on Amazon.com, thus making content descriptions
sufficiently explicit and reliable for profile generation.

To make the analysis data obtained from our performance
trials more accurate, we relied upon an external Web-service4

to spot ISBNs referring to the same book, but different edi-
tions, e.g., hardcover and paperback. Those ISBNs were then
mapped to one single representative ISBN.

4.2 Evaluation Framework
Evaluation methods for recommender systems are mani-

fold, comprising statistical techniques to measure deviations
of predicted and actual rating values [27], like MAE and ROC
metrics [13], and approaches to estimate the utility of the rec-
ommendation list for the active user, e.g., precision and re-
call known from information retrieval, and Breese score [5],
likewise. Since the prediction of product ratings only makes
sense when dealing with explicit ratings, we have committed
ourselves to the latter option, i.e., evaluating the quality of
the generated recommendation lists.

4.2.1 Benchmark Systems
Besides our own, taxonomy-driven proposal, we imple-

mented three other recommender algorithms: one “naive”,
random-based system offering no personalization at all and
defining the bottom line, one purely collaborative approach,
typically used for evaluations, and one hybrid method, ex-
ploiting content information provided by our dataset.

4.2.1.1 Bottom Line Definition.
For any given user ai, the system randomly selects an item

b ∈ B \ Ri for a′is top-N list Pi : {1, 2, . . . , N} → B. Clearly,

3All Consuming is reachable via http://www.allconsuming.net.
4See http://www.oclc.org/research/projects/xisbn/.

as is the case for every other presented approach, products
may not occur more than once in the recommendation list,
i.e., ∀o, p ∈ {1, 2, . . . , N}, o 6= p : Pi(o) 6= Pi(p) holds.

The random-based approach shows results obtained when
no filtering takes place, constituting the base case that “non-
naive” algorithms are bound to surpass.

4.2.1.2 Collaborative Filtering Algorithm.
The GroupLens project [21] first introduced an automated,

purely collaborative system using a neighborhood-based al-
gorithm, which commonly serves as baseline benchmarking
system for evaluation purposes today.

The original GroupLens system used Pearson correlation
to weight the similarity between the active user ai and all
other agents aj ∈ A \ {ai}, selected best-M neighbors to form
ai’s neighborhood clique(ai), and computed a final predic-
tion by performing a weighted average of deviations from
the neighbor’s mean. Since the algorithm only works for
scenarios featuring explicit ratings, Sarwar [24] proposed an
adaptation known as “most frequent items”.

We adopted Sarwar’s version which computes relevance
weights wi(bk) for books bk from a′is candidates set Bi accord-
ing to the following scheme. Assume that Ai(bk) ⊆ clique(ai)
contains all neighbors of ai who have implicitly rated bk:

wi(bk) = ∑
aj∈ Ai(bk)

c(ai, aj) (7)

Hereby, we measure user similarity c(ai, aj) according to
Pearson correlation, introduced in Section 3.3.1. Profile vec-
tors ~vi, ~vj for agents ai, aj, respectively, represent implicit rat-
ings for every product bk ∈ B, hence ~vi, ~vj ∈ {0, 1}|B|.

4.2.1.3 Hybrid Recommender Approach.
The third competing system exploits collaborative as well

as content-based filtering facilities, hence its hybrid nature.
The algorithmic clockwork mimics Pazzani’s “collaboration
via content” proposal [20], representing user profiles ~vi by
collections of descriptive terms, along with their frequency
of occurrence.

Hereby, descriptive terms for books bk correspond to topic
descriptors f (bk), originally relating book content to taxon-
omy C over categories D. Profile vectors ~vi ∈N|D| for agents
ai thus take the following shape:

∀d ∈ D : vid
= |{bk ∈ Ri | d ∈ f (bk)}| (8)

For neighborhood formation, standard Pearson correlation
is applied to these content-driven profile vectors. Relevance
is then defined as below:

wi(bk) =
cb(ai, bk) ·∑aj∈ Ai(bk) c(ai, aj)

|Ai(bk)|
(9)

Mind that Equation 9 presents a special case of Equation
6, assuming ΓT = 0 and ΥR = 0. Essentially, the depicted
hybrid approach constitutes a simplistic adaptation of our
taxonomy-driven system. Notable differences pertain to the
hybrid filtering algorithm’s lack of super-topic score infer-
ence, one major cornerstone of our novel method. Further-
more, the simplisitc version lacks extensive parameterization
and topic diversification.
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Breese (5) CF RND Taxo Hybrid

5 0.4671403 0.07992878 0.73712384 0.54706982
6 0.49904028 0.08445278 0.77351385 0.56813876
7 0.52772069 0.09034887 0.80903637 0.58316278
8 0.56629207 0.096629 0.86292289 0.61797814
9 0.59322026 0.10411599 0.91041327 0.64648979

10 0.60677077 0.10937477 0.92448083 0.65364651
11 0.64971746 0.11581896 0.97740287 0.68361653
12 0.65671633 0.11940273 0.99403154 0.69253808
13 0.68471326 0.12420355 1.04777247 0.71974596
14 0.72125426 0.13240387 1.11150012 0.73519239
15 0.74907739 0.14022108 1.15867345 0.76383846
16 0.78486044 0.14741003 1.21514132 0.80876578
17 0.81659377 0.15720486 1.30131204 0.85152925
18 0.84186034 0.16279031 1.3581416 0.88837302
19 0.85990322 0.16908173 1.38164459 0.8888898
20 0.88265283 0.16836697 1.43367561 0.92347033
21 0.92513345 0.17112261 1.48663321 0.96791543
22 0.94915224 0.18079056 1.53107571 1.00565082
23 0.98214247 0.19047577 1.5773832 1.02976296
24 0.99378848 0.18012378 1.61490914 1.04969057
25 1.03947339 0.190789 1.67105493 1.04605344
26 1.06206857 0.19999951 1.73103679 1.08275946
27 1.09420244 0.21014441 1.78985739 1.05797159
28 1.11193988 0.21641738 1.82089791 1.07462751
29 1.11718711 0.21874945 1.89843995 1.10937576
30 1.1439996 0.21599947 1.94400251 1.12800074
31 1.1749996 0.22499945 2.00833599 1.16666739
32 1.21551683 0.23275805 2.06034763 1.19827662
33 1.20370331 0.24999939 2.11111392 1.13888956
34 1.24999959 0.25961475 2.18269526 1.15384688
35 1.28282782 0.2727266 2.22222548 1.17171806
36 1.38636296 0.2954538 2.38636717 1.18181882
37 1.30952293 0.29761824 2.14285997 1.17857199
38 1.37662258 0.32467445 2.28571719 1.27272784
39 1.38888796 0.34722128 2.37500305 1.30555623
40 1.40844977 0.35211172 2.40845379 1.32394435
41 1.43478161 0.36231786 2.47826405 1.30434871
42 1.47761091 0.35820797 2.50746584 1.32835907
43 1.49230667 0.36922976 2.55384926 1.35384694
44 1.53225702 0.38709571 2.66129364 1.38709748
45 1.55737599 0.39344154 2.7049214 1.40983678
46 1.53448178 0.41379197 2.75862396 1.3965524
47 1.59999903 0.43636244 2.81818513 1.43636437
48 1.69230667 0.4615372 2.90384944 1.50000087
49 1.69230667 0.4615372 2.90384944 1.50000087
50 1.75999893 0.43999886 2.94000329 1.52000069
51 1.85106283 0.4680839 3.0425565 1.59574544
52 1.89130333 0.47825963 3.10869904 1.60869632
53 1.91111 0.46666529 3.08889236 1.60000066
54 1.95454432 0.47727132 3.13636724 1.63636431
55 1.99999884 0.48837065 3.18605015 1.6744193
56 2.07316949 0.48780324 3.31707704 1.73170805
57 2.12820395 0.51281879 3.38461974 1.76923153
58 2.10526203 0.52631402 3.3947411 1.78947463
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Recall CF RND Taxo Hybrid

5 2.09925935 0.30685434 3.57394716 3.18102834
6 2.15332702 0.29320344 3.40140824 2.97681411
7 2.20099289 0.3136735 3.28980429 2.75343178
8 2.27389644 0.29833541 3.28569714 2.72117305
9 2.23216577 0.32145098 3.32236254 2.71409849

10 2.088243 0.31968584 3.00035583 2.50240471
11 2.1804676 0.3185295 3.00038693 2.46023698
12 2.02553031 0.30674485 2.78249931 2.30126736
13 2.02299227 0.30602837 2.85181769 2.29593847
14 2.01586512 0.2999754 2.85297695 2.12865939
15 2.0364826 0.31768612 2.8984172 2.15593648
16 2.03939046 0.31643966 2.89032345 2.22148287
17 1.96602936 0.3177279 2.9714907 2.21656078
18 1.92350823 0.30740973 3.00994486 2.25236848
19 1.91733164 0.3192903 2.96524117 2.16228353
20 1.88888306 0.28618974 2.98710048 2.19860255
21 1.97979187 0.27322584 3.050651 2.30441764
22 1.96170146 0.28866233 3.03656424 2.35551538
23 1.9894118 0.30412638 3.050428 2.33884684
24 1.94547415 0.24281548 3.05883222 2.32873535
25 2.00803566 0.25719271 3.08205275 2.20346294
26 1.99463072 0.26960891 3.14808294 2.25466485
27 2.0136823 0.28328473 3.19665734 2.05502268
28 2.01906631 0.29174099 3.20750331 2.05666564
29 1.9418361 0.27416654 3.33181332 2.10098907
30 1.98844017 0.25408012 3.41177684 2.12474613
31 2.01573661 0.2646668 3.49837905 2.18549941
32 2.08524477 0.27379324 3.56154201 2.23212602
33 1.90902126 0.29407422 3.50349138 1.9256892
34 1.98244515 0.30538476 3.61076875 1.91733705
35 1.99598888 0.32080824 3.58630201 1.89873302
36 2.0831501 0.32844189 3.70991553 1.74646497
37 1.78694086 0.31006847 2.89168216 1.65956242
38 1.81488268 0.33825651 3.01077774 1.773326
39 1.72266299 0.36174655 3.02640784 1.74270467
40 1.74692585 0.36684157 3.06903331 1.76724981
41 1.76132956 0.37747466 3.15799079 1.67354796
42 1.81390656 0.35142935 3.14446498 1.68619122
43 1.79279642 0.36224256 3.16429462 1.6996124
44 1.8033801 0.37977042 3.28156363 1.71016712
45 1.83294371 0.38599617 3.33535975 1.73820265
46 1.69786728 0.40596149 3.31630761 1.63653936
47 1.75411482 0.42810484 3.30325814 1.64499742
48 1.85531375 0.4528032 3.33571118 1.70143989
49 1.85531375 0.4528032 3.33571118 1.70143989
50 1.92952631 0.39091596 3.30913993 1.68949735
51 2.01013479 0.41586805 3.35014907 1.7547846
52 2.05383338 0.42490865 3.42297839 1.74945376
53 2.05907008 0.39394694 3.33338859 1.70752265
54 2.10586713 0.40290028 3.36782534 1.74632998
55 2.15484078 0.41227006 3.40386359 1.78694231
56 2.21560916 0.3880348 3.52556007 1.82976448
57 2.23987554 0.40793402 3.51987893 1.83035872
58 2.15527956 0.41866913 3.47295394 1.83067963
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Figure 2: Unweighted precision and recall metrics

4.2.2 Experiment Setup
The evaluation framework we established intends to com-

pare the “utility” of recommendation lists generated by all
four recommender systems. Measurement is achieved by ap-
plying metrics well-known from information retrieval, i.e.,
precision and recall, implemented according to Sarwar’s pro-
posal [24], and Breese’s half-life utility metric [13], known as
Breese score [5] or weighted recall.

Hereby, we borrowed various ideas from machine learning
cross-validation methods. First, we selected all users ai with
more than five ratings and discarded those having less, ow-
ing to the fact that reasonable recommendations are beyond
feasibility for these cases.

Next, we applied K-folding, dividing every user a′is im-
plicit ratings Ri into K = 5 disjoint “slices” of preferably
equal size. Hereby, four randomly chosen slices constitute
agent ai’s training set Rx

i , thus containing approximately 80%
of implicit ratings b ∈ Ri. These ratings then define ai’s pro-
file from which final recommendations are computed. For
recommendation generation, ai’s residual slice (Ri \ Rx

i ) is
retained and not used for prediction. This slice, denoted Tx

i ,
contains about 20% of ai’s ratings and constitutes the test set,
i.e., those products the recommendation algorithms intend
to “guess”.

For our experiments, we considered all five combinations
(Rx

i , Tx
i ), 1 ≤ x ≤ 5 of user ai’s slices, hence computing five

complete recommendation lists for every ai that suffices the
before-mentioned criteria, i.e., exactly those ai having implic-
itly rated at least five books.

4.2.3 Parameterization
The size for neighborhood formation was set to M = 20,

i.e., | clique(ai)| ≤ 20, and we provided top-20 recommen-
dations for each active user’s training set Rx

i . Similarity be-
tween profiles, based upon Rx

i and the original ratings Rj of
all other agents aj, was hereby computed anew for each train-
ing set Rx

i of ai.
For performance trial purposes, we parameterized our tax-

onomy-driven recommender system’s profile generation pro-
cess by assuming propagation factor κ = 0.75, which encour-
ages super-topic score inference. We opted for κ < 1 since
Amazon.com’s book taxonomy is deeply-nested and topics
tend to have numerous siblings, which makes it rather diffi-
cult for topic score to reach higher levels.

For recommendation generation, we set parameter ΥR =

0.25, i.e., books occurring infrequently in ratings issued by
the active user’s neighbors were therefore not overly penal-
ized. Generous reward was accorded for books b bearing
highly explicit content descriptions, i.e., having large | f (b)|,
by assuming ΓT = 0.1. Hence, a 10% bonus was granted for
every additional topic descriptor. For topic diversification,
we adopted ΘF = 0.33.

No parameterizations were required for the random-based,
purely collaborative, and hybrid approaches.

4.2.4 Evaluation Metrics
After computing top-20 lists Px

i : {1, 2, . . . , 20} → B for
combinations (Rx

i , Tx
i ), the actual evaluation of Px

i ’s quality
took place.

We adopted evaluation measures similar to precision and
recall known from information retrieval. Remember that for
some given number of returned items, recall indicates the
percentage of relevant items that were returned, and preci-
sion gives the percentage of returned items that are relevant.

Sarwar [24] presents some adapted variant of recall, record-
ing the percentage of test set products b ∈ Tx

i occurring in
recommendation list Px

i with respect to the overall number
of test set products |Tx

i |:
5

Recall = 100 ·
|Tx

i ∩ =Px
i |

|Tx
i |

(10)

Accordingly, precision represents the percentage of test set
products b ∈ Tx

i occurring in Px
i with respect to the size of

the recommendation list:

Precision = 100 ·
|Tx

i ∩ =Px
i |

|=Px
i |

(11)

Breese [5] further refines Sarwar’s adaptation of recall by
introducing weighted recall, or Breese score. Breese hereby
proposes that the expected utility of a recommendation list
is simply the probability of viewing a recommended product
that is actually relevant, i.e., taken from the test set, times its
utility, which is either 0 or 1 for implicit ratings.

Breese furthermore posits that each successive item in a list
is less likely to be viewed by the active user with exponential

5Symbol =Px
i denotes the image of map Px

i , i.e., all books part
of the recommendation list.
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Breese (10) CF RND Taxo Hybrid

5 1.29427495 0.16975086 2.64412113 2.09079894
6 1.33621897 0.14504747 2.58886875 1.96962405
7 1.3544723 0.15517399 2.56740987 1.85128593
8 1.40539421 0.15941654 2.58919537 1.85389115
9 1.39833613 0.17176843 2.6618142 1.8937522

10 1.34962943 0.17685362 2.46237816 1.75262419
11 1.42299335 0.18019928 2.48772408 1.74898871
12 1.33283753 0.17811731 2.30632492 1.69014186
13 1.34257196 0.18094732 2.37885236 1.67749299
14 1.37057472 0.17335063 2.41760397 1.60240506
15 1.39215949 0.18358535 2.44001489 1.65442854
16 1.40580331 0.19158667 2.44087139 1.70458443
17 1.38639753 0.18093777 2.54088386 1.72781798
18 1.3813139 0.18297222 2.5909104 1.77596723
19 1.37089092 0.19004361 2.57706446 1.7171881
20 1.34556085 0.1827844 2.61306722 1.76000474
21 1.41032046 0.18140914 2.68021622 1.84471085
22 1.39184461 0.19165824 2.69981036 1.91931885
23 1.40053345 0.20192565 2.70627937 1.89828101
24 1.39420985 0.16253384 2.73844159 1.9214737
25 1.46008587 0.17215756 2.75912846 1.75251208
26 1.43631516 0.18046861 2.81344337 1.80325202
27 1.45117118 0.18962281 2.84930998 1.62144497
28 1.47217798 0.1952832 2.88573797 1.64622381
29 1.44762727 0.18890438 2.98970737 1.70774077
30 1.48237033 0.18409105 3.06146035 1.72125123
31 1.51474831 0.19176151 3.16182034 1.76205859
32 1.56698101 0.19837398 3.24707019 1.80911303
33 1.48680083 0.21306835 3.23719263 1.61851221
34 1.54398548 0.22126329 3.35092582 1.63282434
35 1.56472599 0.2324382 3.41074075 1.66544602
36 1.62084315 0.24277859 3.60672847 1.54087732
37 1.4093609 0.22963804 2.91200406 1.48149191
38 1.47729919 0.25051423 3.04574217 1.58222187
39 1.4241175 0.26791105 3.11531623 1.60594888
40 1.4441755 0.27168445 3.15919392 1.62856788
41 1.45660967 0.27955936 3.25076476 1.6099541
42 1.50009056 0.26881386 3.2526253 1.6252819
43 1.50531586 0.27708505 3.2693831 1.62570522
44 1.52703905 0.29049239 3.41251583 1.63219716
45 1.55207248 0.29525456 3.46845871 1.65895449
46 1.48860835 0.31052635 3.46583237 1.59018452
47 1.55273098 0.32746415 3.49625476 1.62065669
48 1.64231162 0.34635631 3.54420187 1.69867495
49 1.64231162 0.34635631 3.54420187 1.69867495
50 1.70800408 0.32762699 3.54592595 1.67168777
51 1.80343104 0.34853935 3.61583844 1.75321748
52 1.84263606 0.35611629 3.69444362 1.73988888
53 1.84435324 0.31460292 3.64904817 1.72072389
54 1.88627036 0.32175299 3.71031406 1.75983125
55 1.93013712 0.32923562 3.7585887 1.80075756
56 1.99011528 0.29104668 3.91868208 1.8593032
57 2.04359439 0.30597215 4.01485332 1.88633981
58 2.00432151 0.31402404 3.98635651 1.92017581
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Breese (5) CF RND Taxo Hybrid

5 0.87189363 0.10747853 2.19069191 1.53313982
6 0.90961531 0.07775511 2.18376299 1.46099669
7 0.91553181 0.0831836 2.20671966 1.40450355
8 0.952339 0.0893644 2.24740077 1.42427866
9 0.96317917 0.09628852 2.34041124 1.48394834

10 0.95507782 0.10179204 2.20579738 1.36945715
11 1.01662769 0.10658223 2.24718924 1.38629633
12 0.97001714 0.10857336 2.09001652 1.36923777
13 0.98447044 0.11270992 2.16593609 1.36283632
14 1.03084524 0.10739739 2.23354093 1.34091708
15 1.04785882 0.11373819 2.24585939 1.40371717
16 1.06381797 0.12163884 2.26810148 1.44670984
17 1.06011072 0.10450181 2.38803686 1.49608834
18 1.07582469 0.10902481 2.44887013 1.54832126
19 1.06149143 0.11323833 2.46476118 1.50873617
20 1.03129566 0.1143281 2.50569617 1.55994441
21 1.08093021 0.11682242 2.58581907 1.63502195
22 1.05871114 0.12342255 2.62574365 1.71880377
23 1.05687233 0.13003448 2.62567126 1.69421916
24 1.05630603 0.10016751 2.67632149 1.72911892
25 1.11482327 0.10609848 2.70312932 1.52145154
26 1.07966728 0.11122047 2.75445129 1.57588445
27 1.09491292 0.11686209 2.77596953 1.41745118
28 1.11988255 0.12035051 2.82969985 1.45241081
29 1.11994351 0.11961555 2.92388574 1.51709348
30 1.14682215 0.12002512 2.994059 1.5256584
31 1.18072571 0.12502616 3.10509171 1.55473389
32 1.22144039 0.12933741 3.20420737 1.60304109
33 1.19358102 0.13891796 3.22705873 1.48905941
34 1.23948798 0.14426096 3.3479401 1.51843291
35 1.26821468 0.15154686 3.44484908 1.57734158
36 1.30297812 0.16139353 3.70958565 1.47581105
37 1.14422145 0.15305168 3.05260651 1.43466265
38 1.22498158 0.16696546 3.20280957 1.53568158
39 1.19558766 0.17856029 3.30597869 1.59463003
40 1.21242693 0.18107522 3.35254177 1.61708961
41 1.22582998 0.18632378 3.44971689 1.63801142
42 1.26242192 0.18397008 3.46075598 1.66028248
43 1.28340359 0.1896307 3.47452348 1.64609483
44 1.30787257 0.19880638 3.63781553 1.65177855
45 1.32931311 0.2020655 3.69745185 1.67885689
46 1.28876657 0.21251716 3.70768538 1.61777084
47 1.35285103 0.22410901 3.77818925 1.6592171
48 1.43090013 0.23703837 3.83617397 1.75029527
49 1.43090013 0.23703837 3.83617397 1.75029527
50 1.48813613 0.23627027 3.85618898 1.709332
51 1.5800672 0.25135135 3.94718781 1.80621293
52 1.61441649 0.25681551 4.03299624 1.78606023
53 1.61537016 0.20379053 4.00545952 1.79030256
54 1.65208312 0.20842213 4.08756371 1.83099125
55 1.69050365 0.21326915 4.15189147 1.87357245
56 1.75017651 0.15921058 4.34484044 1.94885074
57 1.81745528 0.16737523 4.50279185 2.00292821
58 1.80627828 0.17177984 4.49411008 2.05198152
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Figure 3: Weighted recall, using half-life α = 10 and α = 5

decay. The expected utility of a ranked list Px
i of products is

as follows:

H(Px
i , Tx

i ) = ∑
b∈ (Tx

i ∩=Px
i )

1

2(Px−1
i (b)−1)/(α−1)

(12)

Parameter α denotes the viewing half-life. Half-life is the
number of the product on the list such that there is a 50%
chance that the active agent, represented by training set Rx

i ,
will review that product. Finally, the weighted recall of Px

i
with respect to Tx

i is defined as below:

BScore(Px
i , Tx

i ) = 100 ·
H(Px

i , Tx
i )

∑
|Tx

i |
k=1

1
2(k−1)/(α−1)

(13)

Interestingly, when assuming α = ∞, Breese score is iden-
tical to Sarwar’s definition of recall.

In order to obtain “global“ metrics, i.e., precision, recall,
and Breese score for the entire system and not only one sin-
gle agent, we averaged the respective metric values for all
evaluated users.

4.2.5 Result Analysis
Performance was mechanically measured by computing

unweighted precision and recall according to Sarwar’s def-
inition, and Breese’s weighted recall, first assuming half-life
α = 5, then α = 10, for all four recommenders and all combi-
nations of training sets and test sets. Results are displayed in
Figure 2 and 3.

For each indicated chart, the horizontal axis expresses the
minimum number of ratings that users were required to have
issued so they were considered for recommendation gener-
ation and evaluation. Having discarded all users with less
than five ratings during data preprocessing, our performance
trials commence with all agents having at least five ratings.
Note that larger x-coordinates hence imply that less agents
were considered for computing the respective data points.

Results obtained seem to prove our hypothesis that taxon-
omy-driven recommendation generation outperforms com-
mon approaches when dealing with sparse product rating
information. All four metrics position our novel approach
significantly above its purely collaborative and hybrid coun-
terparts.

Hereby, we observe one considerable cusp common to all
four charts and particularly pronounced for the taxonomy-

based curves. The sudden drop happens when users bearing
exactly 36 implicit ratings become discarded. On average, for
taxonomy-driven recommendation generation, these agents
have considerably high ranks with respect to all four met-
rics applied. Removal thus temporarily lowers the respective
curves.

More detailed, metric-specific analysis follows in subse-
quent paragraphs.

4.2.5.1 Precision.
Surprisingly, precision increases even for the random rec-

ommender when ignoring users with fewer ratings. The rea-
son for this phenomenon lies in the nature of the precision
metric: for users ai with test sets Tx

i smaller than the number
|Px

i | of recommendations received, i.e., |Tx
i | < 20, there is not

even a chance of achieving 100% precision.
Analysis of unweighted precision, given on the left-hand

side of Figure 2, shows that the gap between our taxonomy-
driven approach and its collaborative and hybrid rivals be-
comes even larger when users are required to have numer-
ous books rated. Agents with small numbers of ratings tend
to interfere prediction accuracy as no proper “guidance” for
neighborhood selection and interest definition can be pro-
vided.

Differences between the collaborative and the hybrid meth-
od are less significant and rather marginal. However, the
first increasingly outperforms the former when making rec-
ommendations for agents with numerous ratings.

4.2.5.2 Unweighted and Weighted Recall.
Unweighted recall, shown on the right side of Figure 2,

presents a slightly different scenario: even though the per-
formance gap between taxonomy-driven recommender and
both other, non-naive methods still persists, this gap does
not become larger for increasing x. Collaborative filtering,
slightly inferior to its hybrid pendant at first, overtakes the
latter when considering agents with numerous ratings only.
Similar observations have been made by Pazzani [20].

Figure 3 allows more fine-grained analysis with respect to
the accuracy of rankings. Remember that unweighted recall
is equivalent to Breese score when assuming half-life α = ∞.
While pure collaborative filtering shows largely insensitive
to decreasing α, hybrid and taxonomy-driven recommenders
do not. Assuming α = 10, the first derivation of the latter two
approaches improves over their corresponding recall curves
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for increasing x-coordinates. This notable development be-
comes even more obvious when further decreasing half-life
to α = 5.

Consequently, in case of content-exploiting methods, actu-
ally relevant products b ∈ =Px

i ∩ Tx
i have the tendency to

appear “earlier” in recommendation lists Px
i , i.e., have com-

paratively small distance from the top rank. On the other
hand, relevant products seem to be more evenly distributed
among top-20 ranks for collaborative filtering.

5. DEPLOYMENT AND ONLINE STUDY
On February 9, 2004, our taxonomy-driven recommender

system was deployed into the All Consuming community6

and now computes personalized recommendations for reg-
istered users, based upon their book rating profile. Access
facilities are offered through diverse PHP scripts that query
an RDBMS containing rating profiles, neighborhood infor-
mation, and precomputed recommendations, likewise.

5.1 Online User Satisfaction Study
Besides our taxonomy-driven approach, we furthermore

implanted both other non-naive approaches documented be-
fore into All Consuming. Registered users hence may access
three distinct lists of top-20 recommendations, customized
according to their personal rating profile. We utilized the
latter system setup to conduct online “in situ” performance
comparisons, going beyond offline statistical measures. Of-
fline evaluation methods are useful, though not able to mea-
sure real user satisfaction [10].

Online evaluations of recommender systems performance
have already been made before by Swearingen and Sinha
[28], comparing human perception, i.e., approval or disap-
proval, of recommendation lists provided by several popular
recommenders. Studies were based on 19 people assessing
six different commercial systems.

5.1.1 Evaluation Setup
For online evaluation, we demanded All Consuming mem-

bers to rate all recommendations provided on a 5-point likert
scale, ranging from −2 to +2. Hereby, raters were advised
to give maximum score for recommended books they had al-
ready read, but not indicated in their reading profile. More-
over, users were given the opportunity to return an “overall”
satisfaction verdict for each recommendation list. The addi-
tional rating served as an instrument to also reflect the make-
up and quality of list composition. Consequently, members
could provide 63 rating statements each.

5.1.2 Result Analysis
51 All Consuming members, not affiliated with our depart-

ment and university, volunteered to participate in our study
by August 29, 2004. They provided 2, 041 ratings about rec-
ommendations they were offered, and 123 additional, over-
all list quality verdicts. Since not every user rated all 60
books recommended by our three diverse systems, we as-
sumed neutral votes for recommended books not rated. Fur-
thermore, in order not to bias users towards our taxonomy-
driven approach, we assigned letters “A”, “B”, “C” to rec-
ommendation lists, not revealing any information about the
algorithm operating behind the scenes.
6Our recommenders are reachable through All Consuming’s
News-section, see http://cgi.allconsuming.net/news.html.

While 48 users rated one or more recommendations com-
puted according to the purely collaborative method, dubbed
“A”, 42 did so for the taxonomy-driven approach, labelled
“B”, and 39 for the simplistic hybrid algorithm. In a first ex-
periment, depicted on the left side of Figure 4, we compared
the overall recommendation list verdicts and average ratings
of personalized top-20 recommendations for each rater and
each recommender system. Results were averaged over all
participating users. In both cases, the taxonomy-driven sys-
tem performed best and the purely collaborative worst.

Second, we counted all those raters perceiving one specific
system as best. Again, comparison was based upon the over-
all verdict and average recommendation rating, likewise. In
order to guarantee fairness, we discarded users not having
rated all three systems for each metric. The right chart of
Figure 4 shows that the appreciation of the taxonomy-driven
method significantly prevailed.

Eventually, we may conclude that results obtained from
the online analysis back offline evaluation results. In both
cases, our taxonomy-driven method has been shown to out-
perform benchmark systems.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a novel, hybrid approach to

automated recommendation making, based upon large-scale
product classification taxonomies which are readily available
for diverse domains today. Cornerstones of our approach are
hereby the generation of profiles via inference of super-topic
score and topic diversification.

Thorough “in vitro” performance trials were conducted on
“real-world” data in order to demonstrate our algorithm’s
superiority over less informed approaches when rating in-
formation sparseness prevails. Moreover, we provided “in
situ” online evaluation, asking All Consuming community
members to rate diverse recommender systems.

Next steps include testing our method for domains other
than books and analyzing the impact that taxonomic struc-
ture, nesting and average taxonomy depth may have on re-
sults obtained. Amazon.com offers an immense taxonomy
for movie classification, too, containing more than 16, 400 at
the time of this writing. We envision performance trials run-
ning on top of the two well-known EachMovie and Movie-
Lens [25] datasets. Hence, this analysis would also allow us
to test the suitability of our approach for rather dense data.

7. REFERENCES
[1] ALSPECTOR, J., KOLCZ, A., AND KARUNANITHI, N. Compar-

ing feature-based and clique-based user models for movie se-
lection. In Proceedings of The Third ACM Conference on Digital Li-
braries (Pittsburgh, PE, USA, 1998), ACM Press, pp. 11–18.

[2] AVERY, C., AND ZECKHAUSER, R. Recommender systems for
evaluating computer messages. Communications of the ACM 40,
3 (March 1997), 88–89.
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